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Cancer of unknown primary (CUP) site poses diagnostic challenges due 
to its elusive nature. Many cases of CUP manifest as pleural and peritoneal 
serous effusions. Leveraging cytological images from 57,220 cases at four 
tertiary hospitals, we developed a deep-learning method for tumor origin 
differentiation using cytological histology (TORCH) that can identify 
malignancy and predict tumor origin in both hydrothorax and ascites. We 
examined its performance on three internal (n = 12,799) and two external 
(n = 14,538) testing sets. In both internal and external testing sets, TORCH 
achieved area under the receiver operating curve values ranging from 
0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin 
localization. TORCH accurately predicted primary tumor origins, with a 
top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results 
derived from pathologists, TORCH showed better prediction efficacy 
(1.677 versus 1.265, P < 0.001), enhancing junior pathologists’ diagnostic 
scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose 
initial treatment protocol was concordant with TORCH-predicted origins 
had better overall survival than those who were administrated discordant 
treatment (27 versus 17 months, P = 0.006). Our study underscores the 
potential of TORCH as a valuable ancillary tool in clinical practice, although 
further validation in randomized trials is warranted.

Cancers of unknown primary (CUP) site are a group of malignant dis-
eases identified by histopathology as malignant metastases but whose 
origin cannot be identified by standard baseline diagnostic approaches. 
It is estimated that CUP accounts for 3–5% of all cancers diagnosed in 
humans1–4. Adenocarcinoma is the most common pathological type, 
followed by squamous and undifferentiated carcinoma5,6. Despite the 
employment of a variety of combined chemotherapies, the majority of 
patients have a very poor prognosis, with only 20% achieving a median 

survival of 10 months7–10. CUP are often characterized by early dis-
semination, aggressive clinical course and multiple organ involvement. 
Immunohistochemistry is usually applied as a key means of predicting 
its probable origin; however, less than 30% of CUP cases can be pin-
pointed by cocktails of approximately 20 different immunostaining 
subunits7,11 and therefore CUP remain a thorny problem for clinicians. 
Accurate prediction of primary sites by pathologists and oncologists 
is a top priority for effective and personalized treatment.
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A further 8,544 blank or poorly focused images were also excluded. 
The ultimate dataset consisted of 57,220 images from 43,688 patients 
(Extended Data Fig. 3). The training set consisted of 29,883 images from 
20,638 individuals covering 12 tumor subtypes or origins: 138, esopha-
gus; 1,773, stomach; 20, intestine; 720, colon and rectum; 151, liver; 
144, gallbladder; 357, pancreas; 321, uterus and vagina; 4,217, ovary and 
fallopian tube; 1,874, breast; 9,121, lung and upper respiratory tract; 
and 570, blood and lymphatic system. In addition to the 19,406 tumor 
images described above, 10,477 images of benign diseases were also 
included in the final training set. Similarly, three internal testing sets 
comprising 10,974 individuals (12,799 images) were obtained from the 
same four hospitals. Two additional external testing sets comprised 
12,076 individuals (14,538 images) from Tianjin and Yantai hospitals 
(Fig. 1). The tumor category of testing sets was broadly in line with that 
of the training set. Because one patient might have undergone more 
than one hydrothorax or ascites core needle biopsy for cytological 
analysis at various stages of disease development, more than one 
image may have been recorded. In this study, each image combined 
with its clinicopathological data was compiled as one case. Respira-
tory diseases accounted for the largest proportion (29.8%, n = 17,058) 
among malignant groups. Carcinoma amounted to 56.7% (n = 32,424) 
of overall hydrothorax and ascites cytological cases, among which 
adenocarcinoma comprised the largest category (47.2%, n = 27,006). 
The proportion of squamous cell carcinoma metastasizing to pleural 
effusion or ascites was only 0.6% (n = 346). In addition, there were 
24,658 (82.5%) cases in the training set stratified as high certainty and 
5,225 (17.5%) as low certainty. For the testing sets, 18,184 (66.5%) cases 
were stratified as high certainty and 9,153 (33.5%) as low certainty. With 
respect to images of malignancy, 6,066 of 19,406 (31.2%) cases in the 
training set and 4,256 of 16,702 (25.5%) cases in the testing sets also 
underwent examination by sediment paraffin immunohistochemical 
staining.

Performance of TORCH on prediction of tumor origin
We developed TORCH by training four different deep neural networks 
on three different types of input, giving rise to 12 different models 
(Methods). The classification results of each individual model are 
shown in Supplementary Figs. 1–4 and Supplementary Tables 1–4. 
We subsequently performed model ensembling to integrate these 
models (Methods). The results showed that TORCH provides relatively 
reliable generalization and interoperability. On the five testing sets 
(n = 27,337), TORCH achieved an overall microaveraged one-versus-rest 
area under the receiver operating characteristic (AUROC) value of 
0.969 (95% confidence interval (CI) 0.967–0.970). On the three internal 
testing sets, microaveraged one-versus-rest AUROC values were 0.953 
(CI 0.949–0.958) for the Tianjin dataset, 0.962 (CI 0.960–0.965) for the 
Zhengzhou dataset and 0.979 (CI 0.976–0.983) for the Suzhou dataset 
(Fig. 2). On the two external testing sets, microaveraged one-versus-rest 
AUROC values were 0.958 (CI 0.954–0.962) and 0.978 (CI 0.977–0.980) 
for the Tianjin-P and Yantai datasets, respectively. In terms of identi-
fication of cancer-positive cases, TORCH achieved an AUROC value 
of 0.974 (CI 0.972–0.976), accuracy of 92.6% (CI 92.2–92.9%), sensitiv-
ity of 92.8% (CI 92.3–93.2%) and specificity of 92.4% (CI 92.0–92.8%) 
(Extended Data Table 1). In terms of tumor origin localization in the 
female reproductive system group, TORCH achieved an AUROC value 
of 0.960 (CI 0.958–0.962), accuracy of 88.1% (CI 87.7–88.5%), sensitivity 
of 92.5% (CI 91.8–93.2%) and specificity of 86.9% (CI 86.4–87.3%), an 
enhanced performance compared with that for the other systems. In 
addition, the effectiveness of this model was stable in that it achieved 
similar results among the five testing sets. Detailed classification met-
rics of the five categories are provided in Extended Data Table 2 and 
Supplementary Table 5. The model prediction results of 27,337 cases 
are shown in Supplementary Table 6.

TORCH achieved a top-1 accuracy of 82.6%, top-2 accuracy 
of 95.9% and top-3 accuracy of 98.9% when combining these  

Among patients newly diagnosed with CUP, a substantial portion 
present with pleural or peritoneal metastasis7,11,12. The thoracic and 
abdominal serous cavities are locations where isolated tumor cells 
metastasize with high proclivity (Extended Data Fig. 1). Free tumor cells 
or implanted clusters found in pleural effusion or ascites are strong 
evidence of stage IV for some solid tumors13–16. It has been reported 
that 7–20% of patients with respiratory or gastrointestinal tumors are 
diagnosed with pleural and peritoneal effusions, many of whom have 
synchronous peritoneal or pleural carcinomatosis13–19. Previous studies 
revealed that serous effusions may develop without any history of can-
cer and present as the initial manifestation of cancer in 10% of patients 
with malignant effusions20–23. Cytological examination by peritoneal 
or pleural fine-needle aspiration is usually used as a key method in the 
diagnosis of thoracoabdominal metastasis (Extended Data Fig. 2)24–26. 
Most often, however, pathologists can visually distinguish adenocarci-
noma from squamous carcinoma on cytology smears, but not the origin 
of the tumor cells13,23,25. Therefore, precise cytological assessment may 
help in the appropriate management of patients with CUP and pleural 
or peritoneal metastasis, guide optimal therapeutic strategies, avoid 
unnecessary surgeries and further prolong overall survival27–29.

Computerized analysis based on deep convolutional neural net-
works has recently been increasingly applied as an auxiliary technique 
in the field of pathological diagnosis30–32. Digital pathology has been 
applied to a variety of image-processing and image-classification tasks, 
including low-level object recognition and high-level disease prognosis 
or treatment-response prediction. Previous studies have reported the 
on-par performance of artificial intelligence (AI) models as compared 
with pathologists in the detection of breast cancer lymph node metas-
tases, prediction of prostate cancer Gleason grading and interpretion 
of the likelihood of gastric cancer33–35. Lu et al. also reported an AI model 
that showed potential benefits as a diagnostic assistive tool for CUP ori-
gin prediction using whole-slide images36. However, these algorithms 
focused mainly on histological or whole-slide images; a deep-learning 
model that can interpret cytological imaging data to predict tumor 
origin is rarely reported37. In routine clinical practice, histological and 
cytological pathologies have different application scenarios in terms 
of the tracking of tumor origin. Histological examination is used when 
specimens can be obtained via surgery or needle biopsy, these types of 
specimen providing richer diagnostic information. Cytology is mainly 
applicable for patients with late-stage cancer who cannot undergo 
surgery or tolerate needle biopsy25,38. In this scenario, specimens from 
pleural and peritoneal serous effusion are helpful in regard to localiza-
tion of cancer origins due to their excellent accessibility26,39. However, 
sampling inadequacy (low cellular harvest), cellular degeneration or 
atypia and interexaminer variation in interpretation are major rea-
sons for suboptimal diagnostic accuracy25,39,40. Application of new 
techniques is required, such as AI auxiliary image analysis, to improve 
tumor detection capability. To the best of our knowledge, employment 
of AI in the prediction of cancer origin using cytological images from 
hydrothorax and ascites has not been investigated.

In this study we aimed to establish a diagnostic model to predict 
the broad cancer origins in patients with cancer and hydrothorax or 
ascites metastasis using cytological images. The performance of our 
AI system is examined and validated by large-scale cytological smear 
cases from several independent testing sets.

Results
Baseline characteristics of patients and image datasets
Between June 2010 and October 2023 we obtained a large dataset of 
90,572 cytological smear images from 76,183 patients at four large 
institutions (Tianjin Medical University Cancer Institute and Hospital, 
Zhengzhou University First Hospital, Suzhou University First Hospital  
and Yantai Yuhuangding Hospital) as the training and testing sets 
(Table 1). We excluded 24,808 malignancy images lacking any clini-
cal or pathological supporting evidence for the primary origins.  
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five testing sets. These top-n accuracies fluctuated within a  
narrow range among the five testing sets (Fig. 2). On the Tianjin inter-
nal testing set (n = 4,186), the top-n accuracies achieved by TORCH 
were 76.3, 95.7 and 99.1%, respectively; on the Zhengzhou testing 
set (n = 6,234), these were 80.8, 94.7 and 98.6%, respectively; and on 
the Suzhou testing set (n = 2,379), these were 87.4, 96.8 and 99.3%, 
respectively. With respect to stratification by specimen sampling 
site, TORCH achieved higher microaveraged one-versus-rest AUROC 
(0.970 (CI 0.969–0.972)) in the hydrothorax group than in the ascites 
group (0.966 (CI 0.964–0.969; P < 0.001); Supplementary Fig. 5 and 
Supplementary Table 7). Among the five categories, TORCH achieved 
higher AUROC values in ascites than in hydrothorax for the digestive 
(0.892 versus 0.775, P < 0.001) and female reproductive systems (0.951 
versus 0.945, P = 0.012) and lower AUROC values for the respiratory 
system (0.808 versus 0.929, P < 0.001). No significant differences were 
observed for benign diseases (0.972 versus 0.975, P = 0.068) or the 
blood and lymphatic system (0.967 versus 0.951, P = 0.122) in ascites 
versus hydrothorax. In addition, when solid tumors were divided into 
carcinoma and noncarcinoma, we observed that TORCH achieved 
comparable AUROC values in both the carcinoma group (0.938 (CI 
0.936–0.940)) and the noncarcinoma group (0.939 (CI 0.921–0.958); 
P = 0.244). Within the carcinoma group, TORCH exhibited slightly 
better performance for the adenocarcinoma group versus the non-
adenocarcinoma group (AUROC, 0.942 (CI 0.939–0.944) versus 0.925 
(CI 0.919–0.931) (P = 0.002)).

