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Genome-wide prediction of disease variant 
effects with a deep protein language model

Nadav Brandes    1, Grant Goldman2, Charlotte H. Wang    3, 
Chun Jimmie Ye    1,4,5,6,7,8,9   & Vasilis Ntranos    4,8,9,10 

Predicting the effects of coding variants is a major challenge. While 
recent deep-learning models have improved variant effect prediction 
accuracy, they cannot analyze all coding variants due to dependency on 
close homologs or software limitations. Here we developed a workflow 
using ESM1b, a 650-million-parameter protein language model, to predict 
all ~450 million possible missense variant effects in the human genome, 
and made all predictions available on a web portal. ESM1b outperformed 
existing methods in classifying ~150,000 ClinVar/HGMD missense variants 
as pathogenic or benign and predicting measurements across 28 deep 
mutational scan datasets. We further annotated ~2 million variants as 
damaging only in specific protein isoforms, demonstrating the importance 
of considering all isoforms when predicting variant effects. Our approach 
also generalizes to more complex coding variants such as in-frame indels 
and stop-gains. Together, these results establish protein language models as 
an effective, accurate and general approach to predicting variant effects.

Determining the phenotypic consequences of genetic variants, known 
as variant effect prediction (VEP), is a key challenge in human genet-
ics1–4. Coding variants altering the amino acid sequences of proteins 
are of special interest due to their enrichment in disease associations, 
better-understood mechanisms and therapeutic actionability5–8. Most 
naturally occurring coding variants are missense, substituting one 
amino acid with another9. Despite progress in functional genomics 
and genetic studies, distinguishing protein-disrupting damaging 
variants from neutral ones remains a challenge. Furthermore, most 
human genes are alternatively spliced, and the same variant may be 
damaging to some protein isoforms but neutral to others, depend-
ing on interactions with the rest of the protein. Thus, most missense 
variants remain as variants of uncertain significance (VUS), limiting 
the utility of exome sequencing in clinical diagnosis2,10. VEP is even 

more challenging for coding variants affecting multiple residues 
such as in-frame indels.

Experimental approaches for VEP such as deep mutational scans 
(DMS)11 and Perturb-seq12 can measure molecular and cellular pheno-
types across thousands of variants simultaneously. However, these 
endophenotypes are imperfect proxies for the relevant clinical phe-
notypes and remain difficult to scale genome-wide13,14. In contrast, 
computational methods that learn the biophysical properties or evo-
lutionary constraints of proteins could theoretically cover all cod-
ing variants15–17. While most computational methods are trained on 
labeled data of pathogenic versus benign variants10, unsupervised 
homology-based methods predict variant effects directly from multi-
ple sequence alignments (MSA) without training on labeled data. EVE, 
an unsupervised deep-learning method implementing a generative 
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One of the largest protein language models is ESM1b, a publicly avail-
able 650-million-parameter model trained on ~250 million protein 
sequences20. It was demonstrated to predict, without further training, 
variant effects correlated with DMS experiment results25.

However, several limitations have restricted the use of ESM1b for 
VEP. First, the model’s input sequence length is limited to 1,022 amino 
acids, excluding ~12% of human protein isoforms. Second, while evalu-
ated on DMS data across 32 genes (10 from humans)25, it has remained 
unknown how the model performs at predicting the clinical impact of 
coding variants genome-wide. Finally, using ESM1b requires software 
engineering proficiency, deep-learning expertise and high-memory 
GPUs, which together create a technical barrier for widespread use.

Here we implemented a workflow generalizing ESM1b to protein 
sequences of any length and used it to predict all ~450 million possible 
missense variant effects across all 42,336 protein isoforms in the human 
genome. We evaluated our workflow on three different benchmarks and 

variational autoencoder, was recently shown to outperform supervised 
methods4. However, due to their reliance on MSA, homology-based 
methods provide predictions only for a subset of well-aligned proteins 
and residues. Moreover, because alternative isoforms of the same gene 
have identical homologs, it is unclear whether they can distinguish the 
effects of variants on different isoforms.

Another deep-learning approach to VEP uses protein language 
models, a technique derived from natural language processing. These 
are deep neural networks trained to model the space of known protein 
sequences selected throughout evolution as captured by large protein 
datasets such as UniProt18 (Fig. 1a). Notably, protein language models 
do not require explicit homology and can estimate the likelihood of 
any possible amino acid sequence. They have been shown to implic-
itly learn how protein sequence determines many aspects of protein 
structure and function, including secondary structure, long-distance 
interactions, post-translational modifications and binding sites19–24. 
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Fig. 1 | ESM1b predicts variant effects without homology coverage. a, ESM1b is 
a 650-million-parameter protein language model trained on 250 million protein 
sequences across all organisms. The model was trained via the masked language 
modeling task, where random residues are masked from input sequences and 
the model has to predict the correct amino acid at each position (including the 
missing residues). b, Illustration of the ESM1b model’s input (an amino acid 
sequence) and output (LLR of effect scores for all possible missense variants).  

c, The distribution of MSA coverage (that is, the fraction of a protein’s residues 
that are aligned) across ~3,000 disease-related proteins covered by EVE.  
d, Examples of the model’s capacity to detect protein domains and functional 
regions, including outside MSA coverage, across the following three human 
proteins: SPAST, SLC7A3 and ARX. Each heatmap visualizes the LLR scores across 
all 20 × L possible missense variants (where L is the protein length). Protein 
domains without MSA coverage are highlighted in orange.
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compared it to 45 other VEP methods. Our workflow outperforms all 
compared methods in classifying variant pathogenicity (as annotated 
by ClinVar10 and HGMD26) and predicting DMS experiments. We further 
demonstrate the capacity of ESM1b to assess variant effects in the 
context of different protein isoforms, identifying isoform-sensitive 
variants in 85% of alternatively spliced genes. Finally, we present a 
scoring algorithm that generalizes ESM1b to variants affecting mul-
tiple residues and demonstrates the model’s accurate predictions 
over in-frame indels and stop-gain variants. We created a web portal 
allowing users to query, visualize and download missense VEPs for all 
human protein isoforms (accessible at https://huggingface.co/spaces/
ntranoslab/esm_variants).

Results
Predicting the effects of all possible missense variants in the 
human genome
We developed a modified ESM1b workflow and applied it to obtain 
a complete catalog of all ~450 million missense variant effects on all 
42,336 known human protein isoforms. Each variant’s effect score is 
the log-likelihood ratio (LLR) between the variant and wild-type (WT) 
residue (Fig. 1b). Unlike homology-based models currently available 
only for a subset of human proteins and residues with MSA coverage (for 
example, 84% of the residues in ~3,000 disease genes covered by EVE; 
Fig. 1c), ESM1b predicts the effects of every possible missense variant.

