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Genetic modifiers of rare variants in 
monogenic developmental disorder loci

Rebecca Kingdom    , Robin N. Beaumont    , Andrew R. Wood    , 
Michael N. Weedon & Caroline F. Wright     

Rare damaging variants in a large number of genes are known to cause 
monogenic developmental disorders (DDs) and have also been shown to 
cause milder subclinical phenotypes in population cohorts. Here, we show 
that carrying multiple (2−5) rare damaging variants across 599 dominant 
DD genes has an additive adverse effect on numerous cognitive and 
socioeconomic traits in UK Biobank, which can be partially counterbalanced 
by a higher educational attainment polygenic score (EA-PGS). Phenotypic 
deviators from expected EA-PGS could be partly explained by the 
enrichment or depletion of rare DD variants. Among carriers of rare DD 
variants, those with a DD-related clinical diagnosis had a substantially lower 
EA-PGS and more severe phenotype than those without a clinical diagnosis. 
Our results suggest that the overall burden of both rare and common 
variants can modify the expressivity of a phenotype, which may then 
influence whether an individual reaches the threshold for clinical disease.

Ascertaining whether rare genetic variants cause a monogenic pheno-
type can be challenging because of incomplete penetrance and variable 
expressivity1. Many rare variant studies use clinical or familial cohorts 
that can overestimate the penetrance of causal variants2. The pres-
ence of such rare, putatively damaging variants in healthy population 
cohorts3 can provide a lower boundary for estimates of penetrance, 
and individuals in both clinical and population cohorts display a spec-
trum of phenotypic variability caused by similar or identical variants1,4. 
Previous research has suggested that common genetic variants can 
modify the penetrance or expressivity of phenotypes caused by rare 
genetic variants4–11, potentially through the liability threshold model, 
which posits that a certain threshold of disease susceptibility needs to 
be crossed before clinically diagnosable disease manifests11–14. Some 
damaging rare variants may reach this threshold alone, resulting in a 
monogenic disease phenotype with 100% penetrance, whereas other 
variants may require additional genetic, environmental or other modi-
fiers to reach this threshold12. In certain diseases, the common variant 
burden has been shown to confer a risk similar to that of a deleterious 
monogenic variant, where the highest polygenic risk may be equivalent 
to that conferred by a monogenic variant15,16. Because the effect of indi-
vidual common variants is very small17, aggregating them together as a 

polygenic score (PGS) has become a widely used method for predicting 
overall risk18,19, and combining PGS with rare pathogenic variants could 
improve individual disease prediction20,21.

It has previously been shown that rare predicted loss-of-function 
(pLoF) variants, as well as deleterious missense and large copy num-
ber variants (CNVs), in genes and loci linked with severe monogenic 
developmental disorders (DDs) can have milder, subclinical effects 
in the general population14,22–25. The related common variant burden 
has been shown to affect the phenotype in carriers of such variants5,26, 
suggesting that the cumulative effect of common variants can modify 
the penetrance of rare variants in such phenotypes, even when the 
primary cause is considered monogenic. While the impact of com-
mon variants on overall phenotypic expressivity has been examined 
for several neuropsychiatric25,27,28 and other disease cohorts29–31, the 
modification of rare variant penetrance by other rare genetic variants 
has not been widely investigated because of the large cohort sizes 
required. Here, we present an analysis of common and rare variant 
burden in 419,854 adults from the UK Biobank (UKB)32. We investigated 
individuals carrying a rare pLoF variant in genes and loci where similar 
variants are known to cause monogenic DD and used related PGSs and 
additional rare variant burden to examine the effect on a number of 
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Polygenic background modifies the phenotype of carriers of 
rare variants in monogenic developmental disorder loci
Next, we investigated the effect of common polygenic background 
on rare DD variant carriers13. We separated the UKB cohort into five 
EA-PGS quintiles and repeated the phenotype association tests with 
rare DD variant carrier status. We observed a similar trend across all 
traits tested against the EA-PGS quintiles (Supplementary Fig. 1), with 
the direction of the PGS effect being the same in both carrier and non-
carrier groups. Individuals who carried at least one rare variant showed 
a consistently larger change in fluid intelligence, years of education, 
employment status and TDI across the PGS spectrum compared to the 
control group, with larger phenotypic effects observed in carriers of 
multiple rare DD variants (Fig. 3). We observed similar trends when we 
repeated this analysis using an earlier GWAS of EA that excluded UKB39 
(Supplementary Fig. 2) and for GWAS of intelligence40 (Supplementary 
Fig. 3) and cognitive or mathematical abilities17 (Supplementary Fig. 4), 
as well as when excluding missense variants (Supplementary Table 6), 
or using a smaller subset of DD genes (Supplementary Table 7) known 
to cause disease via haploinsufficiency (n = 325) or only those that 
reached genome-wide significance based on the burden of de novo 
variants in ~31,000 DD cases (n = 125)41.