To explore TORCH further we examined its prediction efficiency 
on both high- and low-certainty cases. TORCH achieved comparable 
microaveraged one-versus-rest AUROC values in the low-certainty 
group compared with the high-certainty group (0.964 (CI 0.961–
0.966) versus 0.971 (CI 0.969–0.972), P = 0.106; Extended Data Fig. 4). 
Meanwhile, no significant difference in terms of classification metrics 
was observed between the two subgroups. Classification metrics 
including accuracy, sensitivity, specificity, precision and negative 
predictive value are shown in Supplementary Table 8.

To further verify the generalization and reliability of TORCH, we 
enrolled 4,520 consecutive cases from Tianjin Cancer Hospital (the 
Tianjin-P dataset) and 12,467 from Yantai Hospital (the Yantai dataset) 
as fully unseen external testing sets. These images were collected from 
pathological databases without exclusion of any cases. The Tianjin-P 
and Yantai datasets included 587 and 1,862 uncertainty cases, respec-
tively. We observed that TORCH achieved top-1/2/3 accuracy of 79.3, 
94.4 and 98.3%, respectively, on the Tianjin-P dataset without uncer-
tainty cases (n = 3,933) and 86.3, 97.1 and 99.2%, respectively, on the 
Yantai dataset without uncertainty cases (n = 10,605). The lower-bound 
top-1 accuracy of TORCH was estimated to be 70.2% on the Tianjin-P 
dataset and 75.1% on the Yantai dataset by assuming that all predic-
tions made by TORCH for these uncertainty cases were erroneous. The 
upper-bound top-1 accuracy of TORCH was estimated to be 81.7% on the 
Tianjin-P dataset and 88.1% on the Yantai dataset by assuming that all 
predictions made by TORCH for these uncertainty cases were correct.

Table 1 | Baseline characteristics of training and testing sets

Parameter Overall, 
n = 57,220 (%)

Training sets (n = 29,883) Internal testing sets (n = 12,799) External testing sets 
(n = 14,538)

Tianjin, 
n = 9,822 (%)

Zhengzhou, 
n = 14,586 (%)

Suzhou, 
n = 5,475 (%)

Tianjin, 
n = 4,186 (%)

Zhengzhou, 
n = 6,234 (%)

Suzhou, 
n = 2,379 (%)

Tianjin-Pc, 
n = 3 933 (%)

Yantai, 
n = 10,605 (%)

Male sex 25,822 (45.1) 3,223 (32.8) 7,353 (50.4) 2,862 (52.3) 1,369 (32.7) 3,111 (49.9) 1,235 (51.9) 1,792 (45.6) 4,877 (46.0)

Female sex 31,398 (54.9) 6,599 (67.2) 7,233 (49.6) 2,613 (47.7) 2,817 (67.3) 3,123 (50.1) 1,144 (48.1) 2,141 (54.4) 5,728 (54.0)

Age, years 
(mean ± SD)

59.13 ± 14.21 58.23 ± 11.47 57.17 ± 16.03 63.02 ± 14.40 58.25 ± 11.54 57.15 ± 15.94 63.57 ± 14.09 60.27 ± 
12.58

60.73 ± 13.32

Age ≤60 years 28,079 (49.1) 5,386 (54.8) 7,702 (52.8) 2,019 (36.9) 2,284 (54.6) 3,287 (52.7) 854 (35.9) 1,797 (45.7) 4,750 (44.8)

Age >60 years 29.141 (50.9) 4,436 (45.2) 6,884 (47.2) 3,456 (63.1) 1,902 (45.4) 2,947 (47.3) 1,525 (64.1) 2,136 (54.3) 5,855 (55.2)

Primary tumor site

  Digestive 5,682 (9.9) 1,504 (15.3) 1,135 (7.8) 664 (12.1) 591 (14.1) 544 (8.7) 270 (11.3) 315 (8.0) 659 (6.2)

   Female 
reproductive

12,350 (21.6) 3,901 (39.7) 1,772 (12.1) 739 (13.5) 1,662 (39.7) 774 (12.4) 331 (13.9) 888 (22.6) 2,283 (21.5)

  Respiratory 17,058 (29.8) 3,239 (33.0) 3,742 (25.7) 2,140 (39.1) 1,433 (34.2) 1,589 (25.5) 958 (40.3) 1,135 (28.9) 2,822 (26.6)

   Blood and 
lymphatic

1,018 (1.8) 73 (0.7) 417 (2.9) 80 (1.5) 30 (0.7) 214 (3.4) 33 (1.4) 63 (1.6) 108 (1.0)

  Benign 21,112 (36.9) 1,105 (11.3) 7,520 (51.6) 1,852 (33.8) 470 (11.2) 3,113 (49.9) 787 (33.1) 1,532 (39.0) 4,733 (44.6)

Hydrothorax 35,873 (62.7) 5,751 (58.6) 9,427 (64.6) 3,803 (69.5) 2,491 (59.5) 4,031 (64.7) 1,637 (68.8) 2,364 (60.1) 6,369 (60.1)

Ascites 21,347 (37.3) 4,071 (41.4) 5,159 (35.4) 1,672 (30.5) 1,695 (40.5) 2,203 (35.3) 742 (31.2) 1,569 (39.9) 4,236 (39.9)

Carcinoma 32,424 (56.7) 7,944 (80.9) 5,250 (36.0) 3,203 (58.5) 3,670 (87.7) 2,900 (46.5) 1,547 (65.0) 2,335 (59.4) 5,575 (52.6)

  Adenocarcinoma 27,006 (47.2) 7,218 (73.5) 4,279 (29.3) 2,622 (47.9) 3,022 (72.2) 1,851 (29.7) 1,129 (47.5) 2,056 (52.3) 4,829 (45.5)

   Squamous 
carcinoma

346 (0.6) 50 (0.5) 130 (0.9) 30 (0.5) 24 (0.6) 60 (1.0) 23 (1.0) 7 (0.2) 22 (0.2)

  Other carcinomaa 1,518 (2.7) 166 (1.7) 294 (2.0) 207 (3.8) 53 (1.3) 111 (1.8) 88 (3.7) 185 (4.7) 414 (3.9)

  Unclassifiedb 3,554 (6.2) 510 (5.2) 547 (3.8) 344 (6.3) 571 (13.6) 878 (14.1) 307 (12.9) 87 (2.2) 310 (2.9)

High-certainty cases 42,912 (75.0) 9,355 (95.2) 10,708 (73.4) 4,595 (83.9) 3,992 (95.4) 4,270 (68.5) 1,981 (83.3) 2,052 (52.2) 5,959 (56.2)

Low-certainty cases 14,308 (25.0) 467 (4.8) 3,878 (26.6) 880 (16.1) 194 (4.6) 1,964 (31.5) 398 (16.7) 1,881 (47.8) 4,646 (43.8)
aOther types consist mainly of sarcomatoid carcinoma, adenosquamous carcinoma, papillary carcinoma, large cell carcinoma, small cell carcinoma, transitional epithelial carcinoma, basal 
cell carcinoma and undifferentiated carcinoma. bUnclassified carcinoma means that the specific type of cancer is unknown, the main reason being that the specimen was too small for staining 
by immunohistochemistry. cTianjin-P, Tianjin external testing set enrolled prospectively.
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Performance of TORCH versus pathologists
We asked two junior and two senior practicing pathologists to manually 
interpret 495 cytological images that comprised 333 malignant cases 
and 162 benign cases, with subsequent comparison with predictions 
made by TORCH. We observed that top-1 accuracies were 42.6% (95% CI 
38.2–46.9%) and 44.0% (95% CI 39.4–47.9%) for the two junior patholo-
gists and 69.7% (95% CI 66.3–73.5%) and 57.0% (95% CI 52.9–61.2%) for the 
two senior pathologists. Notably, TORCH achieved a top-1 accuracy of 
78.8% (95% CI 75.4–82.0%), which was significantly higher than that for 
the four pathologists (permutation test, all P < 0.001). When stratified 
by the five categories, TORCH outperformed pathologists with respect 
to accuracy (mean 0.896 versus 0.813; P = 0.038), sensitivity (mean 
0.880 versus 0.485; P < 0.001) and precision (mean 0.634 versus 0.486; 
P < 0.001; Extended Data Table 3). TORCH also achieved marginally 
higher specificity compared with this group of pathologists, although 
the difference did not reach statistical significance (mean 89.4% versus 
87.8%; P = 0.333). Receiver operating characteristic (ROC) curves of 
TORCH for the five categories of these 495 cases are provided in Supple-
mentary Fig. 6. TORCH achieved significantly higher diagnostic scores 
compared with the pathologists (1.677 (95% CI 1.647–1.706) versus 1.265 
(95% CI 1.227–1.302), P < 0.001). The senior pathologists also achieved 
higher diagnostic scores compared with the junior pathologists (1.428 
(95% CI 1.378–1.479) versus 1.101 (95% CI 1.047–1.155), P < 0.001; Supple-
mentary Table 9). Inter-rater agreement rate for the four pathologists 
was 24.6% (122 of 495, Fleiss’ kappa 0.365, two-sided z-test, P < 0.001). 
Although inter-rater agreement rate was statistically significant, it was 
still relatively low among the pathologists and could be considered to 
be in fair agreement according to Landis and Koch41. This suggested that 
interpretation of cytological images for assessment of tumor origin is 

subject to substantial variability. In addition, the senior pathologists 
achieved significantly higher performance compared with their junior 
counterparts in terms of both accuracy (0.853 versus 0.773, P = 0.014) 
and precision (0.594 versus 0.381, P = 0.001; Supplementary Table 9). 
In addition, both TORCH and the senior pathologists recorded higher 
sensitivity than the junior pathologists in differentiation of benign 
diseases from malignant tumors (Fig. 3). The performances of both 
senior and junior pathologists are shown in Supplementary Tables 9–12 
and Supplementary Fig. 6.