Protein regions with many possible mutations predicted by ESM1b 
as damaging often align with known protein domains (Fig. 1d). As 
illustrated for SPAST, SLC7A3 and ARX, these domains may reside out-
side MSA coverage and be unsuitable for homology-based models 
(Fig. 1d), yet harbor disease-associated variants. For example, the 
microtubule-interacting and trafficking (MIT) domain in SPAST con-
tains missense variants implicated in hereditary spastic paraplegias27, 
the CAT C domain in SLC7A3 contains an autism-linked variant (S589T)28 
and multiple domains in ARX outside MSA coverage (highlighted in 
Fig. 1d) contain missense variants linked to intellectual disability29–32.

ESM1b outperforms other VEP methods over clinical and 
experimental benchmarks
To assess the performance of ESM1b in predicting the clinical impact 
of variants, we compared the model’s effect scores between patho-
genic and benign variants in two datasets. The first dataset contains 
pathogenic and benign variants annotated in ClinVar10 and the sec-
ond includes variants annotated by HGMD as disease-causing26 and 
benign variants from gnomAD (defined by allele frequency >1%)9. Only 
high-confidence variants were included (Supplementary Methods). 
The distribution of ESM1b effect scores shows a substantial difference 
between pathogenic and benign variants in both datasets (Fig. 2a). 
Moreover, pathogenic and benign variants show consistent distri-
butions across the two datasets, suggesting that the predictions are 
well-calibrated. Using an LLR threshold of −7.5 to distinguish between 
pathogenic and benign variants yields a true-positive rate of 81% and 
a true-negative rate of 82% in both datasets.

Comparing ESM1b and EVE as classifiers of variant pathogenic-
ity, ESM1b obtains a receiver operating characteristics–area under 
the curve (ROC-AUC) score of 0.905 for distinguishing between the 
19,925 pathogenic and 16,612 benign variants in ClinVar (across 2,765 
genes), compared to 0.885 for EVE. On HGMD/gnomAD (with 27,754 
disease-causing and 2,743 common variants across 1,991 genes), ESM1b 
obtains a ROC-AUC score of 0.897 compared to 0.882 for EVE (Fig. 2b). 
We also considered a gene-specific ROC-AUC metric, where ESM1b 
performs slightly worse. However, we consider the global metric more 
suited for genome-wide scanning of disease variants, where compar-
ing variants across different genes is often necessary (Extended Data 
Fig. 1b and Methods).

The ROC curve shows the true-positive rate (percentage of path-
ogenic variants successfully predicted as such) for every possible 
false-positive rate (of benign variants mistakenly predicted patho-
genic). While the ROC-AUC metric assesses overall model performance 
by integrating overall false- and true-positive rates, clinical applications 
usually require low false-positive rates. At a false-positive rate of 5%, 
ESM1b obtains a 60% true-positive rate compared to 49% for EVE over 
ClinVar and 61% compared to 51% over HGMD/gnomAD (Extended Data 
Fig. 1a), showing a substantial margin at the clinically relevant regime 
of the ROC curve.

Having established the high accuracy of ESM1b as a classifier of 
variant pathogenicity, we sought to predict the effects of VUS in Clin-
Var. To that end, we modeled the distribution of ESM1b effect scores 
across VUS as a Gaussian mixture with two components (Fig. 2c). These 
two fitted distributions align well with the distributions for annotated 
pathogenic and benign variants (Fig. 2d). According to this model, we 
estimate that about 58% of missense VUS in ClinVar are benign and 
about 42% are pathogenic.

In addition to EVE, we compared ESM1b to 44 other VEP methods, 
including all functional prediction methods and conservation scores 
from the Database for Nonsynonymous SNPs’ Functional Predictions 
(dbNSFP)33. For clinical benchmark comparisons, we only consid-
ered methods that (1) were not trained on clinical databases such as  
ClinVar and HGMD or used features from methods trained on such 
data, and (2) do not use allele frequency as a feature, as it is often used 
to curate variants as benign. Of the 46 methods, 19 (including ESM1b 
and EVE) satisfy these criteria for an unbiased comparison. Over the 
set of variants reported by all 19 methods, ESM1b outperforms all other 
methods on both ClinVar and HGMD/gnomAD (Fig. 2e,f). Similarly, 
ESM1b outperforms each method separately on its respective set of 
reported variants (Fig. 2g,h). All head-to-head comparisons were statis-
tically significant with P < 0.001. Evaluation results for all 46 methods, 
including those excluded for data leakage concerns, are reported in 
Supplementary Table 2.

We further compared all 46 VEP methods in their ability to predict 
experimental measurements from DMS. The full DMS benchmark 
consists of 28 assays covering 15 human genes (166,132 experimental 
measurements over 76,133 variants; Supplementary Table 1). We com-
pared 43 of the methods against a subset of 16,049 variants across 11 

Fig. 2 | ESM1b is suitable for genome-wide disease prediction of coding 
variants. a, Top: the distribution of ESM1b effect scores across two sets of 
variants that are assumed to be mostly pathogenic (‘ClinVar: pathogenic’ and 
‘HGMD: disease causing’) and two sets of variants assumed to be mostly benign 
(‘ClinVar: benign’ and ‘gnomAD: MAF > 0.01’). Bottom: Venn diagram of the 
variants extracted from HGMD, ClinVar and gnomAD. b, Comparison between 
ESM1b and EVE in their capacity to distinguish between pathogenic and benign 
variants (measured by global ROC-AUC scores), as labeled by ClinVar (36,537 
variants in 2,765 unique genes) or HGMD/gnomAD (30,497 variants in 1,991 
unique genes). c, The distribution of ESM1b effect scores across ClinVar missense 
VUS, decomposed as a mixture of two Gaussian distributions capturing variants 
predicted as more likely pathogenic (orange) or more likely benign (blue). 
d, The distribution of ESM1b effect scores across all common ClinVar labels, 

including the two Gaussian components from c. Boxes mark Q1–Q3 of the 
distributions, with midpoints marking the medians (Q2) and whiskers stretching 
1.5× IQR. Altogether there are ~300,000 missense variants labeled in ClinVar. 
e,f, Evaluation of 19 VEP methods against the same two benchmarks: ClinVar (e) 
and HGMD/gnomAD (f). Performance was measured by two metrics for binary 
classification as follows: ROC-AUC (light red) and a balanced version of PRC-AUC 
(light blue; Methods). Performance was evaluated on the sets of variants available 
for all 19 methods. g,h, Head-to-head comparison between ESM1b and each 
of the 18 other VEP methods over the same two dataset benchmarks (in terms 
of ROC-AUC). Because ESM1b provides scores for all missense mutations, the 
comparison against each other method is performed on the set of variants with 
effect predictions for that method. The percentage of variants considered for 
each method is shown at the bottom of each bar. IQR, interquartile range.
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genes reported by these methods (excluding 3 methods that would 
have greatly reduced the number of shared variants; Methods). ESM1b 
is ranked highest with a mean Spearman’s correlation of 0.426 between 
its effect scores and the experimental measurements (Fig. 3a), followed 
by DEOGEN2 (0.423), REVEL (0.419) and EVE (0.418). DEOGEN2 and 

