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Omnipose: a high-precision 
morphology-independent solution for 
bacterial cell segmentation

Kevin J. Cutler    1, Carsen Stringer    2, Teresa W. Lo1, Luca Rappez    3, 
Nicholas Stroustrup    3,4, S. Brook Peterson5, Paul A. Wiggins1,6   and 
Joseph D. Mougous    5,7 

Advances in microscopy hold great promise for allowing quantitative 
and precise measurement of morphological and molecular phenomena 
at the single-cell level in bacteria; however, the potential of this approach 
is ultimately limited by the availability of methods to faithfully segment 
cells independent of their morphological or optical characteristics. 
Here, we present Omnipose, a deep neural network image-segmentation 
algorithm. Unique network outputs such as the gradient of the distance 
field allow Omnipose to accurately segment cells on which current 
algorithms, including its predecessor, Cellpose, produce errors. We show 
that Omnipose achieves unprecedented segmentation performance on 
mixed bacterial cultures, antibiotic-treated cells and cells of elongated or 
branched morphology. Furthermore, the benefits of Omnipose extend to 
non-bacterial subjects, varied imaging modalities and three-dimensional 
objects. Finally, we demonstrate the utility of Omnipose in the 
characterization of extreme morphological phenotypes that arise during 
interbacterial antagonism. Our results distinguish Omnipose as a powerful 
tool for characterizing diverse and arbitrarily shaped cell types from 
imaging data.

Although light microscopy is a valuable tool for characterizing cellu-
lar and subcellular structures and dynamics, quantitative analysis of 
microscopy images remains a persistent challenge1. This is especially 
pertinent to the study of bacteria, many of which have dimensions in 
the range of visible wavelengths. Thus, their cell body is composed of a 
small number of pixels (for example, ~100–300 px2 for Escherichia coli 
in typical experiments). At this scale, accurate subcellular localization 
requires defining the cell boundary with single-pixel precision. The 
process of defining boundaries within images is termed segmentation, 
and this is a critical first step in image analysis pipelines2,3.

In addition to their small size, bacteria adopt a wide range of 
morphologies. Although many commonly studied bacteria are well 
approximated by rods or spheres, there is growing interest in bacteria 
with more elaborate shapes4. Some examples include Streptomyc-
etales, which form long filamentous and branched structures5, and 
Caulobacterales, which possess extended appendages distinct from 
their cytoplasm6. Furthermore, microfluidic devices are allowing 
researchers to capture the responses of bacteria to assorted treat-
ments such as antibiotics, which often result in highly irregular mor-
phologies7. Whether native or induced, atypical cell morphologies 
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aztreonam, and A22, which targets MreB29. Finally, based on our interest 
in microbial communities, we acquired images of mixtures of bacterial 
species which display distinct morphologies and optical characteris-
tics. In total, we collected 4,833 images constituting approximately 
700,900 individual cells deriving from 14 species (Supplementary 
Table 1). Next, we developed a streamlined approach for manual cell 
annotation and applied it to these images (Methods), yielding 47,000 
representative annotated cells that serve as our ground-truth data-
set (bact_phase). We divided this data into a 27,500-cell training set 
and a 19,500-cell benchmarking set. Relevant cellular metrics (area, 
perimeter and mean diameter) did not differ substantially between the 
groups, confirming that the benchmarking set faithfully represents the 
training set (Extended Data Fig. 1).

To facilitate direct comparison of the algorithms, we first optimized 
their performance against our data. For the DNN approaches, each 
algorithm was trained on our dataset using developer-recommended 
parameters. Morphometrics and SuperSegger cannot be automatically 
optimized using ground-truth data; therefore, we manually identi-
fied settings that optimized the performance of these algorithms 
against our dataset (Methods). As a quantitative measure for algorithm 
performance, we compared their average Jaccard index ( JI) as a func-
tion of intersection over union (IoU) threshold (Fig. 1a)30,31. IoU values 
lie between zero and one, with values greater than 0.8 marking the 
point at which masks become indistinguishable from ground truth by 
the expert human eye (Extended Data Fig. 2)30. This analysis showed 
that DNN-based approaches outperform other algorithms; however, 
substantial differences in performance within the DNN group were 
observed. Cellpose and StarDist outperform Mask R-CNN and MiSiC at 
high IoU thresholds. The performance of all algorithms varied greatly 
across images in the bact_phase dataset, with much of this variability 
delineated by cell type and morphology categories (Fig. 1b–g). Whereas 
all other algorithms exhibited visible segmentation errors in two of the 
three cell categories we defined, errors by Cellpose were only apparent 
in elongated cells (Fig. 1h–j).

Motivation for a new DNN-based segmentation algorithm
Our comparison revealed that Cellpose offers superior performance 
relative to the other segmentation algorithms we analyzed, and for this 
reason we selected this algorithm for further development. Notably, 
even at the high performance levels of Cellpose, only 81% of predictions 
on our benchmarking dataset are above 0.8 IoU. This limits the feasibil-
ity of highly quantitative studies such as those involving subcellular 
protein localization or cell–cell interactions.

Cellpose utilizes a two-step process. Its neural network first trans-
forms an input image into several intermediate outputs, including a sca-
lar probability field for identifying cell pixels in the next step (Extended 
Data Fig. 3a(i)–(iii))12. Cellpose is unique among DNN algorithms by the 
addition of a vector field output (the flow field), which is defined by the 
normalized gradient of a heat distribution from the median cell pixel 
coordinate (Extended Data Fig. 3a(iv),(v)). In the second step, this vec-
tor field directs pixels toward a global cell center via Euler integration, 
thereby segmenting cells based on the points at which pixels coalesce 
(Extended Data Fig. 3b). In contrast to other algorithms, this approach 
for reconstructing cell masks is size- and morphology-independent, 
insofar as the cell center can be correctly defined.

To understand the mechanisms behind Cellpose segmentation 
errors, we evaluated its performance as a function of cell size on 
our bact_phase dataset. We compared cell area against the number 
of segmentation errors, calculated as the number of redundant 
or missing masks corresponding to each ground-truth cell mask. 
This revealed a strong correlation between cell size and segmenta-
tion errors, with the top quartile of cells accounting for 83% of all 
errors (Extended Data Fig. 4a). To understand the source of these 
errors, we inspected the flow field output of many poorly segmented 
cells across a variety of species and growth conditions. This showed 

present a distinct problem at the cell-segmentation phase of image 
analysis8,9. This is compounded when such cells are present alongside 
those adopting other morphologies, as is the case in many natural 
samples of interest10. Although some algorithms can be trained to 
segment objects imaged using assorted modalities, to date there is 
no generalizable solution for segmenting bacterial cells of assorted 
size and shape1.

Cell segmentation is a complex problem that extends beyond 
microbiological research; thus, many solutions are currently available 
in image-analysis programs8,9,11–27. Most of these solutions use tradi-
tional image-processing techniques such as intensity thresholding to 
segment isolated cells; however, this approach performs poorly on 
cells in close contact and it requires image-by-image tuning to optimize 
parameters. SuperSegger was developed to address thresholding 
issues specifically in bacterial phase-contrast images13. This program 
utilizes both traditional image filtering techniques and a shallow neural 
network to correct for errors that thresholding and watershed segmen-
tation tend to produce.

Deep neural networks (DNNs) are now widely recognized as supe-
rior tools for cell segmentation28. Unlike traditional image process-
ing, machine-learning approaches such as DNNs require training on a 
ground-truth dataset of cells and corresponding labels. Trained DNNs 
are thus limited in applicability to images that are representative of 
those in the training dataset. Early DNN approaches were based on the 
Mask R-CNN architecture24, whereas more recent algorithms such as 
StarDist, Cellpose and MiSiC are based on the U-net architecture12,15,26. 
Pachitariu and colleagues showed that Cellpose outperforms Mask 
R-CNN and StarDist on a variety of cell types and cell-like objects, dis-
tinguishing it as a general solution for cell segmentation12. Notably, the 
representation of bacteria in their study was limited. MiSiC was devel-
oped as a general DNN-based solution for bacterial segmentation; how-
ever, the authors of MiSiC did not provide comparisons to other DNN 
algorithms15. Here, we evaluated the performance of state-of-the-art 
cell segmentation algorithms on a diverse collection of bacterial cells. 
Our findings motivated the design of a new algorithm, Omnipose, 
which substantially outperforms all segmentation algorithms tested 
across a wide range of bacterial cell sizes, morphologies, and optical 
characteristics. We have made Omnipose and all associated data avail-
able to researchers and we anticipate that our model, without retrain-
ing, can be applied to diverse bacteriological systems. Furthermore, 
following the incorporation of additional ground-truth data, Omnipose 
could serve as a platform for segmenting various eukaryotic cells and 
extended, anisotropic objects more broadly.