For fluid intelligence, the difference in the mean score between the 
bottom and top EA-PGS quintiles equated to approximately 1 point on 
the 13-point scale (approximately 0.5 s.d.), for both rare variant carriers 
and noncarriers in UKB. Rare DD variant carrier status was equivalent 
to approximately a 20-percentile-point decrease in EA-PGS, on aver-
age, with the result that an EA-PGS above the 70th percentile was able 
to compensate for the effect of carrying a single rare DD variant on 
fluid intelligence (Supplementary Table 8). Rare variant carrier status 
and EA-PGS appeared to have an additive effect when assessed against 
multiple related traits, with the effect of rare variants remaining similar 
throughout the EA-PGS spectrum. When we investigated rare variant 
classes within fluid intelligence scores, deleterious missense variant 
carriers reached parity with the control group at the 62nd EA-PGS 
percentile, pLoF carriers at the 80th percentile and CNV duplication 
carriers at the 82nd percentile, whereas CNV deletion carriers never 
reached parity with the control group (Supplementary Table 8).

We were interested in exploring whether there was an enrich-
ment of DDG2P genes in EA GWAS loci. We hypothesized that the 
EA-PGS could include single-nucleotide polymorphisms (SNPs) in 
cis-regulatory regions of monogenic DDG2P genes; therefore, we exam-
ined the proximity between the 599 autosomal dominant DDG2P genes 
and 3,952 SNPs included in the EA-PGS, using simulations of matched 
SNPs (10,000 lists of matched SNPs per GWAS SNP, based on allele 
frequency and proximity to genes) to empirically test whether the 
genes fall disproportionately close to the GWAS loci42. As expected, we 
found that the GWAS loci were closer to DDG2P genes than expected 
by chance alone (P = 0.005), suggesting that the large-effect rare vari-
ants and small-effect common variants may work through overlapping 
biological pathways.

As the UKB cohort is known to be biased toward healthier, wealth-
ier and more educated individuals than the general population43, we 
hypothesized that individuals in UKB who carry a rare DD variant might 
also have a higher EA-PGS on average than the noncarrier control group, 
which partially compensates for the potentially deleterious effects of 
the rare DD variant. Overall, we observed that individuals who carried 
at least one rare DD variant did indeed have a slightly higher EA-PGS 
percentile than noncarriers (two-sided t-test difference = +2.1; 95% CI, 
1.9–2.4; P < 0.0005), supporting this hypothesis. Furthermore, among 
the small number of individuals who achieved the top score on the fluid 
intelligence test (n = 139), we observed that rare DD variant carriers 
(n = 4) were depleted versus the rest of UKB participants (3% versus 
13%; P = 0.0002) and had a substantially higher EA-PGS percentile 
than noncarriers (two-sided t-test difference = +26.1; 95% CI, 1.8–50.3;  
P = 0.04).

related cognitive phenotypes and socioeconomic traits. We show that 
rare variant burden across these loci and an educational attainment 
(EA)-PGS have an additive effect on the phenotype. Our results dem-
onstrate that both rare and common genetic variants linked to relevant 
traits can contribute to the variable expressivity of rare, predicted 
large-effect variants in known monogenic diseases.

