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As structure prediction methods are generating millions of publicly

available protein structures, searching these databases isbecominga
bottleneck. Foldseek aligns the structure of aquery proteinagainsta
database by describing tertiary amino acid interactions within proteins
assequences over astructural alphabet. Foldseek decreases computation
times by four to five orders of magnitude with 86%, 88% and 133% of the
sensitivities of Dali, TM-align and CE, respectively.

The recent developments in in silico protein structure prediction at
near-experimental quality"?are advancing structural biology and bio-
informatics. The European Bioinformatics Institute already holds over
214 million structures predicted by AlphaFold2 (ref. 3), and the ESM
Atlas contains over 617 million metagenomic structures predicted
by ESMFold®. The scale of these databases poses challenges to
state-of-the-art analysis methods.

The most widely used approach to protein annotation and
analysis is based on sequence similarity search® . The goal is to
find homologous sequences from which properties of the query
sequence can be inferred, such as molecular and cellular functions
and structure. Despite the success of sequence-based homology
inference, many proteins cannot be annotated because detecting
distant evolutionary relationships from sequences alone remains
challenging’.

Detecting similarity between protein structures by three-
dimensional (3D) superposition offers higher sensitivity for identify-
ing homologous proteins'®. The availability of high-quality structures
for any protein of interest allows us to use structure comparison to
improve homology inference and structural, functional and evolution-
ary analyses. However, despite decades of effort toimprove speed and
sensitivity of structural aligners, current tools are much too slow to
cope with today’s scale of structure databases.

Searching with a single query structure through a database with
100 million protein structures would take the popular TM-align™ tool
amonth on one CPU core, and an all-versus-all comparison would
take 10 millennia on a1,000-core cluster. Sequence searching is four

to five orders of magnitude faster: an all-versus-all comparison of
100 millionsequences would take MMseqs2 (ref. 6) only around a week
on the same cluster.

Structural alignmenttools (reviewed inref. 12) are slower for two
reasons. First, whereas sequence search tools employ fast and sensitive
prefilter algorithms to gain orders of magnitude in speed, no similar
prefilters exist for structure alignment. Second, structural similarity
scores are non-local: changing the alignment in one part affects the
similarityinall other parts. Most structural aligners, such as the popular
TM-align, Daliand CE""*"*, solve the alignment optimization problem
by iterative or stochastic optimization.

Toincrease speed, acrucialideais to describe theamino acid back-
bone of proteins as sequences over astructural alphabet and compare
structures using sequence alignments®. Structural alphabets thus
reduce structure comparisons to much faster sequence alignments.
Many ways to discretize the localamino acid backbone have been pro-
posed'™. Most, such as CLE, 3D-BLAST and Protein Blocks, discretize the
conformations of short stretches of usually 3-5 C,atoms" ™,

For Foldseek, we developed atype of structural alphabet that does
not describe the backbone but, rather, tertiary interactions. The 20
states of the 3D interaction (3Di) alphabet describe for each residue i
the geometric conformationwithits spatially closest residue,. 3Di has
three key advantages over traditional backbone structural alphabets.
(1) Weaker dependency between consecutive letters and (2) more
evenly distributed state frequencies, both enhancing information
density and reducing false positives (FPs) (Supplementary Table 1).
(3) The highest information density is encoded in conserved protein
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Fig.1|Foldseek workflow. a, Foldseek searches a set of query structures through
asetoftarget structures. (1) Query and target structures are discretized into 3Di
sequences (see b). To detect candidate structures, we apply the fast and sensitive
k-mer and ungapped alignment prefilter of MMseqs2 to the 3Di sequences, (2)
followed by vectorized Smith-Waterman local alignment combining 3Di and
amino acid substitution scores. Alternatively, a global alignment is computed
withal.7-times accelerated TM-align version (Supplementary Fig.12).

b, Learning the 3Di alphabet. (1) 3Di states describe tertiary interaction between
aresidueiandits nearest neighbor,. Nearest neighbors have the closest virtual

(4) (Discretization) conversion to 3Di sequence

Amino acid --Val-

3Di sequence -+ A -

=X AT
COS Py 5| /C o Statez\
Decoder -
cos ¢ 4

T
State21 d

282P

.
. '
Encoder D . ° owwes
DR .
.

fyli=) foli-)

(4) (Training) predict
features

(3) Search 3Di state library

(2) Extract features

center distance (yellow). Virtual center positions (Supplementary Fig. 1) were
optimized for maximum search sensitivity. (2) To describe the interaction
geometry of residues i andj, we extract seven angles, the Euclidean C, distance
and two sequence distance features from the six C, coordinates of the two
backbone fragments (blue and red). (3) These 10 features are used to define

20 3Di states by training a VQ-VAE* modified to learn states that are maximally
evolutionary conserved. For structure searches, the encoder predicts the best-
matching 3Di state for each residue.

coresand the lowestin non-conserved coil/loop regions, whereas the
oppositeis true for backbone structural alphabets.