Results
Evaluation of bacterial cell segmentation algorithms
Numerous image segmentation algorithms have been developed and 
the performance of many of these on bacterial cells is documented1. 
These broadly fall into three categories: (1) traditional image-processing 
approaches (for example, thresholding and watershed); (2) traditional/
machine-learning hybrid approaches; and (3) DNN approaches. Given 
the goal of developing software with the capacity to recognize bacteria 
universally, we sought to identify strongly performing algorithms for 
further development. An unbiased, quantitative comparison of cell 
segmentation algorithms on bacterial cells has not been performed; 
thus, we selected one or more representatives from each category for 
our analysis: Morphometrics23 (1); SuperSegger13 (2); and Mask R-CNN27, 
StarDist26, MiSiC15, and Cellpose12 (3). A detailed review of these choices 
is in the Methods.

For training and benchmarking of these algorithms, we acquired 
micrographs of assorted bacterial species representing diverse mor-
phologies and optical characteristics. Many studies of bacteria involve 
mutations or treatments that cause extreme morphologies. To capture 
this additional diversity, we included wild-type and mutant bacteria 
grown in the presence of two β-lactam antibiotics, cephalexin and 
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that elongated cells, an important morphology often seen in both 
wild-type and mutant bacterial populations, are particularly suscep-
tible to over-segmentation (Extended Data Fig. 4b). We attribute this 
to the multiple sinks apparent in the corresponding flow fields. In the 
Cellpose mask reconstruction algorithm, pixels belonging to these 
cells are guided into multiple centers per cell, fragmenting the cell 
into many separate masks.

We hypothesized that the defect in Cellpose flow field output is a 
consequence of two distinct flow field types arising from our training 
dataset: those where the median pixel coordinate, or ‘center’, lies within 
the cell (97.8%) and those where it lies outside the cell (2.2%). In the lat-
ter, Cellpose projects the center point to the nearest boundary pixel, 
ultimately leading to points of negative divergence on cell peripher-
ies that are chaotically distributed (Extended Data Fig. 4c–e). On the 

c

SS
0

0.8

1

0.6

0.4

0.2

Io
U

Simple Abx/mutant Elongated

ed

h

i

j

SD
0

0.8

1

0.6

0.4

0.2

Io
U

 

0

0.8

1a

0.6

0.4

0.2

0.5 0.6 0.80.7 0.9 1

b

MM
0

0.8

1

0.6

0.4

0.2

Io
U

 

f

MS
0

0.8

1

0.6

0.4

0.2

Io
U

 

g

CP
0

0.8

1

0.6

0.4

0.2

Io
U

 

MR
0

0.8

1

0.6

0.4

0.2

Io
U

 

Ground truthPhase

HybridTraditional DNN

CP

0.94

0.04

0.87

SD

0.36

0.27

0.83

MR

0.15

0.02

0.47

SS

0.03

0.63

0.07

MM

0.41

0.33

0.51

MS

0.25

0.91

0.67

SS
MM MR

MS
CP
SD

IoU matching threshold

JI

Fig. 1 | Quantitative comparison of segmentation methods distinguishes 
Cellpose as a high-performing algorithm. a–g, Comparison of segmentation 
algorithm performance on our bact_phase test dataset (n = 19,538 cells). Overall 
performance measured by JI (a). MM, Morphometrics; MR, Mask R-CNN; CP, 
Cellpose; SS, SuperSegger; MS, MiSiC; SD, StarDist. The JI was calculated at the 
image level and values averaged across the dataset are displayed. Algorithm 
performance was partitioned by cell type (simple, n = 12,869; Abx/mutant, 
n = 6,138; elongated, n = 531) (b–g). Images were sorted into types as defined in 
Supplementary Table 1. Abx, antibiotic. Boxes are centered on medians from 

Q1 to Q3, whiskers from Q1 − 1.5 IQR to Q3 + 1.5 IQR. IQR, interquartile range 
Q3–Q1. h–j, Representative micrographs of cell type partitions analyzed in b–g, 
indicated by vertical bars on right. Ground-truth masks and predicted mask 
outlines generated by the indicated algorithm are displayed. Mean matched 
IoU values for cells shown are displayed within each micrograph. Bacteria 
displayed are Vibrio cholerae, Pseudomonas aeruginosa, Bacillus subtilis, 
and Staphylococcus aureus (h), aztreonam-treated E. coli CS703-1 (i), and 
Streptomyces pristinaespiralis (j). All images are scaled equivalently.  
Scale bar, 1 μm.
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contrary, non-projected centers maintain a uniform field magnitude 
along the entire boundary and adhere to the global symmetries of the 
cell (Extended Data Fig. 5a,d). A similar issue is also encountered in cells 
with centers that fall close to but not outside of the boundary (Extended 
Data Fig. 5b–d). Cells with a center point closer than 0.3 times the mean 
cell diameter (a factor of 0.2 off-center) to the boundary account for 
an additional 9.6% of our training dataset. Neural networks can be 
exquisitely sensitive to the outliers in their training data32; therefore, 
we suspect that this small fraction of corrupt flow fields has a dispro-
portionate impact on the performance of Cellpose.

Development of a high-precision U-net segmentation 
algorithm
We sought to develop a segmentation algorithm that operates inde-
pendently of cell center identification. The algorithm we developed 
is based on the framework of Cellpose, which can be divided into five 
key components: file handling, neural network architecture, training 
objective functions, network predictions, and mask reconstruction. We 
made improvements to each of these components; however, the major 
innovations in our algorithm, which we named Omnipose, pertain to 
network predictions and mask reconstruction.

Unlike the cell probability and center-seeking flow field upon 
which Cellpose is constructed, we built Omnipose on three distinct 
network outputs: a cell boundary probability map, the distance field, 
and a flow field defined by the gradient of the distance field. The dis-
tance field (or distance transform) describes the distance at any point 
x⃗ in a bounded region Ω to the closest point on the boundary ∂Ω. 
Notably, this widely utilized construct is one of the intermediate out-
puts of StarDist32. Whereas StarDist uses a distance field prediction to 
seed and assemble star-convex polygons, Omnipose implements the 
distance field as a replacement to the cell probability output of Cell-
pose. The use of a distance field has several advantages. First, the dis-
tance field is more structured than a binary probability map and offers 
higher fidelity thresholding to seed cell masks. Second, the distance 
field is defined by the eikonal equation |∇⃗Φ (x⃗)| = 1 and so its gradient 
(the flow field of Omnipose) has unit magnitude throughout the 
bounded region for which it is calculated. This leads to faster conver-
gence and better numerical stability when compared to alternative 
solutions producing similar fields (for example, screened Poisson) 
(Methods and Extended Data Fig. 6a). Third, the distance field is inde-
pendent of morphology and topology, meaning that it is applicable to 
all cell shapes and sizes. Last, the resulting flow field points uniformly 
from cell boundaries toward the local cell center, coinciding with the 
medial axis (skeleton) that is defined by the stationary points of the 
distance field (Extended Data Fig. 6b). This critical feature allows pixels 
to remain spatially clustered after Euler integration, solving the prob-
lem of over-segmentation seen in Cellpose.

One challenge to implementing a distance-field-based approach is 
that traditional distance field algorithms such as fast marching method 
(FMM) are sensitive to boundary pixelation33, causing artifacts in the 
flow field that extend deep into the cell. These artifacts are sensitive 
to pixel-scale changes at the cell perimeter, which we reasoned would 
interfere with the training process. To solve this problem, we developed 
an alternative approach based on fast iterative method (FIM) that 
produces smooth distance fields for arbitrary cell shapes and sizes 
(Fig. 2a, Extended Data Fig. 6 and Methods)34. The corresponding flow 
field is relatively insensitive to boundary features at points removed 
from the cell boundary, a critical property for robust and generalized 
prediction by the Cellpose network.

