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Differential roles of Aβ42/40, p-tau231 and 
p-tau217 for Alzheimer’s trial selection and 
disease monitoring

Blood biomarkers indicative of Alzheimer’s disease (AD) pathology are 
altered in both preclinical and symptomatic stages of the disease. Distinctive 
biomarkers may be optimal for the identification of AD pathology or 
monitoring of disease progression. Blood biomarkers that correlate with 
changes in cognition and atrophy during the course of the disease could 
be used in clinical trials to identify successful interventions and thereby 
accelerate the development of efficient therapies. When disease-modifying 
treatments become approved for use, efficient blood-based biomarkers 
might also inform on treatment implementation and management in clinical 
practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 
and amyloid-β42/40 ratio were more changed at lower thresholds of 
amyloid pathology. Longitudinally, however, only p-tau217 demonstrated 
marked amyloid-dependent changes over 4–6 years in both preclinical 
and symptomatic stages of the disease, with no such changes observed 
in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or 
neurofilament light. Only longitudinal increases of p-tau217 were also 
associated with clinical deterioration and brain atrophy in preclinical AD. 
The selective longitudinal increase of p-tau217 and its associations with 
cognitive decline and atrophy was confirmed in an independent cohort 
(Wisconsin Registry for Alzheimer’s Prevention). These findings support 
the differential association of plasma biomarkers with disease development 
and strongly highlight p-tau217 as a surrogate marker of disease progression 
in preclinical and prodromal AD, with impact for the development of new 
disease-modifying treatments.

The accumulation of amyloid-β (Aβ) peptides, sequestered into extra-
cellular plaques, and intracellular neurofibrillary tangles comprising 
tau protein are the defining criteria of AD. These pathologies can be 
identified in vivo by cerebrospinal fluid (CSF) and positron emission 
tomography (PET) biomarkers1. Drug trials for AD are increasingly 
incorporating these biomarkers as necessary inclusion criterion and 
evidence of target engagement. However, in the early stages of AD, when 
individuals with notable cerebral Aβ accumulation are nonsymptomatic 

or present with subjective or mild cognitive complaints, trials are hin-
dered by difficulties in determining drug effects on clinically relevant 
outcomes. Biomarkers that reflect key pathophysiological processes 
related to the drug target, or mechanisms putatively downstream of 
the drug target (for example, tau pathology or neurodegeneration 
for an anti-amyloid treatment) could be used to inform on promis-
ing disease-modifying therapies. Ideal biomarkers for enrichment or 
inclusion should have large effect sizes at baseline to identify suitable 
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observed (Extended Data Table 3). Lastly, we validated the longitudi-
nal results in 161 CU participants of the independent North American 
cohort Wisconsin Registry for Alzheimer’s Prevention (WRAP) (cohort 
3, Extended Data Table 4).

Plasma biomarkers to identify Aβ pathology
In cohort 1, plasma p-tau231 had the highest area under the curve (AUC) 
to determine CU Aβ+ from CU Aβ− individuals (AUC = 0.854, 95% confi-
dence interval (CI) 0.806 to 0.902) and had significantly higher accuracy 
than other plasma biomarkers, except for Aβ42/40 (AUC = 0.847, 95% CI 
0.806 to 0.889) (Extended Data Table 5). In MCI patients, no significant 
differences between p-tau biomarkers to distinguish between Aβ+ 
from Aβ– individuals were observed (AUCs = 0.828–0.882) (Extended 
Data Table 5). Next, we analyzed plasma biomarkers when grouping 
participants by Aβ-PET centiloids, which is an established measure 
to increase comparability across Aβ-PET methods22. Here, we demon-
strated that plasma p-tau231 and plasma Aβ42/40 significantly changed 
at lower threshold of PET centiloids (Fig. 1 and Extended Data Table 6) 
and CSF Aβ42/40 levels (Extended Data Fig. 1 and Extended Data Table 
6) than other plasma biomarkers. Yet, in this cross-sectional investiga-
tion, both p-tau231 and Aβ42/40 reached a plateau and had no further 
changes in participants with more abnormal levels of Aβ pathology. In 
contrast, p-tau217 and p-tau181 demonstrated continued increases in 
participants with higher Aβ burden.

Aβ-pathology-dependent longitudinal changes in plasma 
biomarkers
In cohort 2, we first tested for effects of baseline Aβ status on longitudi-
nal plasma biomarker levels, for CU (Fig. 2a) and MCI participants (Fig. 
2b), as summarized in Table 1 and Extended Data Table 7. Uncorrected 
P values for the results in Table 1 are presented in Supplementary Table 
1. Only plasma p-tau217 had longitudinal increases over time in Aβ+ 
individuals in comparison with Aβ– individuals (time × Aβ-interaction: 
β = 0.249, P < 0.001). Likewise in MCI patients, only p-tau217 signifi-
cantly increased in the Aβ+ group over time compared with the Aβ– 
group (time × Aβ-interaction: β = 0.270, P < 0.001).

