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Maize (Zea mays subspecies mays) is one of the most impor-
tant crops globally, with an annual production greater than 
1 billion tons1, and it has been a genetic model system for 

over a century. Maize was domesticated from teosinte (Z. mays 
subspecies parviglumis) about 9,000 years ago in a tropical environ-
ment in southwestern Mexico2,3, and then migrated north and east 
to more temperate regions. The remarkable phenotypic and genetic 
diversity4 between different maize lines is greater than that between 
humans and chimpanzees5. Structural variants (SVs), including dele-
tions, insertions, inversions and translocations, contribute to genome 
diversity6–8, and play an important role in maize phenotypic varia-
tion7,9. However, the contribution of SVs to traits and gene regulation 
cannot be fully explored in haplotype maps based on a single refer-
ence genome. Indeed, characterizing the phenotypic consequences of 
SVs across the genome and at a population level presents tremen-
dous biological and computational challenges, but reads originating 
from more complex polymorphisms often align poorly, resulting in 
biased genotype estimates10. The existing high-quality maize refer-
ence genomes are derived from temperate accessions6,11–13, and there-
fore capture only a subset of genetic diversity. Recent studies achieved 
high-resolution SV mapping in great ape lineages, based on com-
parative analysis of several high-quality great ape genomes14, and a 
new algorithmic approach (BayesTyper) enabled more reliable geno-
typing of SVs using short-read technology10. Here, we present a new 
and diverse tropical maize reference genome, providing an unprec-
edented opportunity to explore the structural variations in maize 
genomes, and to mine novel genetic variation for crop improvement.

A number of common traits, including seed size and weight15, 
were selected during crop domestication and improvement, and 

involved changes in a small number of genes16. In maize, tens of seed 
size genes have been identified by mutagenesis17; however, few quan-
titative trait loci (QTLs) have been cloned, limiting their application 
in breeding programs. The small-kernel (SK) line is an inbred line 
derived from a tropical landrace18 (Supplementary Fig. 1) with small 
kernels and a low hundred-kernel weight (HKW) value (Fig. 1a). 
To produce a high-quality genome of this highly divergent line, we 
combined multiple approaches to produce a de novo assembly that 
is better than the improved maize B73 version 4 reference6 (denoted 
B73 hereafter; SK size: 2,161 megabase pairs (Mb) versus 2,106 Mb 
for B73; contig N50: 15.78 Mb versus 1.18 Mb; gaps: 238 versus 
2,522) and thus provide an outstanding resource for the research 
community. We demonstrate the value of this genome through the 
fine mapping and cloning of a kernel size and weight QTL, provid-
ing a new opportunity for maize breeding.

Genome sequencing, assembly and scaffolding
To perform a de novo assembly of the SK genome, we integrated 
four sequencing and assembly technologies (Fig. 1b). In total, over 
84-fold coverage of sequence data was generated using PacBio 
Sequel technology (196 gigabase pairs (Gb); ~16 million sub-
reads; mean length: 12,026 base pairs (bp)), and ~229-fold cov-
erage of Illumina paired-end and mate-pair reads was generated 
with libraries constructed from six different insert sizes (532 Gb; 
Supplementary Table 1). The SK genome size was estimated to 
be 2.32 Gb based on k-mer analysis. The PacBio reads were first 
assembled using FALCON19 and later improved by supplementing 
with Illumina data. We then generated an approximately 290-fold-
coverage BioNano optical map to generate a consensus map and a 
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second assembly of 870 scaffolds with an N50 of 25.65 Mb. Gaps 
in this assembly were filled using PacBio reads with PBjelly20, to 
generate assembly 3. The final assembly was generated by incorpo-
rating ~166-fold coverage of 10x Genomics Chromium sequence 
for further scaffolding using the assembly roundup by chromium 
scaffolding (ARCS) pipeline21, and the final assembly yielded a 
predicted genome length of 2.16 Gb in 708 scaffolds with an N50 
of 73.24 Mb and a contig N50 of 15.78 Mb after further gap fill-
ing (Table 1). This result, together with a high-density linkage map 
from a recombinant inbred population between SK and a widely 
adopted inbred of China, ZHENG58 (ref. 22), allowed the con-
struction of ten pseudo-chromosomes. A total of 47 super scaf-
folds mapped to these chromosomes (total size: ~2,094 Mb) and an 
additional 151 scaffolds (total size: 26 Mb) were assigned to chro-
mosomes, but their location and order could not be determined. 
The 510 remaining scaffolds with a total size of 41 Mb could not 
be assigned to chromosomes. The SK assembly had 238 gaps, com-
pared with 2,522 gaps in B73 version 4, of which 48.3% (n = 115) 
had optical map coverage, giving an estimated median gap length 
of 23.3 kilobase pairs (kb) (Supplementary Table 2).