The use of the distance field additionally required a unique solu-
tion for mask reconstruction. Whereas the pixels in a center-seeking 
field converge on a point, standard Euler integration under our 
distance-derived field tends to cluster pixels into multiple thin frag-
ments along the skeleton, causing over-segmentation (Fig. 2b). We 
solved this with a suppression factor of (t + 1)−1 in each time step of the 

Euler integration (Fig. 2c). This reduces the movement of each pixel 
after the first step t = 0, facilitating initial cell separation while pre-
venting pixels from clustering into a fragmented skeleton formation. 
The wider point distribution resulting from our suppression factor 
allows pixels to remain connected, thereby generating a single mask 
for each cell in conjunction with a standard automated point clustering 
algorithm (for example, DBSCAN)35.

Omnipose demonstrates unprecedented segmentation 
accuracy
To benchmark the performance of Omnipose, we trained a model 
(bact_phase_omni) on our bact_phase dataset. Remarkably, across the 
IoU threshold range 0.5–1.0, the accuracy of Omnipose substantially 
exceeds that of Cellpose using a corresponding model (bact_phase_cp) 
(Fig. 3a). This difference in performance between the algorithms is 
particularly pronounced within the high IoU range 0.8–1.0. Bacteria 
are 0.5–5 μm in scale and are typically imaged with a calibrated pixel 
size of about 0.1 μm, resulting in cells and cell labels that are 5–50 pixels 
across36. Quantitative measurements at this scale require pixel-level 
accuracy, corresponding to IoU values above 0.8 (Extended Data  
Fig. 2). Thus, Omnipose is uniquely suited for the microscopic analysis 
of bacterial cells.

To dissect the contributions of the individual Omnipose innova-
tions to the overall performance of the algorithm, we isolated the 
mask reconstruction component of Omnipose and applied it to the 
Cellpose network output. This augmentation of Cellpose modestly 
improved its performance across all IoU thresholds (Fig. 3a). Based on 
this, we attribute the remaining gains in performance by Omnipose to 
its unique network outputs (boundary, distance, and flow) and to our 
improvements to the Cellpose training framework. The latter includes 
numerous custom loss functions, the use of an alternative optimizer 
(RAdam), and image augmentations (Methods).

Our analyses illuminated critical flaws in previous DNN-based 
approaches for the segmentation of elongated cells, effectively pre-
venting these algorithms from generalizable application to bacteria 
(Fig. 1). To determine whether Omnipose overcomes this limitation, we 
evaluated its performance as a function of cell area. Cell area serves as 
a convenient proxy for cell length in our dataset, which is composed of 
both branched and unbranched elongated cells. While the Cellpose cell 
error rate remains above 15% across all cells, the Omnipose error rate 
does not exceed 5% before the 90th percentile of cell area is reached 
(Fig. 3b). Thus, Omnipose performance is independent of cell size and 
shape, including those cells with complex, extended morphologies 
(Fig. 3c,d and Extended Data Fig. 7a).

Omnipose is a multifunctional segmentation tool
We have shown that the features of Omnipose improve bacterial 
phase-contrast segmentation performance beyond that of Cellpose. 
Like other DNN-based algorithms, Omnipose can also segment images 
acquired using different modalities and composed of alternative sub-
jects when trained on a representative dataset. To evaluate Omnipose 
on images acquired using a modality distinct from phase contrast, we 
curated a dataset containing cytosol and membrane fluorescence in 
33,200 bacterial cells (bact_fluor). In brief, this was achieved by apply-
ing the labels of cells with fluorescence signal in our phase-contrast 
ground-truth images to their corresponding fluorescence channels 
(Methods). As expected, we found that the enhanced performance of 
Omnipose (bact_fluor_omni) relative to Cellpose (bact_fluor_cp) on 
morphologically diverse cells translates to fluorescence images (Fig. 
4a–d and Extended Data Fig. 7b).

We next sought to investigate the potential utility of Omnip-
ose in the segmentation of non-bacterial subjects. The nematode 
Caenorhabditis elegans is a widely studied model organism with 
an overall morphology similar to elongated bacteria37. At just 1 mm 
in length, C. elegans phenotypes are often analyzed by timelapse 
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microscopy; therefore, there is a need for segmentation methods 
that enable accurate tracking38. We obtained, annotated, and trained 
Omnipose on two publicly available, low-resolution microscopy 
datasets composed of C. elegans images: timelapse frames from the 
Open Worm Movement database39 and frames containing fields of 
assorted live or dead C. elegans from the BBBC010 dataset40. Many 
images in this combined worm dataset contain debris and are of het-
erogenous quality, yet 83% of masks predicted by Omnipose match 
or exceed the 0.8 IoU threshold (Fig. 4f). At the low resolution of 
our combined C. elegans dataset, the worms approximate bacteria 
in shape and diameter (in pixels). Indeed, we found that a generalist 
model trained on both our extensive bact_phase dataset and our 
worm dataset (worm_bact_omni) exhibited equivalent or higher 
performance relative to the specialist worm model (worm_omni). 
We also trained an Omnipose model using a custom collection of 
high-resolution C. elegans images (worm_high_res) and found that 
the algorithm can successfully segment these images despite the 
complex internal structure (Fig. 4h). Cyto2 is a large collection of 
images and corresponding ground-truth annotations submitted by 
Cellpose users that expands upon the original cyto dataset developed 
to evaluate Cellpose12,30. This dataset includes many non-cell images 
(for example, rocks, onions) as well as multi-channel fluorescence 
images (for example, cytosol and nuclear stains in mammalian cells) 
(Fig. 4i and Extended Data Fig. 8). We found that Omnipose offers 
a modest improvement in performance relative to Cellpose on the 
cyto2 dataset (Fig. 4e) and this was achieved without compromising 
the segmentation rate (~1 image per second).

Two-dimensional (2D) imaging allows the characterization of 
cells within constrained environments, yet many phenomena of 

interest can only be studied in natural, three-dimensional (3D) con-
texts. We modified each explicitly 2D component of the network 
architecture, outputs and mask reconstruction elements of Omnip-
ose to enable direct segmentation of 3D (or higher order) data. This 
contrasts with the solution adopted for Cellpose (Cellpose3D), which 
approximates a 3D field by combining the 2D flow components pre-
dicted on orthogonal 2D volume slices12. We compared Cellpose3D 
to Omnipose on a publicly available Arabidopsis thaliana lateral 
root primordia dataset acquired using confocal microscopy22. An 
Omnipose model was trained on six volumes representing 931 cells 
in total (plant_omni), whereas Cellpose was trained on 3,070 slices 
of these volumes (plant_cp) (Methods). Consistent with our results 
in 2D, Omnipose provided more accurate segmentation results than 
Cellpose, particularly among elongated cells in the dataset (Fig. 5). 
We note that the absolute scores for both algorithms are low and 
attribute this in part to inaccurate ground-truth masks (Extended 
Data Fig. 9a,b). Indeed, in certain instances, Omnipose-predicted 
masks seem to be more accurate than the ground truth (Fig. 5b and 
Extended Data Fig. 9b). Notably, the 3D field reconstruction made 
in Cellpose from 2D plant_cp slice predictions recapitulates much 
of the direct 3D field predictions of plant_omni (Extended Data Fig. 
9c). We reason that this is because the local 2D cell slice ‘centers’ 
of the Cellpose flow field can be coincident with the global 3D cell 
‘skeletons’ of the Omnipose flow field. Taken together with our results 
on diverse cell types and fluorescence images, we conclude that 
Omnipose maintains the multi-modal segmentation capabilities of 
Cellpose while adding the ability to perform accurate segmentation 
of a substantially broader range of cellular morphologies present 
within 2D and 3D data.
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algorithms and corresponding flow fields on ground-truth masks. FMM produces 
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Our smooth FIM algorithm minimizes these features. The difference image 
(FIM − FMM) highlights artifacts in the FMM method. Flow fields are calculated 
as the normalized gradient of the distance field. Boundary pixelation affects the 
FMM flow field deep into the cell, regardless of cell size. b,c, Comparison of mask 

reconstruction algorithms on a smooth flow field. Boundary pixel trajectories 
and resulting mask outlines from standard Euler integration (b). Trajectories and 
mask outlines under suppressed Euler integration (c). Red dots indicate the final 
positions of all cell pixels, not only the boundary pixels for which trajectories 
are displayed. Bacteria displayed are E. coli CS703-1 (a) and H. pylori (b,c) both 
treated with aztreonam. Scale bars, 1 μm. Images are representative of 1,299 
E. coli and 701 H. pylori cells in the total ground-truth dataset, respectively.
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Omnipose permits sensitive detection of cell intoxication
Our laboratory recently described an interbacterial type VI secretion 
system-delivered toxin produced by Serratia proteamaculans, Tre1  
(ref. 41). We showed that this toxin acts by ADP-ribosylating the essential 
cell division factor FtsZ; however, we were unable to robustly evalu-
ate the consequences of Tre1 intoxication on target cell morphology 
due to segmentation challenges. Here we asked whether Omnipose is 
able to detect cellular intoxication by Tre1. To this end, we incubated 
S. proteamaculans wild-type or a control strain expressing inactive 
Tre1 (tre1E415Q) with target E. coli cells and imaged these mixtures after 
20 h. Owing to the improved segmentation accuracy of the Omnipose 
bact_phase model, we were able to include dense fields of view and 
incorporate ~300,000 cells in our analysis.