REVEL are supervised methods, whereas EVE, like ESM1b, is an unsu-
pervised method. Comparing ESM1b and EVE head-to-head against the 
64,580 variants with EVE scores (across 15 genes) shows a similar trend 
(Fig. 3b and Extended Data Fig. 1c). Likewise, ESM1b outperforms all  
45 other methods over the set of variants reported by each method 
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Fig. 3 | ESM1b predicts the effects of experimental measurements from DMS. 
a, Evaluation of 43 VEP methods (including ESM1b and EVE) on a DMS benchmark 
containing 28 assays over 15 different human genes (Supplementary Table 1). Of 
the entire set of 76,133 variants in 15 genes, 16,049 variants in 11 genes obtained 
effect scores by all 43 VEP methods. We excluded 3 VEP methods, VARITY_ER, 
VARITY_R and MTBAN (Methods), which would have dramatically reduced the 
number of variants and genes shared by all methods. The methods are sorted 
by the average Spearman’s correlation between each method’s scores and the 
experimental scores. b, The performance of ESM1b and EVE over the 15 individual 
genes in the DMS benchmark. The average performance of each method is 
marked by a dashed line. Because ESM1b can process all missense variants (while 
EVE assigns scores only for a subset of them), the performance of ESM1b is shown 
either for all variants (‘all variants’) or the subset of variants with EVE scores 

(‘same variants’). c, Head-to-head comparison between ESM1b and each of the 
other 45 VEP methods on the DMS benchmark, where each method is compared 
against the set of variants with predictions for that method. The number of 
unique genes and percentage of variants with predictions for each method are 
shown in squared brackets and parentheses, respectively. One-tailed P values 
indicating significant differences from ESM1b are shown at the beginning (left) of 
the bars. Methods are sorted by the difference in average Spearman’s correlation 
between ESM1b and each of the other methods. Comparisons against methods 
not evaluated on clinical DBs are grayed out. d, The distribution of ESM1b effect 
scores for variants in annotated protein domains (red) versus variants outside 
of domains (gray). The distribution of benign variants (as in Fig. 2a) is shown 
for reference. e, Average ESM1b effect score (and s.d.) as a function of allele 
frequency over all gnomAD missense variants.
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(Fig. 3c and Extended Data Fig. 2), with 37 of 45 comparisons statisti-
cally significant (P < 0.05).

Two additional analyses further demonstrate the functional interpre-
tation of ESM1b predictions. First, as illustrated by individual examples 
(Fig. 1d), missense variants within domains have more negative (damag-
ing) effect scores, while those outside domains resemble benign variants 
(Fig. 3d). Second, ESM1b effect scores track well with allele frequency, 
with common variants predicted less damaging (Fig. 3e), consistent 
with purifying selection eliminating highly deleterious mutations34,35.

ESM1b can predict variant effects on alternative protein isoforms
As a protein language model, ESM1b assesses each variant in the con-
text of the input amino acid sequence, allowing the same variant to be 
assessed in the context of different protein isoforms. A variant might be 
damaging to some isoforms but not others, possibly due to interactions 
with alternatively spliced domains (Fig. 4a). For example, comparing 
ESM1b scores between the primary and a shorter isoform of P53 (known 

as Δ133p53β)36, we found 170 variants (mostly near the splice junctions) 
with substantially different scores (LLR difference > 4), including three 
ClinVar variants annotated as VUS (Fig. 4b).

We found 3,477 missense variants in ClinVar with substantial dif-
ferences in predicted effects (LLR s.d. > 2) across isoforms (Fig. 4c). 
Notably, we only considered reviewed, manually curated protein iso-
forms (Supplementary Methods). These 3,477 variants include 148 
(4%) benign or likely benign, 437 (13%) pathogenic or likely pathogenic 
and 2,892 (83%) VUS. Interestingly, these VUS mirror the effect score 
distribution of pathogenic variants when considering the most damag-
ing isoform, and benign variants when considering the least damaging 
isoform (Fig. 4c). Like P53, many clinically important genes have a 
large number of ClinVar variants with high effect score variance across 
isoforms, including BRCA1, IRF6 and TGFB3 (Fig. 4d).

Beyond the ~5,000 ClinVar genes, we searched for isoform-specific 
effects across all possible missense variants in all 20,360 coding human 
genes. We define a variant to be isoform-sensitive according to ESM1b 
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if (1) it is likely benign (LLR > −7) in one isoform, (2) likely pathogenic 
(LLR < −8) in another and (3) these two predictions are substantially 
different (LLR difference > 4). We identified ~1.8 million such variants 
across ~9,000 genes, which is 85% of all genes with manually curated 
alternative isoforms (Fig. 5a). Isoform-sensitive variants (ISV) are more 

likely to occur near splice junctions and in genes with splicing-disrupted 
protein domains, as opposed to domains that are either included intact 
or removed entirely during splicing (Fig. 5b).

Splicing events can dramatically influence predicted variant 
effects. For example, the second isoform of MEN1, a tumor suppressor 
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involved in many cancers, differs from the primary isoform by only 
five amino acids deleted at positions 149–153. Differences in predicted 
variant effects between the isoforms suggest that this small deletion 
introduces a 30 amino acid region that is more prone to damaging 
variants in the second MEN1 isoform (Fig. 5c). Multiple studies have 
associated missense variants in that region with cancer, suggesting 
that it may be functional37–42. A 2017 study found aberrant expression 
of the second MEN1 isoform in tumors, but the functional differences 
between the two isoforms remain uncharacterized43. Comparing pre-
dicted three-dimensional (3D) structures44, we observe a small surface 
pocket introduced by the five amino acid deletion (Fig. 5c), further 
supporting its functional relevance. However, caution is advised when 
using one computational model (AlphaFold) to validate the predictions 
of another (ESM1b).