Foldseek (https://foldseek.com/) (Fig. 1a) (1) discretizes the
query structures into sequences over the 3Di alphabet and then uses
a pre-trained 3Di substitution matrix (Supplementary Table 2) to
search through the 3Di sequences of the target structures using the
double-diagonal k-mer-based prefilter and gapless alignment prefilter
modules from MMseqs2, our open-source sequence search software®.
(2) High-scoring hits are aligned locally using 3Di (default) or globally
with TM-align (Foldseek-TM). The local alignment stage combines
3Di and amino acid substitution scores. The construction of the 3Di
alphabetis summarized in Fig. 1b and Supplementary Figs.1-3.

Toreduce high-scoring FPs and provide reliable £ values, we sub-
tracted the reversed query alignment score from the original score
and applied acompositional bias correction within alocal 40-residue
sequence window (see the ‘Pairwise local structural alignments’ subsec-
tion). Evalues are calculated using an extreme-value score distribution,
with parameters predicted by aneural network based on3Disequence
compositionand query length (see the ‘Evalues’ subsection). Ranking
of hitsis determined by alignment bit score multiplied by the geometric
mean of alignment TM-score and local distance difference test (LDDT).
Foldseekalso reports the probability for each match tobe homologous,
based on afit of true and false matches on SCOPe.

We measured the sensitivity and speed of Foldseek, six pro-
tein structure alignment tools, an alignment-free structure search
tool (Geometricus®) and a sequence search tool (MMseqs2 (ref. 6))
on the SCOPe dataset of manually classified single-domain struc-
tures”. Clustering SCOPe 2.01at 40% sequence identity yielded 11,211
non-redundant protein sequences (SCOPe40). We performed an
all-versus-all search and compared the tools’ performance for finding
members of the same SCOPe family, superfamily and fold (true-positive
(TP) matches) by measuring for each query the fraction of TPs out of all
possible correct matches until the first FP, a match to a different fold
(see the ‘'SCOPe benchmark’ subsection).

We first measured the sensitivity to detect relationships at family
and superfamily level by the area under the curve (AUC) of the cumu-
lative receiver operating characteristic (ROC) curve up to the first FP
(Fig.2aand SupplementaryFig. 4). Foldseek’s sensitivity is below Dali

and TM-align, higher than the structural aligner CE and much above
the structural alphabet-based search tools 3D-BLAST and CLE-SW
(Fig.2a).Ina precision-recall analysis, Foldseek-TM and Foldseek have
the highest and third-highest area under the precision-recall curve on
each of the three levels (Fig. 2b and Supplementary Fig. 4). Notably,
Foldseek-TMimproves over TM-align because its prefilter suppresses
high-scoring FPs. Both sort hits by the average query and target length
normalized TM-scores for best performance inthe SCOPe benchmark.

Foldseek’s performance is similar across all six secondary struc-
ture classes in SCOPe (Supplementary Fig. 5). On this small SCOPe40
benchmark set, Foldseek is more than 4,000 times faster than TM-align
and Dali and over 21,000 times faster than CE (Fig. 2c). On the much
larger AlphaFoldDB (version 1), where Foldseek approaches its full
speed, it is around 184,600 and 23,000 times faster than Dali and
TM-align, respectively (see below).

Wedevised areference-free benchmark to assess search sensitivity
and alignment quality of structural aligners (Fig. 2d) on arealistic set
of full-length, multi-domain proteins. We clustered the AlphaFoldDB
(version1) to 34,270 structures using BLAST and SPICi*’. We randomly
selected 100 query structures from this set and aligned them against
the remaining structures. TP matches are those with an LDDT score?
ofatleast 0.6 and FPsbelow 0.25, ignoring matches inbetween. We set
the LDDT thresholds according to the medianinter-fold and intra-fold
superfamily and family LDDT scores of SCOPe40 alignments (Sup-
plementary Fig. 6). For other thresholds, see Supplementary Fig.7. A
domain-based sensitivity assessment would require areference-based
prediction of domains. To avoid it, we evaluated the sensitivity per resi-
due.Figure 2d shows the distribution of the fraction of query residues
that were part of alignments with atleast x TP targets with better scores
thanthefirst FP match. Again, Foldseek has similar sensitivity as Dali, CE
and TM-align and much higher sensitivity than CLE-SW and MMseqs2.