Among the cells identified by Omnipose, we found that a small 
proportion were elongated and much larger than typical bacteria  
(Fig. 6a,b and Extended Data Fig. 10a). These cells were only detected 

in mixtures containing active Tre1 and the apparent failure of the cells 
to septate is consistent with the known FtsZ-inhibitory activity of 
the toxin. The S. proteamaculans strain background we employed 
in this work expresses the green fluorescent protein. Correspond-
ing fluorescence images allowed us to unambiguously assign the 
enlarged cell population to E. coli (Fig. 6c). Next, we subjected the 
same images to cell segmentation with StarDist, Cellpose and MiSiC, 
the three top-performing algorithms in our initial survey. Each of these 
algorithms fail to identify this population of cells to high precision  
(Fig. 6d,e). Close inspection reveals three distinct modes of failure  
(Fig. 6e and Extended Data Fig. 10a,b). In the case of StarDist, elongated 
(non-star-convex) cells are split into multiple star-convex subsets that 
do not span the entire cell. Cellpose detects entire elongated cells but 
fragments them into a multitude of smaller masks. Conversely, MiSiC 
detects all cells but fails to properly separate them, thereby exagger-
ating the area measurement in many cases, including E. coli cells in 
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the control experiment. These data illustrate how the enhanced cell 
segmentation performance of Omnipose can facilitate unique insights 
into microbiological systems.

Discussion
We have designed Omnipose for use by typical research laboratories 
and we have made its source code, training data, and models pub-
licly available (Supplementary Table 2). Thorough documentation 
demonstrating how to install and use Omnipose is also available (visit 
https://omnipose.readthedocs.io and see ‘Code availability’ section). 

For images similar to those represented in these models, we expect 
that researchers will not need to train models with new ground-truth 
data; however, users wishing to segment images not represented in 
our models (for example, cell type, imaging modality) should curate 
custom training data to obtain accurate results with Omnipose. Instruc-
tions for training and evaluating Omnipose are also provided within 
our documentation.

Confronted with the importance of segmentation accuracy to 
the success of work within our own laboratory, we were motivated to 
characterize the performance of several existing cell segmentation 
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algorithms. Recent developments in deep learning have greatly 
improved these algorithms; however, important challenges remain1,30. 
Although isolated cells without cell-to-cell contact can be segmented 
with high precision by any of the packages that we tested, segmenta-
tion becomes vastly more challenging when cells form microcolonies, 
adopt irregular morphologies, or when images are composed of cells 
with assorted shapes and sizes. Such difficulties are compounded in 
timelapse studies, where the significance of segmentation errors often 
grows exponentially with time. Experimental design can help mitigate 
certain segmentation challenges; however, the recent emphasis on 
non-model organisms and microbial communities renders this an 
increasingly undesirable solution42.

This work provides a comprehensive side-by-side quantitative 
comparison of cell segmentation algorithm performance. As expected, 
machine-learning-based approaches outperform traditional image 
processing, yet insights into general image segmentation strategies 
can be gained from each of the methods we examined. Two of the 
six algorithms we tested utilize traditional image thresholding and 
watershed segmentation: Morphometrics and SuperSegger13,23. Each 
program tends to under-segment adjacent cells and over-segment 
large cells, behaviors previously linked to thresholding and watershed 
processes, respectively1,43. Given that SuperSegger was developed 
at least in part to mitigate these issues, we postulate that traditional 
image-segmentation approaches are ultimately limited to special-
ized imaging scenarios. Although we classify MiSiC as a DNN-based 
approach, this algorithm also relies on thresholding and watershed 
segmentation to generate cell masks from its network output15. The net-
work output of MiSiC is more uniform than unfiltered phase-contrast 
images, yet this pre-processing does not fully abrogate the typical 
errors of thresholding and watershed segmentation.

A successful DNN-based algorithm is composed of a robust, con-
sistent neural network output and an appropriate mask reconstruction 
process designed for this output. In the case of Mask R-CNN, bounding 

boxes for each cell are predicted along with a probability field that 
localizes a cell within its bounding box44. Masks are generated by iterat-
ing over each box and thresholding the probability field. Despite the 
widespread adoption of Mask R-CNN, we found this algorithm did not 
perform well in our study. Our results suggest that this is due to dense 
cell fields with overlapping bounding boxes, a feature known to cor-
rupt the training process and produce poor network outputs for Mask 
R-CNN45. By contrast, the StarDist network makes robust predictions 
of its distance field, but it fails to assemble accurate cell masks because 
the cells in our dataset are not well approximated by star-convex poly-
gons26. Likewise, the cell body and cell boundary outputs of MiSiC 
seem robust, but its watershed-based mask reconstruction is sensitive 
to defects in these outputs and can yield unreliable cell masks. The 
errors we encountered with Cellpose can be attributed to both neural 
network output and mask reconstruction. In Omnipose, we specifically 
addressed these two issues via the distance field and suppressed Euler 
integration, respectively, yielding a remarkably precise and general-
izable image segmentation tool. Omnipose effectively leverages the 
strongest features of several of the DNN approaches we tested, namely 
the distance field of StarDist, the boundary field of MiSiC, and the mask 
reconstruction framework of Cellpose.

In this study, we emphasized morphological diversity, but we 
further accounted for differences in optical features between bacterial 
strains, slide preparation techniques, and microscope configurations. 
For example, bacterial strains exhibit a wide range of intrinsic contrast 
and internal structure, often exacerbated by antibiotic treatment or 
dense cell packing. Internal structure can cause over-segmentation, 
so we included many cells with this characteristic in our dataset. Addi-
tionally, the images in our ground-truth dataset originate from four 
different researchers using distinct microscopes, objectives, sensors, 
illumination sources, and acquisition settings. We further introduced 
extensive image augmentations that simulate variations in image inten-
sity, noise, gamma, clipping, magnification, and bit depth (Methods).
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Although Omnipose is designed to be trainable for any cell 
morphology or imaging modality, like all segmentation algorithms 
operating in 2D, Omnipose is limited in its ability to handle object 
overlap and self-contact (boundary intersection). Additionally, there 
are theoretical and practical limitations to the size of cells that it can 
accurately segment. Cells must be at least three pixels wide for the flow 
field to be well-defined at boundary pixels. A reasonable lower bound 
for cell size is therefore a 9-px square in 2D and a 27-voxel cube in 3D. 
Furthermore, we reason that the finite kernel size in our convolutional 
layers and number of downsampling steps in our U-net must present 
an upper limit to cell size that we have yet to quantify. In practice, 
we found that images with a mean cell diameter of 60 px or smaller 
are handled well during training by Omnipose. For images with cells 
larger than this, users may specify an average diameter to which the 
cells in all images are automatically rescaled before training. This 
solution may not be suitable for some applications and therefore more 
work is needed to modify our U-net implementation to achieve native 
segmentation at arbitrarily high resolutions. When segmenting new 
images, users are able to manually define a rescaling factor to bring 
cells into an acceptable size range or estimate this rescaling factor 
using a SizeModel, a feature inherited from Cellpose and improved by 

our mean diameter metric (Methods). Omnipose in 3D avoids issues of 
cell overlap, but the problem of self-intersecting boundaries remains. 
It is conceivable that the use of a flow field could be leveraged to define 
such boundaries, making Omnipose a promising candidate for over-
coming this widespread limitation of segmentation algorithms. A 
dearth of 3D ground-truth data hampers the training and evaluation 
of all DNN-based algorithms. Manual annotation of 3D volumes is 
considerably more difficult than 2D images, leading to errors that 
corrupt training.