Longitudinal changes in plasma biomarkers and longitudinal 
changes in cognition and atrophy
We further tested the associations between longitudinal changes of 
plasma biomarkers levels and longitudinal changes of global cognition 
and brain atrophy, indexed by Mini Mental State Examination (MMSE, Fig. 
3a), Preclinical Alzheimer’s disease Cognitive Composite (mPACC, Fig. 3b) 
and cortical thickness of the typical AD signature regions (Fig. 3c), respec-
tively, in Aβ + CU participants. Longitudinal change in plasma p-tau217 
levels over time was significantly associated with worsening of MMSE 
(β = −0.308, P = 0.0008, Table 2), mPACC (β = −0.121, P = 0.0007, Table 
2) and accelerated atrophy of cortical thickness over 6 years (β = −0.012, 
P < 0.001, Table 2). There was also a weak association between longitu-
dinal GFAP and brain atrophy (β = −0.007, P = 0.040, Table 2). Uncor-
rected P values for the results in Table 2 are presented in Supplementary 
Table 2. When using both slopes of plasma p-tau217 and slopes of plasma 
GFAP simultaneously to predict longitudinal atrophy, plasma p-tau217 
remained significant (P = 0.002), while the effect of plasma GFAP was 
attenuated (P = 0.77), suggesting that plasma GFAP did not contribute 
as a longitudinal proxy of atrophy beyond the effect of plasma p-tau217 
in the early stages of AD. In addition to MMSE and mPACC, we also used 
a test of delayed recall memory, where only the slope of p-tau217 was 
significantly associated with cognitive decline (Extended Data Table 8). 
Results were very similar in a sensitivity analysis excluding samples below 
the lower limit of detection (Supplementary Tables 3–6).

Validation of longitudinal analyses
Finally, we validated the longitudinal BioFINDER-1 findings in 161 CU 
participants from the WRAP cohort (cohort 3). Again, only p-tau217 

trial participants. In contrast, optimal biomarkers for longitudinal 
monitoring should have a large degree of change over time, which 
is specific to AD pathology and not observed in those without such 
pathology (for example, healthy elderly, or other neurodegenerative 
diseases). As highlighted in the recent Alzheimer’s Association Appro-
priate Use recommendation for use of AD biomarkers2, these changes 
in longitudinal measures of blood biomarkers should also be associ-
ated with established measures of AD progression, including worsen-
ing in objective cognitive performance and atrophy in brain regions 
known to be affected by the disease. In future clinical practice, when 
disease-modifying treatments are approved and are readily available, 
dynamic biomarkers that either track disease progression, or change 
towards normalization with efficient treatment, might potentially also 
be used to follow treatment effects and inform on decisions to initiate, 
suspend or restart treatment.

For both trial design purposes and future applications in clinical 
practice, it is beneficial if biomarkers are based on blood rather than 
CSF or PET, to increase availability and diversity, while reducing overall 
recruitment time and cost. Recently, blood biomarkers reflecting Aβ3,4, 
tau5–8, neurodegeneration9,10 and astrogliosis11,12, have been developed 
and validated. These markers, in particular different variants of phos-
phorylated tau (p-tau), exhibit high performance in identifying AD 
pathology in the differential diagnosis of cognitive decline and dem-
onstrate excellent prognostic performance to predict progression to 
AD dementia13. In addition, p-tau variants in blood have been validated 
against neuropathology exhibited at postmortem5,6,14–16. Thus, blood 
biomarkers offer a noninvasive and widely available assessment to accu-
rately identify AD at all disease stages. Now, to aid disease-modifying 
trials, studies are needed to establish the meaning of blood biomarker 
change in response to incipient AD pathology and identify plasma 
biomarkers that accurately reflect meaningful longitudinal brain atro-
phy and cognitive deterioration. Developing evidence suggests that 
changes of plasma Aβ42/40 (ref. 3) and p-tau (refs. 5,17,1819–21) are elevated 
in preclinical disease and might act as an integral enrichment aid for 
AD trials. In addition, plasma neurofilament light (NfL) and glial acidic 
fibrillary protein (GFAP) have been shown to be increased in preclinical 
(GFAP12) and prodromal (NfL10) stages of AD, respectively. Nevertheless, 
it is not known which of several recently developed high-performing 
blood biomarkers has the best performance for clinical trial selection 
and monitoring in future clinical practice.

Therefore, in this study, from two independent cohorts, we com-
pared plasma biomarkers (p-tau181, p-tau217, p-tau231, Aβ42/40, GFAP 
and NfL) for the optimal identification of Aβ pathology in the early 
stages of AD (preclinical and mild cognitive impairment (MCI)). In addi-
tion, and importantly, we examined whether certain plasma biomarkers 
specifically change over time in those with confirmed Aβ pathology and 
assessed if these longitudinal changes also associated with longitudinal 
changes in cognition and brain atrophy in preclinical AD.