The quality of the SK genome was evaluated using five methods. 
First, we assessed the consistency of physical and genetic maps that 
were constructed with 2,796 representative single nucleotide poly-
morphism (SNP) loci23. We identified homology in the SK genome 
for 2,626 SNPs, 2,553 (97.52%) of which were located at their 

expected positions (Fig. 1c and Supplementary Fig. 2). Second, ten 
SK BACs were randomly selected from a newly constructed library 
and sequenced on the PacBio RSII platform. All ten sequences were 
highly linear with our assembly, with no structural variations and 
an average sequence identity of 99.64% (Supplementary Fig. 3).  
Third, 96.4% of the Plantae BUSCO24 genes could be aligned to 
the assembled SK genome (Supplementary Table 3), similarly 
to the Mo17 (ref. 12), W22 (ref. 13) and B73 version 4 reference6 
genomes. Fourth, we used the LTR Assembly Index (LAI)25—a 
standard for evaluating the assembly of repeat sequences—to eval-
uate the assembly continuity. The assembly of SK had the high-
est LAI score and the best assembly continuity compared with 
B73 version 4 (ref. 6) and Mo17 (ref. 12) (Supplementary Fig. 4). 
Fifth, we aligned chromatin interaction analysis by paired-end 
tag sequencing (ChIA-PET) data for RNA polymerase II26 to the 
SK genome assembly, and observed that chromatin interactions 
mainly occurred within close proximity to one another on the 
same chromosome, with no apparent interchromosomal hotspots, 
as expected (Fig. 1d and Supplementary Fig. 5). Excellent colinear-
ity was found between the SK and B73 genomes (Supplementary 
Fig. 6), but we found 22 insertions, deletions or inversions greater 
than 1 Mb (Supplementary Table 4), and these were supported by 
ChIA-PET. For example, a characteristic ‘bow tie’27 configuration 
indicated a 1.7-Mb inversion on chromosome 1 when we mapped 
the SK ChIA-PET data onto B73 (Fig. 1e). Collectively, these data 
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provide multiple lines of evidence that the SK genome assembly 
quality is extremely high, facilitating its use as a reference genome 
for intraspecific comparisons in maize.

Genome annotation
To determine the transposable-element content of the SK assembly, 
we used a modified approach (Supplementary Note) based on the 
annotation pipeline used for B73 (ref. 6). We identified ~90% of the 
genome as transposable-element sequences (the length of annotated 
transposable elements divided by the length of the SK assembly;  
Fig. 2), divided into retroelements (long terminal repeat (LTR) ret-
roelements, 76.3%; non-LTR retroelements, 0.8%) and DNA trans-
posons (6.7%) (Supplementary Table 5). We also re-annotated the 
B73 transposable elements by using the same modified pipeline. In 
general, the composition and number of transposable-element fam-
ilies was similar, except that there were over twice as many hAT fam-
ily transposons in SK relative to B73, suggesting that mechanisms to 
regulate these elements may vary between the two genomes.

A comprehensive strategy combining de novo gene prediction, 
protein-based homology searches, RNA sequencing (RNA-Seq) 
and isoform sequencing (Iso-Seq) of nine tissues (Supplementary  
Table 6) was used to annotate the genes (Supplementary Fig. 7). 
A total of 42,271 high-confidence protein-coding gene models 
with 95,938 transcripts were predicted (Fig. 2 and Supplementary 
Table 7), and 60.2% were supported by full-length transcripts 
(Supplementary Table 7). Of these, >98% were functionally anno-
tated in public databases (Supplementary Table 8). Comparative 
analysis with maize B73, rice, Setaria, sorghum and Brachypodium 
revealed that a core set of 12,196 gene families were shared among 
all six grass genomes (Supplementary Fig. 8).