We anticipate that the high performance of Omnipose across 
varied cellular morphologies and modalities may unlock information 
from microscopy images that was previously inaccessible. All bacteria 
appear dark under phase contrast, so images deriving from natural 
microbial communities could be segmented by phase contrast and 
accurately characterized with regard to internal structure, autofluo-
rescence, and morphology at the single-cell level. These data could 
be used to estimate diversity, a methodology that would complement 
existing sequencing-based metrics46. It is worth noting that pheno-
typic diversity often exceeds genetic diversity47; therefore, even in a 
relatively homogeneous collection of organisms, precise segmenta-
tion could allow classes representing distinct states to be identified.  
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A microscopy-based approach also offers the opportunity to character-
ize spatial relationships between cells, information that is exceptionally 
difficult to recover in most biomolecular assays.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01639-4.
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Methods
Phase-contrast and fluorescence microscopy
In-house imaging was performed on a Nikon Eclipse Ti-E wide-field 
epi-fluorescence microscope, equipped with a sCMOS camera (Hama-
matsu) and X-cite LED for fluorescence imaging. We imaged through 
×60 and ×100 1.4 NA oil-immersion PH3 objectives. The microscope 
was controlled by NIS-Elements v.3.30.02. Cell samples were spotted 
on a 3% (w/v) agarose pad placed on a microscope slide. The microscope 
chamber was heated to 30 °C or 37 °C when needed for timelapse 
experiments.

Several images in our dataset were taken by two other laboratories 
using three distinct microscope/camera configurations. The Brun 
laboratory provided images of C. crescentus acquired on a Nikon Ti-E 
microscope equipped with a Photometrics Prime 95B sCMOS camera. 
Images were captured through a ×60 Plan Apo λ ×100 1.45 NA oil Ph3 DM 
objective. The Wiggins laboratory provided E. coli and A. baylyi time-
lapses from both a Nikon Ti-E microscope using NIS-Elements v.4.10.01 
as well as a custom-built tabletop microscope using Micro-Manager 
v.1.4, both of which are described in previous studies48,49.

C. elegans data preparation
We obtained a 1,000-frame timelapse of C. elegans from the Worm-
pose38 GitHub (https://github.com/iteal/wormpose_data) adapted 
from the Open Worm Movement database39, which is inaccessible at 
the time of writing. We also utilized BBBC010 (ref. 40) (https://bbbc.
broadinstitute.org/c-elegans-livedead-assay-0), a set of 100 images 
containing live and dead C. elegans. These images were manually 
cropped to select regions of each image without C. elegans overlaps. For 
both of these datasets, images were initially segmented with Omnip-
ose to select foreground, automatically cropped to select individual 
C. elegans or clusters of C. elegans and then packed into ensemble 
images for efficient annotation, training and testing following the same 
procedures described below for our bacterial datasets.

For high-resolution C. elegans images, one gravid non-starved 
nematode growth medium plate of wild-type C. elegans (QZ0) was 
resuspended in 1 ml M9 defined buffer. The worm suspension was 
pelted by quick spinning and resuspended in 100 μl fresh M9 buffer. 
Then, 20 μl of the pellet was placed on agar pads (0.3% agar, SeaKem) 
and mounted on regular microscope slides (25 mm × 75 mm). The 
20-μl drops were left to dry by approximately 50% of their volume at 
room temperature, allowing worms to arrange longitudinally, before 
a glass coverslip (22 mm × 22 mm) was placed on top. The sample was 
imaged using a Andor Dragonfly Spinning disk confocal mounted on 
a Nikon TiE2 microscope at ×15 magnification (×10/0.25 NA Nikon 
objective and ×1.5 camera magnification) in the brightfield channel. 
For each field of view, a Z stack of seven frames centered on the worm 
focal plane and spanning over approximately 85 μm (12.14-μm spacing 
between frames) was acquired.

A. thaliana data preparation
This specific subset of the PlantSeg dataset22 was chosen because it 
represented diverse morphologies and because other subsets of their 
published ground truth were not in accessible formats. Three folders 
were provided: test, train and val. We first combined the test and val 
volumes into a single test dataset. The PlantSeg algorithm seems to 
exclude regions labeled by 0 as during training, whereas 1 denotes 
background. This is incompatible with Omnipose and most other 
algorithm training pipelines. We therefore discarded images with the 
label 0 from our training set and subtracted 1 so that the remaining 
images conformed to the convention of 0 for background. The final 
training set consists of Video 1 timepoints 3, 9, 35, 40, 45 and 49. The 
published test dataset consists of Video 2 frames 10 and 20 and Video 
1 frames 4, 6, 30 and 45. Frame 45 is mistakenly duplicated from the 
training set, so we discarded it from our test metrics. Only frame 30 of 
Video 1 contained no exclusion zones (label 0), so we present both the 

performance on this subset alone as well as the performance on the 
full test dataset (Video 1 frames 4, 6 and 30 and Video 2 frames 10 and 
20) (Fig. 6e). For the purposes of computing performance, exclusion 
zones are treated as background and therefore all predicted labels in 
these regions significantly decrease the JI for all algorithms at all IoU 
thresholds regardless of segmentation accuracy elsewhere. The images 
and ground truth were downsampled by a factor of three to allow full 
cell cross-sections to be loaded onto the GPU during training (see below 
section, Omnipose in higher dimensions), with linear interpolation on 
images and nearest-neighbor interpolation on the ground-truth masks.

Bacterial sample preparation
To image antibiotic-induced phenotypes, cells were grown without 
antibiotics overnight in LB, back-diluted and spotted on agarose pads 
with 50 µg ml−1 A22 or 10 µg ml−1 cephalexin. Timelapses were cap-
tured of E. coli DH5α and S. flexneri M90T growing on these pads. E. coli 
CS703-1 was back-diluted into LB containing 1 µg ml−1 aztreonam and 
spotted onto a pad without antibiotics50. Cells constitutively expressed 
GFP to visualize cell boundaries.

H. pylori LSH100 grown with and without aztreonam was provided 
by the Salama laboratory51,52. Samples were fixed and stained with 
Alexa Fluor 488 to visualize the cell membrane. Images were taken 
on LB pads. The typical technique of allowing the spot to dry on the 
pad caused cells to curl up on themselves, therefore our images were 
taken by placing the coverslip on the pad immediately after spotting 
and applying pressure to force out excess medium.

C. crescentus was cultivated and imaged by the Brun laboratory53,54. 
Cells were grown in PYE, washed twice in water before 1:20 dilution in 
HIGG medium and grown at 26 °C for 72 h. Cells were spotted on a 1% 
agarose PYE pads before imaging.

S. pristinaespiralis NRRL 2958 was grown using the following 
medium recipe: yeast extract 4 g l−1, malt extract 10 g l−1, dextrose 4 g l−1 
and agar 20 g l−1. This medium was used to first culture the bacteria in 
liquid overnight and then on a pad under the microscope. This strain 
forms aggregates in liquid medium, so these aggregates were allowed 
to grow for several hours on a slide in a heated microscope chamber 
until we could see individual filaments extending from the aggregates. 
Fields of view were selected and cropped to exclude cell overlaps. Auto-
fluorescence was captured to aid in manual segmentation.

Mixtures of S. proteamaculans attTn7::Km-gfp tre1 or tre1E415Q 
and E. coli were spotted on a PBS pad to prevent further growth. 
Phase-contrast images of the cells were acquired before and after a 
20-h competition on a high-salt LB plate. Fluorescence images in the 
GFP channel were also acquired to distinguish S. proteamaculans from 
unlabeled E. coli.

All other individual strains in Supplementary Table 1 were grown 
overnight, diluted 1:100 into fresh LB medium and grown for 1–3 h 
before imaging. Mixtures were made by combining back-diluted cells 
roughly 1:1 by OD600.