Results
Study cohorts
This study consisted of both cross-sectional (cohort 1) and longitudinal 
(cohort 2 and cohort 3) analyses. In the cross-sectional analysis, the 
goal was to quantify biomarker performance to identify Aβ pathology 
in cognitively unimpaired participants (CU, n = 388) and patients with 
MCI (n = 187) (Extended Data Table 1). The first longitudinal analysis was 
performed in cohort 2 (CU, n = 147; MCI, n = 95), which was a subcohort 
of the participants from cohort 1 with up to 6 years of longitudinal 
plasma measures (a median of three samples per participant over a 
median 4.3 years), magnetic resonance imaging (MRI) and cognitive 
assessments (Extended Data Table 2). All participants included in 
cohorts 1 and 2 were recruited from the prospective and longitudinal 
BioFINDER-1 study (www.biofinder.se) from 2009 to 2014 in southern 
Sweden. No significant differences between the demographic and clini-
cal data between the participants included in the cohorts 1 and 2 were 
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increased substantially in Aβ+ individuals in comparison with Aβ– 
participants over 8 years (β = 0.103, P ≤ 0.001, Fig. 4a and Table 1). 
In contrast to the longitudinal BioFINDER-1 results, plasma p-tau181 
also showed a significant, but modest, increase in Aβ+ individuals 
(β = 0.047, P = 0.036). Within Aβ + CU individuals, however, only the 
longitudinal increase in plasma p-tau217, but no observed changes of 
other plasma biomarkers, was significantly associated with declining 
cognition, as measured with longitudinal MMSE (β = −0.135, P = 0.003, 
Fig. 4b and Table 2), mPACC (β = −0.098, P < 0.001, Fig. 4c and Table 2) 
and a test of delayed recall memory over 8 years (β = −0.298, P < 0.001, 
Extended Data Table 8). Longitudinal changes in cortical thickness 
of typical AD signature regions were associated with longitudinal 
p-tau217, GFAP and NfL (Extended Data Fig. 2 and Table 2). However, 
when using slopes of these three biomarkers simultaneously to predict 
longitudinal atrophy, plasma p-tau217 remained significant (P = 0.016), 
while the effects of plasma GFAP and NfL were attenuated (P = 0.91 and 
P = 0.06, respectively).

Discussion
The main finding of this study, which compared several state-of-the-art 
plasma biomarkers in early stages of AD, was that the longitudinal tra-
jectory of plasma p-tau217, but not other candidate biomarkers, was 
closely related to disease progression. The significant and dynamic 
longitudinal changes in plasma p-tau217 correlated with changes in 
multiple domains of cognition and cortical thickness of typical AD 
signature regions. Specific other biomarkers (p-tau231 and Aβ42/40) 

had somewhat more pronounced cross-sectional changes in response 
to early Aβ pathology but did not change in the longitudinal analy-
sis. Taken together, our results add to previous studies which have 
shown that plasma biomarkers can identify AD pathology, predict 
future dementia risk, and are associated with in vivo amyloid and tau 
pathologies1. The longitudinal changes in plasma p-tau217 suggest 
that this biomarker should be evaluated in interventional studies as 
an indicator of therapeutic effects in early stages of AD, as successful 
disease modification may be expected to be associated with reversion 
towards normal values for plasma p-tau217, rather than a continuing 
increase seen in untreated patients.

Our findings support the view that there are important differences 
in how plasma biomarkers represent AD-related processes. For exam-
ple, while all p-tau biomarkers relate to AD postmortem pathology6,14,15, 
in AD brain tissue, p-tau217 is prominently seen in granulovacuolar 
degeneration bodies and multivesicular bodies in neurons, which is 
not observed for p-tau181 and p-tau231 (ref. 23). Such differences in neu-
ropathological properties may be related to the different trajectories 
of different plasma biomarkers. Our results also support the develop-
ing evidence that among the most promising plasma AD biomarkers, 
p-tau231 and Aβ42/40 might have the earliest changes at the incipient 
stages of Aβ accumulation5,17,18. However, p-tau217 is also changing 
notably in preclinical AD18,20. Interestingly, p-tau231, and Aβ42/40 are 
not more changed in individuals with more advanced Aβ pathology, 
and a plateau is observed, particularly for p-tau231, at a phase when 
p-tau217 is continuing to increase. This cross-sectional observation 
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Fig. 1 | Associations between plasma biomarkers and Aβ-PET in BioFINDER-1 
(cohort 1). Log10-transformed plasma biomarker levels were compared between 
the centiloid (CL) groups, <12 (MD −2.6; n = 139; reference group), Q1 (range 
12.0–35.9; MD 17.9; n = 27), Q2 (range 35.9–71.7; MD 50.1; n = 24), Q3 (range 
71.7–95.3; MD 80.6; n = 25) and Q4 (>95.3; MD 114.1; n = 25) using univariate 
general linear models adjusting for age. Untransformed data are presented in the 

boxplots to aid interpretation of biomarker values across different comparisons. 
One NfL outlier is not shown but was included in the statistical analysis. Boxes 
show interquartile range, the horizontal lines are medians and the whiskers were 
plotted using the Tukey method. Two-sided P values were corrected for multiple 
comparisons using Benjamini–Hochberg FDR; uncorrected and corrected P 
values are shown in Extended Data Table 6.
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is corroborated by our new longitudinal data, from two independent 
cohorts, demonstrating that longitudinal increases of p-tau217 in Aβ+ 
individuals are associated with worsening cognitive performance and 
brain atrophy in preclinical AD. Such independent associations were 
not observed for any other plasma biomarker tested in this study. This 
includes a marker of global neurodegeneration, plasma NfL, which has 
been shown to associate with clinical progression in patients with more 
advanced symptoms24,25. However, in our longitudinal preclinical data, 
this association between plasma NfL and disease progression is not 
observed. Our results confirm that p-tau217 is dynamic biomarker, even 
in preclinical AD19, accurately reflecting the progression of AD pathol-
ogy, and now this is shown in comparison with a compendium of blood 
biomarkers also reported to reflect AD pathophysiology. The early 