Transforming growth factor beta-3 (TGFB3) provides another 
example of isoform-sensitive variants. This proprotein is cleaved into 
two chains, LAP and TGFβ-3, that form a functional dimer. However, an 
alternative truncated isoform lacks the TGFβ-3 chain. ESM1b predicts 
many variants in the LAP chain as neutral only in the context of the trun-
cated isoform, despite being over 200 residues away from the absent 
TGFβ-3 chain. While distant along the one-dimensional sequence, 

structure prediction from AlphaFold44 suggests close contact between 
these regions in 3D space (Fig. 5d).

ESM1b can predict the effects of multiresidue variants
Unlike most VEP methods, protein language models can assess any 
amino acid sequence and, therefore, be leveraged to predict the effects 
of any coding mutation, including in-frame indels and stop gains. We 
use the term ‘indels’ to include insertions, deletions and deletion–inser-
tion (delins) combinations. We defined the effect score of an in-frame 
indel to be the pseudo-log-likelihood ratio (PLLR) between the mutated 
and WT amino acid sequences, where the pseudo-log-likelihoods were 
estimated with ESM1b (Fig. 6a). Pathogenic indels, like missense vari-
ants, exhibit lower effect scores than benign indels (Fig. 6a).

We compared ESM1b to other models as a classifier of pathogenic 
versus benign in-frame indels (Fig. 6b). We considered the following 
three variations of ESM1b PLLR scores: (1) vanilla PLLR, (2) weighted 
PLLR (accounting for indel size) and (3) absolute-valued PLLR, which 
considers functional changes as damaging whether they increase or 
decrease likelihood (Methods). The absolute-value PLLR marginally 
outperforms (ROC-AUC = 0.874) the vanilla (0.869) and weighted 
PLLR (0.861). All variations of ESM1b PLLR scores outperform CADD 
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versions of ESM1b-based effect scores, CADD (a supervised VEP method) and 
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effect scores (Methods). Right: partitioning of the 3,470 in-frame indels into 
deletions, insertions and deletion–insertion combinations (delins). c, Functional 

effect scores are also assigned to stop-gain variants, defined as the LLR score 
assigned to the missense variant predicted to be the most deleterious among all 
possible missense variants in the lost region of the protein. Illustrated example: 
substitution of a glutamine into a stop codon at position 25. d, Assessment of 
ESM1b and three baseline models as classifiers of pathogenic versus benign 
stop-gain variants, over variants expected to either (1) not undergo NMD (3,672 
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around the mean (estimated by bootstrapping).
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(0.835) which, unlike most VEP methods supporting indels, was not 
directly trained on ClinVar and could therefore be evaluated. The per-
formance gap is especially significant for delins variants (ESM1b = 0.887, 
CADD = 0.671). Both ESM1b and CADD outperformed the following 
three baseline models: (1) edit distance (0.501), (2) pairwise sequence 
alignment (0.586) and (3) BlastP (0.581). We also computed ESM1b 
effect scores for all in-frame indel VUS in ClinVar and approximated this 
distribution as a mixture of the pathogenic and benign distributions 
(Extended Data Fig. 3), estimating that 52% of these indels are patho-
genic (compared to 42% pathogenicity rate estimated for missense VUS).

Stop-gain variant effects can be predicted from the ESM1b scores 
for missense variants, by assigning each stop-gain an effect score 
determined by the lowest (that is most damaging) LLR score across all 
possible missense variants in the lost region following the new stop 
codon (Fig. 6c). Notably, ESM1b is a protein language model trained to 
assess protein sequence variations, while the effects of stop-gains are 
often at the transcript level through nonsense-mediated decay (NMD). 
Indeed, ESM1b is a good classifier for variants not resulting in NMD 
according to the 50 bp rule45 (ROC-AUC = 0.734) but performs poorly 
(0.565) over variants expected to cause NMD (Fig. 6d). Over the set 
of non-NMD variants, ESM1b substantially outperforms two baseline 
models scoring stop-gains based on the total number of residues lost 
(0.649) or their fraction of the WT protein length (0.599).

Discussion
A comprehensive evaluation shows that ESM1b outperforms other 
state-of-the-art VEP methods at distinguishing pathogenic from benign 
variants across ClinVar and HGMD/gnomAD, and at predicting effects 
reported by DMS assays. As a protein language model that does not 
explicitly rely on homology, ESM1b offers several additional advantages 
for VEP. As an unsupervised method, ESM1b poses no risk of informa-
tion leakage from the training to the test sets in clinical (for example, 
ClinVar and HGMD) or population genetics (for example, gnomAD) 
datasets, allowing accurate and unbiased evaluation. Prediction with 
ESM1b is much simpler and faster than with homology-based methods 
because only a single input sequence is required once a universal model 
has been trained. Notably, protein language models can provide predic-
tions for every possible amino acid sequence and are applicable to all 
coding variants. In this work, the generalizability of ESM1b has been 
demonstrated for (1) variants outside MSA coverage, (2) variants with 
different effects on alternative protein isoforms, (3) in-frame indels 
and (4) stop-gain variants.

While homology-based VEP methods like EVE have a strong track 
record4, many important protein domains and variants are outside MSA 
coverage. Including regions with more distant homologs increases 
coverage but reduces MSA quality and method performance. Pro-
tein language models, on the other hand, are not directly affected 
by this tradeoff, as they are trained over all available sequences. 
Some recent strategies have integrated protein language models 
with homology-based methods, building on the complementary 
strengths of these two approaches and yielding promising prediction 
accuracy46,47.

Our workflow is unique in its ability to predict variant effects across 
alternative isoforms, unlike existing methods that can only determine 
whether a variant is included in an expressed isoform48 but not predict 
its unique effect in the context of that isoform. We highlighted 3,477 
ClinVar missense variants with variable predicted effects between 
isoforms, present in many disease-causing genes including BRCA1, IRF6 
and TGFB3. Across the genome, ~1.8 million variants in ~9,000 genes 
were predicted to be isoform sensitive. While these numbers depend 
on definition thresholds, isoform-sensitive effects are clearly abun-
dant. These variants tend to occur near splice sites and within genes 
containing splicing-disrupted domains, suggesting local effects, but 
some splicing events are predicted to influence much larger or distant 
protein regions. By combining isoform-specific effect predictions 

with isoform expression data (for example, from GTEx49), one could 
potentially trace the tissue affected by pathogenic variants.