We analyzed the quality of alignments produced by the top five
matches per query. We computed the alignment sensitivity as the num-
berof TPresidues divided by the query length and the precision as the
number of TP residues divided by the alignmentlength. TP residues are
those with residue-specific LDDT score above 0.6; FP residues are below
0.25; and residues with other scores are ignored. Figure 2e shows the
average sensitivity versus precision of the 100 x 5structure alignments.
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Fig. 2 |Foldseek reaches similar sensitivities as structural aligners at
thousands of times their speed. a, Cumulative distributions of sensitivity for
homology detection on the SCOPe40 database of single-domain structures. TPs
are matches within the same superfamily; FPs are matches between different
folds. Sensitivity is the area under the ROC (AUROC) curve up to the first FP (see
Supplementary Fig. 4 for family and fold). b, Precision-recall curve of SCOPe40
superfamilies (see Supplementary Fig. 4 for family and fold). ¢, Average
sensitivity up to the first FP for family, superfamily and fold versus total runtime
onan AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11,211
structures of SCOPe40. d, Search sensitivity on multi-domain, full-length

AlphaFold2 protein models. One hundred queries, randomly selected from
AlphaFoldDB (version 1), were searched against this database. Per-residue

query coverage (y axis) is the fraction of residues covered by at least x (x axis) TP
matches ranked before the first FP match. e, Alignment quality for alignments of
AlphaFoldDB (version 1) protein models (top panel), averaged over the top five
matches of each of the 100 queries. Sensitivity = TP residues in alignment / query
length; precision = TP residues / alignment length. Reference-based alignment
quality benchmark on HOMSTRAD alignments. f, Alignment quality comparison
between Foldseek and Dali for each HOMSTRAD family. The F; scoreis the
harmonic mean between sensitivity and precision.

Foldseek alignments are more accurate and sensitive than MMseqs2,
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise
but 15% more sensitive than CE. In the reference-based HOMSTRAD
alignment quality benchmark®, Foldseek performs slightly below CE,
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between
Foldseek and Daliin alignment quality for all HOMSTRAD families (see
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we
searched the set of unfragmented models in AlphaFoldDB (version 1)
with average predicted LDDT'>80 against itself. We inspected the
1,675 (0f 133,813) high-scoring FPs (score per aligned column >1.0,
TM-score < 0.5), revealing queries with multiple structured segments
but with incorrect relative orientations (Supplementary Table 3 and
Supplementary Fig. 9). The folded segments were correctly aligned
by Foldseek. This illustrates that 3D aligners such as TM-align may
overlook homologous structures that are not globally superposable,
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is
independent of relative domain orientations and excels at detecting
homologous multi-domain structures'.

We developed a webserver (https://search.foldseek.com) for
multi-database searches, including AlphaFoldDB (version 4: Proteomes
and Swiss-Prot), AlphaFoldDB (version 4) and CATH® clustered at 50%
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)*.

We compared Foldseek webserver, TM-align and Dali using
SARS-CoV-2RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version1).Searchtimeswere 10 d for Dali, 33 hfor TM-align and
6 sfor Foldseek, makingit 180,000 and 23,000 times faster. All top 10
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every
folded protein is transformative for biology and bioinformatics.

Sequence-based analyses will soon be largely superseded by
structure-based analyses. The main limitation in our view—the four
orders of magnitude slower speed of structure comparisons—is
removed by Foldseek.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01773-0.
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Methods

Overview

Foldseek enables fast and sensitive comparison of large structure sets.
Itencodes structures as sequences over the 20-state 3Di alphabet and,
thereby, reduces structural alignments to 3Disequence alignments. The
3Dialphabet developed for Foldseek describes tertiary residue-residue
interactionsinstead of backbone conformations and proved critical for
reachinghigh sensitivities. Foldseek’s prefilter finds two similar, spaced
3Di k-mer matches in the same diagonal of the dynamic programming
matrix. By notrestricting itself to exact matches, the prefilter achieves
high sensitivity while reducing the number of sequences for which full
alignments are computed by several orders of magnitude. Further
speed-ups are achieved by multi-threading and using single instruction,
multiple data (SIMD) vector units. Owing to the SIMDe library (https://
github.com/simd-everywhere/simde), Foldseek runs onawide range of
CPUarchitectures (x86_64,armé64 and ppc64le) and operating systems
(Linux and macOS). The core modules of Foldseek, which build on the
MMseqs2 framework®, are described in the following paragraphs.