changes of all p-tau plasma biomarkers, suggest that they are initially 
reflective of Aβ dysmetabolism26. However, over time, p-tau217 is the 
only biomarker that clearly changes with disease progression, which 
is in line with earlier observations that p-tau217 may later become 
more reflective of tau pathology, after the initial deposition of Aβ27. In 
symptomatic AD, several studies find similar diagnostic accuracy of 
p-tau181 and p-tau217 (refs. 28,29); however, most reports demonstrate 
larger fold-changes for p-tau217 (ref. 28). This is likely attributed to the 
longitudinal and dynamic increase of p-tau217 shown in this study, 
which is associated with metrics of AD progression. Data from CSF 
studies have also shown that p-tau217 exhibits larger fold-changes in 
symptomatic phases30, while subtle changes of p-tau231 are observed 
with regional Aβ deposition31 and these results now translate to blood.

Our results on baseline performance for biomarkers to detect Aβ 
pathology are promising for the use of plasma biomarkers as instru-
ments to guide selection of participants into clinical trials. The results 
for longitudinal changes in plasma p-tau217 provide rationale for future 
analyses in clinical trials to determine whether treatment-induced 
reductions in plasma p-tau217 towards normal values are clearly asso-
ciated with clinical beneficial effects. If such a relationship can be 
established in clinical trials, future trials targeting early-stage AD might 
incorporate plasma p-tau217 as a potential surrogate endpoint2. Impor-
tantly, a recent clinical trial evaluating donanemab, an immunotherapy 
efficiently removing Aβ aggregates from the brain, has shown 23% 
reduction in levels of plasma p-tau217 within 6–18 months of treatment 
when the placebo group continued to increase32.

In a longer perspective, our results may also be important for clini-
cal practice. It is possible that one or several disease-modifying treat-
ments against AD will become widely available for clinical use within 
a few years. This will bring an urgent need to make informed clinical 
decisions in millions of patients. Biomarkers will then be required to 
both identify AD and track progression of the disease with objective 
measures. This need will quickly overcome the available PET and CSF 
resources in healthcare systems worldwide, and blood biomarkers will 
be essential. Future clinical studies that include active interventions 
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Fig. 2 | Longitudinal plasma biomarker changes in BioFINDER-1 (cohort 
2). a,b, Longitudinal plasma biomarker changes stratified by β-amyloid status 
(negative, purple; positive, blue) in CU (a) and MCI (b). The x axis shows time 
from first plasma biomarker sample. Shaded areas represent 95% confidence 
intervals of the regression lines plotted from linear mixed effects models with 
the interaction between time and Aβ status as well as baseline Aβ status as 
independent variables and adjusting for age and sex. All p-tau biomarkers and 

Aβ42/40 were significantly changed in Aβ+ individuals at baseline in both CU and 
MCI (P < 0.001). Two-sided P values were corrected for multiple comparisons 
using Benjamini–Hochberg FDR; corrected and uncorrected P values are shown 
in Table 1 and Supplementary Table 1. Several outliers (p-tau231, n = 1; p-tau217, 
n = 9; p-tau181, n = 5; GFAP, n = 4; NfL, n = 4) are not shown but these data were 
included in the statistical analysis.

Table 1 | Associations of Aβ status with longitudinal plasma 
biomarker levels in BioFINDER-1 and WRAP

BioFINDER-1 
Cognitively 
unimpaireda

BioFINDER-1 
Mild cognitive 
impairmenta

WRAP 
Cognitively 
unimpairedb

Plasma 
biomarkers

Time × Aβ interaction β estimate (P value)

p-tau231 −0.002 (0.946) −0.063 (0.437) −0.001 (0.951)

p-tau217 0.249 (3.8 × 10−13) 0.270 (0.0005) 0.103 (5.4 × 10−8)

p-tau181 0.073 (0.066) 0.050 (0.384) 0.047 (0.036)

Aβ42/40 0.007 (0.841) −0.076 (0.165) −0.019 (0.345)

GFAP 0.028 (0.084) 0.113 (0.065) 0.023 (0.273)

NfL 0.035 (0.246) 0.084 (0.177) −0.039 (0.273)

β estimates and P values are from linear mixed effects models with the interaction between 
time and Aβ status as the independent variable, adjusted for age and sex. Two-sided P values 
were adjusted for multiple comparisons (n = 24, BioFINDER-1; n = 12, WRAP) using Benjamini–
Hochberg FDR. Data tables with uncorrected P values are displayed in Supplementary Table 
1. a Aβ42/40 data were available for 130 CU and 82 MCI; GFAP data were available for 124 CU 
and 82 MCI; NfL data were available for 125 CU and 82 MCI in BioFINDER-1. bData values for 
two participants were missing for p-tau231, p-tau181, Aβ42/40, GFAP and NfL in WRAP.
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are warranted to best determine how to incorporate longitudinal blood 
biomarker measures into clinical workflows, for example, studying 
whether a disease-modifying treatment could be temporarily halted 
when plasma p-tau217 vales have been normalized. Further, the longi-
tudinal results of the current study suggest that plasma p-tau217 is a 
key biomarker to be used when assessing already banked samples from 
performed clinical trials, which have evaluated relevant therapies or 

lifestyle interventions, to determine whether such treatments affect 
the development of AD-related pathology.