Manual image annotation
Manual annotation began with loading images into MATLAB, normaliz-
ing the channels, registering the fluorescence channel(s) to brightfield 
(when applicable) and producing boundary-enhanced versions of 
brightfield and fluorescence. Where possible, fluorescence data were 
primarily used to define cell boundaries (not available in the C. elegans 
dataset acquired online). In addition to a blank channel to store manual 
labels, all processed phase and fluorescence images were then auto-
matically loaded as layers into an Adobe Photoshop document. We used 
four to six unique colors and the Pencil tool (for pixel-level accuracy and 
no blending) to manually define object masks. Due to the four-color 
theorem55, this limited palette was sufficient to clearly distinguish 
individual object instances from each other during annotation. This 
color simplification enabled faster manual annotation by reducing the 
need to select new colors. It also eliminated the confusion caused by the 
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use of similar but distinct colors in adjacent regions, which we suspect 
is the cause for the misplaced mask pixels that we observed in other 
datasets (for example, cyto2). Consistency was ensured by enlisting a 
single individual to perform all manual annotations.

The cell label layer was then exported as a PNG from Photoshop, 
read back into MATLAB and converted from the repeating n-color 
labels to a standard 16-bit integer label matrix, where each object is 
assigned a unique integer from 1 to the number of cells (background is 
0). Because integer labels cannot be interpolated, we then performed 
a non-rigid image registration of the brightfield channel to the binary 
label mask to achieve better brightfield correlation to ground-truth 
masks. All images in our ground-truth dataset have been registered 
in this manner.

Choosing segmentation algorithms
Three main factors contributed to the choice of algorithms highlighted 
in this study: (1) specificity to bacterial phase-contrast images; (2) suc-
cess and community adoption, especially for bioimage segmentation; 
and (3) feasibility of installation, training and use. It is noteworthy that 
criterion (1) only influenced the choice of non-DNN algorithms because 
they are generally modality-, scale- and subject-specific in their design. 
DNN approaches can generally be trained on arbitrary sets of images. 
With the exception of MiSiC, none of the DNN-based approaches we 
chose were specifically designed for (or substantively trained on) 
bacterial phase-contrast images.

SuperSegger, Morphometrics and MiSiC were selected because 
they specifically targeted the problem of bacterial phase-contrast 
segmentation13,15,23. Other bacteria-focused packages do exist, such 
as BactMAP, BacStalk, Cellprofiler, CellShape, ColiCoords, Cytokit, 
MicroAnalyzer, MicrobeJ, Oufti and Schnitzcells; however, these incor-
porate limited new segmentation solutions and instead aim to provide 
tools for single-cell analysis such as lineage tracing and protein track-
ing8,9,14,18–20,25,56–58. Furthermore, the segmentation that these programs 
perform depends broadly on thresholding and watershed techniques; 
therefore, Morphometrics is a reasonable proxy for their segmentation 
capabilities. We were unable to locate code or training data for BASCA 
at the time of writing11. Ilastik is a popular interactive machine-learning 
tool for bioimage segmentation, but training it using a manual interface 
was not feasible on a large and diverse dataset such as our own21.

Among DNN approaches, Mask R-CNN was selected because it is 
a popular architecture for handling typical image segmentation tasks. 
It was also used in the segmentation and tracking package Usiigaci24. 
U-Net architectures have been implemented in a number of algorithms, 
including DeLTA, PlantSeg, MiSiC, StarDist and Cellpose12,15,17,22,26. DeLTA 
was not included in this study because it operates similarly to MiSiC and 
was designed specifically for mother machine microfluidics analysis. 
DeLTA 2.0 was recently released to additionally segment confluent 
cell growth on agarose pads, but it remains quite similar to MiSiC in 
implementation59. PlantSeg could, in principle, be trained on bacterial 
micrographs, but we determined that its edge-focused design meant 
to segment bright plant cell wall features would not offer any advance-
ments over the remaining U-net methods that we tested.

Training and tuning segmentation algorithms
All segmentation algorithms have tunable parameters to optimize 
performance on a given dataset. These include pre-processing such 
as image rescaling (often to put cells into a particular pixel diameter 
range), contrast adjustment, smoothing and noise addition. Morpho-
metrics and SuperSegger were manually tuned to give the best results 
on our benchmarking dataset. The neural network component of 
SuperSegger was not retrained on our data, as this is a heavily manual 
process involving toggling watershed lines on numerous segmen-
tation examples. DNN-based algorithms are automatically trained 
using our dataset and the scripts we used to do so are available in our 
GitHub repository. We adapted our data for MiSiC by transforming our 

instance labels into interior and boundary masks. Training documen-
tation for MiSiC is not published. Training and evaluation parameters 
for MiSiC were tuned according to correspondence with the MiSiC 
authors. Cellpose and StarDist were trained with the default param-
eters provided in their documentation. StarDist has an additional 
tool to optimize image pre-processing parameters on our dataset, 
which we utilized.

Evaluating segmentation algorithms
All algorithms were evaluated on our benchmarking dataset with manu-
ally or automatically optimized parameters. We provide both the raw 
segmentation results for all test images by each tested algorithm as well 
as the models and model-training scripts required to reproduce our 
results. Before evaluating IoU or JI, small masks at image boundaries 
were removed for both the ground-truth and predicted masks. IoU and 
JI are calculated on a per-image basis and, where shown, are averaged 
with equal weighting over the image set or field of view.

Our new metric, the number of segmentation errors per cell, was 
calculated by first measuring the fraction of each predicted cell that 
overlaps with each ground-truth cell. A predicted cell is assigned to a 
ground-truth cell if the overlap ratio is ≥0.75, meaning that at least three 
quarters of the predicted cell lies within the ground-truth cell. If several 
predicted cells are matched to a ground-truth cell, the number of sur-
plus matches is taken to be the number of segmentation errors. If no 
cells are matched to a ground-truth cell, then the error is taken to be 1.

Statistics and reproducibility
The neural network models in this study are trained using seeded 
pseudo-random shuffling of labeled data into batches. This means that 
all models converge to precisely the same weights and biases given the 
same dataset and hyperparameters. Neural network evaluation is also 
entirely deterministic. For these reasons, no segmentation results in 
this study are associated with repetition or statistics.

All segmentation results and figures in this study can be program-
matically reproduced using the figure scripts in our GitHub repository 
(see ‘Code availability’ section). Figure micrographs are exported pro-
grammatically by manually selected labels within our scripts and auto-
matic cropping around selected labels. Although some pre-filtering 
by rough statistical metrics may have been used to help select exam-
ple cells, specific examples were ultimately selected for illustrative 
purposes and are intended only to be qualitatively representative of 
aspects such as cell phenotype or algorithm failure modes.

Leveraging Omnipose to accelerate manual annotation
Omnipose was periodically trained on our growing dataset to make ini-
tial cell labels. These were converted into an n-color representation and 
loaded into Photoshop for manual correction. A subset of our cytosol 
GFP channels were sufficient for training Omnipose to segment based 
on fluorescence and the resulting trained model enabled higher-quality 
initial cell labels for GFP-expressing samples than could be achieved 
from intermediate phase-contrast models (for example, V. cholerae).

Defining the Omnipose prediction classes
Omnipose predicts four classes: two flow components, the distance 
field and a boundary field. Our distance field is found by solving the 
eikonal equation

||∇⃗ϕ (x⃗)|| =
1

f (x⃗)

where f represents the speed at a point x⃗. The Godunov upwind discre-
tization of the eikonal equation is

(max(ϕi,j−min(ϕi−1,j ,ϕi+1,j),0)
Δx

)
2
+ (max(ϕi,j−min(ϕ1,j−1 ,ϕi,j+1),0)

Δy
)
2
= 1

fi,j
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Our solution to this equation is based on the Improved FIM Algo-
rithm 1.1 (ref. 34), as follows. Our key contribution to this algorithm 
is the addition of ordinal sampling to boost both convergence and 
smoothness of the final distance field.

2D update function for ϕi,j on a Cartesian grid. 

