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Influenza viruses present a continuous threat to global health, 
mutating and spreading within and between species. It is esti-
mated that one billion cases of human influenza occur worldwide 

each year, causing three million to five million cases of severe ill-
ness and 300,000 to 500,000 deaths1. Infection with pandemic 
2009 H1N1 influenza A virus (pH1N1) resulted in generally mild 
disease2 but still caused an estimated 250,000–500,000 additional 
deaths during the first 12 months of global circulation3. Whereas 
seasonal influenza commonly results in severe disease in the old 
and infirm, serious pH1N1 disease occurred mostly in infants and 
younger adults, presenting as viral pneumonia and sometimes com-
plicated by multi-organ failure4,5. It has been suggested that severe 
influenza might result in part from an over-exuberant host reaction 
to infection (sometimes called a ‘cytokine storm’) but is also driven 
by a high viral load in affected persons6–8.

Although analysis of transcriptional signatures and levels of 
mediators has helped to clarify the pathogenesis of severe influenza, 
the relationship among the severity, timing and complications of 
infection has remained unclear. Published studies of gene-expres-
sion patterns in influenza have typically involved small numbers 
of patients, healthy subjects undergoing experimental challenge or 
patients suffering from mild disease9–15. Transcriptomic analysis has 
also been used to study a variety of acute and chronic infections, 
including bacterial sepsis, infection with dengue virus and tubercu-
losis16, and to assess differences and similarities between infectious 
disorders and non-infectious inflammatory disorders, such as sys-
temic lupus erythematosus17.

To further elucidate the pathogenesis of influenza, the 
Mechanisms of Severe Acute Influenza Consortium (MOSAIC) 

recruited 255 patients hospitalized with suspected influenza in 
England over two consecutive seasons (2009–2010 and 2010–2011) 
and 155 adult healthy control subjects (study design, https://goo.
gl/kyY2Eu). By analyzing biological samples obtained at multiple 
time-points and correlating those analyses with extensive clinical 
data, MOSAIC aimed to define the contributions made by sequence 
variation in influenza virus, co-pathogens (non-influenza viruses 
and bacteria) and host factors (genetic and transcriptional differ-
ences, soluble mediator responses and cellular immune responses) 
to disease pathogenesis. Sample analysis resulted in a cumulative 
total of 2.1 ×​ 107 data items for this population, a dataset that we 
now describe in outline and provide as a resource. So far, MOSAIC 
has reported enrichment for a host genetic variant, the single-nucle-
otide polymorphism (SNP) rs12252-C in the allele encoding the 
antiviral molecule IFITM3 (‘interferon-inducible transmembrane 
protein 3’), in some patients hospitalized with influenza18 and has 
reported that changes in viral sequence that accumulate over time 
might contribute to the variation in disease severity19–22. The excep-
tional size and depth of the MOSAIC study provides a unique data-
base that allows such complex issues to be resolved.

We now describe the use of data on whole-blood transcrip-
tional mRNA and soluble mediators to define associations between 
individual responses to infection and clinical and laboratory find-
ings in adult patients of the MOSAIC study in whom infection 
with influenza virus was confirmed. Transcriptomic patterns and 
mediator levels were strongly associated with both the severity of 
illness and its duration, indicative of a phased and graded activa-
tion of genes encoding interferon-related and inflammatory mol-
ecules; the effects of clinically evident bacterial co-infection were  
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superimposed on these patterns that were, however, related mainly 
to the duration and severity of influenza.

Results
Clinical cohorts. Adult patients with laboratory-confirmed influ-
enza were recruited in 2009–2010 (n =​ 22 patients) and 2010–2011 
(n =​ 22 109). The majority were infected with pH1N1 influenza virus 
(95.5% in 2009–2010, and 86.2% in 2010–2011). In each cohort, the 
majority of patients had at least one comorbidity (81.8% in 2009–
2010, and 74.3% in 2010–2011). 13.6% participants in 2009–2010 
and 25.7% patients in 2010–2011 had illness categorized as severity 
3 (described below) at the first sampling time point (T1) (Table 1).

Whole-blood transcriptomics. Principal-component analysis of 
the 18,974 most abundant transcripts among whole-blood RNA 
at enrollment (time 1 (T1): 2010–2011 season; 109 cases) showed 
clustering distinct from that of age-, ethnicity- and sex-matched 
healthy control subjects (n =​ 130). There was no discernible dif-
ference between patients infected with influenza A virus and those 
infected with influenza B virus (Fig. 1a). Samples at the final time 
point (time 3 (T3): >​ 4 weeks after T1) obtained from patients who 
achieved clinical resolution were similar to those from healthy con-
trol subjects, but they remained abnormal in patients who remained 
unwell (data not shown).

Modular analysis23 of the samples from the 2010–2011 cohort 
showed a greater abundance of transcripts from the genes in the 
interferon-inducible module (M3.1) and neutrophil module (M2.2) 
in patients with influenza than in healthy control subjects (Fig. 1b).  
Transcripts representing plasma cells (module M1.1), a subset 
of myeloid-lineage genes (module M2.6) and two inflammation 
modules (M3.2 and M3.3) were also increased, while expression 
of genes in a T cell module (M2.8) and B cell module (M1.3) was 
decreased (Fig. 1b). The calculated index ‘molecular distance to 
health’ (MDTH) (derived from analysis of 4,526 transcripts sig-
nificantly above background, filtered for low expression24) was 
higher in most patients with influenza than in healthy control 
subjects (Fig. 1c), although this was affected by disease stage and 
severity (discussed below). A combination of expression-level and 
statistical filtering identified 1,255 transcripts expressed differen-
tially in patents relative to their expression in healthy control sub-
jects. Supervised hierarchical clustering revealed transcripts that 
were over- or under-expressed in patients with influenza relative  
to their expression in healthy control subjects (Fig. 1d); applying 
this same 1,255-transcript set to the 2009–2010 cohort (22 patients 
with influenza and 25 matched healthy control subjects) replicated 
these profiles (Supplementary Fig. 2), which indicated that viral 
variation between the two seasons22 did not appreciably affect tran-
scriptomic patterns.