Although this study is the largest that simultaneously tests several 
state-of-the-art and relevant plasma biomarkers for AD in early disease 
stages with a longitudinal design, the sample sizes in the longitudinal 
analyses of BioFINDER-1 were still relatively small. Therefore, it was 
essential that such longitudinal findings were independently replicated 
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Fig. 3 | Associations of longitudinal plasma biomarkers with longitudinal 
cognitive decline and brain atrophy in BioFINDER-1 (cohort 2). a–c, The 
association between longitudinal plasma biomarkers and MMSE (a), mPACC 
(b) and cortical thickness of the typical AD signature regions (c) in Aβ positive 
cognitively unimpaired participants. The x axis shows time from first plasma 
biomarker samples. The model trajectories, shown as the mean slope and the 
mean ± 2 SD with 95% CI (shaded area), were plotted from linear mixed effects 

models with the interaction between time and standardized plasma biomarker 
slopes (derived from subject-level linear regression models) as an independent 
variable adjusting for age and sex; associations with cognition were also 
adjusted for years of education. Two-sided P values were corrected for multiple 
comparisons using Benjamini–Hochberg FDR; corrected and uncorrected P 
values are shown in Table 2 and Supplementary Table 2.

Table 2 | Associations between longitudinal plasma biomarkers and longitudinal MMSE, mPACC and cortical thickness of 
the typical AD signature regions in Aβ-positive cognitively unimpaired participants in BioFINDER-1 and WRAP

BioFINDER-1 WRAP

MMSEa mPACCa Cortical thickness of the 
typical AD signature regionsb

MMSE c mPACC c Cortical thickness of the typical 
AD signature regions d

Plasma 
biomarkers

β estimate (P value)

p-tau231 −0.100 (0.215) −0.022 (0.456) −0.004 (0.229) −0.030 (0.737) −0.020 (0.427) −0.002 (0.363)

p-tau217 −0.308 (0.0008) −0.121 (0.0007) −0.012 (4.1 × 10−5) −0.135 (0.003) −0.098 (9.0 × 10−7) −0.005 (0.021)

p-tau181 −0.180 (0.058) −0.044 (0.237) −0.006 (0.051) −0.075 (0.215) −0.030 (0.317) 0.004 (0.148)

Aβ42/40 −0.010 (0.910) 0.032 (0.456) 0.002 (0.505) −0.014 (0.754) −0.032 (0.317) −0.003 (0.245)

GFAP −0.198 (0.058) −0.054 (0.223) −0.007 (0.040) 0.013 (0.754) −0.007 (0.745) −0.004 (0.051)

NfL −0.194 (0.080) −0.067 (0.220) −0.004 (0.229) −0.046 (0.527) −0.024 (0.379) −0.004 (0.034)

β estimates and P values are from linear mixed effects models with the interaction between time and standardized plasma biomarker slopes (derived from subject-level linear regression 
models) as the independent variable, adjusted for age and sex; associations with cognition were also adjusted for years of education. Two-sided P values were adjusted for multiple 
comparisons within each variable (n = 6) using Benjamini–Hochberg FDR. Data tables with uncorrected P values are displayed in Supplementary Table 2. a Longitudinal MMSE, mPACC and 
plasma biomarker data were available for 57 (p-tau) and 49 (Aβ42/40, GFAP and NfL) Aβ-positive cognitively unimpaired BioFINDER-1 participants. b Longitudinal cortical thickness of the typical 
AD signature regions and plasma biomarker data were available for 56 (p-tau) and 48 (Aβ42/40, GFAP and NfL) Aβ-positive cognitively unimpaired BioFINDER-1 participants. c Longitudinal 
MMSE, mPACC and plasma biomarker data were available for 66 (p-tau217) and 65 (other biomarkers) Aβ-positive cognitively unimpaired participants in WRAP. dLongitudinal cortical thickness 
of the typical AD signature regions and plasma biomarker data were available for 65 Aβ-positive cognitively unimpaired participants in WRAP.
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in the WRAP cohort. Still, larger studies on more heterogenous popu-
lations are needed to confirm the relative differences in biomarker 
trajectories before firm conclusions can be drawn for the preferential 
use of longitudinal measures of certain plasma biomarkers in clini-
cal practice and trials. We acknowledge that the assay designs (for 
example, antibody and/or analytical platform differences) also have 
different performances and may have contributed to our findings. 
For example, p-tau231 and p-tau217 assays have different properties 
of sensitivity due to healthy individuals being below the lower limit of 
detection more often for the p-tau217 measurements33. Other p-tau217 
assays may have more sensitive performance at the earliest changes 
of Aβ-PET34. Lastly, plasma biomarker studies published to date are 
heavily weighted towards Caucasian participants. A recent pilot report 
demonstrated that plasma p-tau231 and p-tau181 were less accurate 
for detecting abnormalities in Aβ pathology in an African American 
population35. Yet, p-tau217 has shown good diagnostic accuracy in 
diverse multiethnic populations36. Therefore, establishing whether the 
longitudinal trajectories and response to early Aβ dysmetabolism of 
blood biomarkers can be directly translated to different populations 
warrants detailed investigation.