Structural variation analyses
SVs represent a major source of genetic diversity, but they have not 
been well characterized on a population level in maize. Here, we 
focused on identifying SVs >10 bp between our tropical SK line 
and two maize genomes representing the major temperate heterotic 
groups: B73 (ref. 6; a stiff stalk line) and Mo17 (ref. 12; a non-stiff 
stalk line) (Supplementary Fig. 1). SVs were identified by mapping 
contigs of B73 and Mo17 to the SK genome using smartie-sv14. We 
identified 386,014 SVs ranging from 10–99,330 bp, and there are 
an additional 108,505 SVs when comparing Mo17 with B73. Next, 
we genotyped these 386,014 SVs in 521 diverse inbred lines derived 
from an association mapping panel28 using deep DNA resequencing 
data, resulting in 80,614 polymorphic SVs (pSVs) (Supplementary 
Note and Supplementary Fig. 9). By projecting these pSVs onto 
the SK genome, potential hotspots of structural variation were 
identified (Supplementary Fig. 10). We checked how frequently 

the common pSVs (minor allele frequency (MAF) > 5%) were 
linked to nearby SNPs, to determine whether they represent a 
previously unassessed source of genetic variation. Surprisingly, 
21.9% of the common pSVs showed low linkage disequilibrium 
with nearby SNPs, suggesting they are a source of genetic diversity 
not discoverable by SNPs (details in Supplementary Note, Fig. 3a 
and Supplementary Fig. 11). Variants with high MAF were more 
often classified as high linkage disequilibrium (Supplementary 
Fig. 12), suggesting that some were under adaptive selection. To 
confirm the unique value of newly identified SVs, we used them 
to re-analyse a genome-wide association study for kernel oil con-
centration and fatty acid composition29,30. We indeed found a new 
significant locus for oil concentration and long-chain fatty acid 
composition (C18_1, C18_2 and C20_1) on chromosome 4 that 
could not be represented by local SNPs (Fig. 3b, Supplementary 
Fig. 13 and Supplementary Table 9). A total of 16 expressed genes 
were identified within the candidate region, including an obvious 
candidate, Zm00015a017119, which encodes enoyl-acyl carrier 
protein reductase (ENR), which catalyzes the last enzymatic step 
in the fatty acid elongation cycle31.

To further ascertain the functional significance of pSVs, we 
annotated them and found that 1,864 included full-length coding 
sequences of 2,382 annotated genes, of which 77.6% were present in 
two or more copies in the genome. A total of 662 genes were deleted 
from SK relative to B73 and 443 genes were deleted from B73 relative 
to SK. In addition, 740 genes were deleted from SK relative to Mo17, 
and 537 genes were deleted from Mo17 relative to SK. One 36,320-
bp insertion in SK contained three expressed genes (Fig. 3c) that 
were not present in B73. Other major large-effect variants, including 
the creation of 278 stop codons, 171 frame shifts, 1 stop codon loss 
and 1 start codon loss, were identified in comparisons of the pSVs 
of B73 versus SK32 (Supplementary Table 10). SVs have also been 
shown to modulate gene expression27, so we mapped cis expression 
QTLs (eQTLs) (considering a 1-Mb candidate region upstream and 
downstream of the coding regions) using 19,707 common pSVs and 
11,496,863 SNPs with a MAF > 0.05. We used transcriptome data of 
25,008 genes from kernels at 15 d after pollination from 368 inbred 
lines29 for joint eQTL analysis, and identified 207 eQTLs with a lead 
SV association and 17,632 with a lead SNP association (P < 10−3). 
In proportion to the number of variants tested, eQTLs were around 
sevenfold more likely to be detected by using pSVs compared with 
SNPs (P = 4.61 × 10−97, one-sided Fisher’s exact test; Supplementary 
Table 11), similarly to the case in humans8, suggesting that SVs have 
a disproportionate impact on gene expression. We also found that 
3,864 pSVs were in strong linkage disequilibrium, with an addi-
tional 1,766 eQTLs with lead associations to SNPs (r2 > 0.5, squared 
coefficient of correlation). Those 1,973 eQTLs with a larger effect 
tended to overlap with genic regions (P = 4.4 × 10−4; Supplementary 
Fig. 14). An example is shown in Fig. 3d, where a 29-bp insertion 
in the 5′ untranslated region of Zm00015a006294 in SK correlated 
with decreased expression, and is likely the causal variant of the 
mapped eQTL (Fig. 3d). In total, 80.8% of the expression-associated 
pSVs were located in intergenic regions, and may affect chroma-
tin loops. For example, the expression of Zm00015a037064 may 
be regulated by a 1,794-bp SV and, according to our ChIA-PET 
data, this could affect interactions with Zm00015a037064 or other 
flanking sequences (Supplementary Fig. 15). In total, we found 70 
expression-associated pSVs that had chromatin interactions with 
gene-coding regions.