	1.	 Find neighboring points for cardinal axes (Δx = Δy = δ):

ϕminx = min (ϕi−1,j,ϕi+1,j) , ϕminy = min (ϕi,j−1,ϕi,j+1)

	2.	 Find neighboring points for ordinal axes 

( x̂ ⋅ â = ŷ ⋅ b̂ = √2
2
, Δa
Δx

= Δb
Δy

= √2δ):

ϕmina = min (ϕi−1,j−1,ϕi+1,j+1) , ϕminb = min (ϕi+1,j−1,ϕi−1,j+1)

	3.	 Calculate update along cardinal axes:

if ||ϕminx − ϕminy|| >
√2δ
fi,j

∶

Uxy = min (ϕminx,ϕminy) + δ

fi,j

 
else:

Uxy = 1
2 (ϕ

minx + ϕminy +
√√√
√

2 ( δ

fi,j
)
2

− (ϕminx − ϕminy)2)

	4.	 Calculate updat e along ordinal axes:

if ||ϕmina − ϕminb|| > 2δ
fi,j

∶

Uab = min (ϕmina,ϕminb) +
√2δ
fi,j

 
else:

Uab = 1
2 (ϕ

mina + ϕminb +
√√√
√

4 ( δ

fi,j
)
2

− (ϕmina − ϕminb)2)

	5.	 Update with geometric mean:

ϕi,j = √UxyUab

This update rule is repeated until convergence (Extended Data  
Fig. 5). We take δ = fi,j to obtain the signed distance field used in Omnip-
ose. The flow field components are defined by the normalized gradient 
of this distance field ϕ. The boundary field is defined by points satisfy-
ing 0 < ϕ < 1. For network prediction, the boundary map is converted 
to the logits (inverse sigmoid) representation, such that points in the 
range [0,1] are mapped to [−5,5]. For consistent value ranges across 
prediction classes, the flow components are multiplied by 5 and all 
background values of the distance field (ϕ=0) are set to −5.

Omnipose network architecture
The DNN used for Omnipose is a minor modification of that used 
in Cellpose: a U-net architecture with two residual blocks per scale, 
each with two convolutional layers12. Omnipose introduces a dropout 
layer before the densely connected layer60, which we incorporated 
into the shared Cellpose and Omnipose architecture moving forward  

(see resnet_torch.py); however, Cellpose models utilized in this study 
are trained without dropout.

Omnipose in higher dimensions
The network architecture described above is implemented in PyTorch 
and is generalized to 3D by taking a ‘dimension’ argument that chooses, 
for example, Conv3D instead of Conv2D. This is a key component 
of Omnipose that is not fully generalized to arbitrary dimension 
(ND) segmentation because it depends on these explicit 2D and 3D 
PyTorch classes. Custom implementations of these classes (for exam-
ple, ConvND) will be needed for 4D segmentation, which we envi-
sion being highly useful for processing 3D timelapses. The Omnipose 
methods for generating boundary, distance, and flow are completely 
dimension-agnostic, as is the mask reconstruction algorithm; however, 
a dependency, the edt package, needs to be generalized to ND. It is 
used both to compute boundaries (exact distance of 1) and to estimate 
the number of iterations required for our smooth distance function 
to converge (linear scaling of the maximum of the exact distance). 
Workarounds for each of these uses can be found if edt is not updated. 
Boundaries can be found by appropriately generalized binary hit–miss 
operators or ND mask-erosion difference maps. The smooth distance 
could simply be set to terminate after it has reached convergence.

The large memory footprint of 3D volumes also motivated us to 
use DataParallel (models.py) to allow for multi-GPU training. We note 
that DistributedDataParallel is a more efficient (but far less conveni-
ent) implementation that might be needed to train on batches of larger 
volumes. The default 3D volumes after argumentations are currently 
84 × 84 × 84 and take up about 12 GB of VRAM each. The size of volumes 
should be at least the diameter of an average cell (ideally much larger), 
so this can be tuned according to the dataset. We implemented a –tyx 
flag for specifying the size of volumes crops to be used in training (for 
example, ‘50,50,50’).

Rescaling flow field by divergence
During training, the ground-truth data are augmented by a random 
affine transformation. The original implementation, and the one which 
yields the best results, linearly interpolates the transformed field. This 
reduces the magnitude of the otherwise normalized field in regions of 
divergence (at boundaries and skeletons). A renormalized field (obtained 
either from the transformed field or as the normalized gradient of the 
transformed heat distribution) often has artifacts at cell boundaries 
and skeletons, so the interpolated field effectively reduces the influence 
of these artifacts on training. We reason that this feature explains the 
superior performance of interpolated field training over renormalized 
fields, despite the latter being the nominal goal of the algorithm.

Pixels at cell boundaries, however, consequently do not move far 
(<1 px) under Euler integration due to the low magnitude of the pre-
dicted field at cell boundaries. Our solution in Omnipose is to rescale 
the flow field by the magnitude of the divergence. The divergence is 
most positive at the cell boundaries (where pixels need to move) and 
most negative at cell skeletons (where pixels need to stop). We there-
fore rescale the divergence from 0 to 1 and multiply the normalized 
flow field by this new magnitude map. This forces boundary pixels 
of neighboring cells to quickly diverge and allow for accurate pixel 
clustering to obtain the final segmentation.

New diameter metric
The size models of Cellpose are trained to estimate the average cell 
‘diameter’, taken to be the diameter of the circle of equivalent area:

d = 2R = 2√
A
π

(1)

This metric as a basis for rescaling is problematic when cells are 
growing in length but not width (Extended Data Fig. 1). Log-phase 
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bacterial cell area grows exponentially with time and so too does the 
scale factor, eventually resulting in a rescaled image that is too small 
for Cellpose to segment.

The average of the distance field, however, does not change for 
filamentous bacteria, as the width and therefore the distance to the 
closest boundary, remains constant. To define a formula consistent 
with the previous definition in the case of a circular cell, we consider 
mean of the distance field over the cell:

ϕ̄ = 1
πR2∫

2π

0
∫

R

0
(R − r) rdrdθ = 1

πR2 (
π
3 R

3) = R
3

This allows us to define a new ‘effective diameter’ as

d = 2R = 6ϕ̄ (2)

Aside from agreeing with the previous scaling method (*) for round 
morphologies, this definition exhibits excellent consistency across 
time (Extended Data Fig. 1). This consistency is also critical for training 
on datasets with wide distributions in cell areas that require rescaling, 
such as the Cellpose datasets. A SizeModel can be trained using the 
Omnipose metric for automatic size estimation and image rescaling. 
Finally, the raw distance field output of Omnipose can directly be used 
directly in (**) to estimate average cell diameter, which is used in our 
code to automatically toggle on features that improve mask reconstruc-
tion performance for small cells.

Gamma augmentation
To make the network robust against changes in exposure/contrast, the 
training images are now raised to a random power (γ) between 0.5 and 
1.25, simulating the varying levels of contrast that are observed experi-
mentally with different light sources, objectives, and exposure times.

Alleviating class imbalance
Class imbalance remains a challenge in many machine-learning applica-
tions61. In our dataset, foreground pixels (cells) take up anywhere from 
1% to 75% of a given training image, with the rest being background 
pixels that the network must only learn to ignore (assign a constant 
output of −5 for distance and boundary logits). We implemented sev-
eral changes to the loss function to emphasize foreground objects, 
including weighting by the distance field and averaging some loss terms 
only over foreground pixels. Our training augmentation function also 
attempts many random crop and resizing passes until a field of view 
with foreground pixels is selected (this may take several attempts for 
sparse images but adds very little time to training).

Image normalization
To manage different image exposure levels, Cellpose automatically 
rescales images such that pixels in the first percentile of intensity are 
set to 0 and those in the 99th percentile are sent to 1. This percentile 
rescaling is preferred over blind min–max rescaling because bub-
bles or glass can cause small bright spots in the image; however, we 
found that images containing single cells (low intensity) in a wide 
field of media (high intensity) would become badly clipped due to the 
foreground-background class imbalance. To solve this, we changed 
the percentile range to be from 0.01 to 99.99.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Bacterial phase-contrast and fluorescence image sets generated 
in this study, unpublished bacterial phase-contrast images pro-
vided by Y. Brun, and unpublished minimum projection brightfield 

images of C. elegans provided by L. Rappez are available in our OSF 
repository https://osf.io/xmury/ under the CC BY-NC 3.0 license. 
Additional C. elegans images were sourced from a selection of 
the Open Worm Movement dataset by the Wormpose project at  
https://github.com/iteal/wormpose_data and from the Broad Bioimage 
Benchmark Collection set BBBC010 at https://bbbc.broadinstitute.
org/c-elegans-livedead-assay-0, both of which are available under the 
CC-4.0 license. Files deriving from our processing and labeling of these 
data are available in our OSF repository https://osf.io/xmury/ under the 
CC BY-NC 3.0 license. A. thaliana image volumes were sourced from the 
PlantSeg OSF database at https://osf.io/uzq3w/. The cyto2 dataset was 
sourced from http://www.cellpose.org/dataset.