Performance of pathologists with TORCH assistance
To determine whether the performance of the junior pathologists 
could be improved with the assistance of TORCH, an additional 
496 cytology smear images (not overlapping with the 495 cytologi-
cal images) were randomly selected from three internal testing sets. 
TORCH-predicted tumor origins were presented to these two junior 
pathologists for reference and they were asked to perform differ-
ential diagnosis independently. Subsequently the performance of 
these junior pathologists, with the assistance of TORCH, was com-
pared with previous manual interpretation results for both junior 
and senior pathologists. We observed that the junior pathologists 
with the assistance of TORCH achieved significantly higher overall 
top-1 accuracy than without TORCH (62.3% (95% CI 59.3–64.9%) versus 
43.3% (40.0–46.0%); permutation test, P < 0.001), and achieved top-1 
accuracy comparable to that of senior pathologists (63.3% (95% CI 
60.3–66.1%); permutation test, P = 0.777). Top-2/3 accuracies were 
not available for pathologists. Among these five categories, when 
assisted by TORCH, the accuracy of these two junior pathologists in 
regard to the digestive system was improved the most (P = 0.032), 
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Fig. 1 | Our proposed TORCH model framework. a, A total of 42,682 cases were 
sourced from three large tertiary referral institutions, 70% of which (n = 29,883) 
were used as training sets. Clinicopathological data were acquired from 
radiological imaging departments, medical records systems and pathological 
digital databases. b, During the diagnostic process, most images were magnified 

either ×200 or ×400. c, The deep-learning network, trained with cytological 
images, was aimed at dividing target images into five categories according to the 
highest predicted probability score. Classification results were further validated 
at four institutions, including three internal testing sets (n = 12,799) and two 
external testing sets (n = 14,538). N represents the N-th image tile.
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Fig. 2 | Classification performance of the TORCH model. a, The confusion 
matrix, including precision and recall, is plotted for prediction of isolated tumor 
cell origin on the overall five testing sets (n = 27,337). Microaveraged one-versus-
rest ROC curves for the five categories (red curves). Top-n model (n = 1, 2, 3) 
accuracy for tumor origin classification. b–f, Five ROC curves for the auxiliary 

binary task of prediction of malignancy or benignity and prediction of four 
tumor categories (green curves). b, Tianjin testing set. c, Zhengzhou testing set. 
d, Suzhou testing set. e, Tianjin-P testing set. f, Yantai testing set. AUC, area under 
the curve.
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increasing from 78.8% (74.9–82.3%) to 89.3% (86.3–91.9%) and from 
79.0% (75.1–82.5%) to 88.5% (85.4–91.2%), respectively. In terms of 
sensitivity, the classification efficacy of the two junior pathologists 
in regard to the female reproductive system was markedly improved 
(from 63.4% (CI 53.8–72.3) to 80.0% (CI 66.3–90.0) and from 65.2% (CI 
55.6–73.9) to 84.0% (CI 70.9–92.8), P = 0.039). In regard to differentia-
tion of benign diseases and malignant tumors, the performance of the 
junior pathologists was improved substantially, with a marked increase 
in sensitivity (Fig. 3 and Extended Data Table 4). Meanwhile, the mean 
diagnostic score for the junior pathologists with the assistance of 
TORCH was significantly higher than without TORCH (1.326 (95% CI 
1.269–1.382) versus 1.101 (95% CI 1.047–1.155); P < 0.001). The classifica-
tion performance of junior pathologists with AI assistance is shown in 
Extended Data Table 4, Supplementary Table 13 and Supplementary 
Fig. 7. Although the diagnostic efficacy of junior pathologists was 
improved with the assistance of TORCH, their diagnostic score was 
still lower than that of TORCH itself (1.326 (95% CI 1.269–1.382) versus 
1.829 (CI 1.785–1.872); P < 0.001). Meanwhile, TORCH-assisted junior 
pathologists did not reach the same level as the senior pathologists 
(1.326 (95% CI 1.269–1.382) versus 1.428 (CI 1.378–1.479); P = 0.008). 
Detailed diagnostic scores are provided in Supplementary Table 14.

Ablation results
The inputs to TORCH include both imaging and clinical data modalities. 
Because clinical parameters such as age, sex and specimen sampling 
site are often considered auxiliary in the assessment of tumor origin, 
we therefore removed these in our ablation study. Results showed that 
ablation of sex, age and specimen sampling site led to a substantial 
decrease in both AUROC and accuracy. We observed that there were 
significant decreases in microaveraged one-versus-rest AUROC values 
(0.969 versus 0.925, P < 0.001), top-1 accuracy (82.6% versus 68.9%, 
P < 0.001) and top-2 accuracy (95.9% versus 88.7%, P < 0.001). Among 
these five categories on the combined dataset, AUROC values were 
also significantly decreased for the digestive system (0.904 versus 
0.803, P < 0.001), female reproductive system (0.960 versus 0.841, 
P < 0.001), respiratory system (0.953 versus 0.838, P < 0.001), blood and 
lymphatic system (0.957 versus 0.946, P < 0.001) and benign diseases 
(0.974 versus 0.972, P = 0.020). This suggests that the ability of the 
TORCH model in regard to origin prediction actually acquired benefits 
from merging of these three basic parameters. Confusion matrices, 
precision, recall rate and other classification metrics of TORCH with 
ablation are presented in Supplementary Fig. 8 and Supplementary 
Tables 15 and 16. To assess the impact of relationships between clinical 

variables and cytological imaging on model performance, we randomly 
perturbed clinical variables and subsequently compared differences in 
performance with and without perturbation of clinical variables (Meth-
ods). On the combined overall dataset we observed that ∆age = 6.70%, 
∆sex = 26.5% and ∆site = 37.5%. This suggested that specimen sampling 
site has the highest impact, followed by sex and age.

TORCH prediction and therapy response
To determine whether clinical benefits were achieved for patients with 
CUP who received treatment in concordance with TORCH-predicted 
cancer origin, we performed survival analysis for 391 of these patients. 
Certified oncologists reviewed their hospitalization records to deter-
mine whether their treatments were concordant with TORCH-predicted 
cancer origins (Methods). Of these 391 patients, 276 and 115 were cat-
egorized into the concordant and discordant groups, respectively. At 
the end of follow-up 163 (41.7%) patients had died: 102 (36.9%) in the 
concordant group and 61 (53.0%) in the discordant group. Kaplan–
Meier survival analysis showed that the concordant group had sig-
nificantly better overall survival compared with the discordant group 
(median overall survival 27 months (95% CI 25–34) versus 17 months 
(95% CI 15–23); log-rank test, P = 0.006; Fig. 4). Specifically, patients 
whose tumor was predicted to be of digestive system origin had a worse 
prognosis compared with those whose cancer origin was predicted to 
be the respiratory or female reproductive system (P < 0.001; Fig. 4). At 
3–6 months after initial treatment, Karnofsky score was significantly 
lower in the discordant group than in the concordant group (41.8 ± 19.5 
versus 52.1 ± 18.8, P < 0.001). In addition, clinical benefits were further 
evaluated according to Response Evaluation Criteria In Solid Tumors 
criteria. For those 310 patients who underwent palliative chemotherapy 
or targeted drugs, in the concordant group 75 achieved clinical partial 
response (PR) by imaging evaluation, 91 achieved stable disease (SD) 
and 48 demonstrated progressive disease (PD). In the discordant group, 
14 patients achieved PR, 29 achieved SD and 53 demonstrated PD. No 
patient achieved complete response in our study. With regard to these 
310 patients, those in the concordant group (n = 214) also exhibited 
significantly better overall survival compared with the discordant 
group (n = 96) (P = 0.032). Covariates including age, sex, AI predic-
tion type, cytological specimen source, metastatic site number and 
concordance were analyzed by stepwise Cox proportional-hazards 
model. Multivariate Cox regression analysis indicated that concordance 
was an independent favorable factor for better prognosis (group with 
391 patients: hazard ratio (HR) 0.528, 95% CI 0.374–0.746, P < 0.001; 
group with 310 patients: HR 0.498, 95% CI 0.336–0.737, P = 0.001; Fig. 4). 
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Detailed clinical characteristics, treatment plan and survival data on 
these 391 patients are provided in Supplementary Table 17.

Analysis of false results
For the five testing sets, on the top-1 scale, 4,765 cases were falsely 
classified, including 1,171 benign cases identified as malignant 
and 3,594 malignant cases identified as benign or other group. Of 
1,171 benign cases, 261 were sorted as digestive, 352 as female repro-
ductive, 519 as respiratory and 39 as blood and lymphatic system. Of 
3,594 malignant cases, 904 were sorted as benign and 2,690 as other 
system. The overall false-positive rate was 11.0% (1,171 of 10,635) and 
the overall false-negative rate was 5.4% (904 of 16,702). We show eight 

common failure patterns in Fig. 5, including several characteristic 
cancer types. False-positive cases included one case each of reactive 
hyperplasia-aggregated mesothelial cells misjudged as respiratory 
system, of scattered lymphocytes misjudged as digestive system, of 
beaded degenerated histocytes misidentified as female reproductive 
system and of acute infection infilitrated with neutrophil granulocytes, 
lymphocytes and bacteria misidentified as respiratory system. In regard 
to the case of aggregated mesothelial cells, these are morphologi-
cally similar to well-differentiated lung adenocarcinoma with hyper-
chromatic nuclei. In regard to the case of beaded histocytes, bunchy 
degenerated histocytes resemble adenocarcinoma cells. In addition, 
acute inflammatory exudative hydrothorax or ascites combined with 
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Fig. 4 | Correlation between TORCH prediction and long-term outcome 
of patients with CUP. a–g, A cohort of 391 patients with CUP, defined as 
uncertainty cases, was retrospectively collected: 276 were categorized as 
the concordant group and 115 as the discordant group; 310 patients (214 
in the concordant group, 96 in the discordant group) received palliative 
chemotherapy and targeted drugs combined with or without radiotherapy. 
a,b, Kaplan–Meier survival curves of overall survival for 391 (a) and 310 
patients (b) with CUP. Red line, concordant group; blue line, discordant group. 
c, TORCH-predicted tumor origin as digestive system for 55 patients with 
CUP, female reproductive system origin for 197 and respiratory system for 
122. Patients with a tumor of the female reproductive system origin showed 
significantly better overall survival than the other two groups (P = 2.2 × 10−16). 
d, Between 3 and 6 months after initial treatment, Karnofsky score for patients 
in the concordant group (n = 276) was significantly higher than that for the 
discordant group (n = 115; 52.1 ± 18.8 versus 41.8 ± 19.5, two-sided Student’s 
t-test, **P = 2.818 × 10−6). Adjustment for multiple comparisons was conducted 
for the tests at the timepoints of admission and after initial therapy using 

Bonferroni correction. The upper bar represents maxima, the lower bar minima; 
the upper bound of the box represents 75% site value, the lower bound 25%; the 
upper whisker contains 25% high-value data, the lower whisker 25% low-value 
data; the horizontal line in the middle of the box represents the median. e, Of 
the 310 patients, the percentages of clinical PR, SD and PD in the concordant 
group were 35.0 (75 of 214), 42.5 (91 of 214) and 22.4 (48 of 214), respectively; 
correspondingly, the percentages of clinical PR, SD and PD in the discordant 
group were 14.6 (14 of 96), 30.2 (29 of 96) and 55.2 (53 of 96), respectively. 
f,g, Multivariate Cox regression analysis indicated that concordance (red 
box) is an independent favorable factor for better prognosis. f, The cohort of 
391 CUP patients defined as uncertainty cases that were treated by palliative 
chemotherapy, targeted drugs, surgery and supportive regimens. Two-
sided Cox proportional-hazards test, n = 391, HR 0.528, 95% CI 0.374–0.746, 
***P = 2.91 × 10−4. g, 310 CUP patients out of the above 391 CUP patients 
who received palliative chemotherapy and targeted drugs. Two-sided Cox 
proportional-hazards test, n = 310, HR 0.498, 95% CI 0.336–0.737, P = 0.001. Bars 
represent 95% CI of HR; blue and red boxes represent the value of HR.
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bacterial proliferation mimicking poorly differentiated carcinoma cells 
could be mistaken for lung adenocarcinoma. Four falsely classified 
malignant cases included (1) one case of gastric carcinoma with clusters 
of irregular, darker cells with crowded nuclei misidentified as respira-
tory system; (2) one case of colonic carcinoma with clusters of mucous 
cells adhered to each other misidentified as respiratory system; (3) one 
case of pancreatic carcinoma misidentified as respiratory system; and 
(4) one case of Burkitt lymphoma with scattered B lymphocytes inter-
woven with erythrocytes misidentified as digestive system. In regard to 
the case of pancreatic carcinoma, potential causes of AI overdiagnosis 
include poor smear preparation and image quality such as section 
folding, impurities or overstaining. Meticulous manual processing 
in the data-screening phase will alleviate these issues. In regard to the 
case of colonic carcinoma, slime occupied most of the space on the 
image and therefore the number of cancer cells was limited; appar-
ently the normal structure of malignant colonic cells was disturbed 
by redundant excretive mucus, which may have led to the AI model 
overlooking this key point when making a diagnosis. Further falsely 
classified malignancy cases and examples of correct prediction are 
illustrated in Supplementary Figs. 9–11.