SK genome-assisted genetic dissection of yield traits
Kernel weight is an important yield-related trait that was selected 
during maize improvement. The HKW of ZHENG58 (an improved 
maize line with HKW = 28.2 g) is nearly six times higher than that 
of SK (HKW = 4.9 g), which is only about two times higher than 
the undomesticated ancestor teosinte (HKW = 2.9 g) (Fig. 1a). Eight 

Table 1 | Summary statistics for the SK assembly

Genomic feature SK

Estimated genome size (Mb) 2,320.3
Length of SK assembly (bp) 2,161,392,594
Largest scaffolds (bp) 301,303,159
Scaffold N50 (bp) 73,237,962
Largest contig (bp) 56,183,869

Contig N50 (bp) 15,776,512
Number of gaps/medium gap size (bp) 238/23,266
Sequences anchored to chromosomes (%) 98.1
Numbers of gene models/transcripts 43,271/95,938
Mean transcript length (bp) 6,172.9
Mean coding sequence length (bp) 1,389.3

Total size of transposable elements (bp) 1,944,366,000
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QTLs for HKW in a ZHENG58 × SK recombinant inbred line (RIL) 
population were identified, and could explain 55% of the pheno-
typic variation22,33 (Fig. 4a), suggesting that a few genes have a major 
effect on kernel weight. One major QTL, qHKW1 on chromosome 1,  
explained 18.4% of the phenotypic variation (Fig. 4a). We fine mapped 
this QTL using approximately 13,800 individuals derived from one 
heterogeneous inbred family line34 (Supplementary Fig. 16) to an 
approximately 177-kb region (Fig. 4b). Only one candidate gene, 
Zm00001d028317, encoding a CLAVATA1 (CLV1)/BARELY ANY 
MERISTEM (BAM)-related receptor kinase-like protein (Fig. 4c),  
which localized on the plasma membrane (Supplementary Fig. 17), 
was identified in this region. Based on the phylogeny, we named 

it ZmBAM1d (Supplementary Fig. 18). CLV1/BAM genes con-
trol shoot meristem size35 and agronomic traits, such as kernel  
row number in maize or fruit size in tomato36,37, but have not been 
associated with seed size.

Next, we used NIL lines to test whether variation in ZmBAM1d 
was responsible for HKW variation. As expected, we found a sig-
nificant difference in kernel size between NILSK and NILZHENG58 
(P = 1.27 × 10−3) (Fig. 4d and Supplementary Table 12). The expres-
sion of ZmBAM1d was significantly higher in the big kernel line 
NILZHENG58 than in NILSK (measured at 20 d after pollination; 3.8-fold 
difference; P = 1.34 × 10−3; Fig. 4e). To confirm that higher expres-
sion of this gene increased the kernel weight, we overexpressed a 
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ZmBAM1d-YFP fusion (Fig. 4f) using the ubiquitin promoter, and 
observed an approximately 1.9 g increase in HKW (P = 1.76 × 10−4; 
Fig. 4f), which is greater than its additive effect (~1.2 g) in NILs. 
This observation suggested that ZmBAM1d was the causal gene for 
qHKW1. ZmBAM1d overexpression or clustered regularly inter-
spaced short palindromic repeats (CRISPR)–CRISPR-associated 
protein 9 (Cas9) knockout had no measurable effect on other agro-
nomic traits, such as plant height, leaf number, ear height or tassel 
branch number, similar to the NIL lines (Fig. 4d, Supplementary 
Table 13 and Supplementary Table 14), suggesting it has the poten-
tial for future crop improvement.