Results
We used exome sequencing and microarray data from individuals in 
UKB of genetically defined European ancestry (n = 419,854). We iden-
tified carriers of rare (allele count ≤ 5) pLoF33 or deleterious missense 
(REVEL > 0.7)34 variants in any of 599 genes from the Developmental 
Disorders Geneotype-to-Phenotype Database (DDG2P; Supplementary 
Table 1)22,35 in which damaging rare variants are a known cause of auto-
somal dominant DD. Carriers of multigenic CNVs were also included 
where the variant overlapped known syndromic DD-related loci36,37, 
as described previously22. We calculated the published EA-PGS38 using 
summary statistics and weighted allele effects from genome-wide asso-
ciation studies (GWAS) for every UKB individual of European ancestry. 
Phenotypes of interest were selected from self-reported question-
naires, based on their relevance to cognitive, behavioral, reproductive 
and socioeconomic traits related to neurodevelopmental disorders 
(Supplementary Table 2). In addition, clinically relevant diagnoses 
were identified using International Classification of Diseases (ICD)-9 
or ICD-10 codes from hospital episode statistics and combined into 
three categories: (1) child DDs; (2) adult neuropsychiatric conditions 
(schizophrenia or bipolar disorder); and (3) other mental health issues 
(neurotic and anxiety disorders; Supplementary Table 3).

Carrying multiple rare variants in monogenic DD loci is 
associated with an increased phenotype effect compared to 
single variant carriers
We first investigated whether DD-related phenotypes could be modi-
fied among rare DD variant carriers by the presence of additional rare 
pLoF or damaging missense variants in the same set of DDG2P genes. 
In UKB, 50,395 (12%) individuals carried a single rare, likely deleteri-
ous variant overlapping one of the 599 autosomal dominant DDG2P 
genes (12,153 pLoF and 35,603 missense) or syndromic DD loci (1,127 
large deletions and 1,512 large duplications); an additional 3,831 indi-
viduals carried two rare DD variants and 219 individuals had three or 
more putatively deleterious rare variants across these DD loci. The 
highest overall rare variant burden across the DD loci was five, which 
was observed in two individuals with three missense variants and two 
pLoF variants each (Supplementary Table 4). We performed regression 
analyses to test associations between the number of rare variants in 
DD genes and 15 DD-related traits and diagnoses, using linear regres-
sion for continuous traits (Fig. 1) and logistic regression for binary 
traits (Fig. 2). Increasing rare variant burden was correlated with larger 
differences from the average UKB participant in several DD-related 
phenotypes, including lower fluid intelligence, shorter stature, lower 
income, lower likelihood of being employed, lower likelihood of being 
a parent and higher Townsend Deprivation Index (TDI). An increase in 
rare variant burden also correlated with a higher likelihood of having 
a DD-related diagnosis, and those with three or more rare DD variants 
were 2.1 times (95% confidence interval (CI), 1.05–4.33; P = 0.03) and 
1.7 times (95% CI,1.01−2.89; P = 0.04) more likely to be diagnosed with a 
child DD or an adult DD-related neuropsychiatric disorder, respectively, 
than noncarriers (Fig. 2). When we excluded those with rare missense 
variants and considered only pLoF and large CNV carriers (Supple-
mentary Table 5), we observed a larger change in phenotype, but the 
smaller number of individuals present in each group substantially 
reduced the statistical power; nonetheless, those with two or three 
rare variants were 2.2 times (95% CI,1.37–3.43; P = 0.0009) more likely 
to have a child DD-related diagnosis than those without a pLoF variant  
or CNV.
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Rare variant status and polygenic background additively 
contribute to phenotype and predict outliers
Intrigued by the presence of these apparently highly intelligent rare 
DD variant carriers, we further investigated phenotypic ‘deviators’ in 
whom the predicted genetic susceptibility was discordant with the 
observed phenotype44, for example, individuals with high EA-PGS but 
low fluid intelligence score and vice versa (Fig. 4). This question has 
particular clinical relevance as it has previously been suggested that 
individuals with familial disease could be prioritized for genetic test-
ing based on having a low-risk PGS because they may be more likely to 
have a single large-effect causal variant than individuals with a high-risk 
PGS whose disease could be more polygenic45,46. To investigate this 