Other concurrent works exploring ESM models for VEP over clini-
cal and DMS data have obtained results largely consistent with ours, 
establishing protein language models as leading methods for this 
task50,51. By addressing the protein length limitation, our framework 
allows genome-wide predictions for all coding variants. Consequently, 
we compiled a complete catalog of all possible missense variant effects 
in the human genome (https://huggingface.co/spaces/ntranoslab/
esm_variants). We further extended ESM1b to predict the effects of 
multiresidue variants, demonstrating good performance over in-frame 
indels (including deletion–insertion combinations) and stop-gains. 
While numerous VEP methods target missense variants, fewer can 
score more complex amino acid changes, with most trained on clinical 
databases like ClinVar.

Our framework comes with some limitations. Unlike VEP meth-
ods that use genomic features to assess variant effects at the DNA or 
transcript level, protein language models consider only amino acid 
changes. This limitation is demonstrated by the poor performance of 
ESM1b over variants leading to NMD. Similarly, ESM1b is not expected 
to detect variant effects on splicing52, but as shown, it can uncover 
isoform-specific effects at the protein level. Another limitation of 
the current framework is the lack of an explicit confidence metric for 
individual predictions, a feature offered by some VEP methods for 
quality control. Notably, this is not an inherent limitation of ESM1b or 
other protein language models, and future research will likely yield 
algorithms for quantifying prediction uncertainty. Finally, for the ~12% 
of human proteins too long for ESM1b to process as a single sequence, 
we employed a sliding window approach (Methods), which we expect 
to fail at detecting extremely distant interactions, specifically between 
residues separated by more than 1,022 amino acids.

We anticipate that our framework and public resource will be use-
ful for a broad range of human genetics tasks. For diagnosing Mendelian 
diseases, integrating ESM1b effect scores with other information could 
help resolve the ambiguity of VUS. This remains a pressing need given 
the high prevalence of VUS in clinical sequencing10, which leaves many 
patients without a clear diagnosis2,53–55. For genetic association studies, 
using effect scores as priors could improve the power of variant burden 
tests and statistical fine-mapping1. For protein engineering, it has been 
shown that ESM1b effect scores can nominate gain-of-function variants 
with therapeutic benefits56. Lastly, using protein language models for 
VEP can provide insights into protein function, such as discerning 
functional differences between alternative isoforms or identifying 
protein domains and other functional units.

Over the past decades, computational VEP methods have dramati-
cally improved4. Given the results presented in this work, and in line 
with the performance of language models in protein research19,20,25,57 
and general machine learning58,59, protein language modeling stands 
out as one of the most promising approaches to determine the clinical 
and biological consequences of genetic variants. It has been shown 
that as language models scale in the number of parameters and train-
ing data, they tend to substantially improve19,58 (although this may not 
always be straightforward60). We expect that the trend of larger and bet-
ter protein language models will continue to benefit and improve VEP.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01465-0.
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Methods
This study did not require any ethical approval.

ESM1b
In this study, we have leveraged and expanded the use of ESM1b, a 
protein language model developed by MetaAI20. The code and pre-
trained parameters for ESM1b (and other ESM models) were taken 
from the model’s official GitHub repository at https://github.com/
facebookresearch/esm. Throughout this work, we used the esm1b_
t33_650M_UR50S model (downloaded from https://dl.fbaipublicfiles.
com/fair-esm/models/esm1b_t33_650M_UR50S.pt). Other ESM models, 
which are subtle variations of ESM1b, also exist and have been sug-
gested specifically for the task of VEP (for example, ESM1v)25. Com-
parison of all ESM models, including ESM1b, ESM1 and the five ESM1v 
models, indicates that ESM1b is the best-performing ESM model over 
the three benchmarks used in this work, while an ensemble ESM1v 
model averaging the predictions of the five individual ESM1v models 
slightly outperforms ESM1b (Extended Data Fig. 4). In this work, we 
sought to explore the potential of a protein language model as a VEP 
method and therefore focused on a nonensemble model (ESM1b).

Missense effect scores
ESM1b can compute the LLR scores for all possible missense mutations 
in a protein through a single pass of the neural network. With the WT 
amino acid sequence as input, ESM1b outputs the log-likelihood of 
each of the 20 standard amino acids (including the WT amino acid) at 
each position of the protein sequence. The LLR score of each mutation 
is the difference between the log-likelihood of the missense and WT 
amino acids at that position (Fig. 1b). Proteins longer than 1,022 amino 
acids are tiled through the sliding window approach described in the 
‘Handling long sequences’ section below.

Handling long sequences
ESM1b, using learned positional embeddings and self-attention (which 
grows quadratically in memory and compute), is limited to sequence 
lengths of up to 1,022 amino acids20. However, ~12% of human proteins in 
UniProt exceed this length18. To overcome this limitation, we employed 
a sliding window approach, subdividing longer sequences into over-
lapping 1,022 amino acid windows with at least 511 amino acid overlap 
(Extended Data Fig. 5). Each protein sequence was tiled by iteratively 
generating 1,022 amino acid window from both ends of the sequence 
such that consecutive windows had exactly 511 amino acid overlap 
until windows from both ends met at the center. If the overlap between 
the central windows was less than 511 amino acids, an additional 1,022 
amino acid window was added at the center. The window subsequences 
were provided as inputs for ESM1b to compute the LLR scores for 
all missense variants (each variant with respect to all the windows 
containing it). With most residues covered by multiple overlapping 
windows (up to three windows, by construction), final variant effect 
scores were determined by a weighted average approach. To mitigate 
potential edge effects, weights near window edges were constructed 
with a sigmoid function (Extended Data Fig. 5a). A variant’s final effect 
score was calculated by (w(i1) × s1+…+w(ik) × sk) / (w(i1)+…+w(ik)),  
where s1,…,sk are the effect scores of the variant in the context of each 
of the k windows containing it (1 ≤ k ≤ 3), i1,…,ik are the variant’s posi-
tions in these windows, and w is the window weight function (Extended 
Data Fig. 5b–e).