Ingenuity pathway analysis identified the top five canonical path-
ways associated with upregulated and downregulated transcripts 
(Fig. 1d). Transcripts upregulated in patients with influenza were 
associated with the categories ‘interferon signaling genes’ (includ-
ing IFITM1, IFI35, IFIT1, OAS1, IFIT3 and IFI35; Supplementary 
Fig. 1), ‘activation of pattern-recognition receptors by bacteria and/
or viruses’, ‘activation of IRF by cytosolic pattern-recognition recep-
tors’, ‘hepatic fibrosis–hepatic stellate cell activation’ and ‘IL-6 sig-
naling’. Transcripts that were downregulated were those associated 
with the categories ‘ICOS–ICOSL signaling in T helper cells’, ‘pri-
mary immunodeficiency signaling’, ‘role of NFAT in regulation of 
the immune response’, ‘OX40 signaling pathway’ and ‘T cell receptor 
signaling’ (Fig. 1d).

Hierarchical clustering of the top 25 most significant transcripts 
in the 2010–2011 group of patients with influenza showed two 
major clusters (Fig. 1e). Transcripts of the interferon-stimulated 
gene IFI27 were overexpressed in almost all cases, while transcrip-
tion of FCER1A was usually decreased. Independent analysis of the 

25 transcripts from the 2009–2010 dataset showed similar clus-
tering (Supplementary Fig. 2b). Patients with activation of type I 
interferon–induced genes (for example, RSAD2, IFI6 and IFI44L) 
typically did not express transcripts encoding neutrophil-associated 
or bacterial response–associated molecules (for example, DEFA4, 
ELANE and MMP8) and vice versa (Fig. 1e and Supplementary Fig. 
2b). Together these results showed that patients with acute influenza 
had activation of whole-blood transcriptomic pathways indicative 
of responses to type 1 and type 2 interferons and of inflammatory 
markers and possibly combined with the effects of depletion of 
some cell types from the blood.

Transcriptomics and disease severity. Patients in the 2010–2011 
cohort were grouped according to their severity of illness at T1 by 
the following three-point scale: 1, no supplemental oxygen required; 
2, oxygen by mask required; 3, mechanical ventilation required. 
Transcriptomic abnormality (mean MDTH; 4,526 transcripts) was 
greater in patients with illness categorized as severity 1–2 than 
in healthy control subjects and was further increased in patients 
with illness categorized as severity 3 (Fig. 2a). By modular analy-
sis23, there was an over-abundance of transcripts in the plasma-cell 
module (M1.1), neutrophil module (M2.2) and myeloid lineage  

Table 1 | Characteristics of patients and healthy control subjects

2010–2011 
influenza 
(n =​ 109)

2010–2011 
healthy 
(n =​ 130)

2009–2010 
influenza 
(n =​ 22)

2009–2010 
healthy 
(n =​ 25)

Mean age in 
years (range)

41 (17–71) 35 (20–68) 44 (23–74) 37 (21–54)

Female 53 (48.6%) 75 (57.7%) 10 (45.5%) 14 (56%)

Ethnicity

White 78 (71.6%) 90 (69.2%) 10 (45.5%) 14 (56%)

Black 17 (15.6%) 23 (17.7%) 5 (22.7%) 5 (20%)

Asian 9 (8.3%) 15 (11.5%) 0 6 (24%)

Other 5 (4.6%) 2 (1.5%) 7 (31.8%) 0

Comorbidity

None 28 (25.7%) 130 (100%) 4 (18.2%) 25 (100%)

1 31 (28.4%) 0 12 (54.5%) 0

2 28 (25.7%) 0 3 (13.6%) 0

≥​3 22 (20.2%) 0 3 (13.6%) 0

Pregnant 
women 
(15–49 years 
of age)

10 of 43 
(23.3%)

1 of 75 (1.3%) 2 of 8 
(25%)

0

Influenza type

pH1N1 94 (86.2%) NA 21 (95.5%) NA

A (H3N2) 2 (1.8%) NA 1 (4.5%) NA

A (unknown) 1 (0.9%) NA 0 NA

B 12 (11%) NA 0 NA

Severity of illness at T1

Severity 1 47 (43.1%) NA 11 (50%) NA

Severity 2 34 (31.2%) NA 8 (36.4%) NA

Severity 3 28 (25.7%) NA 3 (13.6%) NA

Peak severity for illness episode

Severity 1 35 (32.1%) NA 6 (27.3%) NA

Severity 2 44 (40.4%) NA 12 (54.5%) NA

Severity 3 30 (27.5%) NA 4 (18.2%) NA

Percentages may not add up to 100% for all variable due to rounding. NA, not applicable.
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module (M2.6) in influenza virus–infected patients, a result that was 
most evident in those with illness of the greatest severity. Patients 
with illness categorized as severity 3 also showed an abundance 
of transcripts in inflammation modules M3.2 and M3.3. In con-
trast, interferon-related transcripts (module M3.1) were most evi-
dent in patients with illness categorized as severity 1 or 2 (Fig. 2b).  
Therefore, patients with the most-severe illness had transcriptomic 
patterns that differed from those with less-severe illness, with an 
increased abundance of inflammation-related transcripts and a 
decrease in interferon-related transcripts.

Semi-supervised hierarchical clustering of 231 transcripts with 
a change in expression of more than twofold between patients with 
illness categorized as severity 1–2 and those with illness categorized 
as severity 3 showed that the expression of transcripts associated 
with the gene-ontology (GO) term ‘response to virus’ was typi-
cal of that in patients with milder disease (Fig. 3a; Supplementary  
Table 1), whereas patients who needed mechanical ventilation 
(severity 3) showed a marked abundance of transcripts associated 
with the GO term ‘response to bacterium’ (Supplementary Table 2). 
Patients with severe illness typically showed a relative under-abun-
dance of transcripts associated with the GO term ‘cellular defense 
response’ (Fig. 3a).

The same 231-transcript list noted above was verified by hier-
archical clustering analysis of the 2009–2010 cohort. Patients with 
influenza of severity 1 or 2 were again characterized by transcripts 
associated with the GO term ‘response to virus’, whereas three 
patients with influenza of severity 3 instead showed transcripts asso-
ciated with the GO term ‘response to bacterium’ (Supplementary 
Fig. 2c). We determined the relationship between total ‘molecular 
score’ for the 51 transcripts associated with the GO term ‘response 
to virus’ (Supplementary Table 1) and the 112 transcripts associated 

with the GO term ‘response to bacterium’ (Supplementary Table 2) 
from patients in the 2010–2011 cohort, at T1 (n =​ 109) (Fig. 3b). 
Patients with influenza who had high ‘viral responses’ ( >​ 500) were 
exclusively from the groups with illness of severity 1 or 2, whereas 
most patients with high ‘bacterial scores’ ( >​ 500) had illness of sever-
ity 3 and had low ‘viral scores’ (reflective of the modular analysis). 
However, a few patients with illness of severity 1 or 2 had low ‘viral 
molecular scores’ and moderately high ‘bacterial molecular scores’. 
The removal of six patients with known bacterial co-infection  
did not eliminate this subgroup. Similar findings were obtained for 
the 2009–2010 cohort (Supplementary Fig. 2d).