hypothesis, we further split the UKB cohort into EA-PGS deciles and 
tested whether individuals whose low cognitive phenotype was dis-
cordant with their high EA-PGS were more likely to be rare DD variant 
carriers than the remainder of the UKB cohort. Individuals in the top 
EA-PGS decile but with low fluid intelligence (scores of 0 or 1 of 13) were 
more likely to be rare DD variant carriers (odds ratio (OR) = 1.68; 95% 
CI, 1.13–2.50; P = 0.01) (Fig. 5a) when compared to those in the same 
EA-PGS decile who did not have a low fluid intelligence score, as were 
those in the top EA-PGS decile who had no educational qualifications 
on record (OR = 1.22; 95% CI, 1.10–1.35; P = 0.00006) (Fig. 5b). Follow-
ing separation by rare DD variant class, we found that large multigenic 
deletions had a larger effect than any other type of rare DD variant  

Trait
Fluid intelligence

Age left education

1 variant 1.46 × 10–10

8.40 × 10–5

0.01

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

1 variant

2 variants

3+ variants

Years in education

1.14 × 10–14

3.58 × 10–4

1.27 × 10–3

Income

8.45 × 10–17

1.79 × 10–4

0.42

Townsend Deprivation Index

Numeric memory

9.53 × 10–38

2.29 × 10–12

0.01

2.18 × 10–43

3.00 × 10–21

0.05

Reaction time

Time taken on pairs test

4.12 × 10–3

0.29

0.05

1.04 × 10–16

7.32 × 10–7

0.67

Height

9.42 × 10–10

2.19 × 10–3

0.01

2.64 × 10–19

4.62E × 10–6

8.76 × 10–6

–2 –1.5 –1 –0.5

β

0 0.5 1

P value

Fig. 1 | Effect of rare DD variant burden on continuous DD-related phenotypes 
in UKB. Linear regression of continuous traits in individuals carrying 1, 2 or 3+ 
rare pLoF, deleterious missense or multigenic variants overlapping dominant 
DDG2P genes, compared to the rest of UKB (that is, noncarriers). β values for 
continuous traits were measured as follows: fluid intelligence, standardized units 
(ranging from 1–13); age left education and years in education, years; height, 

cm; reaction time, time taken on pairs test, numeric memory, income, and TDI, 
standard deviations from the mean. Data are presented as mean values ±95% 
CI, where solid lines indicate that the P value reached Bonferroni-corrected 
significance and dashed lines indicate that it did not. P values were not corrected 
for multiple testing.
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(OR = 4.7; 95% CI, 1.73–12.95; P = 0.002), followed by multigenic dupli-
cations and then by pLoF variants (Supplementary Table 9). We then 
investigated whether the opposite was also true, that is, whether those 
with an EA-PGS in the bottom decile but a high fluid intelligence score 
(11–13 of 13) were less likely to be rare variant carriers, and found that 
these individuals were nearly half as likely as others in the same decile 
to carry a rare DD variant (OR = 0.58; 95% CI, 0.38–0.87; P = 0.009).

Finally, we investigated whether a decrease in EA-PGS correlated 
with the likelihood of receiving a clinical diagnosis related to DD among 
the rare DD variant carriers identified in UKB. The number of individuals 
identified within the three diagnostic categories (child DDs, n = 7,933; 
adult neuropsychiatric conditions, n = 19,004; and other mental health 
issues, n = 32,911) is likely to be an underestimate because of missing 
data or the absence of, or omissions in, individual hospital records 

available within UKB. Therefore, although individuals in any of these 
diagnostic categories were more likely to be rare DD variant carriers 
than the rest of UKB, the majority did not carry a rare variant in any of 
the DD genes, and many individuals with a rare DD variant did not have 
a corresponding diagnosis. Despite these limitations, we found that, 
among rare DD variant carriers, those with a related clinical diagnosis 
across any of our three categories had a substantially lower EA-PGS than 
those without a diagnosis (Fig. 6); rare DD variant carriers with adult 
neuropsychiatric disorders or mental health issues (but not child DDs) 
also had a higher schizophrenia or bipolar PGS (Supplementary Fig. 5). 
Rare DD variant carriers with a diagnosis also had a larger phenotypic 
change than other rare variant carriers without a diagnosis; individuals 
with a rare DD variant and a related clinical diagnosis were more likely 
to be unable to work (OR = 6.66; 95% CI, 6.07–7.32; P = 4.51 ⨯ 10−308), less 