In conclusion, plasma AD biomarkers may offer complementary 
information as noninvasive, widely accessible and impartial meas-
ures for improved design of clinical trials. Incorporation of these 
measures in clinical trial design may accelerate the development 

and implementation of successful prevention and treatment of AD. 
Plasma p-tau231, Aβ42/40 and p-tau217 appear to be biomarkers 
changing early in response to Aβ pathology. Our cross-sectional 
data suggest earlier changes for p-tau231 and Aβ42/40 which should 
be explored further as screening tools for preclinical Aβ deposi-
tion. However, in terms of monitoring dynamic disease progres-
sion, plasma p-tau217 has clear advantages due to its continued 
increase during the early disease development and associations to 
AD measures of cognitive decline and brain atrophy which was not 
robustly observed for any other plasma biomarker. This supports the 
potential use of plasma p-tau217 as a surrogate outcome marker in 
ongoing and future intervention trials as well as for tracking disease 
progression in clinical practice.
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Methods
Participants
All participants for cohort 1 and cohort 2 were recruited in the prospec-
tive and longitudinal BioFINDER-1 study (www.biofinder.se) from 2009 
to 2014 in southern Sweden. The participants included CU participants 
(recruited as cognitively normal controls or as subjective cognitive 
decline patients) and patients with MCI. Details on recruitment, exclu-
sion and inclusion criteria have been presented before13,37,38. All partici-
pants underwent lumbar puncture at baseline for CSF sampling. Plasma 
samples were taken at baseline and every second year for up to 6 years. 
Cognitive function was assessed with MMSE, Word list memory delayed 
recall (from the Alzheimer’s Disease Assessment Scale (ADAS-cog)) and 
mPACC. The mPACC was calculated as the average of five z scores for 
tests of global cognition (MMSE), memory (the word list delayed recall 
test from the cognitive subscale from the ADAS-cog, counted twice to 
preserve the weight on memory from the original PACC), executive 
function (Trail Making Test B) and verbal ability (animal fluency)39–41. 
All participants in cohort 3 were from WRAP. Design and assessments 
including cognitive battery of the WRAP study are described in detail 
elsewhere42,43. In brief, all participants were cognitively normal at first 
blood collection, recruited from the populations and enriched for 
positive parental history of AD and were between 40 and 65 years 
at baseline. The components of the mPACC were MMSE, the Logical 
Memory Delayed Recall test, the Trail Making Test B and the Rey Audi-
tory Verbal Learning Test total score over five learning trials. The study 
was approved by the Regional Ethics Committee in Lund, Sweden. The 
WRAP data were collected under a University of Wisconsin-Madison 
Institutional Review Board protocol. All participants in all three cohorts 
gave their informed consent to participate in the study and the data 
were collected according to the Declaration of Helsinki.

Biochemical analyses
CSF concentrations of Aβ42 and Aβ40 were determined using ELISA kits 
(Euroimmun) or the NeuroToolKit on Cobas e601 (Roche Diagnostics) 
in the BioFINDER-1 longitudinal and cross-sectional samples, respec-
tively. CSF Aβ42/40 Euroimmun data were binarized using a threshold 
of 0.091 (ref. 20) and for NeuroToolKit CSF Aβ42/40 we used a threshold 
of 0.066 determined using mixture modeling. Plasma concentrations of 
p-tau217 and p-tau181 were measured using an immunoassay developed 
by Lilly Research Laboratories at Lund University19,20. Plasma p-tau231 
was analyzed using in-house single molecular arrays (Simoa) developed 
at the University of Gothenburg5. Plasma concentrations of Aβ42 and 
Aβ40 were quantified using an immunoprecipitation-coupled mass 
spectrometry method developed at Washington University4. Plasma 
GFAP and NfL were analyzed using in-house Elecsys prototype plasma 
immunoassays (not commercially available) on Cobas e601 analyzers 
(Roche Diagnostics). Plasma concentrations of p-tau231, p-tau217 and 
p-tau181 were below the detection limit of the assay in 4.0%, 16.0% and 
9.8% of the samples, respectively, which is in the same range as in previ-
ous studies6,8. In WRAP, p-tau217 and p-tau231 were analyzed using the 
same biochemical methods as the BioFINDER-1 cohort. Plasma p-tau181, 
Aβ42, Aβ40, GFAP and NfL were measured using a commercially avail-
able immunoassay from Quanterix (p-Tau-181 V2 Advantage Kit and 
Neurology 4-Plex E). In WRAP, plasma concentrations of p-tau231, 
p-tau217 and p-tau181 were below the detection limit of the assay in 
0.2%, 1.2% and 0.2% of the samples, respectively.