The ZHENG58 genome is not available, but it shares an iden-
tical-by-state segment in the qHKW1 region with B73, based 
on high-density marker analysis29. We therefore compared the 
ZmBAM1d regions between the B73 and SK genomes, and seven 
indels >100 bp were identified in the ~40-kb upstream region 
(Fig. 4c), suggesting that structural variation underlies the phe-
notypic differences. We found chromatin interactions between the 
ZmBAM1d coding region and two of the five insertions in B73, 
which were missing in SK (Fig. 4g, red lines). Indel 4 (8.9-kb inser-
tion; Fig. 4c) was significantly associated with HKW (P < 0.05; 
Fig. 4h) by candidate gene-association analysis, while another two 
small indels (indels 6 and 7) were not. We also found that DNA 
methylation was much higher in the promoter region of ZmBAM1d 

(indicated by the red box in Fig. 4c) in SK than in B73 (Fig. 4i and 
Supplementary Note). These results suggest that the large indels 
affect chromatin interactions and methylation levels, enhancing 
ZmBAM1d expression and HKW.

To ascertain which pathways might be controlled by ZmBAM1d, 
we performed RNA-Seq analysis on overexpression lines using 
embryos at 20 d after pollination. In total, 551 differentially expressed 
genes (DEGs) were detected (fold change > 2), and were significantly 
enriched in 20 Gene Ontology terms (P < 6.9 × 10−4), many of which 
were related to carbohydrate metabolism (Supplementary Fig. 19). 
Similar Gene Ontology enrichment was found in DEGs compar-
ing ZmBAM1d-CRISPR-edited and control plants (P < 4.8 × 10−4) 
(Supplementary Fig. 19). Comparison of DEGs in overexpres-
sion and CRISPR lines also revealed knotted1-like homeobox and 
MADS-domain (named after the proteins MINICHROMOSOME 
MAINTENANCE 1, AGAMOUS, DEFICIENS and SERUM 
RESPONSE FACTOR) transcription factors. Collectively, these 
results suggest that ZmBAM1d regulates seed development through 
pathways affecting determinacy and carbohydrate metabolism.

Discussion
Given the vast diversity of maize, the available reference genomes of 
temperate varieties are insufficient for pan-genome characterization. 
Our sequencing and assembly of a tropical maize reference genome 
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with only 238 gaps provides an excellent resource that we used to 
identify and genotype >80,000 pSVs across 521 diverse inbred lines, 
revealing an abundance of previously uncharacterized genetic varia-
tion in maize. We demonstrate that pSVs have the potential to regu-
late gene expression by affecting regulatory elements and chromatin 
loops, indicating their agronomically important role in genetic diver-
sity not previously detected by SNP-based assessments. Combining 
our SK genome with the other eight public maize genomes, 
we found that the present variations (Supplementary Fig. 20)  
still did not reach saturation (Supplementary Note). With the 
decreasing cost of third-generation sequencing, the construction 
of a pan-genome based on more reference-quality genomes, not 
only of maize but also of its ancestor teosinte, becomes possible. 
We suggest that more than 20 reference genomes of maize and teo-
sinte, including different subspecies, will provide better coverage 
of genetic variations of the Zea genus. This information will pro-
vide more understanding about SVs—especially their important 
unknown functions in domestication, adaptation and improvement.