Trait
Unable to work

P value

In employment

1 variant

2 variants

3+ variants

3.40 × 10–15

1.65 × 10–3

0.29

Has a degree

1 variant

2 variants

3+ variants

5.03 × 10–4

6.68 × 10–5

0.36

Child DD diagnosis

Adult DD diagnosis

1 variant

2 variants

3+ variants

1.77 × 10–31

3.95 × 10–7

0.36

1 variant

2 variants

3+ variants

3.07 × 10–13

1.46 × 10–07

0.03

Mental health diagnosis

1 variant

2 variants

3+ variants

1.72 × 10–6

5.02 × 10–4

0.04

Never a parent

1 variant

2 variants

3+ variants

3.29 × 10–7

0.03

0.39

Never pregnant

1 variant

2 variants

3+ variants

1.91 × 10–15

5.90 × 10–12

0.02

Never a father

1 variant

2 variants

3+ variants

1.81 × 10–4

1.84 × 10–5

0.12

1 variant

2 variants

3+ variants

1.65 × 10–13

6.02 × 10–8

0.10

0.5 1

Odds ratio
2 3

Fig. 2 | Effect of rare DD variant burden on binary DD-related phenotypes in 
UKB. Logistic regression of binary traits/diagnoses in individuals carrying 1, 2 or 
3+ rare pLoF, deleterious missense or multigenic variants overlapping dominant 
DDG2P genes compared to the rest of UKB (that is, noncarriers). Data are 

presented as mean values ± 95% CI, where the solid lines indicate that the P value 
reached Bonferroni-corrected significance and the dashed lines indicate that it 
did not. P values were not corrected for multiple testing.
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likely to have a degree (OR = 0.71; 95% CI, 0.66–0.76; P = 3.76 ⨯ 10−23) and 
less likely to be employed (OR = 0.33; 95% CI, 0.31–0.37; P = 2.07 ⨯ 10−143) 
than those who carried a rare DD variant but did not have a diagnosis 
recorded in UKB (Supplementary Table 10). This suggests that both 

the aggregation of the overall number of rare DD variants carried and a 
lower EA-PGS can alter the overall expressivity of the phenotype toward 
reaching the threshold of clinical disease.

Discussion
We showed that the phenotypic effect of a heterogeneous set of rare 
disease-associated variants is modified by both additional rare and 
common genetic variants in a population cohort. The adverse effects of 
carrying a single rare deleterious variant in genes in which similar vari-
ants cause monogenic DD can be modified by additional rare variants in 
those genes or by common variants across the genome. We found that 
carriers of multiple rare DD variants in UKB have lower fluid intelligence, 
shorter stature, fewer children, lower income, higher unemployment 
and a higher TDI than carriers of single rare DD variants. In addition, 
our results suggest that having a higher EA-PGS can partially compen-
sate for the negative cognitive and socioeconomic effects of carrying 
either a single or multiple rare DD variants. Moreover, an increased 
burden of DD-associated variants is more likely to shift the phenotypic 
presentations over the threshold for clinical diagnosis and correlates 
with a greater change in phenotype compared to individuals who carry 
fewer or no variants. Our results suggest that the PGS may provide some 
clinical utility by improving the diagnostic interpretation of rare, likely 
pathogenic variants that cause monogenic disease.

Investigating the effect of pathogenic rare variants in the general 
population is important for understanding the penetrance and variable 
expressivity of monogenic diseases. We have shown that approximately 
12% of UKB participants carry a rare predicted damaging variant in one 
of 599 dominant DD genes (5%, excluding missense), and a further 1% 
carry a rare predicted damaging variant in more than one of these genes 
(0.1%, excluding missense), conferring a higher risk of impaired cogni-
tive performance and neuropsychiatric conditions. However, there are 
important limitations to the use of large-scale genetic data from UKB 
to investigate rare diseases. First, some of the deleterious rare variants 
we identified may be benign, due to technical artifacts, or erroneous 
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Fig. 3 | Additive effect of rare DD variant burden and EA-PGS on DD-related 
phenotypes. a−d, Linear regressions of fluid intelligence (a), age left education 
(b), income (c) and TDI (d) versus the EA-PGS quintile in UKB. The black dashed 
horizontal line corresponds to noncarriers of rare DD variants (n = 365,409); 
dark/medium/light horizontal lines correspond to carriers of 1, 2 or 3+ rare 
DD variants (n = 50,395, 3,831 and 219), respectively. Notably, within UKB, a 