We also considered other methods for tiling long sequences and 
aggregating effect scores across the 1–3 windows covering each variant. 
Besides the described weighted average, we tested (1) simple average 
(that is, without weights), (2) minimum (that is, the most damaging 
effect score), (3) maximum (that is, least damaging) and (4) placing the 
variant at the center of a single window. We compared the approaches in 
two complementary ways. First, we evaluated the five tiling approaches 
over the ClinVar benchmark with varying window sizes (Extended Data 

Fig. 6a), finding, as expected, that performance improves with window 
size. At a window size of 1,022 amino acids (the maximum supported 
by ESM1b), no approach outperformed the weighted average. Notably, 
placing each variant at the center of a single window is too inefficient 
for a genome-wide analysis as it processes each variant individually, 
whereas sliding window approaches invoke ESM1b once to process all 
the mutations in each window. As a second comparison, we quantified 
the error induced by using multiple windows as opposed to a single 
window (over short enough sequences that fit in one window). Once 
again, none of the alternative approaches is superior at the maximum 
window sizes (Extended Data Fig. 6b). Due to the compute burden, we 
omitted the variant-at-the-center approach in this comparison, con-
sidering instead a sliding window approach without overlap between 
consecutive windows.

Generalized effect scores for indels and stop-gain variants
Unlike missense effect scores, computing generalized effect scores for 
in-frame indels requires the neural network to be invoked separately 
on each mutated sequence. The pseudo-log-likelihood of a sequence 
s = s1,…, sL is calculated as PLL(s) = ∑L

i=1 log Pr(xi = si|s) , where L is the 
sequence length, si is the amino acid at position i, and log Pr(xi = si|s) is 
the log-likelihood predicted by ESM1b for observing the input amino 
acid si at position i given the entire input sequence s. In this framing, 
the output of ESM1b is considered a sequence of random variables 
x = x1,…,xL, where xi expresses the probabilities of observing each of 
the 20 standard amino acids at position i. The effect score of an in-frame 
indel is the PLLR between the mutated and WT sequences: 
PLL(smut) − PLL(sWT) (Fig. 6a).

Given the protein length limit of ESM1b, if either the WT or mutated 
sequences exceed 1,022 amino acids, PLLR is calculated using subse-
quences that satisfy this constraint. These subsequences include the 
region deleted and/or inserted by the indel together with unaffected 
regions before and after the indel (which are included as context for 
both the WT and mutated sequences). Before the indel, we include 
a segment of 511 residues (or as many as there are). After the indel, 
we include the number of residues that would complete the overall 
length to 1,022 amino acids, considering the longer between the WT 
or mutated sequence. The PLLs for the mutated and WT sequences are 
then calculated with respect to that window.

We refer to the PLLR score described above as ‘vanilla’ PLLR, while 
also considering the following two minor variations: (1) weighted PLLR 
and (2) absolute-valued PLLR (Fig. 6b). The weighted PLLR aims to 
account for a potential bias when the WT and mutated sequences have 
different lengths. Because LLR subtracts the sum of log-likelihoods 
across WT positions from that of the mutated sequence, there is a 
concern for subtracting incomparable values if the WT sequence 
length LWT is too different from the mutated sequence length Lmut. The 
weighted PLLR attempts to correct for that by replacing the vanilla 

subtraction PLL(smut) − PLL(sWT) with 1
Lmut

PLL(smut) − 1
LWT

PLL(sWT) . 

The fact that the weighted PLLR does not outperform the vanilla 
PLLR (Fig. 6b) suggests that PLL scores predicted by ESM1b are over-
all well-calibrated likelihood estimates for sequences of varying 
lengths. The absolute-valued PLLR replaces the vanilla subtraction 
with |PLL(smut) − PLL(sWT)|. The rationale for this transformation is to 
also consider variants that dramatically increase the overall likelihood 
of a protein as potentially pathogenic. For example, a gain-of-function 
mutation may appear more likely from an evolutionary perspective, 
yet such mutations are often pathogenic.

To score stop-gain variants, we initially compute missense LLR 
scores for the entire protein sequence (invoking the sliding window 
approach if needed). The effect score of a stop-gain variant is then 
chosen to be the lowest LLR score (that is predicted most damaging) 
among all possible missense mutations in the lost region (Fig. 6c). The 
rationale is to assess how important the lost region at the end of the 
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protein is to its function, and assign lower scores the more functionally 
important it is. As demonstrated by the analysis of protein domains 
(Figs. 1d and 3d), functionally important protein regions contain mis-
sense mutations with lower ESM1b scores.

AUC metrics for pathogenicity classification
To compare the performance of ESM1b and other VEP methods 
as variant pathogenicity classifiers, we primarily used ROC-AUC  
(Fig. 2b,e–h), the standard evaluation metric for binary classifiers61. 
In addition to ROC-AUC, which considers the tradeoff between the 
true- and false-positive rates (Extended Data Fig. 1a), we also used a 
balanced version of the PRC-AUC metric, which considers the tradeoff 
between precision and recall (Fig. 2e,f). Unlike ROC-AUC, PRC-AUC 
is generally sensitive to label imbalance (that is, an uneven split of 
pathogenic/benign variants) in the evaluation dataset. To balance this 
metric, we randomly downsampled each dataset into an equal number 
of pathogenic and benign variants (80% of the variants in the minority 
class) and calculated the PRC-AUC over the balanced dataset. To obtain 
accurate scores, we repeated downsampling 100 times and calculated 
the average of the resulting PRC-AUC scores.

We treated the entire set of pathogenic and benign variants (from 
ClinVar10 or HGMD/gnomAD9,26) as a single genome-wide classification 
task to calculate a global ROC-AUC. This is somewhat different from the 
gene-average ROC-AUC reported in the publication introducing EVE4. 
Under the gene-average approach, each gene was evaluated separately, 
yielding a gene-specific ROC-AUC for the 1,654 human genes with at 
least one annotated ClinVar variant per class (pathogenic/benign). 
Averaging across these genes gave the gene-average ROC-AUC. ESM1b 
is consistently superior to all other methods according to the global 
ROC-AUC (Fig. 2b,e–h), while EVE is somewhat superior according 
to the gene-average ROC-AUC over this subset of genes (Extended 
Data Fig. 1b). This suggests that ESM1b provides scores that are more 
consistent and comparable across different genes, which may be 
attributed to EVE being an assembly of multiple gene-specific mod-
els, whereas ESM1b is a universal model trained over all known protein 
sequences. We argue that global ROC-AUC is usually more informative 
than gene-average ROC-AUC for VEP, as diagnosing genetic diseases 
often involves comparing variants across multiple genes, requiring 
well-calibrated scores.

In Fig. 6d, we estimated uncertainty for the ROC-AUC metrics 
through bootstrapping. In each bootstrapping iteration, we randomly 
sampled 140 pathogenic and 140 benign variants from each of the three 
groups of stop-gain variants (3,672 pathogenic and 147 benign variants 
not expected to lead to NMD, 32,441 pathogenic and 198 benign variants 
expected to lead to NMD, and 36,113 pathogenic and 345 benign vari-
ants overall). Following 20 iterations, we calculated the mean ROC-AUC 
and s.d. (presented as error bars in Fig. 6d) for each condition.