Reciprocal expression was observed for activated and repressed 
biofunctions of the 231 differentially expressed genes in patients 
with illness of severity 3, compared with their expression in patients 
with illness of severity 1 or 2 (Fig. 3c,d). Nine genes encoding mol-
ecules associated with neutrophil activation were upregulated (for 
example, MPO, DEFA1 and ELANE), along with three genes encod-
ing molecules associated with leukocyte influx (MPO, MMP9 and 
LCN2) in a similar comparison (Fig. 3c). The repressed biofunc-
tions in patients with illness of severity 3 were in the categories ‘acti-
vation of cytotoxic T cells’, ‘adhesion of immune cells’ and ‘quantity 
of leukocytes’ (Fig. 3d). These results showed that patients with the 
most-severe disease show upregulation of genes encoding products 
associated with neutrophil activation and leukocyte influx that was 
not seen in those with less-severe influenza.

Effect of illness duration, severity and viral load on transcrip-
tomic patterns. Patients with symptoms of up to 4 days’ duration at 
the time of sampling typically had elevated ‘viral molecular scores’, 
but not if they required mechanical ventilation (severity 3); in such 
cases, the ‘viral score’ was low, even early in the disease (Fig. 4a). 
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Fig. 1 | Transcriptional signature of patients with influenza compared with that of healthy control subjects. a, Principal-component analysis of all 
transcripts significantly above background in at least 10% of samples from healthy control subjects (HC) (n =​ 130) or patients with influenza A (H1N1 or 
H3N2; n =​ 97) or influenza B (n =​ 12), all from the 2010–2011 cohort (key). b, Modular analysis of patients with influenza in the 2010–2011 cohort (left), 
showing probes over-represented (Over-rep) or under-represented (Under-rep) relative to their representation in healthy control subjects (key; proportion 
of genes in each module with significantly differential expression), plus identification of the corresponding modules (right). c, Weighted MDTH24 of 
patients with influenza relative to that of healthy control subjects, all in the 2010–2011 cohort, for 4,526 transcripts with significant detection above 
background, filtered for low expression (transcripts retained with a change of over twofold from median normalized intensity value in more than 10% of 
all samples); results are presented as a box-whisker plot (center line, median; box limits, interquartile range; extended lines, maximum and minimum). 
P <​ 0.0001 (Mann-Whitney test). d, Transcript intensity (normalized values) for 1,255 transcripts in patients with influenza and healthy control subjects 
(below plot), filtered for low expression, then statistically filtered (P <​ 0.01 (Mann-Whitney test with Bonferroni multiple testing correction)), followed by a 
filter for a change between groups (transcripts retained with a change of over twofold between any two groups); right margin, top five canonical pathways 
in Ingenuity pathway analysis (by significance: P <​ 0.05 (Fisher’s Exact test)) to which upregulated and downregulated transcripts belong. e, Transcript 
intensity (normalized values) for the top 25 significant transcripts (right margin) with a change in expression (fold values) between healthy control 
subjects and patients with influenza (below plot), plus hierarchical clustering on entities (above plot) or subjects or patients (left margin) (Pearson’s 
uncentered (cosine) with averaged linkage).
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Patients with illness of severity 3 showed higher ‘bacterial molecu-
lar scores’ than those of patients with less-severe disease, even at 
first presentation, whereas ‘bacterial molecular scores’ were low in 
patients with illness of severity 1 or 2 regardless of the time of sam-
pling (Fig. 4b).

In patients in the 2010–2011 cohort with repeat samples (T1 and 
T2, separated by 2–5 d; n =​ 59), the ‘viral molecular score’ usually (but 
not always) decreased between T1 and T2 (Supplementary Fig. 3a).  
In patients for whom samples at T2 were obtained 2 d after T1 
(n =​ 41), the reduction in ‘viral score’ was significant (P =​ 0.0002 
(two-tailed Mann-Whitney test); Supplementary Fig. 3b). Changes 
between T1 and T2 in ‘bacterial molecular scores’ were more vari-
able (Supplementary Fig. 3c,d). A decrease in viral load (measured 
in mucus obtained by nasopharyngeal suction) was observed 
between T1 and T2 (Supplementary Fig. 3e), but there was no clear 
relationship between viral load and ‘viral transcriptomic score’ 
(Supplementary Fig. 3f). Together these results showed that the rela-
tive dominance of ‘viral’ or ‘bacterial’ transcriptomic responses was 
influenced by both the severity of illness and the duration of illness.

Effect of bacterial infection and carriage on transcriptomic pat-
terns. To investigate the role of bacterial infection in driving ‘bacte-
rial’ GO terms, we identified a subgroup of influenza virus–infected 
patients who had been thoroughly investigated for bacterial infec-
tion by analysis of the nasopharyngeal aspirate (NPA) and throat 
swabs at T1 by culture and analysis of the NPA at T1 by detection 
of bacterial pathogens via PCR (in addition to testing for pneu-
mococcal antigen in blood cultures and urine for most patients). 
Incomplete bacteriological sampling excluded 36 of 109 patients 
(33%); 34 patients (47%) provided at least four of five sample types. 
Of the 73 cases with adequate samples, 39 (53%) were deemed to 
have potentially pathogenic bacteria detected in at least one sample 
type and were classified by an expert clinical review panel to have 
clinically relevant bacterial co-infection.

Comparison of those patients with influenza in whom clinically 
relevant bacterial co-infection was identified with those in whom no 
bacterial infection was found despite adequate investigation showed 
that the average ‘viral molecular score’ was lower in those with bac-
terial infection at all times up to day 12 after the onset of illness 
(Fig. 4c), and the average ‘bacterial score’ was greater in those with 
bacterial co-infection between day 3 and day 14 (Fig. 4d). However, 

the transcriptomic scores showed similar time trends regardless of 
the presence or absence of bacterial co-infection. Similar findings 
were obtained when stricter exclusion criteria were applied to the 
subgroup analysis, with the exclusion of patients from the ‘bacteria 
not detected’ group if they had not provided all five sample types 
(data not shown). In this case, statistical analysis could not be per-
formed due to the small sample size (only 13 patients provided all 
five sample types and did not have bacteria detected).