We also demonstrate the utility of this new genome by using it 
to clone the first maize kernel weight QTL, ZmBAM1d, which was 
targeted for selection during maize improvement16. BAM genes have 
not previously been associated with seed size, although some of 
their candidate ligands, encoded by CLAVATA3/ESR (CLE) genes, 
were described as seed-expressed genes more than 15 years ago38. 
The SK genome has potential to identify novel traits and pathways 
that may have been lost during maize improvement, and thus may 
serve as a novel source of variation in future breeding programs.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0427-6.
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Methods
Genome assembly and annotation. SK sequencing and assembly. We sequenced 
the inbred line SK, derived from a tropical landrace (BioSample accession code: 
SAMC036455). High-molecular-weight DNA extraction and purification was 
performed using a DNeasy Plant Maxi Kit (Qiagen). DNA concentration was 
measured using NanoDrop (Thermo Fisher Scientific) and Qubit 2.0 (Invitrogen) 
instruments. A total of 43 single-molecule real-time cells were run on the PacBio 
Sequel instrument by BGI using Kit 2.0 chemistry, generating 19.7 million reads 
with a total length of 199 Gb. The PacBio data were de novo assembled using 
FALCON assembler19 and polished with the Arrow program (https://www.pacb.
com/support/software-downloads/). DNA was also sequenced using an Illumina 
HiSeq 3000 machine. Paired-end libraries with insert sizes of 410 and 670 bp, as 
well as mate-pair libraries with insert sizes of 2, 5, 10 and 20 kb, were constructed, 
following a standard protocol provided by Illumina. We also used Illumina data 
to improve the assembly result by Pilon39—an integrated tool for comprehensive 
variant detection and genome assembly improvement.

Construction of optical genome maps. Based on standard BioNano protocols40, 
nicking, labeling, repair and staining processes were implemented. Specifically, 
DNA was digested by the single-stranded nicking endonuclease Nt.BspQI. Optical 
maps were assembled with BioNano IrysView41 analysis software; only single 
molecules with a minimum length of 100 kb and six labels per molecule were used.

PacBio sequence gap filling and gap filling result correction. The gaps in the  
BioNano assembly result were closed by PBjelly version 15.2.20 (ref. 20) with  
the PacBio sequence using default parameters. Then, the filled regions were 
polished with Plion39.

Scaffold construction using 10x Genomics data. The Chromium Genome Reagent 
Kit42 (10x Genomics) was used for indexing prepared samples and partitioning 
barcoded libraries. Sequencing was conducted with Illumina HiSeq X Ten to 
generate linked reads. Scaffolding was performed using 10x Genomics linked 
reads based the ARCS pipeline. Linked reads with barcodes that did not match 
the company’s barcode whitelist were filtered out. ARCS was run with sensitive 
parameters, as specified in a previous study21. To examine the linked scaffold, we 
used a consensus approach that contained evidence from three different sources: 
(1) Irys optical maps; (2) PacBio long-read alignments to the scaffolds; and  
(3) Illumina HiSeq read alignments to the scaffolds. We found that Irys supported 
the linking 110 paired scaffolds with each other, and there were 62 paired scaffolds 
that did not align with the Irys optical map. All of the conflicts were disconnected.

Anchoring of the assembled scaffolds. To anchor the scaffolds, a high-density genetic 
linkage map was developed using the RIL population with 263 recombination inbred 
lines derived from an SK × Zheng58 cross and genotyped with a 56,000 SNP array43. 
The genetic map spanned 1,858.9 cM and contained 2,796 bins derived from 13,883 
high-quality SNPs. The sequences of probes from the Illumina MaizeSNP50 array43 
were mapped to the 10x Genomics assembly result using BLAT44. Around 2.095 Gb 
(47 scaffolds) could be anchored to ten chromosomes by genetic linkage mapping, 
which made up 96.90% of the 10x Genomics assembly result. Genotype-by-
sequencing probes of high-resolution genetic mapping of the maize pan-genome45 
were also mapped to the 10x Genomics assembly result using BLAT software; 151 
scaffolds could be assigned to a chromosome, but they could not be located and 
ordered within the chromosome. The size of the 151 scaffolds was 26 Mb.

Further gap filling. We allocated the corrected PacBio long reads to ten 
chromosomes by mapping them onto the ten pseudo-chromosomes and then 
reassembling them respectively. We aligned the contigs resulting from reassembly 
onto the ten pseudo-chromosomes and filled the gaps manually.