Code availability
For installation instructions and source code, see our documenta-
tion at https://omnipose.readthedocs.io and our GitHub repository 
at https://github.com/kevinjohncutler/omnipose. Standalone apps 
for Windows, macOS and Linux are available in our OSF repository  
https://osf.io/xmury/. Data processing and analysis scripts for this 
study were written in MATLAB 2021a and Python ≥3.8.5. All scripts are 
available at https://github.com/kevinjohncutler/omnipose/tree/main/
figures. Figure panels were assembled in Adobe Illustrator v.26.2.1. The 
algorithms used in comparison to Omnipose are sourced as follows: 
SuperSegger v.1.1, https://github.com/wiggins-lab/SuperSegger; Cell-
pose v.1.0.2, https://github.com/MouseLand/cellpose; StarDist v.0.7.2, 
https://github.com/stardist/stardist; MiSiC v.1.0.3, https://github. 
com/pswapnesh/misic; Mask R-CNN from Torchvision v.0.12.0,  
https://github.com/pytorch/vision; and Morphometrics v.1.102, 
https://simtk.org/projects/morphometrics.
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Extended Data Fig. 1 | Size and morphology metrics are indistinguishable 
between cell populations included in training and test datasets. (a) Mean 
cell diameter, (b) cell area, and (c) cell perimeter calculated for our bacterial 
phase-contrast ground-truth dataset. P-values are displayed for the two-sided 
KS test. n = 47,000 (27,500 for training, 19,500 for testing). (d). Comparison of 
diameter metrics of a timelapse of elongated cell growth. The Cellpose diameter 

metric is the diameter of a circle with equivalent area. Omnipose diameter 
metric is proportional to the mean of the distance transform (see Methods). (e) 
Bacteria displayed are a single population analyzed of A. baylyi transformed with 
a ΔftsN::kan PCR fragment. Yellow lines indicate cell label boundaries. Scale bar 
is 1 μm.

http://www.nature.com/naturemethods
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Extended Data Fig. 2 | The relationship between IoU and segmentation accuracy. (a) Illustration of 0–12 pixel displacement of cell mask (red outline) and 
corresponding IoU values using a synthetic cell of typical bacterial size and resolution (solid black). (b) Quantification of the impact of mask shift on IoU values, 
determined using the synthetic cell shown in (a).

http://www.nature.com/naturemethods
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Extended Data Fig. 3 | Details of the Cellpose algorithm. (a) Stages of 
the Cellpose training pipeline. Ground truth masks (i) are converted to cell 
probability (ii) by binary thresholding and a heat distribution (iii) by simulated 
diffusion from the median pixel coordinate. The flow field (iv) is defined by the 
normalized gradient of (iii). Color-magnitude representations of this vector field 
follow the flow legend diagram. The phase, cell probability and flow fields are 
used to train the network. (b) Stages of the cellpose prediction pipeline. Phase 

images are processed by the trained cellpose network into the intermediate 
flow field and cell probability outputs (i-ii). A binary threshold is applied to the 
probability to identify cell pixels (iii). Pixels are Euler-integrated under the flow 
field until they converge at common points. Boundary pixel trajectories are 
depicted in iv. Each pixel is assigned a unique label corresponding to the center 
to which it converged (v). This segmentation result is commonly depicted in an 
outline view (vi). Bacteria shown are Escherichia coli. Scale bar is 1 μm.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | Cellpose over-segments extended, anisotropic cells. 
(a) Single-cell analysis of Cellpose segmentation error as a function of cell area. 
Color represents density on a log scale. Gray box represents the top quartile 
of cell areas (n = 19,570). (b) Example images representative of 1,128 cells 
with segmentation errors in the top area quartile (n = 4,887). Corresponding 
boundary pixel trajectories are shown in black and final pixel locations in red. 
Predicted mask overlays are shown with mean matched IoU values. Cellpose 
model bact_phase_cp used in (a,b). (c) Analysis of stochastic center-to-boundary 
distances in our ground-truth dataset. Distance from the center (median pixel 
coordinate) to each boundary pixel is normalized to a maximum of 1. Position 

along the boundary is normalized from −1 to 1 and centered on the point closest 
to the median pixel. Center-to-boundary for the cell in (d) is highlighted in black. 
(d) Representative cell with median coordinate outside the cell body (black 
X). Cellpose projects this point to the global minima of this function (green 
dot), but several other local minima exist (blue dots). (e) The heat distribution 
resulting from a projected cell center (black arrow). The normalized gradient 
corresponds to the divergence shown. (d-e) represent n = 617 cells with projected 
centers in the training dataset. Bacteria displayed are (a,e) Helicobacter pylori, 
(b) Escherichia coli CS703-1, both treated with aztreonam and (d) Caulobacter 
crescentus grown in HIGG media. Scale bars, 1 μm.

http://www.nature.com/naturemethods
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Extended Data Fig. 5 | Median coordinates used to generate Cellpose 
ground-truth flow fields are asymmetrically localized for some bacterial 
cell morphologies. (a) Rod-shaped E. coli with symmetric median coordinate. 
Symmetry of the center is reflected in A by equal high and low points 
corresponding to the extremal points along the long and short axes of the cell. 
(b) Curved B. subtilis with median coordinate asymmetrically close to the cell 
boundary. This asymmetry is reflected in A by a secondary minimum above 

the global minimum corresponding to the diametrically opposing point along 
the short axis of the cell. (c) Center-to-boundary distance highlighted for 
cells A (black) and B (yellow) with non-projected median coordinates. Dashed 
lines indicate the larger of the two minima along the medial axis. (d) Flow 
fields generated by Cellpose for cells A and B. Scale bar is 1 μm. Images scaled 
equivalently.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | The Eikonal equation provides a fast and accurate flow 
field calculation for diverse cell morphologies and sizes. (a) Partial differential 
equation solutions (top rows) and corresponding flow fields (bottoms rows) 
calculated for two examples cells (i, ii) using a relaxation algorithm for the heat, 

Poisson and Eikonal equations. Cell (i) is drawn from our dataset (mean diameter 
37px) and cell (ii) is a synthetic rod-shaped cell (mean diameter 192px). (b) 
Convergence measured by the average difference at each iteration (maximum 
normalized to 1) for cells (i,ii).

http://www.nature.com/naturemethods
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Extended Data Fig. 7 | Omnipose output on diverse morphologies. (a) Omnipose flow and segmentation corresponding to the cells of Extended Data Fig. 4b. (b) 
(i-iii) Boundary, distance and flow output using bact_fluor_omni model on S. flexneri treated with cephalexin. (iv) Overlaid mask outlines. The cell in bold yellow is 
missing the self-contact boundary in red.

http://www.nature.com/naturemethods


1461Nature Methods

Article https://doi.org/10.1038/s41592-022-01639-4

Extended Data Fig. 8 | Omnipose accurately segments diverse images from the cyto2 test dataset. (a-i) Selection of images from the cyto2 test dataset with 
superimposed outlines representing Omnipose cyto2_omni model segmentation. Subjects are not defined, as the cyto2 dataset lacks metadata and is comprised of 
anonymized contributions.

http://www.nature.com/naturemethods
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Extended Data Fig. 9 | Errors in the three-dimensional A. thaliana ground-
truth dataset impact training and performance metrics of Ominpose and 
Cellpose. (a) Slices of ground truth training set volumes. Images show errant 
pixels and apparent flaws in ground truth masks. Black arrow indicates one 

instance of a joined mask. (b) Ground truth masks for the test volume in Fig. 5e-h. 
Two cells are joined under one label (black arrow). (c) Slices of the predicted 
Omnipose and Cellpose flow fields through the middle of the volume in (b).

http://www.nature.com/naturemethods
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Extended Data Fig. 10 | Example segmentation errors by StarDist, Cellpose 
and MiSiC of E. coli cells undergoing intoxication by S. proteamaculans Tre1. 
(a) Examples of segmentation failures demonstrated by each method. Cells 2 
and 3 indicated with orange and gray arrows are the reference cells highlighted 

in Fig. 6a, d. Scale bars are 1 μm. (b) Control populations segmented by StarDist, 
Cellpose and MiSiC. Notably, Cellpose and MiSiC exhibit an enrichment of larger 
cells even in the control, a consequence of both under-segmented (merged) cells 
as well as fragments of over-segmented large cells.

http://www.nature.com/naturemethods
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