To assess the influence of treatment of bacterial infection on 
the observed ‘viral’ and ‘bacterial’ responses, we stratified ‘bacte-
rial scores’ and ‘viral scores’ at T1 and T2 in patients with influenza 
in the 2010–2011 cohort according to antibiotics prescription. In 
the MOSAIC study, 92% of the patients (234 of 255) were treated 
with antibiotics at some time. Antibiotics before T1 had no demon-
strable effect on transcriptomic patterns (Supplementary Fig. 4a). 
Comparison of patients with influenza who were not given antibiot-
ics (n =​ 7) with those given sustained antibiotic treatment after T1 
(n =​ 24) or throughout illness (including T1 and T2; n =​ 27) showed 
that there was no discernible or statistically significant effect 
of antibiotic administration on the ‘bacterial molecular scores’ 
(Supplementary Fig. 4b).

We next assessed the abundance of 16 S rRNA transcripts (indic-
ative of bacterial load) in the throat-swab and NPA samples of 
patients classified as having ‘bacterial co-infection’ or ‘viral infec-
tion without bacterial infection’. The abundance of the 16 S rRNA 
in throat swabs was not different in these groups, but the bacterial 
load in NPA samples was greater in those patients with confirmed 
bacterial co-infection (Supplementary Fig. 4c).

Finally, we investigated the utility of procalcitonin (PCT) as a 
possible guide to the presence of substantial bacterial infection25–27. 
The concentration of PCT showed no relationship with the ‘viral’ 
molecular score’ (Fig. 4e), and there was no correlation between 
‘viral molecular scores’ at T1 and T2 and the concentration of 
PCT measured at the corresponding time point (data not shown). 
However, ‘bacterial molecular scores’ tended to be higher in those 
patients with the most-severe disease and the highest concentration 
of PCT regardless of the presence or absence of significantly detect-
able bacteria (Fig. 4f).

In summary, ‘viral molecular scores’ were seen in disease of up to 
5 days’ duration. Even during this early phase, patients who needed 
mechanical ventilation had low ‘viral scores’, and this was especially 

10,000

5,000

0

1
ba

M1

M3

M2

M1

M3

M2

M1

M3

M2

M1

M3

Plasma cells
Platelets
B cells
Myeloid lineage

Ribosomal proteins
Cytotoxic cells

Neutrophils
Erythocytes
T cells
Interferon

Inflammation
Undetermined
No module

M2

2 3 4 5 6 7 8 9 10 11
Over-rep

Under-rep
100 90 80 70 60 50 40 30 20

Probe sets with P < 0.05 (%)

1 2 3 4 5 6 7 8 9 10 11

Severity

Influenza severity 1

1 2 3 4 5 6 7 8 9 10 11
Influenza severity 2

1 2 3 4 5 6 7 8 9 10 11
Influenza severity 3

HC 1 2 3

W
ei

gh
te

d 
M

D
T

H

Fig. 2 | Severity of disease is associated with diminished expression of interferon-related modules and overexpression of inflammation modules. 
a, Weighted MDTH of healthy control subjects (n =​ 130) and of patients with influenza (n =​ 109), grouped by severity of illness (horizontal axis: 1 
(n =​ 47), 2 (n =​ 34) or 3 (n =​ 28)), all in the 2010–2011 cohort; results based on 4,526 transcripts that were significantly differentially expressed relative 
to background and filtered for low expression (transcripts retained as in Fig. 1c; presented as in Fig. 1c). b, Modular analysis of patients with influenza 
(n =​ 109) grouped by severity (above plots), relative to results for healthy control subjects (n =​ 130), all in 2010–2011 cohort (left), and corresponding 
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true in those with clinically determined bacterial co-infection. On 
the other hand, expression of ‘bacterial response genes’ was seen 
only in patients with the most-severe influenza; significant bacterial 
infection enhanced this signal, but the ‘bacterial score’ was evident 
in those with severe influenza regardless of the presence of bacterial 
co-infection (especially if the disease had lasted a week or more).

Effect of illness duration, severity and bacterial co-infection on 
soluble mediators. An advantage of the MOSAIC study is that it 
provides linked data of whole-blood transcriptomic signatures and, 
for example, levels of 35 soluble mediators in the blood, NPA and 
anterior nasal fluid (‘nasadsorption’ samples using synthetic adsorp-
tive matrices) at up to three time points.

The changes observed depended on the mediator and compart-
ment. For example, the concentration of the cytokine IL-1β​ in serum 
showed no trend when plotted against disease severity (Fig. 5a), but 

the concentration of IL-1β​ in NPA or nasadsorption samples was 
higher in those with severe disease (Fig. 5b,c). In contrast, the con-
centration of IL-6 in serum increased with disease severity (Fig. 5d); 
in NPA samples, IL-6 was undetectable in most of the healthy con-
trol subjects but was detected in most of the patients with influenza 
and increased with disease severity (Fig. 5e). The concentration  
of IL-6 was more consistent in nasadsorption samples than in  
NPA samples, was measurable in healthy control subjects, and was 
higher in most patients with influenza but did not reflect disease 
severity (Fig. 5f).

The concentration of the chemokine CXCL8 in serum tended to 
be higher in patients with influenza than in healthy control subjects 
and again increased with disease severity (Fig. 5g); in NPA samples, 
the concentration of CXCL8 was variable but generally increased with 
influenza disease severity and tended to saturate the assay (Fig. 5h).  
The concentration of CXCL8 in in nasadsorption samples was 
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even higher, often saturating the assay even for samples from some 
healthy control subjects (Fig. 5i). Interferon-α​2a (IFN-α​2a) was 
measurable in only a portion of subjects, but its concentration was 
increased in serum in patients with milder illness (severity 1 or 2) 
but not in those with severe disease (Fig. 5j). In NPA or nasadsorp-
tion samples, the concentration of IFN-α​2a was increased in some 
patients with milder illness (a result that was not statistically signifi-
cant; Fig. 5k,l).

The concentration of IL-17 in serum increased with severity at 
T1 (Supplementary Fig. 5a) and was higher in the bronchoalveolar 

lavage fluid of eight patients (from whom samples were obtained 
for clinical indications) than in that of healthy control subjects 
(Supplementary Fig. 5b). In addition, we found a significant posi-
tive correlation of the serum concentration of IL-17 (P <​ 0.001 and 
r =​ 0.39 (Spearman); Supplementary Fig. 5c) and TNF (P <​ 0.001 
and r =​ 0.40 (Spearman); Supplementary Fig. 5d) with MDTH.