BioNano map-assisted gap filling. The BioNano de novo assembly and BioNano 
molecules were used to estimate the gap length. Then, we filled the gaps using 
corrected PacBio long reads with PBjelly20. Finally, the filled regions were polished 
with Plion39. Irys optical maps and Illumina HiSeq reads were used to examine 
these areas again.

Genome annotation. Transposable elements found in the SK genome were the 
result of the integration of independent de novo predictions (LTRharvest46, 
LTRdigest47, SINE-Finder48 and HelitronScanner49), and of homolog searching 
from RepeatMasker using P-MITE50 and Repbase databases51 as repeat libraries.

The pipeline for gene prediction included de novo and evidence-based 
predictions using MAKER-P52 and PASA53 on the repeat-masked genome 
(Supplementary Fig. 7). For homolog evidence, we collected the protein sequences 
of Arabidopsis thaliana, Brachypodium distachyon, Oryza sativa, Setaria italica, 
Sorghum bicolor and Z. mays. Transcript evidence included high-quality, full-length 
transcripts from Iso-Seq and Trinity-assembled transcripts from the RNA-Seq of nine 
tissues (male spikelet, female spikelet, internode, seedling root, seedling leaf, mature 
pollen, unpollinated silks, kernels 15 d after pollination, and vegetative meristem). 
For de novo gene prediction, we used Augustus54 and FGENESH (http://www.
softberry.com/berry.phtml) trained on 2,000 homolog genes, which were supported 

by Iso-Seq full-length transcripts and monocots. All of the evidence was submitted to 
MAKER-P52, and the output of MAKER-P52 was refined again by PASA53.

SV calling. To call SVs, we used the smartie-sv pipeline14, which aligns, compares 
and calls insertions, deletions and inversions (https://github.com/zeeev/smartie-
sv). At the core of the code is a modified version of BLASR, which was designed to 
align large divergent contigs against a reference genome. We called SVs (>10 bp; 
deletions and insertions) using smartie-sv. We applied two filters to the raw SV 
calls. First, we omitted SVs that were smaller than 10 bp or within the centromere. 
Second, regions (1 Mb windows) with more than 50 alignments were also excluded 
from the analysis. Third, contigs of <200 kb were also excluded. Furthermore, we 
confirmed >96% of 29 events (from 10 bp to 2 kb in size) by Sanger sequencing 
(Supplementary Table 15). For larger SVs, we randomly selected 12 SVs (from 
5–70 kb) for visual inspection and good collinearty were shown between two 
genomes of the flanking sequence of SVs (Supplementary Fig. 21). As an initial 
dataset for identification of pSVs (Supplementary Note), the accuracy of 386,014 
SVs should be acceptable, although there might be some false positives in them.

RNA-Seq data analysis and eQTL mapping. RNA-Seq data were obtained from 
our previous published dataset (SRP026161). A total of 11,496,863 high-quality 
SNPs were obtained from DNA deep resequencing (~20×) of 521 diverse inbred 
lines. We referred to a previously published method to conduct the quantification 
of gene expression and eQTL mapping55. Raw reads were trimmed, to remove 
adapters and low-quality reads, with Trimmomatics (version 0.36)56. Trimmed 
reads were mapped to the SK reference genome using STAR57. Read counts of each 
gene were calculated using HTSeq58 and normalized by library sequencing depth 
using the R package DESeq2 (ref. 59). After filtering the gene without expression 
in more than 100 samples, expression counts were normalized using Box–Cox 
transformation. Before eQTL mapping, 69 hidden factors were calculated using 
PEER60 and were used as covariates together with five multidimensional scaling 
coordinates calculated form the SNP dataset. Using these covariates, SNP eQTL 
and SV eQTL were mapped using Matrix eQTL61.