Model interpretability
The histomorphological features that contributed most to the predic-
tion results of the AI model were identified. We used attention heatmaps 
to interpret model prediction results. Each image was analyzed at either 
40 × 10 or 20 × 10 equivalent magnification and cut into dozens of 
squares, the frame of each then being marked with different colors. 
The algorithm calculated the correlation between each square box and 
tumor category. A red frame indicates that a region is highly informa-
tive for classification decision making while a blue frame indicates 
that the region has lower diagnostic value. In aggregate, 1,351 malig-
nant images were randomly chosen to create corresponding attention 
heatmaps. The accuracy of attention heatmaps in regard to capture of 

the main area of isolated tumor cells was assessed by five pathologists, 
whose results are shown in Supplementary Table 18; the comprehen-
sive accuracy percentage was 87.7 (95% CI 81.1–94.3%; Extended Data 
Table 5). Manual visual inspection showed that the histomorphological 
features contributing to prediction made by TORCH include (1) organi-
zational structures such as glandular tubules; (2) papillary, wreath-like 
and compact cell clusters; and (3) cells of larger size with richer cyto-
plasm, obvious nuclear abnormalities and rough, deeply stained  
chromatin23,25,42. Examples of hematoxylin-and-eosin (H&E)-stained 
cytological attention heatmaps are shown in Extended Data Fig. 5 and 
Supplementary Figs. 12 and 13.

Discussion
In this study we present TORCH, a deep-learning model developed to 
predict the primary system origin of malignant cells residing in hydro-
thorax and ascites. This AI model could become a valuable tool in dif-
ferentiating between malignant tumor and benign disease, localization 
of cancer origins and aiding clinical decision making in patients with 
CUP. It is a challenging task to identify the origins of metastatic free 
tumor cells using limited clinical information and cytological images. 
Our model achieved robust performance across five testing sets and 
outstanding accuracy versus a group of four pathologists.

Improvements in pathological imaging technique, immuno-
histochemical methods and gene expression-profiling assays have 
facilitated cancer origin prediction for patients with CUP11,28,29,31,43. 
Nevertheless, the visual diagnosis of isolated tumor cells in effusion 
specimens by liquid-based smear remains difficult. The numbers of 
tumor cells in pleural effusion and ascites are usually far fewer than 
those in a resected tumor tissue mass. Meanwhile there is wide disparity 
between the original morphologic structure of the tumor specimen and 
tumor cell clusters, which creates major challenges for the pathologist 
tasked with determining differential diagnoses. From this point of 
view, our model could become an effective auxiliary method available 
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Fig. 5 | Exemplified cytological images of several characteristic cancer 
and benign specimens. a, Falsely classified benign cases, from left to right: 
beaded degenerated histocytes misidentified as female reproductive system 
(×200); reactive hyperplasia-aggregated mesothelial cells case misidentified 
as respiratory system (×200); scattered lymphocytes misidentified as digestive 
system (×200); and acute infection inundated with neutrophile granulocytes, 
lymphocytes and bacteria misidentified as respiratory system (×400). b, Falsely 
classified malignant cases, from left to right: Burkitt lymphoma with scattered 
B lymphocytes interwoven with erythrocytes misidentified as digestive system 

(×400); gastric carcinoma with clusters of irregular, darker cells with crowded 
nuclei misidentified as respiratory system (×200); pancreatic carcinoma 
misidentified as respiratory system (×200); and colonic carcinoma with clusters 
of mucous cells adhered to each other misidentified as respiratory system 
(×200). c, Correctly classified malignant cases, from left to right: ovarian cancer, 
pancreatic cancer, lung cancer and ovarian cancer (×200). Smear processing 
by pathologists under microscope for each specimen was repeated three times 
independently, with the same diagnosis recorded in every instance.
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to clinicopathologists. In addition, identification of tumor cells in 
effusion specimens is very helpful in regard to tumor staging and the 
selection of appropriate therapy. For example, in patients with gastric 
or colonic cancer the presence of free tumor cells in the abdominal cav-
ity often indicates that the disease has progressed to a later stage15–17. 
Under this scenario, clinicians often prefer palliative therapies such as 
radiotherapy, chemotherapy or molecular targeted therapy; under a 
different scenario they could select more radical treatment methods 
such as surgery. TORCH was able to identify, with high accuracy, the 
four most common cancer systems that metastasize to hydrothorax 
or ascites. Compared with the group of experts, the diagnostic score 
for the TORCH model on an independent subset was better than that 
of both the senior and junior pathologists. When junior cytological 
pathologists with varying levels of experience were assisted by this 
model, their diagnostic accuracy increased significantly. Interestingly, 
even junior testees with little experience benefitted considerably from 
assistance by TORCH, with their performance approaching, but still 
slightly lower than, that of the senior testees. We speculated that these 
differences might have resulted from the level of trust invested by the 
pathologists in TORCH, as well as from optimal cooperation between 
them. The trust level of pathologists in TORCH may not have been high 
on the first occasion it was used and they were still relatively independ-
ent in regard to making decisions. In terms of overall accuracy and 
precision, the senior experts showed enhanced ability compared with 
their junior counterparts. One possible reason for this finding is that 
senior-level experts demonstrate an advanced level of meticulousness 
and prudence. In most pathology institutions the cytology depart-
ment usually accounts for only a small part of the whole. In certain 
remote or undeveloped areas where cytologists are fewer in number 
and less experienced, our approach could be used as a reliable refer-
ence. Because pathologists do not usually base their diagnosis on H&E 
slices alone, our model integrates clinical data including sex, age and 
tissue sampling site, which is much closer to an actual clinical scenario.

We amassed a large collection of pathological images covering 
32 cancer types from the The Cancer Genome Atlas (TCGA) database, 
and cytological images from three independent training sets, to extract 
image features. These large datasets guarantee applicability and gen-
erality for the development of feature extraction. We then divided the 
cytological images acquired from the four institutions into two main 
subgroups: benign and malignant cancers. In regard to malignant 
cases we reclassified 12 primary systems into four categories by organ 
system and disease type. Initially we prepared to train and validate 
our model directly on these 12 systems. Nevertheless, tumors from 
the nervous system, bone and soft tissue system and urinary system, 
and also melanoma and thymoma, have an extremely low incidence of 
metastasis to the thoracoabdominal cavity. As a result, the cytologi-
cal images collected from these tumors were limited in number and 
insufficient for model development. Normally, in regard to ascites 
the digestive and female reproductive systems are the most common 
sources of free tumor cells; for hydrothorax the respiratory system and 
breast cancer are the most common sources21–23,25. Therefore, during 
network training we excluded these scarce images and included only 
several common systems.

In this study we selected two external cohorts for validation—
one prospectively, the other retrospectively. These two fully unseen 
cohorts consisted of a large number of low-certainty and uncertainty 
cases, which represents an objective real-world cytological imaging cir-
cumstance. Following the inclusion of uncertainty cases, our AI model 
still demonstrated reliable capability with top-1 accuracy ranging from 
70.2 to 88.1%. To further validate the performance of the TORCH model 
in clinical practice, we conducted a retrospective survival analysis for 
comparison of long-term outcomes of patients with different model 
predictions. Of 391 uncertainty patients with CUP, those treated in 
concordance with TORCH predictions demonstrated a significantly 
longer overall survival than patients treated in a discordant manner 

(27 versus 17 months, P = 0.006). For oncologists, under certain cir-
cumstances this offers valuable information regarding the selection 
of therapy. For example, among unidentified patients with CUP, mainly 
adenocarcinoma, around 80% of unfavorable cases were treated with 
empirical broad-spectrum chemotherapeutic regimens11,28; however, 
with adenocarcinoma occurring in both the digestive and female repro-
ductive system, chemotherapeutic plans are widely divergent. To some 
extent our model would be a valuable auxiliary method for individual 
treatment schemes.

Cytological diagnosis is usually very difficult compared with that 
using H&E-stained sections, especially when clinical epidemiologic 
information is limited. Ablation studies have demonstrated the impor-
tance of synthesizing other clinical metrics during network establish-
ment apart from merely cytological images. However, optimal use 
of the TORCH model in clinical practice should be implemented. In 
this study we used only cytological images combined with several 
quantifiable parameters (sex, age and specimen sampling site) for 
model development, without taking into account other subjective 
and variable factors such as medical history, site of metastasis, gene 
mutation, family heredity record, living habits or geographic region. 
For this reason, TORCH cannot be as realistic and comprehensive as 
the traditional method based on human experts. Future deep-learning 
models combining more clinically important metrics will potentially 
avoid pointless puncture biopsies, reduce false-positive diagnosis and 
decrease interobserver variability.

There are several limitations of this study. First, our model 
was developed based on cytological images, which means that the 
abundance of information extracted was not as great as whole-slide 
images. As a result, our model can localize tumor origins only at the 
organ-system level rather than identifying precise tumor origins, 
as done by Lu and colleagues with whole-slide images36. Second, 
our current model cannot discern other malignant disease types  
such as mesothelioma or those of the urinary, nervous or bone and 
soft tissue systems. For these rare cytological diseases, patholo-
gists must make a comprehensive judgment based on either experi-
ence or multidisciplinary consultation. In the future we will collect  
further image data from the above organ systems and develop 
this model to further distinguish multiple broader categories.  
Third, patients in the four institutions are from northern, central 
and eastern areas of China. Although the number of cases enrolled 
in this study is considerable and derived from different large-scale 
institutions, we have not taken into account cases from other coun-
tries or other ethnic groups. Model accuracy and generalizability 
might be affected by variation in patients’ race and clinicians’ bias in 
regard to visual field selection. Fourth, although our model achieved 
satisfactory results, the number of images used for training remains 
very limited compared with computer-based visual tasks in natural 
image recognition44. In addition, the model architecture may not 
be optimal. We speculate that improvement could be achieved by 
improving the architecture of neural networks, such as taking account 
of the spatial association among different image patches, increasing 
the number of images and incorporating other data modalities such 
as tumor-residing area, tumor size, serum biomarkers, radiologic 
imaging and genetic data.

In summary, TORCH can serve as an effective tool in differentia-
tion between malignancy and benignity, and furthermore as an aux-
iliary proof of concept for tumor origin prediction using cytological 
images. The high technical performance and potential clinical benefits 
of TORCH warrant further investigation in prospective randomized 
clinical trials.
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Methods
Ethics and information governance
Our work received approval from the institutional review board of 
Tianjin Medical University Cancer Institute and Hospital (IRB no. 
bc2021182). Data collection and other procedures were performed in 
accordance with principles of Good Clinical Practice and Declaration 
of Helsinki guidelines (1975, revised 1983), and with other relevant ethi-
cal regulations. All patients provided written informed consent before 
undergoing pathological examination. Each image was anonymized 
before being incorporated into the framework. Likewise, only deiden-
tified and relabeled clinical data were used for research, without the 
involvement of any personal patient information.