Neuroimaging
In BioFINDER-1, a 3T MRI scanner (Siemens Tim Trio 3T) was used 
for anatomical T1-weighted imaging. Magnetization-prepared rapid 
gradient-echo (MP-RAGE) images (repetition time (TR) = 1.950 ms, 
time to echo (TE) = 3.4 ms, 1 mm isotropic voxels, 178 slices) and the 
FreeSurfer image analysis pipeline v.6.0 (see http://surfer.nmr.mgh. 
harvard.edu/) were used in the anatomical segmentation and cortical 
thickness calculations19. For these analyses, we calculated cortical 

thickness (adjusted for surface area) from a temporal meta-region 
of interest, consisting of bilateral entorhinal, fusiform, inferior tem-
poral and middle temporal cortex, which constitute the typical AD 
signature regions44. Aβ imaging was performed at baseline visit using 
[18F]flutemetamol PET6. Standardized uptake value ratio images were 
created using dynamic (list-mode) 90–100-min postinjection data 
and the whole cerebellum as reference region. Centiloids were derived 
using the Computational Analysis of PET from AIBL pipeline45. In WRAP, 
participants underwent T1-weighted MRI and amyloid [11C]-Pittsburgh 
Compound B (PiB) imaging46–48. Cortical thickness in the typical AD 
signature regions was determined using the same approach as in the 
BioFINDER-1 cohort. We included MRI scans performed within 2 years 
of any blood collection visit. Aβ burden was assessed as a global cortical 
average [11C]-PiB distribution volume ratios (DVR) and a threshold of 
DVR > 1.19 across eight bilateral regions of interest was used to define 
PiB positivity48.

Statistical analyses
Baseline levels and longitudinal changes in standardized plasma bio-
markers (z scores) were tested in linear mixed effects models with the 
interaction between time and Aβ status as well as baseline Aβ status 
as independent variables adjusted for age and sex (using the R lme4 
package). All biomarkers were standardized based on the correspond-
ing mean and SD within analyzed groups. To study associations of 
longitudinal changes in plasma biomarkers with longitudinal cognition 
(for example, with MMSE, mPACC and Word list memory delayed recall 
(from ADAS-cog in BioFINDER-1 and Rey Auditory Verbal Learning Test 
in WRAP)) and cortical thickness of the typical AD signature regions, 
we used linear mixed effects models with the interaction between time 
and standardized plasma biomarker slopes (derived from subject-level 
linear regression models, with time as predictor of biomarker levels) 
as the independent variable, adjusted for age and sex. For cognition 
we also included years of education as a covariate. To facilitate bio-
marker comparisons, we used the inverse ratio of Aβ42 and Aβ40 in 
the longitudinal analysis. In cohort 1, study participants were classi-
fied as amyloid-negative using centiloid threshold of 12 (median (MD) 
–2.6; n = 139; reference group), which was chosen based on previous 
comparisons to both CSF Aβ42 and neuropathology49–51. Centiloids 
<12 are regarded as normal and represent signal noise. Individuals 
with centiloids >12 were further classified into the centiloid quartile 
groups Q1 (range 12.0–35.9; MD 17.9; n = 27), Q2 (range 35.9–71.7; MD 
50.1; n = 24), Q3 (range 71.7–95.3; MD 80.6; n = 25) and Q4 (>95.3; MD 
114.1; n = 25). In addition, participants in cohort 1 were classified into 
CSF Aβ42/40 quintile groups, Q1 (>0.102; MD 0.108; n = 115, refer-
ence group), Q2 (range 0.089–0.102; MD 0.097; n = 115), Q3 (range 
0.064–0.089; MD 0.079; n = 115), Q4 (range 0.042–0.064; MD 0.051; 
n = 115) and Q5 (range <0.042; MD 0.035; n = 115). Plasma biomarker 
levels (log10-transformed) were compared between the centiloid 
groups (<12, Q1, Q2, Q3 and Q4) and CSF Aβ42/40 quintile groups (Q1, 
Q2, Q3, Q4 and Q5) using univariate general linear models adjusting 
for age (with centiloid <12 and CSF Aβ42/40 Q1 as reference groups). 
AUC of two ROC curves were compared with the DeLong test. P values 
adjusted for multiple comparisons using false discovery rate (FDR) 
were considered significant at P < 0.05, two-tailed. FDR correction 
was applied separately for each outcome measure with the numbers of 
comparisons shown in table footnotes. Statistical analyses were done 
in R (v.4.0.2) and SPSS (v.28).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Anonymized aggregated level data will be shared by request from a 
qualified academic investigator for the sole purpose of replicating 
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procedures and results presented in the article, and as long as data 
transfer is in agreement with EU legislation on the general data protec-
tion regulation and decisions by the Ethical Review Board of Sweden 
and Region Skåne, which should be regulated in a material transfer 
agreement.
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Extended Data Fig. 1 | Associations between plasma biomarkers and CSF 
Aβ42/40 in BioFINDER-1 (cohort 1). Log10-transformed plasma biomarker 
levels were compared between the CSF Aβ42/40 quintile groups, Q1 ( > 0.102; 
median [MD], 0.108; n = 115, reference group), Q2 (range, 0.089-0.102; MD, 0.097; 
n = 115), Q3 (range 0.064-0.089; MD, 0.079; n = 115), Q4 (range, 0.042-0.064; 
MD, 0.051; n = 115) and Q5 (range, <0.042; MD, 0.035; n = 115) using univariate 
general linear models adjusting for age. Untransformed data are presented in the 

boxplots to aid interpretation of biomarker values across different comparisons. 
Outliers (p-tau217, n = 1; p-tau181, n = 2; GFAP, n = 1; NfL, n = 2) are not shown in the 
boxplots but were included in the statistical analysis. Boxes show interquartile 
range, the horizontal lines are medians, and the whiskers were plotted using 
Tukey method. Two-sided p-values were corrected for multiple comparisons 
using Benjamini–Hochberg false discovery rate; uncorrected and corrected 
p-values are shown in Extended Data Table 6.
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Extended Data Fig. 2 | Associations between longitudinal plasma biomarkers 
and brain atrophy in WRAP (cohort 3). The association between longitudinal 
plasma biomarkers and cortical thickness of the typical AD signature regions in 
Aβ positive cognitively unimpaired participants. The x-axis show time from first 
plasma biomarker samples. The model trajectories, shown as the mean slope and 
the mean±2 SD with 95% CI (shaded area), were plotted from linear mixed effects 