QTL mapping and transgenic validation of qHKW1. We planted heterozygous 
individuals derived from one heterogeneous inbred family line to screen 
new recombinant events34. The plants were planted in the field in Hainan 
(Sanya; 18.3° N, 109.5° E) and grown in 2.5 m rows, spaced 0.5 m apart, with 
11 individuals in each row. The markers used for fine mapping of qHKW1 are 
listed in Supplementary Table 16. Progeny tests were performed by comparing 
the HKW of NILSK and NILZHENG58 homozygous individuals from F3 families for 
each new recombinant. We used one-way analysis of variance in Excel to test 
whether there was a significant difference in HKW between two NILs. We fused 
Zm00001d028317 with yellow fluorescent protein and overexpressed it into maize 
inbred line ZC01 with the ubiquitin promoter. One-way analysis of variance 
analysis was used to test whether there were significant differences in expression 
levels or HKWs between overexpression transgenic-positive and -negative lines. 
We also performed CRISPR–Cas9-based gene editing of Zm00001d028317, with 
two guide RNAs targeting the first exon of Zm00001d028317 inserted into pCPB-
ZmUbi-hspCas9 (ref. 62). Both of the overexpression and gene-editing transgenic 
vectors were transformed into C01 with Agrobacterium tumefaciens EHA105 
(China National Seed Group). The transgenic lines were planted in a greenhouse in 
Yunnan province, China (21.9° N, 100.7° E). To avoid the effect of environment, we 
planted these transgenic materials and controls in the same greenhouse, with 30 cm 
plant-to-plant and 50 cm row-to-row distances. The primers used for transgenic 
experiments are listed in Supplementary Table 16.

Expression quantification of Zm00001d028317 and RNA-Seq. We extracted 
total RNA from the seeds, endosperm and embryos of two NILs, and the leaves 
of overexpression transgenic lines using a Quick RNA Isolation Kit (Huayueyang 
Biotech, Beijing, China). First-strand complementary DNA was synthesized using 
an EasyScript One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen 
Biotech). Real-time fluorescence quantitative PCR with SYBR Green Master 
Mix (Vazyme Biotech) on a CFX96 Real-Time System was used to quantify the 
expression level of Zm00001d028317. Each set of experiments was repeated three 
times, and the relative quantification method (2−ΔΔCT) used to evaluate quantitative 
variation. The primers used for quantitative PCR with reverse transcription are 
listed in Supplementary Table 16. The RNA, extracted from embryos at 20 d after 
pollination, of the overexpression-positive and -negative lines and CRISPR-edited 
and control lines was used to perform RNA-Seq. For each genotype, we performed 
RNA-Seq of three replicates at Annoroad Gene Technology (Beijing, China). One 
sample of the overexpression-positive line was excluded from further analysis due 
to its low global Pearson correlation (r < 0.95) with the other two samples.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets reported in this study have been deposited in GenBank (NCBI) with 
the following accession codes: genome assembly, PRJNA531547; the 521 inbred 
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lines, PRJNA531553; ChIA-PET, PRJNA531751; and RNA-Seq of ZmBAM1, 
PRJNA532237. All datasets have also been deposited in the Genome Warehouse 
of the BIG Data Center at the Beijing Institute of Genomics, Chinese Academy 
of Sciences, under the following accession numbers: SK PacBio long reads, 
CRA001371; SK BioNano data, CRA001370; SK Illumina short reads, CRA001366; 
SK 10x Genomics data, CRA001365; SK ChIA-PET data, CRA001369; SK Iso-Seq 
data for nine tissues, CRA001337; SK RNA-Seq data for nine tissues, CRA001367; 
resequencing data of the 521 inbred lines, CRA001363; and RNA-Seq data on 
overexpression and CRISPR of ZmBAM1d, CRA001368. These data are also 
available in the CNGB Nucleotide Sequence Archive (https://db.cngb.org/cnsa/) 
with the following accession codes: genome assembly, CNP0000417; the 521 inbred 
lines, CNP0000418; SK ChIA-PET data, CNP0000419; and RNA-Seq of ZmBAM1d, 
CNP0000420. The SK genome and annotation are publicly accessible under 
accession number GWHAACS00000000. The SK genome and annotation can 
also be accessed at http://mmgdb.hzau.edu.cn/maize/index.php. The SV map and 
results of each step in Supplementary Fig. 9 are available at http://www.maizego.
org/Resources.html. The seeds of SK are publicly available on request.
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials The teosinte (Zea mays ssp. parviglumis) shown in figure 1 was from CIMMTY and its accession number is 27479. And planted 
with maize in the same conditions in a tropical environment of Hainan experimental farm in 2016.

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.
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Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design 
questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.
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Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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