External public datasets
For some tumors of rare origin, or those rarely metastasizing to the 
thoracoabdominal cavity (such as those of the nervous and bone and 
soft tissue systems, melanoma and head and neck tumors), the sample 
size of ascitic and pleural cytological smear images was limited. We 
acquired a large collection of pathological images from the publicly 
available medical dataset TCGA via the NIH Genomic Data Commons 
Data Portal. These data included of a wide range of tumors, both rare 
and common cancers, covering 32 subtypes: acute myeloid leuke-
mia, adrenocortical carcinoma, urothelial bladder carcinoma, breast 
ductal carcinoma, breast lobular carcinoma, cervical cancer, chol-
angiocarcinoma, colorectal carcinoma, esophageal cancer, gastric 
adenocarcinoma, glioblastoma multiforme, head and neck squamous 
cell carcinoma, hepatocellular carcinoma, chromophobe renal cell 
carcinoma, clear cell renal cell carcinoma, papillary renal cell carci-
noma, lower-grade glioma, lung adenocarcinoma, lung squamous 
cell carcinoma, mesothelioma, ovarian serous adenocarcinoma, 
pancreatic ductal adenocarcinoma, paraganglioma pheochromo-
cytoma, prostate carcinoma, sarcoma, skin melanoma, testicular 
germ cell tumor, thymoma, thyroid cancer, uterine carcinosarcoma, 
endometrial carcinoma and uveal melanoma. In aggregate, a total 
of 1,360,892 image patches were clipped from whole-slide images 
obtained from 11,607 patients, from which the raw data amounted to 
approximately 20 terabytes.

Training and testing datasets
We retrospectively collected 42,682 cases of cytological smear images 
from cohorts of patients who had attended three large tertiary referral 
institutions (Extended Data Fig. 3 and Table 1). Ultimately we enrolled 
14,008 cases from Tianjin Medical University Cancer Hospital between 
September 2012 and November 2020, 20,820 cases from Zhengzhou 
University First Hospital between August 2011 and December 2020 and 
7,854 cases from Suzhou University First Hospital between June 2010 
and December 2020. We randomly selected 70% of these as training 
sets and 30% as internal testing sets. We ensured that the testing sets of 
patients did not overlap with those in the training set. Finally, the train-
ing sets consisted of 29,883 cases of which the three internal testing sets 
consisted of 12,799 cases. For ease of description we denoted these test-
ing sets as Tianjin, Zhengzhou and Suzhou, respectively. In particular 
we added two independent external testing sets enrolled from Tianjin 
Medical University Cancer Hospital between June and October 2023 
(the Tianjin-P testing set; 3,933 cases prospectively enrolled) and from 
Yantai Yuhuangding General Hospital between February 2013 and May 
2022 (Yantai testing set; 10,605 cases retrospectively enrolled). These 
two external testing sets were both fully unseen cohorts that were used 
further to test the generalization capabilities of our model (Fig. 1).

We retrieved cytological imaging data for cells isolated from pleu-
ral and peritoneal fluid from pathologic databases. In contrast to the 
malignant group, the benign group consisted of patients diagnosed 
with benign diseases such as decompensated liver cirrhosis, nephrotic 
syndrome, constrictive pericarditis, pulmonary edema and pleuritis. 
To ensure that the diagnosis of each patient was based not only on 

histopathological reporting, other electronic medical records were 
also retrieved as ancillary verification. All pertinent clinical infor-
mation—disease history, laboratory test results, family oncologic 
history, surgery records, endoscopic or interventional examination, 
chemotherapy or radiotherapy and follow-up interviews—was obtained 
where applicable and available. To test our model in the clinical set-
ting scenario we divided patients into high- and low-certainty groups 
according to the level of supporting evidence. The high-certainty group 
included (1) patients whose primary tumors had been resected and 
with a definitive routine histopathological diagnosis and (2) patients 
who had undergone immunohistochemical examination by paraffin 
sections of cell sediment, the results of which strongly suggested the 
origin of malignant tumors38,45,46. The low-certainty group consisted of 
(1) patients whose primary or metastasized tumors merely underwent 
fine-needle puncture biopsy47,48 and (2) patients whose putative dif-
ferential diagnosis was arrived at solely by comprehensive clinical and 
radiological findings. Because it is not practical to obtain a definitive 
ground-truth origin for some patients, with CUP, the assigned primary 
diagnosis of each case was reviewed by a medical team consisting of 
clinicians, physicians, surgeons and pathologists.

Clinical taxonomy
To guarantee the quality of each image we asked five senior patholo-
gists (each with >15 years experience of clinical practice) to collect 
corresponding pathological examination results of either sediment 
paraffin H&E images or surgically resected or needle biopsy specimens 
to verify their accuracy and authenticity. Cases were excluded for 
which clinical diagnosis was ambiguous or the origin of the primary 
tumor was unknown. A final taxonomy label was assigned to each 
case manually by consensus among all five pathologists. Patients 
treated previously by palliative chemotherapy or radiotherapy (high 
possibility of therapy-related changes in tumor cell morphology 
or high false-negative rates) were excluded from both training and 
testing sets. The various cancer types from these patients were first 
grouped into 12 subgroups according to organ function and origin. 
Tumors originating from esophagus, stomach, duodenum, intestine, 
appendix, colon and rectum were grouped under cavity digestive 
system; similarly, tumors from the liver, gallbladder and pancreas 
were grouped under secretory digestive system and those from ovary, 
fallopian tube, corpus uteri, cervix uterus and vagina were grouped 
under female genital system. Meanwhile, because of the particular-
ity and function of the mammary gland, breast cancer was grouped 
under female genital system. Tumors from kidney, ureter, bladder 
and urethra were grouped under urinary system; to remain consistent 
with clinical convention, tumors from prostate, testicle and seminal 
vesicle were also grouped under urinary system. Tumors from lung and 
trachea were grouped under respiratory system. Tumors from head 
and neck were grouped together. Tumors from the central nervous 
system and peripheral nervous system were categorized as one group. 
Bone and soft tissue tumors were also categorized as one group. For 
melanoma, mesothelioma and thymoma, on account of their unique 
growth characteristics these were grouped individually. In addition, 
acute or chronic leukemia and lymphoma were grouped as blood 
and lymphatic system. Because some tumors (such as those of the 
urinary system, head and neck, nervous system, bone and soft tissue, 
melanoma and thymoma) rarely metastasize to the chest or abdominal 
serous cavity, the number of cytological images available for model 
training from those was limited. In the current study, specimens of 
mesothelioma from all four institutions were also relatively scarce. 
We excluded these rare cytological smear images from the above 
cancers and further integrated the remaining 57,220 cases into five 
main categories: benign, digestive system (consisting of both cavity 
digestive system and secretory digestive system), female reproductive 
system (including breast cancer), respiratory system and blood and 
lymphatic system (Fig. 1).
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Data curation and patching
In this study, cytology smear images rather than whole-slide images were 
retrieved from a real-world, clinical scenario. Initially pleural and abdomi-
nal fluids were extracted by fine-needle aspiration and directly prepared 
as smears for microscopic observation ( JVC TK-C9501EC, Olympus BX51 
at either ×400 or ×200 equivalent magnification). The pathologists 
selected between five and ten fields with concentrated tumor cells best 
representing the pathological features for semiqualitative analysis. The 
original image format stored in the database was 2,797 × 1,757 alike pixels. 
Due to variation in cell shape arising from the different tumor origins, 
as well as the relatively high proportion of background in cytological 
images, it is usually impossible to develop deep-learning models directly 
from these large images and thus we split each image into a list of patches 
of 224 × 224 pixels. We excluded blank, poorly focused and low-quality 
images containing severe artifacts. Extracted patches from the same 
image were located in a single package. For cancer-positive packages 
there must be at least one patch that includes tumor cells; for negative 
packages, no patch must contain tumor cells.

Development of the feature extractor
We used self-supervised feature representation learning with momen-
tum contrast (MoCo) as learning representation for histological and 
cytological images. The key concept of this method is to minimize the 
contrastive loss of different augmented versions of a given image. The 
feature extractor is a 50-layer residual neural network (ResNet) consist-
ing of four residual blocks, followed by a multilayer perceptron (MLP) to 
project the outputs from ResNet into a latent space where contrastive 
learning is performed. The use of MLP has proved to be beneficial in 
regard to contrastive learning. The framework of MoCo is a Siamese net-
work consisting of two feature encoders whose parameters are denoted 
as θk and θq. MoCo learns similar/dissimilar representations from images 
that are organized into similar/dissimilar pairs, which can be formulated 
as a dictionary lookup problem. For a given image x we perform random 
data augmentation for x giving rise to xk and xq; xk is fed into θk and xq  
into θq. This problem can be optimized efficiently by InfoNCE loss49:

ℒq,k+,{k−} = − log exp(q.k+/τ)
exp (q. k

+

τ
) +∑k− exp (q.

k−

τ
)

where q is a query representation and k+ is the representation of a simi-
lar key sample of q, both of which are obtained via data augmentation 
for the same image. {k−} is the set of representation of dissimilar samples 
of q, which are obtained via data augmentation for the other images. 
The size of dissimilar samples was set to 65,536. The two feature encod-
ers, θk and θq, are updated in different ways, whereas θq is updated by 
back-propagation and θk is updated according to θk ← mθk + (1 − m)θq. 
m ∈ (0, 1) is the momentum coefficient and was set to m = 0.999 in our 
study. Hyperparameter τ was set to 0.07. We used stochastic gradient 
descent to train the network for 200 epochs with an initial learning 
rate of 0.015, weight decay of 1 × 10−4 and batch size of 128 on four 
graphics processing units. The learning rate was scheduled by cosine 
decaying. Specifically, the learning rate at the ith epoch was set to  
initial_lr × 0.5 × (1.0 + cos(π × i/n)) where n is the total number of train-
ing epochs, set to 200 in this study. The ResNet encoder is eventually 
used as feature extractor. Data augmentation includes random resize 
and crop, color jittering, grayscaling, Gaussian blurring, flipping and 
subsequently normalization by the mean and standard deviation of 
channels R, G and B. In total, 1,360,892 histological image patches 
from TCGA and 29,883 cytological image patches were used for the 
development of the histological feature extractor and cytological 
feature extractor, respectively. We eventually obtained two feature 
extractors: cytological and histological feature extractors.

For a given cytological image with n tiling patches we converted 
each patch into a feature vector of 1,024 dimensions. These feature 
vectors were then combined as feature matrix Ximage of n rows and 

1,024 columns. Besides image features we took clinical parameters 
as inputs including age, sex and specimen sampling site. In this 
scenario we embedded age, sex and specimen sampling site into a 
vector of 1,024 dimensions, denotated as Xage, Xsex and Xlocation. The 
input to the attention-based MIL classifier can be set to X = Ximage and 
X = Ximage + Xage + Xsex + Xlocation.