As for the effects of timing, the concentrations of the chemo-
kine CXCL10, IL-6 and chemokine CCL2 were elevated in serum 
from patients with severe influenza, especially between day 5 and 
day 10 (Fig. 6a,b and data not shown). Proven bacterial co-infection 
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had no evident additional effect on CXCL10 (Fig. 6c), but IL-6 was 
abundant in serum not only in patients with severe influenza (even 
early in disease; Fig. 6b) but especially in patients with bacterial co-
infection (especially between day 5 and day 10; Fig. 6d).

In the NPA samples, the concentration of most mediators (for 
example, CXCL10, IL-6, CCL2 and CXCL8) was markedly increased 
in severe disease and especially after day 4 (Fig. 6e,f and data not 
shown). The concentration of CXCL10 in NPA samples was again 
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unaffected by confirmed bacterial disease (Fig. 6g), whereas the con-
centration of IL-6 (and of CCL2 and CXCL8; data not shown) was 
particularly increased in patients with bacterial co-infection (Fig. 6h).  

In the nasadsorption samples, the concentration of mediators 
decreased slowly with time even in less-severe disease; the concen-
tration of CXCL10 was decreased by known bacterial co-infection, 
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but the concentration of IL-6, CCL2 and CXCL8 was unaffected by 
disease severity or bacterial status (data not shown).

Since the ‘bacterial load’ (assessed as copy number of 16 S rRNA 
in NPA samples) was greater in patients with clinically relevant bac-
terial infection than in those without such infection (Supplementary 
Fig. 4c), we regressed this parameter against viral or bacterial 
MDTH. There were high values for viral MDTH only in those with 
lower bacterial loads in the NPA samples (Supplementary Fig. 5e), 
and high values for bacterial MDTH were seen only in a subset of 
those with a higher bacterial load (16 S rRNA) in the NPA samples 
(Supplementary Fig. 5f).

These data were consistent with a role for bacterial load in 
the inflamed respiratory tract in driving levels of soluble media-
tors in mucosal fluids and serum as well as transcriptomic signa-
tures in the blood; however, the effects of influenza severity and 
time after disease onset remained the dominant determinants of  
host responses.

Discussion
The MOSAIC study is exceptional in including a large number of 
well-characterized patients hospitalized with influenza, studied 
prospectively and sampled intensively. We found that whole-blood 
RNA-expression profiles of patients hospitalized with influenza 
evolved over time and that the pattern reflected severity. Patients 
with mild (or early) disease typically showed responses dominated 
by interferon-inducible genes and type 1 interferons, but that ‘viral’ 
signature was replaced during severe (or late) disease by a pattern 
reflective of inflammation and neutrophil activation, more typically 
associated with the GO term ‘response to bacteria’, including genes 
encoding regulators of apoptosis and anaerobic metabolism28. The 
‘viral’ response was rarely seen in patients beyond day 4, whereas 
the inflammation–neutrophil activation signal peaked during the 
second week.

In severe disease, the early ‘viral’ response was typically absent, 
whereas the ‘bacterial’ signature was present, at enrollment in 
the study; this was especially so in patients with proven bacterial 
co-infection but did not depend on it. In addition, the bacterial  
load in the nasopharynx (quantified by 16 S rRNA copy number) 
tended to be low if the ‘viral’ signature was evident and was high 
in those patients in whom an inflammatory cell–activation pattern 
was seen.

Soluble protein mediators were generally abundant in the serum 
and nasopharyngeal samples of patients with severe disease, even 
early after onset. Inflammatory mediators (for example, IL-17, IL-1β​ 
and IL-6) were augmented in those with clinically relevant bacterial 
co-infection, whereas IFN-α​ levels tended to be low or undetectable 
in most compartments in those with very severe influenza; how-
ever, interferon-related secondary mediators (for example, CXCL10 
in serum) were generally most abundant in patients with severe dis-
ease. These findings suggest complex interactions between mecha-
nisms for sensing and responding to viruses and those for sensing 
and responding to bacteria that have evolved over time.

To investigate the issue of bacterial co-infection specifically, 
we identified patients in whom pathogenic bacteria was found in 
mucosal samples or blood culture as a subgroup with clinically con-
firmed bacterial sepsis. Three of these six patients needed mechani-
cal ventilation and had a markedly elevated ‘bacterial signature’ 
without any increase in ‘viral score’; one patient had elevated ‘bacte-
rial scores’ and ‘viral scores’. The remaining two patients with bac-
teremia did not have marked elevations in their ‘bacterial scores’; 
both had mild disease (severity 1). We next used stringent criteria 
to identify patients with influenza whom we investigated exten-
sively for bacteria and found to be not co-infected, and compared 
those with patients in whom pathogenic bacteria were identified 
with certainty. Patients with confirmed bacterial co-infection had 
higher ‘bacterial molecular scores’ overall, but progression of the  

transcriptomic signatures was similar over time. Therefore, severe 
infection with influenza virus alone seemed able to drive the ‘bac-
terial’ signature, but this response was enhanced by bacterial co-
infection. We conclude that transcriptomic data from the blood are 
an unreliable guide to the presence or absence of bacterial co-infec-
tion but need careful interpretation in the context of the timing and 
severity of disease. We cannot determine the extent to which these 
changes might be driven by injury caused by influenza virus or by 
innate sensitivity to resident microbiota that leads to activation of 
pathways of the TH17 subset of helper T cells triggered by endotox-
ins from mucosal surfaces29.

In animal models of viral lung disease, dysregulated host immune 
responses30 and interferon production31 can lead to complex inflam-
matory responses that contribute to pathogenesis32,33. In macaques, 
administration of recombinant IFN-α​2a initially upregulates the 
expression of genes encoding antiviral molecules and prevents 
viral infection, but continued treatment causes desensitization and 
a paradoxical decrease in the expression of genes encoding antivi-
ral molecules34. These paradoxical immunosuppressive effects can 
impede viral control35 or trigger inflammation and tissue damage31. 
In mice, infection with influenza virus causes an early local influx of 
neutrophils, followed by a virus specific CD8+ T cell response36–38. 
Neutrophils might facilitate the development of this antigen-specific 
response by guiding influenza virus–specific CD8+ T cells into sites 
of infection by laying chemokine trails39. Our findings for human 
influenza are generally compatible with these animal studies.