sufficiently high EA-PGS can compensate for the effect of a primary variant and, 
in most cases, any additional rare DD variants on these traits. Data are presented 
as mean values ± 95% CI (vertical lines), where solid vertical lines indicate that 
the P value reached Bonferroni-corrected significance and dashed vertical lines 
indicate that it did not. P values were not corrected for multiple testing.
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pathogenicity predictions, or be rescued by alternative splicing or other 
molecular mechanisms. Second, UKB is known to have an ascertainment 
bias toward healthier and wealthier individuals compared to the rest 
of the British population43, and individuals affected by severe, highly 
penetrant monogenic disorders are likely to be underrepresented in 

the cohort. Third, because UKB is a relatively old cohort, complete 
medical histories are not always available, and therefore, many phe-
notypes of relevance to childhood DDs cannot be evaluated. Fourth, 
environmental influences were not assessed and yet these influences 
may have additional effects on the overall phenotype47,48 and could 

Fluid deviator

Any variant

CNV deletion

0.01

2.46 × 10–3

CNV duplication 2.34 × 10–3

Loss of function 0.02

Missense 0.99

No variant 0.01

0 2 4

Odds ratio
6 8

Any variant

CNV deletion

6.04 × 10–5

1.99 × 10–4

CNV duplication 7.14 × 10–4

Loss of function 0.01

Missense 0.07

No variant 6.04 × 10–5

P value

Qualifications deviator P value

0 2

Odds ratio
4

a

b

Fig. 5 | Rare DD variant carrier status of phenotypic deviators from EA-PGS 
predictions. a,b, Logistic regression showing that individuals in UKB who either 
had an EA-PGS in the top decile but scored low on the fluid intelligence test 
(n = 137) (a) or reported having no qualifications recorded despite having an EA-
PGS in the top decile (n = 4,292) (b) were more likely to be rare DD variant carriers. 

The comparator group included those within the same EA-PGS decile but with 
a higher fluid intelligence score or recorded qualifications. Data are presented 
as mean values ± 95% CI, where solid lines indicate that the P value reached 
Bonferroni-corrected significance and the dashed lines indicate that it did not.  
P values were not corrected for multiple testing.

Change in EA-PGS

Diagnosis

Adult DD

Child DD

Other mental health issues

2.90 × 10–12

4.52 × 10–5

1.52 × 10–19

–6 –5 –4 –3

Change in EA-PGS percentile
–2 –1 0

P value

Fig. 6 | Average change in EA-PGS among rare DD variant carriers with a 
relevant clinical diagnosis. Linear regressions among individuals carrying 
one or more rare DD variants, including those who were clinically diagnosed 
with child DDs (n = 7,933), adult neuropsychiatric conditions (n = 19,004) or 
other mental health issues (n = 32,911), with EA-PGS, showing that those with a 

clinical diagnosis have a substantially lower EA-PGS than those who do not have 
a related clinical diagnosis recorded in UKB. Data are presented as mean values ± 
95% CI, where solid lines indicate that the P value reached Bonferroni-corrected 
significance and dashed lines indicate that it did not. P values were not corrected 
for multiple testing.
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alter the penetrance and expressivity of genetic variants through gene−
environment interactions. Finally, there are challenges in applying 
common variant PGSs across a population, as the underlying summary 
statistics are heavily dependent upon the populations and ethnicities 
in which the GWAS were performed. While it would have been optimal 
to use a PGS derived independently of UKB, we chose to use the largest 
and most recent EA-PGS from Okbay et al.38, in which UKB constitutes 
only a small part of the GWAS discovery cohort (~15% of the total of >3 
million individuals). Given the small overlap and large sample size, it is 
unlikely that using this EA-PGS would result in substantial overfitting 
in UKB. Importantly, our results are consistent with those of previous 
studies showing the effect of rare DD variants in nonclinical cohorts 
and the modifying effect of the PGS on carriers of rare DD variants5,6.