Other VEP methods
Other than ESM1b and EVE, we evaluated 44 other VEP methods  
(Figs. 2 and 3). Predicted effect scores for most VEP methods were taken 
from dbNSFP33. We used the dbnsfp4.3a.zip file from the dbNSFP web-
site (http://database.liulab.science/dbNSFP). We excluded LINSIGHT 
(which had too few variants for reliable evaluation) and three versions 
of fitCons based on the H1-hESC, HUVEC and GM12878 cell lines (which 
showed near random performance on ClinVar and HGMD/gnomAD). 
We further included two other recent state-of-the-art methods not 
reported in dbNSFP—VARITY (consisting of the following two versions: 
VARITY_R and VARITY_ER)62 and MTBAN63.

Of the 46 VEP methods, 19 meet the criteria for evaluation on clini-
cal benchmarks for missense variants (ClinVar and HGMD/gnomAD), 
having avoided training on clinical databases, using features from other 
methods trained on such data, or using allele frequency (Supplemen-
tary Table 2). DMS assays generally avoid this data leakage issue, hence 
we compared all 46 methods on the DMS benchmark. To allow unbiased 

evaluation of VARITY on the DMS benchmark, we excluded the variants 
included in its training (provided in the method’s GitHub repository 
at https://github.com/joewuca/varity). Both VARITY and MTBAN were 
excluded from the comparison over the set of DMS variants avail-
able for all methods (Fig. 3a), to prevent a significant reduction in the 
number of variants and genes. Specifically, VARITY was trained on five 
genes (BRCA1, CBS, MSH2, MTHR and PTEN) and MTBAN misses three 
other genes (A4, SYUA and YAP1) of the 11 genes in that comparison.  
Both methods were still included in the direct comparison against 
ESM1b (Fig. 3c).

Baseline scores of indel and stop-gain variant effects
While numerous VEP methods predict missense variant effects (46 
evaluated here; Figs. 2 and 3), few handle indel and stop-gain variants. 
The vast majority of these have been trained on clinical databases 
like ClinVar, leading to circularity issues when evaluating them on 
the same benchmarks. Therefore, we compared ESM1b to only one 
other VEP method (CADD) over the ClinVar benchmark of in-frame 
indels (Fig. 6b) and none over stop-gain variants (Fig. 6d). To pro-
vide context for the performance of ESM1b on these benchmarks, 
we considered several basic scoring algorithms that we consider 
reasonable baselines.

For in-frame indels, we considered baseline scores based on the 
followings: (1) edit distance, (2) pairwise alignment and (3) BlastP. 
The Levenshtein edit distance determines the minimal number of 
single-amino acid operations (insertions, deletions or substitutions) 
needed to transform the WT into the mutated sequence. The pairwise 
alignment score reflects the overall similarity between the WT and 
mutated sequence after they are aligned (match score = 2, mismatch 
score = −1)64. BlastP uses the same alignment algorithm with a scoring 
system that also takes into account the different amino acid propen-
sities (with BLOSUM62 (ref. 65)) and panelizes gaps. All three scores 
share the same premise that the more dissimilar the WT and mutated 
sequences are, the more likely the indel to be damaging.

For stop-gain variants, we considered the following baseline 
scores: (1) the number of residues lost, (2) the percentage of residues 
lost (relative to the WT sequence length) and (3) the 50 bp rule. Con-
sidering the number or percentage of lost residues shares the premise 
that larger lost regions are more likely to be damaging. The 50 bp rule 
asserts that a transcript is likely to undergo NMD only if a stop codon 
is introduced more than 50 base pairs upstream of the last exon junc-
tion within its coding region45. We applied the 50 bp rule based on 
exon annotations in the human genome (Supplementary Methods). 
Unlike the other baselines that provide continuous scores, the 50 bp 
rule provides binary labels.

Testing for significant performance differences
When comparing the performance of ESM1b to that of other VEP meth-
ods across benchmarks (Figs. 2b,g,h, 3c and 6b), statistical significance 
was determined through permutation tests. In each iteration, we shuf-
fled the effect scores assigned by each method between the bench-
mark’s variants, and recalculated the output metric (AUC score or 
Spearman’s correlation) for ESM1b and the compared method. The 
empirical one-tailed P value was the fraction of 2,000 iterations where 
the difference in output metric was as extreme as that with the actual, 
nonpermuted effect scores. If no permutations gave a difference as large 
as the one measured for the true effect scores, we reported P < 0.001.

DMS
We evaluated 46 VEP methods, including ESM1b and EVE, on a DMS 
benchmark spanning 28 assays across 15 genes. We used the same set 
of human genes as in ref. 4 (excluding Rhodopsin66 due to unavail-
able public data), and added three other genes from MaveDB11. We 
downloaded all accessible experimental data for these assays (Sup-
plementary Table 1).
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Throughout our evaluation, we used the raw experimental scores 
without any further processing for all DMS, except for CALM1, TPK1, 
RASH, TADBP and the abundance assay of SYUA. For these assays, 
we transformed the scores by x → |x – xWT|, where xWT denotes the 
assay-wide value measured for WT. The motivation for this transfor-
mation is that variants scoring higher than WT are typically seen as 
deleterious in these assays (see discussions in refs. 67,68). For SYUA, 
as lower abundance variants are less toxic, the abundance scores were 
transformed the same way to better reflect fitness (Supplementary  
Fig. 2 in ref. 69). This preprocessing noticeably improved the perfor-
mance of all VEP methods on these assays.

For each assay, we calculated Spearman’s rank correlation between 
the assay scores and each VEP method’s predictions. We then averaged 
these correlation coefficients per gene, which may encompass multiple 
assays (Fig. 3b and Extended Data Figs. 1c and 2). Finally, we averaged 
the per-gene averages (Fig. 3a,c).