We have presented here only selected results of an extended study 
of data on soluble immunological mediators from the MOSAIC 
cohort. Our main findings were of decreased concentrations of 
IFN-α​2a and increased concentrations of IL-1β​, IL-6 and CXCL8 
in the nasal and/or serum compartments in patients with severe 
disease. This apparent reciprocity might relate to the known cross-
regulatory functions of IL-1 and type I interferons in experimental 
models28,40. Our results generally fit with the proposal that levels of 
mediators such IL-1β​, IL-6 and IL-17 are influenced by bacterial 
co-infection in severe influenza but are not driven by it. However, 
many additional possible analyses remain to be performed. We 
chose to illustrate only those most relevant to the transcriptomic 
analysis and the question of bacterial superinfection. Additional 
correlations can be explored with our online data as a resource, and 
we welcome discussions about additional interpretations.

Our study has important limitations. Despite its ambition, scope 
and intensity, we had limited numbers of repeat samples from indi-
vidual patients. Our description of trends over time depends largely 
on summative data and on subjective reporting of the time of dis-
ease onset. Ideally, our findings need validation in other time-series 
studies of simple and complicated acute viral disease with frequent 
sampling at multiple sites. We were unable to study the early or 
preclinical phases but were limited to investigation of symptomatic 
patients presenting with disease of sufficient severity to require hos-
pitalization. Ongoing studies of experimental infection with pH1N1 
in volunteers should allow us to overcome some of these limitations.

In summary, virus-induced type I interferon–related pathways 
were activated during the first 4 d of symptomatic influenza in 
hospitalized patients. These’viral’ pathways were then downregu-
lated and were replaced by inflammatory, activated-neutrophil 
and apoptosis-related pathways associated with IL-17 abundance, 
host-mediated tissue damage and expression of gene clusters in the 
category ‘response to bacteria’, particularly in patients with a high 
bacterial load (16 S rRNA) in their nasopharyngeal secretions. In 
patients with severe illness, the ‘viral’ response was diminished even 
early in disease, accompanied by an increase in IL-1β​ and IL-17. 
These findings emphasize that the stage and severity of disease need 
to be taken into account in the interpretation of host responses to 
infection and in the development of potential diagnostic tests to dis-
tinguish between possible causes and appropriate therapies.
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Methods
Study population and inclusion criteria. Patients ≥​16 years of age were recruited 
during two successive winters (1 December 2009 to 3 March 2011). Patients with 
suspected influenza were identified by medical or nursing staff or investigators 
were notified by hospital diagnostic laboratories. Patients in London were recruited 
from four Imperial College Healthcare NHS Trust hospitals, the Chelsea and 
Westminster Hospital, and the intensive care unit at the Royal Brompton Hospital 
(a national referral center for severe respiratory failure). In Liverpool, patients 
were recruited from the Royal Liverpool, Liverpool Women's and Arrowe Park 
Hospitals. Patients were included irrespective of prior or concurrent comorbidity 
(most commonly asthma, pregnancy, immunocompromising conditions or co-
infection with other respiratory pathogens), to reflect the populations known to be 
at greatest risk of severe influenza. Adult healthy control subjects were recruited 
and matched to the patient cohorts for age, sex and ethnicity and were screened to 
exclude known illnesses or current use of medications (Registered Clinical Trial 
NCT00965354).

Research ethics committee approval. The study was approved by the NHS 
National Research Ethics Service, Outer West London REC (09/H0709/52, 09/
MRE00/67). Patients or their legally authorized representatives provided informed 
consent. Additional adult healthy control subjects were recruited as part of a 
separate study and consented to their samples’ being used in additional studies 
(Central London 3 Research Ethics Committee, 09/H0716/41). Informed consent 
was obtained from all participants, and we complied with all relevant ethical 
regulations.

Biological sampling. Research samples were obtained at three time points: T1 
(recruitment), T2 (approximately 48 h after T1) and T3 (at least 4 weeks after T1). 
Only samples at T1 and T2 were included in this report. Whole-blood samples for 
transcriptomics were collected during the two recruitment periods: 2009–2010 and 
2010–2011. Of 85 MOSAIC participants presenting with influenza-like illness in 
2009–2010, 23 (27%) were adults with confirmed influenza, and T1 transcriptomic 
samples were available from 22 adults. Of 171 MOSAIC participants presenting 
with influenza-like illness in 2010–2011, 111 (65%) were adults with confirmed 
influenza, and T1 transcriptomics samples were available from 109 of 111 (98%). 
RNA extraction and microarray were successful for all available patient samples 
from both cohorts. Microarrays were also performed on samples from adult 
healthy control subjects of age, sex and ethnicity similar to that of the study 
patients (Table 1). One sample from a healthy control subject in the 2009–2010 
cohort was not included in final analysis because it failed quality-control 
assessments.

Of the 109 adult patients recruited in 2010–2011 and included in this analysis, 
94 (86%) were infected with A(H1N1)pdm09 influenza virus, and the remainder 
were infected with influenza A(H3N2) virus, non-subtyped influenza A virus or 
influenza B virus. 1 of 22 adult patients recruited during 2009–2010 was infected 
with A(H3N2) virus; remaining patients were infected with A(H1N1)pdm09 
virus. Due to the natural evolution of influenza activity during the 2009–2010 
pandemic in the UK, the 2009–2010 cohort was smaller than originally anticipated. 
Therefore, to assess the host response in the blood transcriptional signature as 
thoroughly as possible, we focused our analysis on the larger 2010–2011 cohort 
and then compared those findings with those of the smaller 2009–2010 cohort.

Influenza-virus-infection status. For each participant, influenza-virus-infection 
status was determined by reverse transcription–polymerase chain reaction (RT-
PCR) testing of an appropriate respiratory tract sample by local clinical virology 
laboratories, as part of routine clinical care. Clinical laboratories followed 
nationally agreed and validated PCR protocols, and a panel of experts reviewed all 
results.

Influenza virus quantification. Nasopharyngeal secretions were collected into 
sterile universal sputum traps by suction catheterization. After 5 s of suctioning, 
any contents remaining within the catheter were flushed through with 5 ml normal 
saline. Samples were stored at –80 °C until analysis. Viral nucleic acids were 
extracted using the Qiagen MDx Biorobot automated extractor with the QIAamp 
Virus MDx Kit according to the manufacturer's instructions. qRT-PCR reactions 
were set up to a total volume of 15 μ​l using the Qiagen One-Step RT-PCR kit, using 
primers (influenza A matrix (M) or pH1N1 neuraminidase (NA)) as described 
previously41 on an ABI Prism 7500 SDS real time platform (Applied Biosystems). 
For viral-load quantitation, we first derived the crossing threshold (CT) value (at 
the inflexion spot of the sigmoid amplification curve to capture the point at which 
DNA amplification is exponential) performed in a batched assay as a relative 
expression of viral burden against each sample. Subsequently, this was measured 
against a standard curve of CT value to plaque-forming units per ml, generated 
by measurement of plaque-forming units when MDCK canine kidney cells were 
inoculated with a known amount of pH1N1.