In conclusion, we have shown that common and rare genetic 
variants can additively and independently affect the phenotype of 
nonclinically ascertained individuals. Our results help to explain the 
puzzling observation of apparently healthy carriers of monogenic likely 
disease-causing variants in the general population, as well as instances 
of incomplete penetrance and variable expressivity in families affected 
by rare diseases. Further research is needed to investigate other modi-
fiers, such as rare noncoding variants and gene−environment interac-
tions, and to understand the mechanisms by which genetic modifiers 
act. Ultimately, incorporating the additive effects of both rare and 
common variants will improve our understanding of disease.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01710-0.
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Methods
The UKB resource was approved by the UK Biobank Research Ethics 
Committee and all participants provided written informed consent 
to participate. This research was conducted using the UK Biobank 
resource under application numbers 49847 and 9072.

UKB cohort
UKB is a voluntary population-based cohort from the UK with deep phe-
notyping data and genetic data for approximately 500,000 individuals 
aged 40–70 years at recruitment (54% female). Individuals provided 
various information via self-report questionnaires, and additional 
information was obtained from cognitive and anthropometric meas-
urements and hospital episode statistics, including ICD-9 and ICD-10 
codes. Genotypes of SNPs were generated using the UKB Axiom array 
(Affymetrix, ~450,000 individuals) and the UK BiLEVE array (~50,000 
individuals). This dataset underwent extensive central quality control 
(http://biobank.ctsu.ox.ac.uk). A subset of the ~450,000 individuals 
from the UKB array also underwent exome sequencing using the IDT 
xGen Exome Research Panel v1.0 and this dataset was made available 
for research in October 2021 (ref. 32). Detailed sequencing and variant 
detection methodology for UKB is available at https://biobank.ctsu.
ox.ac.uk/showcase/label.cgi?id=170. In brief, sequencing data were 
aligned to GRCh38 and variants were called using GATK 3.0 with hard 
filtering of variants with inbreeding coefficients < −0.03 or without at 
least one variant genotype of DP ≥ 10, GQ ≥ 20 and, if heterozygous, 
AB ≥ 0.20. We restricted our statistical analyses to 419,854 individu-
als with genetically defined European ancestry. European ancestry 
was defined by performing principal component analysis in the 1000 
Genomes project reference panel using a subset of variants that were 
of high quality in UKB participants. We then used these loadings to 
project all UKB samples into the same principal component space and 
used a k-means clustering approach to define a European cluster using 
principal components 1–4.

Gene selection
We used the clinically curated DDG2P to select genes known to cause 
monogenic DD. The database (accessed from https://www.ebi.ac.uk/
gene2phenotype/ on 27 November 2020) was constructed and clini-
cally curated from published literature and provides information 
relating to genes, variants and phenotypes associated with DDs, includ-
ing the mode of inheritance and mechanism of pathogenicity. We 
included all genes that had been annotated as monoallelic (that is, auto-
somal dominant) with an evidence level of ‘confirmed’ or ‘probable’  
(n = 599).

Variant selection
We used exome sequencing data from 419,854 individuals in UKB to 
identify carriers of rare SNVs and/or insertions/deletions (indels) in 
any of the selected DDG2P genes. For our analyses, rare was defined as 
any variant that occurred in five or fewer individuals in the UKB cohort, 
excluding any variants with read depth <10⨯ or variant allele fraction 
<0.3. We selected two functional classes of variants in canonical tran-
scripts based on annotation by the Ensembl Variant Effect Predictor 
(v104)35: (1) likely deleterious loss-of-function variants, defined as 
variants predicted to cause a premature stop, a frameshift or to abol-
ish a canonical splice site; only those variants outside of the last exon 
and deemed to be high confidence by the Loss-Of-Function Transcript 
Effect Estimator (LOFTEE) were retained (https://github.com/konradjk/
loftee); and (2) likely deleterious missense variants, defined as missense 
variants with a REVEL score >0.7. Individuals with >1 variant within a 
40-bp window in the same gene were counted once. In addition, we 
used SNP array data from 488,377 genotyped individuals in UKB and 
PennCNV49 (v1.0.4) to detect multigenic CNVs that overlapped with 
69 published CNVs strongly associated with developmental delay, as 
described previously22.