models with the interaction between time and standardized plasma biomarker 
slopes (derived from subject-level linear regression models) as the independent 
variable adjusting for age and sex. Two-sided p-values were corrected for 
multiple comparisons using Benjamini–Hochberg false discovery rate; corrected 
and uncorrected p-values are shown in Table 2 and Supplementary Table 2.
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Extended Data Table 1 | Demographics of cohort 1 (BioFINDER-1 cross-sectional sub-cohort)

Higher scores of MMSE and mPACC, but lower scores for word list delayed recall, mean better performance. a Word list memory delayed recall (from ADAS-cog) scores were missing for 2 
CU and 11 MCI participants. b mPACC scores were missing for 39 CU and 45 MCI participants. cCreatinine data were missing for 9 CU and 9 MCI MCI participants. d Creatinine levels above 90 
μmol/l in women and above 105 μmol/l were considered as high. eBody mass index data were missing for 15 CU and 26 MCI participants.
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Extended Data Table 2 | Demographics of cohort 2 (BioFINDER-1 longitudinal sub-cohort)

Higher scores of MMSE and mPACC, but lower scores for word list delayed recall, mean better performance. a Baseline MMSE and ADAS-cog scores were missing for 1 CU and 2 MCI 
participants. b Baseline mPACC scores were missing for 17 CU and 16 MCI participants. c Baseline cortical thickness data were missing for 19 CU and 9 MCI participants. dCreatinine data were 
missing for 3 CU and 9 MCI MCI participants. e Creatinine levels above 90 μmol/l in women and above 105 μmol/l were considered as high. fBody mass index data were missing for 2 CU and 13 
MCI participants.
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Extended Data Table 3 | Comparison of cohort 1 (BioFINDER-1 cross-sectional sub-cohort) and cohort 2 (BioFINDER-1 
longitudinal sub-cohort)

Two-sided p-values (when appropriate) are from Mann-Whitney or Chi-Square (sex, APOE ε4 status) tests. P-values were corrected for multiple comparisons (n = 30) using Benjamini–Hochberg 
false discovery rate. Higher scores of MMSE and mPACC, but lower scores for word list delayed recall, mean better performance. a MMSE scores were missing for 3 participants from cohort 2. 
b Word list delayed recall (from ADAS-cog) scores were missing for 13 participants from cohort 1 and 3 participants from cohort 2. c mPACC scores were missing for 84 participants from cohort 
1 and 33 participants from cohort 2. dCreatinine data were missing for 18 participants from cohort 1 and 12 participants from cohort 2. e Creatinine levels above 90 μmol/l in women and above 
105 μmol/l were considered as high. fBody mass index data were missing for 41 participants from cohort 1 and 15 participants from cohort 2.
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Extended Data Table 4 | Demographics of cohort 3 (WRAP longitudinal cohort)
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Extended Data Table 5 | Discrimination of Aβ positive vs negative participants in BioFINDER-1 (cohort 1)

AUC of two ROC curves were compared with DeLong test. Two-sided p-values were adjusted for multiple comparisons (n = 10) using Benjamini–Hochberg false discovery rate. Aβ status was 
defined based on CSF Aβ42/40 binarized using a threshold of 0.066 determined using mixture modelling.
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Extended Data Table 6 | P-values for biomarkers comparisons in Fig. 1 and Extended Data Fig. 1

Data are corrected (uncorrected) two-sided p-values; p-values were corrected for multiple comparisons (n = 4) using Benjamini–Hochberg false discovery rate. a Reference group.
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Extended Data Table 7 | Longitudinal changes in plasma p-tau217 concentration over time by Aβ status in BioFINDER-1 
(cohort 2)

β-estimates and two-sided p-values are from linear mixed effects models with time as the independent variable, adjusted for age and sex. P-values were adjusted for multiple (n = 4) 
comparisons using Benjamini–Hochberg false discovery rate.
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Extended Data Table 8 | Associations between longitudinal plasma biomarkers and longitudinal Word list delayed recall 
and Rey Auditory Verbal Learning Test in Aβ positive cognitively unimpaired participants in BioFINDER-1 (cohort 2) and 
WRAP (cohort 3), respectively

β-estimates and two-sided p-values are from linear mixed effects models with the interaction between time and standardized plasma biomarker slopes (derived from subject-level linear 
regression models) as the independent variable, adjusted for age, sex and years of education. P-values were adjusted for multiple comparisons (n = 6) using Benjamini–Hochberg false 
discovery rate. a Longitudinal Word list delayed recall and plasma biomarker data were available for 57 (p-tau) and 49 (Aβ42/40, GFAP and NfL) Aβ positive cognitively unimpaired participants 
in BioFINDER-1. b Longitudinal RAVLT and plasma biomarker data were available for 66 (p-tau217) and 65 (other biomarkers) Aβ positive cognitively unimpaired participants in WRAP.
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