Clinical data collection and assignment of scores for severity of illness. Clinical 
data were extracted from hospital case notes and recorded in the Flu-CIN data-
collection tool42 by trained researchers. Prescription charts were examined to 

determine whether antibiotics were being administered before, during or after 
sampling time points.

Severity of illness was graded at T1 and T2 according to the following criteria: 
1, no substantial respiratory compromise, with blood oxygen saturation of >​ 93% 
while the patient was breathing room air; 2, oxygen saturation of ≤​93% while the 
patient was breathing room air, justifying or requiring supplemental oxygen by 
face mask or nasal cannulae (with or without continuous positive airway pressure 
support or non-invasive mechanical ventilation); 3, respiratory compromise 
requiring invasive mechanical ventilation with or without ECMO (extracorporeal 
membrane oxygenation). All clinical data underwent extensive validation and 
quality checking by independent data collection staff.

Detection of bacteria. Nasopharyngeal aspirates and swabs collected at T1 
underwent microscopy and culture for bacteria. Additionally, multiplex PCR 
was performed to detect the following common respiratory bacteria in these 
samples: Staphylococcus aureus, Chlamydia pneumoniae, Haemophilus influenzae, 
Streptococcus pneumoniae, Pneumocystis pneumoniae, Legionella species, Klebsiella 
pneumoniae, Salmonella species, Moraxella catarrhalis, Mycoplasma pneumoniae 
and Bordetella pertussis. Throat swab samples obtained at T1 also underwent 
culture and microscopy. Where available, urine samples collected between T1 
and T2 underwent pneumococcal antigen testing (BinaxNow, Alere). Clinical 
microbiology data were obtained from hospital laboratory databases, including 
results of blood cultures (when obtained 48 h before and after T1) and urinary 
pneumococcal antigen results (for patients who did not have a researcher-
requested urinary antigen sample). An independent microbiologist assessed the 
significance and validity of positive blood-culture results, in an attempt to exclude 
cases of pseudobacteremia caused by commensal contamination.

Soluble immunological mediators. Serum, nasopharyngeal aspirate (NPA) and 
nasal-absorption fluid were collected at recruitment (T1) from participants with 
confirmed influenza and from adult healthy control subjects. Clotted blood was 
centrifuged at 1,000 g at 4 °C, and aliquots of serum supernatant were stored at 
–80 °C. Each NPA was collected using a 10 F Argyle suction catheter, inserted to 
reach the posterior nasopharyngeal wall; moderate suction was applied while the 
catheter was withdrawn over 5 s. The catheter was flushed through with 5 ml of 
sterile normal saline, and the total contents were collected in a universal container. 
Aliquots of NPA were stored at –80 °C. Nasal-absorption fluid was collected from 
the lateral wall of the nasal cavity using a synthetic absorptive matrix (SAM) strips 
(Leukosorb, Pall) and was stored at –80 °C until analysis. On the day of analysis, 
500 μ​l Milliplex assay buffer (Millipore) was added to each thawed SAM strip 
before being placed in a Costar Spin-X centrifuge filter of pore size 0.22 μ​m held 
within an Eppendorf tube. Samples were centrifuged at 16,000 g for 5 min at 4 °C, 
and eluates were kept on ice.

IL-1β​, IL-6 and CXCL8 were quantified in each sample type using a ten-plex 
inflammatory soluble immune mediator electrochemiluminescence assay analyzed 
on an MSD SECTOR instrument (Mesoscale Discovery). For each mediator, a 
coefficient variation cut-off of 10% was used to set the lower limit of detection. 
Sample results below the GM-LLOD (geometric mean lower limit of detection) 
were assigned half the value of the respective GM-LLOD.

Blood procalcitonin assay. Procalcitonin (PCT) in plasma or serum (collected at 
T1 and T2) was quantified using the Elecsys BRAHMS PCT assay on a calibrated 
Cobas e602 platform. Samples with a PCT value at the upper limit of detection 
(ULOD) were arbitrarily assigned a value of 100 ng/ml (the ULOD). Results may be 
interpreted as follows: <​ 0.5 ng/ml, low probability of significant bacterial infection; 
0.5–2.0 ng/ml, medium probability of significant bacterial infection; >​ 2.0 ng/ml, 
high probability of significant bacterial infection.

16S rRNA gene bacterial load measurement. The gene encoding 16 S rRNA was 
targeted with 0.3 µ​l each of 10 µ​M universal primers 520 F 5′​-AYT GGG YDT AAA 
GNG and 802 R 5′​-TAC NVG GGT ATC TAA TCC added to 7.5 µ​l of SYBR Fast 
qPCR Kit Master Mix (KapaBio) and 5 µ​l of a 1:5 dilution of sample DNA extract 
and 1.9 µ​l of PCR Clean water (Mobio). Reactions were prepared in triplicate, and 
thermal cycling carried out on a VIIA-7 Real-Time PCR System. Thermal-cycling 
conditions were 90 °C for 3 min, then 40 cycles of 95 °C for 20 s, 50 °C for 30 s, 72 °C 
for 30 s, with default melt conditions. A standard curve for a cloned (TOPO TA, 
Invitrogen) gene encoding full-length Vibrio natriegens DSMZ 749 16 S rRNA was 
included in order to be able to calculate an absolute abundance from CT values 
together with no template controls. The resulting copy number of 16 S rRNA 
(bacterial load) was log-transformed before being used analytically.

Microarray gene-expression profiling. At each time point, 3 ml of whole blood 
was collected into each of two Tempus tubes (Applied Biosystems/Ambion) 
by trained research staff following a standard phlebotomy protocol. Blood was 
vigorously mixed immediately following collection and was stored at –80 °C 
before RNA extraction. For each patient, the contents of one tube were used for 
analysis, and the other tube was retained in case of assay failure. RNA was isolated 
using 1.5 ml whole blood and the MagMAX-96 Blood RNA Isolation Kit (Applied 
Biosystems/Ambion), as per the manufacturer's instructions. 250 μ​g of isolated 
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total RNA was globin-reduced using the GLOBINclear 96-well format kit (Applied 
Biosystems/Ambion) according to the manufacturer’s instructions. Total and 
globin-reduced RNA integrity was assessed using an Agilent 2100 Bioanalyzer 
(Agilent Technologies). RNA yield was assessed using a NanoDrop8000 
spectrophotometer (NanoDrop Products, Thermo Fisher Scientific). High-
quality ( >​ 6.5 RIN) whole blood RNA was successfully obtained and processed 
by microarray in all cases. Biotinylated, amplified antisense complementary RNA 
(cRNA) targets were prepared from 200–250 ng of globin-reduced RNA using the 
Illumina CustomPrep RNA amplification kit (Applied Biosystems/Ambion). For 
each sample, 750 ng of labeled cRNA was hybridized overnight to Illumina Human 
HT12 V4 BeadChip arrays (Illumina), which contained greater than 47,000 probes. 
The arrays were washed, blocked, stained and scanned on an Illumina iScan, as per 
the manufacturer's instructions. GenomeStudio (Illumina) was used to perform 
quality control and generate signal intensity values.