PGS calculations
We created the EA-PGS using GWAS summary statistics from a large 
cohort meta-analysis, using 3,952 SNPs for the EA-PGS, with data from 
Okbay et al.38. The EA-PGS was calculated as ∑iwigi, where wi is the 
weight (effect size) of SNP i and gi is the genotype (number of effect 
alleles, 0–2) of SNP i. The SNP weightings were the regression coeffi-
cients obtained from the most recently reported GWAS as mentioned 
above. We performed a sensitivity analysis using a PGS derived from 
74 SNPs associated with EA in an earlier GWAS from Okbay et al.39, 
which excluded UKB (Supplementary Fig. 2). Other PGSs were simi-
larly calculated from GWAS of intelligence40 and cognitive ability17, 
and we used PGSs released by UKB for schizophrenia and bipolar  
disorder18.

Phenotype selection
We included the following phenotypes based on self-reported question-
naires and hospital episode statistics:

Mental health: a mental health issue was self-reported through a 
questionnaire or by ICD-10 codes F40−F48, F50, F51, F53, F54, F99, G47 
and R45 or ICD-9 codes 300, 307–309, 311 and 780.5.

Diagnosed with ‘child DD’: intellectual disability (ICD-10 codes 
F70−F73), epilepsy (G40), developmental disorders (F80−F84, 
F88−F95, F98, R62, R48 and Z55) and congenital malformations  
(Q0−Q99).

Diagnosed with an ‘adult neuropsychiatric’ condition: including 
schizophrenia (self-reported or ICD-10 codes F20−F29) and bipolar 
disorder (self-reported or ICD-10 codes F30−F39).

Reproductive: never a parent, never a father or never pregnant.
Physical: height.
Cognitive: fluid intelligence (field ID: 20016), reaction time 

(inverse normalized, field ID: 20023), time to complete the pairs 
matching test (averaged, field ID: 20133), numeric memory (inverse 
normalized, field ID: 20240), age left education, number of years of 
education and had a degree.

Socioeconomic: employed, not able to work (both field ID: 6142), 
income (field ID: 738) and TDI (field ID: 189).

Statistical analysis
We performed gene panel burden tests across our 599-gene subset, 
with association tests limited to individuals in UKB with genetically 
defined European ancestry because of well-recognized biases in PGS 
performance in other ancestries50. All analyses were controlled for age, 
sex, recruitment center and 40 principal components. Variant burden 
tests were performed using STATA (v16.0), using linear regression for 
continuous phenotypes and logistic regression for binary phenotypes 
with a Bonferroni-corrected P value of 0.05/18 = 0.003. Associations 
were tested between individuals with an identified rare variant in any of 
the DDG2P genes and the remainder of the European UKB population. 
EA-PGS quintiles were defined using the entire cohort of European UKB 
participants. When testing across PGS quintiles, each group was tested 
against individuals in the middle quintile (that is, those with a 40–60% 
EA-PGS) who were not identified as carriers of likely deleterious rare 
variants in the DDG2P gene subset. When testing associations within 
specific types of variants, the comparison group similarly included 
those not identified as carriers of likely deleterious variants. When 
testing smaller subgroups of individuals, the individuals previously 
identified as putatively deleterious variant carriers were removed from 
the comparison group. To define phenotypic deviators, we used the 
highest and lowest fluid intelligence scores (0 and 1 versus 11, 12 and 13) 
and the top and bottom categories for qualifications (no qualifications 
recorded versus having a degree).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
The UK Biobank data are publicly available to approved researchers at 
https://biobank.ndph.ox.ac.uk/showcase/. The list of genes used for 
the analyses described in this paper are included in Supplementary 
Table 1, and the updated versions of DDG2P can be downloaded at 
https://www.ebi.ac.uk/gene2phenotype/.

Code availability
STATA scripts are available as Supplementary Data.
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Ethics oversight Ethical approval was provided by UK Biobank
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