Model training
Because each extracted patch represents only a small fraction of 
tumor features or tissue content, labeling these with patient-level 
diagnosis is inappropriate. We therefore used a weakly supervised 
machine learning method and trained a multitask neural network 
model named TORCH while taking into account information from the 
entire package. Parameters including sex, age and specimen sampling 
site (hydrothorax and ascites), combined with cytological images, were 
taken as inputs. We trained our model in an end-to-end fashion with 
stochastic gradient descent for 100 epochs at a constant learning rate 
of 2 × 10−4, weight decay of 1 × 10−5 and batch size of 1 using the Adam 
optimizer50. From epoch 60 and beyond, the model with the lowest 
validation loss was selected as the optimal model. We trained four 
deep neural networks individually on the training set. These networks 
included attention-based, multiple-instance learning (AbMIL), AbMIL 
with multiple attention branches (AbMIL–MB), transformer-based MIL 
(TransMIL) and TransMIL with cross-modality attention. These meth-
ods can be categorized as either attention- or transformer-based MILs. 
The objectives and differences of these four algorithms are shown in 
Supplementary Table 19. Image features were extracted using the cyto-
logical and histological feature extractor. For each network we trained 
and obtained three models for different combination of inputs: (1) cyto-
logical image features plus age, sex and specimen sampling sites; (2) 
histological image features plus age, sex and specimen sampling sites; 
and (3) cytological and histological image features plus age, sex and 
specimen sampling sites. As a result, we obtained 12 trained models. 
Finally we performed model ensembling by averaging the prediction 
probabilities from these models. Model training and evalutation were 
performed with PyTorch (v.1.12.1) on a DGX A100 computing server.

AbMIL
In the setting of multiple-instance learning, a cytological image is 
considered as a bag and image patches from that cytological image 
are instances51,52. For a cytological image with k patches we can obtain 
a feature matrix, denoted as [x1, x2, …, xk]T; xi is the feature vector of the 
ith image patch output from the feature extractor. A two-layer, fully 
connected neural network transforms xi into latent vector hi:

hi = ReLU (W2 (ReLU (W1xi + b1)) + b2

where W1, W2, b1 and b2 are parameters and ReLU is the activation func-
tion. The attention weight ai for hi is defined as51

ai =
exp(tanh(Vhi) ⊙ sigmoid(Uhi))

∑k
j=1 exp(tanh(Vhj) ⊙ sigmoid(Uhj))

where V and U are weight parameters and tanh and sigmoid are activa-
tion functions. Attention pooling was applied to obtain the sample-level 
features:

Z = HTA

where A = {a1,a2,… ,ak} and H = {h1,h2,… ,hk}.

Subsequently, a fully connected layer parameterized as W3 and 
b3, followed by sofmtax, was used to transform sample-level features 
into probabilities:

p = softmax (W3Z + b3) .
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AbMIL–MB
This approach is an extension of attention-based deep MIL based on 
Lu et al.52. Let zk ∈ ℝ2,048  denote the patch-level representation  
extracted from the feature extractor. A fully connected layer, 
W1 ∈ ℝ512×2,048, projects zk into a 512-dimensional vector hk = W1zk. Sup-
pose the attention network consists of two layers. Ua ∈ ℝ384×512  and 
Va ∈ ℝ384×512; subsequently the attention network splits into N parallel 
attention branches, Wa,1,Wa,2,… ,Wa,N ∈ ℝ1×384. Then, N parallel classi-
fiers (that is, Wc,1,Wc,2,… ,Wc,N ∈ ℝ1×512) are built to create a class-specific 
prediction for each cytological image. The attention score of the kth 
patch for the ith class ak,i is calculated as

ai,k =
exp{Wa,i(tanh (Vahk) ⊙ sigmoid (Uahk))}

∑K
j=1 exp{Wa,i(tanh (Vahj) ⊙ sigmoid (Uahj))}

.

The aggregated representation for a cytological image for the ith 
class is given by

hcyto,i =
K
∑
k=1

ai,khk.

The logit value for a cytological image is calculated as

scyto,i = Wc,ihcyto,i.

Softmax function is applied to convert scyto,i into the predicted prob-
ability distribution over each class.

TransMIL
TransMIL for whole-slide image classification was investigated in our 
recent study53 and in a study by Wagner et al.54. For a given cytological 
image we first split it into multiple 224 × 224 image patches. Let 
zk ∈ ℝ2,048  denote the patch-level representation. A fully connected 
layer W1 ∈ ℝ384×2,048  projects zk into a 384-dimensional vector hk =  
W1zk. Clinical features including sex, age and sample origin (that is, 
ascites or pleural effusion) are independently embedded into a 
384-dimensional vector: hsex, hage and horigin. Similar to the vision trans-
former, we prepend a learnable embedding hclass to the sequence of 
image patches. The state of hclass at the output of the transformer 
encoder is used as the representation of that cytological image. We 
then concatenate the patch-level features with clinical features as 
h = {hclass, h1, h2, …, hk, hsex, hage, horigin}. The position embeddings 
p ∈ ℝ(k+4)×384  are added to h to retain positional information, giving 
rise to input x = h + p.

The concatenated features x ∈ ℝ(k+4)×384 are passed through the 
transformer encoder, which consists of three layers, to make a diag-
nostic prediction. The transformer encoder layer comprises a multi-
headed self-attention and a positionwise, feedforward neural network 
(FFN). The ith self-attention head is formulated as

Attentioni (Qi,Ki,Vi) = softmax (
QiKT

i

√dk
)Vi

where Qi, Ki and Vi are three matrices that are linearly projected from 
the concatenated feature matrix x and dk is the dimension of Qi, which 
is used as scaling factor. In this study dk is set to 64. Qi, Ki, Vi = LP(x), 
where LP represents linear projection. Multiheaded self-attention is 
the concatenation of different self-attention heads:

MultiHeadAttention (Q,K,V) = Concat (Attention1,… ,Attentionh)Wo

where Wo represents the learnable projection matrix. The pointwise 
FFN has two linear layers with ReLU activation between:

FFN (x) = max (0, xW1 + b1)W2 + b2

where W1 and W2 are weights and b1 and b2 are bias. Layerwise normaliza-
tion is applied in the front and rear of FFN, and residual connection is 
employed to improve information flow. The representation of the learn-
able classification vector obtained from the last transformer encoder 
layer is passed through a linear classifier to make a diagnostic prediction.

TransMIL with cross-modality attention
TransMIL simply uses concatenation for multimodal data fusion but 
does not exploit interconnections between different data modalities. 
Zhou and colleagues proposed a state-of-the-art, transformer-based 
representation learning model capable of exploiting intermodality 
between image and clinical features for clinical diagnosis55. These 
authors also proposed a multimodal attention block capable of learning 
fused representations by capturing interconnections among tokens 
from the same modality or across different modalities, and subsequently 
using self-attention blocks to learn holistic multimodal representations. 
A classification head is then added to produce classification logits. For 
the convenience of description, let zzzk ∈ ℝ2,048 denote patch-level repre-
sentation. A fully connected layer W1 ∈ ℝ384×2,048  projects zk into a 
384-dimensional vector hk = W1zk. Similar to the vision transformer, we 
prepend a learnable embedding hclass to the sequence of image patches. 
Therefore, a cytological image split into N image patches is represented 
by h = {hclass, h1, h2, …, hk}. The position embeddings p ∈ ℝ(k+1)×384  are 
added to h to retain positional information, giving rise to input

xI = h + p.

Clinical features including sex, age and sample origin (that is, ascites or 
pleural effusion) are independently embedded into a 384-dimensional 
vector, hsex, hage and horigin, and subsequently concatenated to produce 
a sequence of clinical features, xc = {hsex, hage, horigin}. We used three 
transformer encoder layers, the first two being stacked multimodal 
attention blocks while the third was a self-attention block according 
to the original study.

Suppose the LP of xI and xc produces

QI,KI,VI = LP(xI)

and

QC,KC,VC = LP(xC).

The operations of multimodal attention block at the ith layer can 
then be summarized as

𝒳𝒳l
I = Attention (QI,KI,VI) + Attention(QI,KT,VT)

and

𝒳𝒳𝒳𝒳𝒳𝒳l
C = Attention (QC,KC,VC) + Attention(QC,KI,VI)

whereas

Attention (Q,K,V) = softmax (QK
T

√dk
)V.

Next, 𝒳𝒳l
I  and 𝒳𝒳l

C  are passed through a layer-normalization  
(LayerNorm) layer and an MLP and subsequently with residual connec-
tion to the input:

𝒳𝒳l+1
I = MLP (LayerNorm (𝒳𝒳l

I )) + 𝒳𝒳l
I

and

𝒳𝒳l+1
C = MLP (LayerNorm (𝒳𝒳l

C)) + 𝒳𝒳l
C.
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Next, 𝒳𝒳l+1
I  and 𝒳𝒳l+1

C  are passed through the following multimodal atten-
tion layer, producing new representation outputs 𝒳𝒳l+2

I  and 𝒳𝒳l+2
C . 𝒳𝒳l+2

I  
and 𝒳𝒳l+2

C  are then concatenated and passed through a standard trans-
former encoder block. Multiple attention heads are allocated for both 
multimodal attention and self-attention blocks. For classification 
purposes, average pooling is performed for representations from the 
standard transformer encoder block. This average representation is 
passed through a classification head, consisting of a two-layer MLP, to 
produce the final classification logits.

Interpretability and visualization
For an input image we can directly obtain the attention scores for each 
image patch on that image when it is passed through the trained TORCH 
model51,52. For a cytological image with k patches, the attention score 
for the ith image patch calculated in the model is given by

ai =
exp(tanh(Vhi) ⊙ sigmoid(Uhi))

∑k
j=1 exp(tanh(Vhj) ⊙ sigmoid(Uhj))

where V and U are weight parameters, tanh and sigmoid are activation 
functions and hi is the representation feature of the ith image patch. 
Therefore, the attention scores for image patches in that cytological 
image are represented as A = [a1, a2, …, ak]. The attention score of each 
image patch represents the association of that patch on the classifica-
tion output, thereby providing an intuitive interpretation. The inter-
pretability heatmap is created by overlaying attention scores A onto 
the original cytological image. Specifically, we overlaid square boxes 
of different colors, as represented by the attention scores following 
the color scheme coolwarm implemented in the matplotlib python 
package, onto the original cytological image. A reddish color indicates 
a stronger association of that image patch on the classification, while 
a bluish color indicates a weaker association.

AI architecture evaluation by different classifications
Cancer-positive versus cancer-negative classification. Given a 
cytological image, TORCH outputs the five probabilities as either diges-
tive system (Pdigestive), female reproductive system (Pfemale), respiratory 
system (Prespiratory), blood and lymphatic system (Pblood-lymph) or benign 
group (Pbenign). The cancer-positive probability is calculated as Pcancer =  
1 − Pbenign. Together with the true label, we can use Pcancer to measure the 
accuracy, sensitivity, specificity and positive and negative predictive 
values of our model in identification of cancer-positive cases.

Classification of primary tumor origin. If a case is identified as malig-
nant, it will be predicted as one of following four groups according to 
the highest predicted probability: digestive system, female reproduc-
tive system, respiratory system and blood or lymphatic system. For 
each testing set, the microaveraged one-versus-rest ROC curve was 
used to demonstrate the overall multiclassification performance of 
our model. In addition to the metrics mentioned above, we used top-n 
accuracy to evaluate the performance of origin prediction as reported 
by Lu and colleagues36. In the present study we set n as 1, 2 and 3. Top-1, -2 
and -3 accuracy was used to measure frequency in regard to the correct 
label found, and to make the maximum confidence prediction. Top-n 
accuracy looks at the nth classes with the highest predicted probabili-
ties when calculating accuracy. If one of the top-n classes matches the 
ground-truth label, the prediction is considered to be accurate.