Microarray data processing. Raw microarray data were processed using 
GeneSpring GX version 12.5 (Agilent Technologies). Following background 
subtraction, each probe was attributed a flag to denote its signal-intensity-detection 
P value. Filtering on flags removed probe sets that did not result in a ‘present’ call 
in at least 10% of the samples, where the ‘present’ lower cut-off was 0.99. Signal 
values were then set to a threshold level of 10, were log2-transformed and were per-
chip normalized using a 75th percentile-shift algorithm. Each gene was normalized 
by dividing each mRNA transcript by the median intensity of all samples. Statistical 
analysis was performed after these steps had been performed.

Microarray data analysis. Transcripts significantly detected from background 
hybridization were filtered for low expression in GeneSpring GX 12.5, whereby 
the only transcripts retained were those with a change of at least twofold from 
the median normalized intensity value in at least 10% of all samples. Principal-
component analysis of all transcripts significantly above background in at least 
10% of samples (18,974 transcripts) was performed using R 3.3.2 (R Development 
Core Team). To derive the 1,255 transcript list, non-parametric statistical filters 
were applied (P <​ 0.01 (Mann-Whitney unpaired test with Bonferroni family-wise 
error rate (FWER) multiple-testing correction)), followed by filtering by change 
(fold values) between groups (transcripts were retained with a change greater than 
twofold between any two groups). For severity analysis, 231 normalized intensity 
value transcripts were obtained by filtering for low expression and then applying 
statistic filters (P <​ 0.01 (Kruskal-Wallis test with Bonferroni FWER)), followed by 
filtering by change (fold values) between groups (transcripts were retained with a 
change of greater than twofold between patients with illness of severity 3 and those 
with illness of severity 1 and 2). All heat maps were generated in GeneSpring GX 
12.5 (semi-supervised analysis, clustered by Pearson's un- centered method with 
average linkage rule).

Comparison Ingenuity Pathway Analysis (IPA) (Ingenuity Systems) was 
used to determine the most significant canonical pathways for upregulated and 
downregulated transcripts (P <​ 0.05 (Fisher's exact test)). Additionally, IPA was 
used to generate the graphed presentation of selected canonical pathways and 
network diagrams. For the 231-transcript list, significantly activated biofunctions 
(z-score >​ 2) and significantly repressed biofunctions (z score <​ 2) were identified 
in IPA and are presented in gene-network diagrams. GO Term analysis (Gene 
Ontology Consortium) integrated with GeneSpring GX12.5 was used to identify 
biological processes, according to GO annotations43.

The molecular distance to health (MDTH) and molecular scores were 
calculated using methods described previously24 and were applied to different 
signatures. Transcriptional modular analysis was applied as described previously23. 
In brief, raw expression levels of all transcripts significantly above or below 
background were compared between each sample and all the controls present 
in a given dataset. The percentage of differentially expressed genes in each 
module is represented by the color intensity, with red indicating over-expression 
and blue indicating under-expression. Statistical testing was performed using 
Student’s t-test (P <​ 0.05). The mean percentage of significant genes and the 
mean change in expression of these genes (fold values) compared to the controls 
in specific modules are presented in graphical form (P <​ 0.00001 (unpaired 
t-test)). MDTH and modular analysis were calculated in Microsoft Excel 2010 
(Microsoft). GraphPad Prism V5 for Windows (GraphPad Software) and R 3.3.2 
(R Development Core Team) were used to generate graphs and perform additional 
statistical analyses.

Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability statement. The raw and normalized microarray data that support 
the findings of this study have been deposited in GEO with the accession code 
GSE111368.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Although an estimated sample size calculation was performed for the MOSAIC study at the 
time the study was designed, the nature of the 2009-10 pandemic and the associated 
challenges of recruiting participants necessitated opportunistic (proximity) sampling. 

2.   Data exclusions

Describe any data exclusions. Data were not excluded from the analyses. Although samples were collected from adult and 
pediatric participants in the MOSAIC study, the intention was to analyse results from adult 
participants only in the present study. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

For the primary focus of study - transcriptional responses to influenza - results from two 
distinct patient cohorts were compared: patients recruited in winter of 2009/10 and patients 
recruited in the winter of 2010/11. Although the cohorts differed in size, the findings were 
sufficiently similar to demonstrate consistency of findings. Both cohorts were dominated by 
influenza A(H1N1)pdm09 infections.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Participants with influenza were recruited sequentially as they presented to healthcare 
services and according to the study protocol's inclusion criteria. Healthy controls were 
recruited independently and according to agreed inclusion criteria (including successful 
completion of a qualifying questionnaire). Samples were randomised before assignment to 
the arrays, to avoid experimental bias, and were analysed en masse with their matched 
healthy control samples. Influenza virus infection status of participants was revealed 
following completion of analysis of their samples. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Influenza virus infection status was known at the time of clinical data collection, consistent 
with the study protocol. For transcriptomic and soluble immune mediator profiling, the 
influenza virus infection status of participants was revealed only following completion of 
laboratory analysis of their samples. Supervised and semi-supervised data analyses have been 
indicated where applicable.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

GenomeStudio (Illumina); GeneSpring GX version 12.5 (Agilent Technologies); R 3.3.2 (R 
Development Core Team); Ingenuity Pathway Analysis (IPA) (Ingenuity Systems Inc., 
Redwood, CA); Microsoft Excel 2010 (Microsoft Corp.); GraphPad Prism V5 for Windows 
(GraphPad Software Inc., La Jolla, CA, USA)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Eukaryotic cell lines were not used.

b.  Describe the method of cell line authentication used. Eukaryotic cell lines were not used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Eukaryotic cell lines were not used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Study population characteristics have been described in Table 1 of the manuscript.
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