Statistics and reproducibility
All data used in this work is within the public domain (except HGMD, 
which requires access request). The full benchmark datasets and 
Python code for our ESM1b-based workflow are available on our GitHub 
repository (Data availability and Code availability statements). For 
details on our statistical analysis, see the subsection ‘Testing for sig-
nificant performance differences’. No statistical method was used to 
predetermine the sample size.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this study are already within the public domain, with 
the exception of the HGMD dataset (https://www.hgmd.cf.ac.uk/
ac/index.php), which is a private resource owned by the Institute of 
Medical Genetics in Cardiff University (requests to access this data-
base should be directed to its curators). ClinVar labels for missense, 
indel and stop-gain variants were downloaded directly from ClinVar’s 
website (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/ 
variant_summary.txt.gz). A specific ClinVar benchmark with EVE scores 
was downloaded from the EVE portal (https://evemodel.org/). Details 
on how the datasets and benchmarks were processed are available in 
Supplementary Methods. Predicted effect scores for most VEP meth-
ods were downloaded from dbNSFP (http://database.liulab.science/
dbNSFP). Details on the remaining VEP methods are available in the 
‘Other VEP methods’ section in Methods. We also provide all processed 
benchmarks, with effect scores from all VEP methods compared in this 
work, on our GitHub repository (link below). All benchmark results 
are in Supplementary Table 2. The complete catalog of variant effect 
scores predicted by ESM1b for all possible missense variants affecting 
curated protein isoforms in the human genome can be browsed and 
downloaded through our web portal at https://huggingface.co/spaces/
ntranoslab/esm_variants.

Code availability
Code for calculating variant effect scores with our framework and 
processed data files are available on our GitHub repository (https://
github.com/ntranoslab/esm-variants). All the code and data for pro-
ducing the analysis, figures and results presented in this study are 
available on Zenodo70.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comprehensive evaluation of ESM1b and EVE on 
ClinVar, HGMD/gnomAD and deep mutation scans. (a) ROC curves of ESM1b 
and EVE as binary classifiers of variant pathogenicity over ClinVar (left) and 
HGMD/gnomAD (right). The true positive rate at the standard false positive rate 
(0.05) is annotated across all 4 curves. (b) Evaluation of EVE (left bar plots) and 
ESM1b (right bar plots) over ClinVar (top panels) and HGMD/gnomAD (bottom 
panels), using either the global ROC-AUC (red) or gene-average ROC-AUC 
(yellow) metric (see the relevant section in the Methods). For each dataset, we 

show the results for either the full dataset (left panels), or the subsets of variants 
in long (middle panels) or short (right panels) proteins (defined by a threshold 
of 1,022aa, which is the maximum window length supported by ESM1b; see 
Methods). Dashed lines: the top score (obtained by ESM1b or EVE) according 
to each of the two metrics. (c) Evaluation of ESM1b and EVE on deep mutational 
scanning datasets over each of the 28 assays (which were aggregated per gene in 
Fig. 3b).
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Extended Data Fig. 2 | Per-gene evaluation of top VEP methods on deep 
mutational scans. Per-gene DMS results for the 9 VEP methods that are closest to 
ESM1b in performance according to the head-to-head comparison (Fig. 3c). The 
numbers of unique variants scored by each VEP method, out of the total 76,133 

variants in the full DMS dataset, are shown in square brackets next to the method 
names. The numbers of variants per gene are shown in parentheses next to the 
gene names.
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Extended Data Fig. 3 | Estimating the pathogenicity rate among indel 
variants of uncertain significance. In gray: the distribution of ESM1b PLLR 
effect scores across indels in ClinVar annotated as variants of uncertain 
significance (VUS). We estimated the fraction of pathogenic and benign variants 
among these VUS indels by decomposing the VUS distribution of effect scores 

as a mixture of the distributions over pathogenic and benign variants (Fig. 6a) 
approximated by kernel density estimation. Red and blue curves: the mixture 
components of pathogenic and benign effect scores, respectively. Black dashed 
curve: the sum of the pathogenic (red) and benign (blue) components as an 
estimate of the empirical distribution of VUS (gray).
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Extended Data Fig. 4 | Evaluation and comparison of different ESM models. 
Tested ESM models: ESM1b, ESM1, the five ESM1v models, and an assembly of the 
five ESM1v models into a single model averaging the LLR scores obtained by the 5 
models (ESM1v-avg). (a) Performance of the different ESM models on the clinical 
benchmarks (ClinVar and HGMD/gnomAD). Each model was evaluated as a binary 

classifier of pathogenic vs. benign missense variants over the two benchmarks 
using the global ROC-AUC metric. Only proteins smaller than 1,022aa were 
considered in this evaluation (thereby avoiding the sliding window approach).  
(b) Performance of the ESM models on the DMS benchmark.
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Extended Data Fig. 5 | The sliding-window approach to tile long protein 
sequences with ESM1b. (a) The variant weights over each window’s coordinates 
(1 ≤ i ≤ 1022), defined by the function: w(i) = 1 / (1 + exp(-(i-128)/16) for 1 ≤ i < 256, 
w(i) = 1 for 256 ≤ i < 1022-256, and w(i) = 1/(1 + exp((i-1022 + 128)/16) for 1022-
256 ≤ i ≤ 1022. (b) An example tiling of a protein sequence of length 1,479aa.  
Left: raw window weights (as in (a)). Right: normalized weights (summing up to 1 
at each protein position). (c) Example of how a specific protein isoform (UniProt 
ID Q7Z460-5) is tiled. Top panel: ESM1b effect scores over the left window 
(1 ≤ i ≤ 1022; orange), the right window (458 ≤ i ≤ 1479; green), and the final 

weighted average throughout the entire protein’s length (blue). Middle: ESM1b 
effect scores over the left window. Bottom: ESM1b effect scores over the right 
window. (d) An example tiling of a larger protein sequence of length 3,703aa, 
as in (b). Top: the locations of the 7 windows used to tile the sequence. Middle: 
raw window weights. Bottom: normalized weights. (e) Example of how a specific 
protein (UniProt ID Q15911) is tiled, as in (c). As shown in the two examples, the 
effect scores tend to be consistent across different windows (with edge effects 
sometimes being more pronounced).
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Extended Data Fig. 6 | Evaluation of different sliding window approaches and 
window sizes. (a) Evaluation as binary classifiers of variant pathogenicity over 
the ClinVar dataset (global ROC-AUC metric). (b) Evaluation over short proteins 
(640 to 900aa), by comparing the scores obtained from processing the entire 
sequences through a single window vs. multiple windows. Three metrics are 
considered for comparing the scores: Spearman’s correlation (left), mean square 
error (center) or 95th percentile of absolute difference (right). Comparison was 

performed over 500 randomly chosen proteins of length 640 to 900aa.  
To accommodate different window sizes with the weighted-average approach,  
we rescaled the range of the sigmoid function (described in Extended Data Fig. 5) 
in proportion to the window size. Points along the curves correspond to the mean 
metric values across the 500 proteins; error bars correspond to 95% confidence 
intervals for the means.
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