Classification stratified by specimen sampling site. There is a ten-
dency for malignant tumors to metastasize to the thoracoabdominal 
cavity. The incidence of metastasis to hydrothorax or ascites varies by 
tumor origin. Both lung and breast cancer are prone to thoracic metas-
tasis, while gastrointestinal tumors are more likely to metastasize to 
the abdominal cavity. To confirm the variation in model performance 
between pleural effusion and ascites, we divided cytology smears 

into hydrothorax and ascites groups, respectively, and evaluated our 
model on each group. For the five testing sets, 16,892 thoracic cytol-
ogy smear image cases and 10,445 abdominal cytology smear image 
cases were enrolled.

Classification stratified by carcinoma versus noncarcinoma. Carci-
noma and noncarcinoma are two main types of malignant tumor, but 
with different origins. Carcinoma originates from epithelial tissue, with 
tumor cells arranged in nests and distinct parenchymal and stromal 
boundaries. In this study, in regard to those four main categories, non-
carcinomatous tumors include those originating from mesenchymal tis-
sue, malignant teratoma and the blood and lymphatic system. Sarcoma 
originates from mesenchymal tissue (mesoblastema) with its tumor cells 
scattered and interwoven between both parenchyma and stroma. We 
therefore divided test cases into carcinoma and noncarcinoma groups 
for separate assessment of the efficacy of our model on each group.

Classification stratified by adenocarcinoma versus nonadenocar-
cinoma. On cytological smears, metastatic adenocarcinoma cells are 
typically arranged in a three-dimensional mode with a glandular mass, 
more mucus in the cell cytoplasm and obvious nucleoli. Given this, 
and based on the morphology and characteristics of scattered tumor 
cells, for some typical tumors pathologists can visually distinguish 
between adenocarcinoma and squamous cell carcinoma. However, 
in the absence of routine histopathological whole-slide and immuno-
histochemical results, it is difficult to identify the origins of these cells 
according to their macroscopic appearance alone. To further evaluate 
the efficacy of our model in regard to different pathological subtypes, 
we grouped carcinomata from testing sets roughly into adenocar-
cinoma and nonadenocarcinoma groups and evaluated our model 
on each group separately. The nonadenocarcinoma group included 
mainly squamous cell carcinoma, sarcomatoid carcinoma, adenosqua-
mous carcinoma, papillary carcinoma, large cell carcinoma, small cell  
carcinoma, transitional epithelial carcinoma, basal cell carcinoma and 
undifferentiated carcinoma. In this study the adenocarcinoma subset 
included mainly hepatopancreatobiliary, gastrointestinal, lung, breast 
and female genital (ovary and corpus uteri) tumors. The squamous cell 
carcinoma subset included mainly pulmonary, esophageal and female 
genital (cervix uterus and vagina) tumors.

Evaluation on real-world data. To verify the generalization of our model 
in real-world settings, we included two fully unseen external testing 
sets, Tianjin-P and Yantai. We prospectively enrolled 4,520 consecu-
tive cases from 20 June to 5 October 2023 at Tianjin Cancer Hospital as 
the Tianjin-P testing set. These cases were obtained from outpatient or 
inpatient departments and had not been manually abridged. Of these 
4,520 cases, 1,881 were putatively diagnosed by comprehensive clinical 
and radiological findings and classified as low-certainty cases; the origin 
of 587 cases could not be determined clinically, and these were then 
classified as uncertainty CUP patients. The Yantai testing set consisted 
of 12,467 cases retrospectively enrolled from Yantai Hospital between  
February 2013 and May 2022. Of these 12,467 cases, 4,646 were classified 
as low certainty and 1,862 as uncertainty. Because data on the perfor-
mance of our model on uncertainty cases are not available due to the 
absence of true labels for these cases, we assessed performance on cases 
with known cancer origins (3,933 cases from Tianjin-P and 10,605 from 
Yantai). The upper-bound accuracy of our model can be estimated by 
assuming that our model achieves 100% accuracy in prediction of cancer 
origins for all uncertainty cases, whereas lower-bound accuracy can be 
estimated by assuming that it achieves 0% accuracy for uncertainty cases.

AI versus pathologists
To compare the performance of TORCH with that of experienced prac-
ticing pathologists, we randomly selected 495 cytological images from 
three internal testing sets for manual interpretation. Four practicing 
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pathologists (two senior experts: X.J.J. and W.N., mean 16 years of clini-
cal experience; and two junior experts: F.J.J. and H.J.Y., mean 5 years of 
clinical experience) were presented with an entire clinicopathological 
dataset (sex, age, specimen sampling site) of every selected smear 
image case. Every pathologist checked all 495 selected cases. We used 
the following scoring scheme36 to quantify and compare the perfor-
mance of our model with these four pathologists. For a given case we 
assign a diagnostic score η based on the prediction:

 η = 0 if benign disease is misclassified as malignant tumor or vice 
versa;
η = 1 if tumor origin is misclassified; and
η = 2 if prediction is correct.
We therefore obtained two scoring vectors: aTORCH = {η′1,η

′
2,… ,η′495} 

for TORCH and apathologist = {η∗1 ,η
∗
2 ,… ,η∗495}  for each pathologist.  

Statistical comparison was conducted to assess variation betweeen 
TORCH and pathologists and between pathologists with and without 
assistance from TORCH.

To investigate whether the junior pathologists’ diagnostic ability 
could be improved with the assistance of TORCH, we randomly selected 
496 additional cases (not overlapping with the previous 495 cases) 
from three internal testing sets and present the prediction results 
from TORCH for these two pathologists as reference. They were asked 
to carry out differential diagnosis independently, with freedom to 
choose whether they trusted AI. We then compared their diagnostic 
scores to measure whether assistance by TORCH could improve junior 
pathologists’ diagnostic ability.

Ablation experiment
To assess the benefit of incorporating clinical variables as inputs in addi-
tion to cytology smear images, we conducted ablation experiments by 
exclusion of epidemiological data from prediction of tumor origin36. 
We trained the model solely on cytology smear images by exclusion of 
clinical variables including sex, age and specimen sampling site. We then 
compared the performance of the ablation model trained using cytology 
smear images as the only input with that of the TORCH model trained 
using both cytology smear images and the above three parameters.

To explore the relationship between clinical variables and cyto-
logical images, we perturbed each clinical variable for the model-trained 
clinical variables and subsequently assessed differences with respect to 
its differences. For the ease of description, let x, a, s and t denote image 
features, age, sex and specimen sampling site, respectively, and therefore 
the input to TORCH (denoted as f) is represented as X = {x, a, s, t}. To assess 
the impact of the relationships between age and cytological image on 
model performance, we randomly replaced the age value with a random 
number sampled from the range 18–90, giving rise to Xage = {x, a′, s, t}. To 
assess the impact of the relationships between sex and cytological image 
on model performance, we reversed the sex value for a given patient, 
replacing male with female if that patient was male and vice versa. In this 
way we obtained a new data point representing the perturbed sampling 
site of sex Xsex = {x, a, s′, t}. In a similar manner, to assess the impact on 
model performance of the relationships between specimen sampling 
site and cytological image, we reversed the specimen sampling site giving 
rise to a new data point representing perturbed sampling site Xsite = {x, a, 
s, t′}. Suppose the top-1 accuracy is calculated according to function ∅, 
the top-1 accuracies of X, Xage, Xsex and Xsite are represented as

τ = ∅( f (X)),

τage = ∅( f (Xage)),

τsex = ∅( f (Xsex))

and

τsite = ∅( f(Xsite)),

respectively.

Therefore, the impact of age, sex and specimen sampling site in 
relation to cytological image on model performance can be measured as

Δage = ( τ − τage) /τ,

Δsex = ( τ − τsex) /τ

and

Δsite = ( τ − τsite) /τ,

respectively.

Clinical treatment and TORCH prediction
To investigate whether our TORCH model could assist oncologists in 
tracing the cancer origin of patients with CUP and provide benefit for 
subsequent treatment, we retrospectively collected 762 uncertainty 
cases treated at Tianjin Medical University Cancer Hospital between 
April 2020 and February 2023. All patients had received individual-
ized treatment following detection of pleural and peritoneal serous 
effusions. These patients underwent comprehensive clinical imaging 
examination on admission, but their primary tumor origins could still 
not be identified. Following screening, 87 patients with incomplete 
hospitalized therapy data and 284 with missing follow-up information 
were excluded. Eventually we enrolled a cohort of 391 patients with CUP 
defined as uncertainty cases, of which 310 received palliative chemo-
therapy and targeted drugs combined with or without radiotherapy. 
The remaining 81 patients received surgery or supportive treatment 
due to various contraindications to chemotherapy. During hospi-
talization, all clinical data of these patients were collected, including 
differential diagnosis for possible primary cancer origin, biopsy site, 
initial chemotherapy, tumor-targeted monoclonal antibody therapy 
and intensity-modulated radiation therapy plans. We then asked three 
senior oncologists (mean 15 years of experience) to review these clini-
cal data and determine whether TORCH-predicted tumor origins were 
concordant or discordant with the initial firstline treatment plan. 
Due to the fact that the majority of these 310 cases were patients with 
late-stage cancer involving multiple organ metastases, and that drug 
resistance occurred frequently, we referred the initial firstline pallia-
tive chemotherapy plan as the main evaluation benchmark. Response 
Evaluation Criteria in Solid Tumors was used as the standard reference 
for treatment effect assessment. Karnofsky score was applied as func-
tion status scoring criteria, with scoring by oncologists before and after 
chemotherapy, respectively. Overall survival was calculated as the time 
interval from the date of admission to either that of death (due to either 
cancer cachexia or any other cause) or the follow-up date (27 September  
2023). According to whether TORCH-predicted tumor origins were 
concordant with treatment plans, we divided these 391 patients into 
the concordant and discordant groups. The former and latter included 
patients who had received treatment plans that were concordant or 
discordant, respectively, with TORCH-predicted tumor origins. The 
three senior clinical oncologists made comprehensive judgments 
(concordant or discordant) according to National Comprehensive 
Cancer Network guidelines56, standard Chinese expert consensus57, 
patients’ hospitalization records and their own clinical experience. 
They were blind to follow-up information when making judgments.

Assessment of inter-rater agreement rate among pathologists
We calculated the inter-rater agreement rate for the four pathologists 
involved in manual interpretation of cytological images. We used Fleiss’ 
kappa (κ)58,59 to measure inter-rater reliability when including multiple 
raters and more than two categories, which was calculated according to

κ = po − pe
1 − pe
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where po is the observed agreement rate and pe the expected agreement 
rate. According to Landis and Koch41, interpretation of κ was grouped 
into six agreement categories: poor (κ < 0), slight (0 ≤ κ < 0.2), fair 
(0.21 ≤ κ < 0.4), moderate (0.41 ≤ κ < 0.60), substantial (0.61 ≤ κ < 0.80) 
and almost perfect (0.81 ≤ κ ≤ 1.0).

Statistics
Area under the receiver operating characteristic curve was used as 
the primary metric to measure classification performance. Confi-
dence intervals of AUROC were computed using DeLong’s method 
implemented in the R package pROC (v.1.17.0.1). The Clopper–Pearson 
method60 was used to calculate accuracy, sensitivity, specificity and 
positive predictive and negative predictive values. We conducted 
permutation testing to determine any statistical difference across 
the five categories in terms of AUROC, precision and recall rate. Fleiss’ 
kappa was used to measure inter-rater agreement among pathologists 
(R package irr, v.0.84). Rates of mortality were censored in September 
2023 and calculated using the Kaplan–Meier method. The log-rank test 
was employed to test for differences between Kaplan–Meier survival 
curves. Statistical analysis was performed with R software (v.3.9.1), 
pROC (v.1.17.0.1) and sklearn (v.0.24.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
TCGA whole-slide image data are available from NIH genomic data com-
mons (https://portal.gdc.cancer.gov). The supporting data generated in 
this study are provided in Supplementary Information. Sample data and 
cytological images for communication are given at figshare via https://
doi.org/10.6084/m9.figshare.25270066 (ref. 61). The full treatment 
plan, survival information and other deidentified clinical data used in 
treatment concordance analysis are available in Supplementary Table 17. 
Restrictions apply to the availability of cytological image data, which 
were used with institutional permission through IRB approval for the 
current study and are thus not publicly available. Please email any request 
for academic use of cytological imaging data to either the corresponding 
author (lixiangchun@tmu.edu.cn) or first author (tianfei@tmu.edu.cn). 
All requests will be evaluated based on institutional and departmental 
policies to determine whether the data requested are subject to intel-
lectual property or patient privacy obligations. Data can be shared 
for noncommercial academic purposes only and will require a formal 
material transfer agreement. Requests will be processed within 3 weeks.

Code availability
Source code for model development is publicly available at GitHub via 
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Extended Data Fig. 1 | A diagram illustrating tumor metastasis. Exemplified diagram shows the tumors from chest and abdominal organs have a high possibility of 
malignant hydrothorax and ascites.
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Extended Data Fig. 2 | Schematic diagram of cytological examination. Hydrothorax and ascites are punctured under the guidance of color Doppler ultrasound for 
cytological examination.
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Extended Data Fig. 3 | The flowchart exhibiting the procedures to develop and evaluate TORCH model. a, Model development procedure consisted of feature 
extraction, real clinical data taxonomy and model iteration. b, Evaluation of TORCH on three internal and two external testing sets. c, Performance comparison 
between TORCH and four pathologists on randomly selected cases.
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Extended Data Fig. 4 | Classification performance of TORCH model on high-certainty cases and low-certainty cases respectively. Overall micro-averaged 
one-versus-rest auroc is similar for cases in the low-certainty group (b) compared with high-certainty group (a) [0.964 (0.961–0.966) versus 0.971 (0.969–0.972) 
(P = 0.106)].
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Extended Data Fig. 5 | Examples of haematoxylin-eosin staining cytological 
attention heatmaps. The frame of each square is marked with different colors. 
Red frame indicates that a region is highly informative for the classification 
decision making and blue frame indicates that the region has lower diagnostic 

value. Histomorphological features contributing to prediction made by TORCH 
are usually featured by: organizational structures such as glandular tubules, 
papillary, wreath like, and compact cell clusters; cells with larger size, richer 
cytoplasm, obvious nuclear abnormalities, and rough, deeply stained chromatin.
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Extended Data Table 1 | Classification performance of TORCH model on malignant versus benign diseases

Performance
Metrics

Overall
(n=27337)

Tianjin
(n=4186)

Zhengzhou
(n=6234)

Jiangsu
(n=2379)

Tianjin-P
(n=3933)

Yantai
(n=10605)

Accuracy
(95% CI)

0.926 
(0.922 - 0.929)

0.922 
(0.914 - 0.930)

0.893 
(0.885 - 0.900)

0.965 
(0.957 - 0.972)

0.915 
(0.905 - 0.923)

0.938 
(0.933 - 0.943)

Sensitivity
(95% CI)

0.928 
(0.923 - 0.932)

0.906 
(0.876 - 0.931)

0.892 
(0.881 - 0.903)

0.973 
(0.959 - 0.983)

0.929 
(0.915 - 0.941)

0.954 
(0.948 - 0.960)

Specificity
(95% CI)

0.924 
(0.920 - 0.928)

0.924 
(0.915 - 0.932)

0.893 
(0.882 - 0.904)

0.961 
(0.950 - 0.970)

0.905 
(0.893 - 0.917)

0.926 
(0.919 - 0.932)

Precision
(95% CI)

0.886 
(0.880 - 0.892)

0.602 
(0.565 - 0.638)

0.893 
(0.882 - 0.904)

0.925 
(0.905 - 0.942)

0.862 
(0.845 - 0.879)

0.912 
(0.904 - 0.920)

Negative predictive
value (95% CI)

0.952 
(0.949 - 0.956)

0.987 
(0.983 - 0.991)

0.892 
(0.881 - 0.903)

0.986 
(0.979 - 0.992)

0.952 
(0.943 - 0.961)

0.961 
(0.956 - 0.966)

Classification performance of TORCH model on malignant versus benign diseases.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02915-w

Extended Data Table 2 | Classification performance of TORCH model on five categories

Performance
Metrics

Digestive system

(n=2379)

Female reproductive 
system

(n=5938)

Respiratory system

(n=7937)

Blood and lymphatic 
system
(n=448)

Benign

(n=10635)
Accuracy (95% CI) 0.862

(0.858 - 0.866)
0.881 

(0.877 - 0.885)
0.886 

(0.882 - 0.889)
0.936 

(0.933 - 0.939)
0.926 

(0.922 - 0.929)
Sensitivity (95% CI) 0.774 

(0.757 - 0.791)
0.925 

(0.918 - 0.932)
0.912 

(0.906 - 0.919)
0.855 

(0.819 - 0.886)
0.928 

(0.923 - 0.932)
Specificity (95% CI) 0.870 

(0.866 - 0.874)
0.869 

(0.864 - 0.873)
0.875 

(0.870 - 0.879)
0.938 

(0.935 - 0.941)
0.924 

(0.920 - 0.928)
Precision (95% CI) 0.362 

(0.349 - 0.376)
0.662 

(0.652 - 0.672)
0.749 

(0.740 - 0.757)
0.186

(0.169 - 0.204)
0.886 

(0.880 - 0.892)
Negative predictive
value (95% CI)

0.976 
(0.974 - 0.978)

0.977 
(0.974 - 0.979)

0.961 
(0.958 - 0.963)

0.997 
(0.997 - 0.998)

0.952 
(0.949 - 0.956)

Classification performance of TORCH model on five categories.
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Extended Data Table 3 | Classification performance of pathologists versus TORCH model

n=495 Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI)
Negative predictive 
value (95% CI)

Digestive system
Pathologists 0.818 (0.800 - 0.835) 0.382 (0.317 - 0.450) 0.873 (0.856 - 0.888) 0.273 (0.224 - 0.326) 0.919 (0.905 - 0.931)

AI 0.851 (0.816 - 0.881) 0.782 (0.650 - 0.882) 0.859 (0.823 - 0.890) 0.410 (0.315 - 0.510) 0.969 (0.947 - 0.984)
Female reproductive 
system

Pathologists 0.804 (0.785 - 0.821) 0.625 (0.578 - 0.670) 0.856 (0.837 - 0.873) 0.559 (0.514 - 0.603) 0.886 (0.869 - 0.902)
AI 0.905 (0.876 - 0.929) 0.938 (0.875 - 0.975) 0.896 (0.861 - 0.924) 0.724 (0.644 - 0.795) 0.980 (0.959 - 0.992)

Respiratory system
Pathologists 0.772 (0.753 - 0.790) 0.574 (0.532 - 0.615) 0.851 (0.832 - 0.869) 0.608 (0.565 - 0.650) 0.832 (0.812 - 0.851)

AI 0.883 (0.851 - 0.910) 0.923 (0.866 - 0.961) 0.867 (0.827 - 0.901) 0.736 (0.665 - 0.799) 0.965 (0.939 - 0.983)
Blood and lymphatic 
system

Pathologists 0.942 (0.931 - 0.952) 0.333 (0.240 - 0.437) 0.973 (0.965 - 0.980) 0.386 (0.281 - 0.499) 0.966 (0.957 - 0.974)
AI 0.952 (0.929 - 0.969) 0.875 (0.676 - 0.973) 0.955 (0.933 - 0.972) 0.500 (0.342 - 0.658) 0.993 (0.981 - 0.999)

Benign disease
Pathologists 0.731 (0.711 - 0.751) 0.515 (0.476 - 0.555) 0.836 (0.815 - 0.856) 0.605 (0.563 - 0.646) 0.780 (0.758 - 0.801)

AI 0.889 (0.858 - 0.915) 0.883 (0.823 - 0.928) 0.892 (0.853 - 0.923) 0.799 (0.733 - 0.855) 0.940 (0.908 - 0.963)
P 0.038 < 0.001 0.333 < 0.001 0.020

Classification performance of pathologists versus TORCH model.
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Extended Data Table 4 | Classification performance of junior pathologists with and without TORCH assistance

n=495/496 Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI)
Negative predictive 

value (95% CI)

Two junior 
pathologists 

before TORCH 
assistance

Digestive system 0.789 (0.750 - 0.824) 0.300 (0.184 - 0.439) 0.850 (0.813 - 0.882) 0.200 (0.119 - 0.302) 0.907 (0.874 - 0.933)
Female reproductive system 0.746 (0.706 - 0.784) 0.643 (0.547 - 0.731) 0.777 (0.732 - 0.818) 0.458 (0.378 - 0.538) 0.881 (0.843 - 0.914)

Respiratory system 0.732 (0.691 - 0.771) 0.581 (0.495 - 0.663) 0.794 (0.747 - 0.834) 0.530 (0.449 - 0.611) 0.825 (0.780 - 0.864)
Blood and lymphatic system 0.931 (0.905 - 0.952) 0.188 (0.059 - 0.398) 0.969 (0.949 - 0.982) 0.236 (0.075 - 0.485) 0.959 (0.937 - 0.975)

Benign disease 0.668 (0.625 - 0.709) 0.241 (0.177 - 0.314) 0.875 (0.835 - 0.909) 0.481 (0.368 - 0.595) 0.704 (0.657 - 0.747)

Two junior 
pathologists 

after TORCH 
assistance

Digestive system 0.889 (0.859 - 0.915) 0.178 (0.096 - 0.292) 0.991 (0.977 - 0.996) 0.776 (0.446 - 0.932) 0.894 (0.863 - 0.920)
Female reproductive system 0.834 (0.798 - 0.865) 0.820 (0.686 - 0.914) 0.835 (0.798 - 0.868) 0.371 (0.282 - 0.467) 0.976 (0.956 - 0.989)

Respiratory system 0.851 (0.817 - 0.881) 0.629 (0.522 - 0.727) 0.902 (0.869 - 0.928) 0.605 (0.501 - 0.701) 0.913 (0.881 - 0.939)
Blood and lymphatic system 0.970 (0.950 - 0.982) 0.100 (0.013 - 0.408) 0.988 (0.974 - 0.995) 0.250 (0.034 - 0.596) 0.982 (0.965 - 0.992)

Benign disease 0.703 (0.661 - 0.742) 0.703 (0.648 - 0.754) 0.702 (0.637 - 0.762) 0.750 (0.693 - 0.801) 0.655 (0.593 - 0.715)
P 0.010 0.418 0.607 0.221 0.362

Classification performance of junior pathologists with and without TORCH assistance.
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Extended Data Table 5 | The accuracy of attention heatmaps capturing main area of tumor cells assessed by pathologists

Accuracy
Pathologist 1
Qianqian Fu

Pathologist 2
Na Wei

Pathologist 3
Jingjie Fu

Pathologist 4
Jingjing Xu

Pathologist 5
Junya Han

Covered
≥60%

98.2% 96.4% 90.7% 88.8% 97.3%

Covered
≥80%

80.5% 90.0% 69.7% 77.5% 87.9%

The accuracy of attention heatmaps capturing main area of tumor cells assessed by pathologists.
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