Create database

The createdbmodule converts aset of PDB (ref. 29), macromolecular
crystallographicinformation file (mmCIF) formatted files or Foldcomp
compressed structure (FCZ (ref. 30)) files into an internal Foldseek
database format using the Gemmi package (https://gemmi.readthe-
docs.io/en/latest/) or the Foldcomp library. The format is compatible
with the MMseqs2 database format, which is optimized for parallel
access. We store each chain as a separate entry in the database. The
module follows the MMseqs2 createdb module logic. However, in
addition to the amino acid sequence, it computes the 3Di sequence
from the 3D atom coordinates of the backbone atom and C; coordi-
nates (see the ‘Descriptors for 3Di structural alphabet’ and ‘Optimize
nearest-neighbor selection’ subsections). Backbone atom and C,
coordinates are needed only for the nearest-neighbor selection. For
C.-onlystructures, Foldseek reconstructs backbone atom coordinates
using PULCHRA™. Missing C;coordinates (for example, inglycines) are
defined such thatthe four groups attached to the C,are arranged at the
vertices of aregular tetrahedron. The 3Di and amino acid sequences
andthe C,coordinates are stored in the Foldseek database. To save disk
space, we optionally compress the C, coordinates losslessly, beginning
with three uncompressed 4-byte floating-point C,coordinates and stor-
ing all subsequent coordinates as 2-byte signed integer differences®.
If any difference is too large to be represented with a 2-byte signed
integer, we fall back to 4-byte floats for all C, coordinates.

Prefilter

The prefilter module detects double matches of similar, spaced
words (k-mers) that occur on the same diagonal. The k-mer size is
dynamically set to k= 6 or k=7 depending on the size of the target
database. Similar k-mers are those with a3Di substitution matrix score
aboveacertain threshold, whereas MMseqs2 uses an amino acid substi-
tution matrix tocompute the similarity (see the ‘3Di substitutionscore
matrix’ subsection). The gapless double-match criterion suppresses
hits to non-homologous structures effectively, as they are less likely to
have consecutive k-mer matches on the same diagonal by chance. To
avoid FP matches due to regions with biased 3Di sequence composi-
tion, acompositional bias correction is applied in a way analogous to
MMseqs2 (ref. 33). For each hit, we perform an ungapped alignment
over the diagonals with double, consecutive, similar k-mer matches
and sort those by the maximum ungapped diagonal score. Alignments
with ascore of atleast 15 bits are passed onto the next stage. Weimple-
mented an optional taxonomy filter within the prefiltering step to help
users search through taxonomic subsets of the target database. After
the gapless double-diagonal matching stage and before the ungapped
alignment stage, we reject all potential target hits that do not lie within
ataxonomic clade specified by the user.

Pairwise local structural alignments

After the prefilter has removed the vast majority of non-homologous
sequences, the structurealign module computes pairwise align-
ments for the remaining sequences using an SIMD-accelerated
Smith-Waterman algorithm®**, We extended this implementation
tosupportamino acid and 3Di scoring, compositional bias correction
and 256-bit-wide vectorization. The score linearly combines amino
acid and 3Di substitution scores with weights 1.4 and 2.1, respectively.
We optimized these two weights and the ratio of gap extend to gap
open penalty on ~-1% of alignments (all-versus-all on 10% of randomly
selected SCOPe40 domains). Acompositional bias correctionis applied
totheamino acid and 3Discores. To further suppress high-scoring FP
matches, for each matchwealignthe reversed query sequence against
thetargetand subtract the reverse bit score from the forwardbit score.

Structural bitscore

We rank hits by a ‘structural bit’ score—that is, the product of the bit
score produce by the Smith-Waterman algorithm and the geometric
mean of average alignment LDDT and the alignment TM-score.

Fastalignment LDDT computation

Toimprove the LDDT score computation speed, we store the 3D coor-
dinates of the queryinagrid using spatial hashing. Each grid cell spans
15 A, whichis the default radius considered for the LDDT computation.
For each aligned query residue i, we compute the distances to all C,
atoms withina15 A radius by searching all neighboring grid cells of the
query residue’s grid cell. For each residue j, we compute the distance
between the C,atoms of i andjand the distance of the corresponding
aligned target residues. Query and target distances for the aligned
pairsare subtracted, and the differences d are transformed into LDDT
scoress=0.25x ((d<0.5) +(d<1.0) + (d<2.0) + (d < 4.0)).Foreachi,we
obtainthe means of the scores for all Ca atoms jwithin the 15 A radius of
i. The LDDT score is the mean of these means over all query residues i.

Evalues

To estimate F values for each match, we trained a neural network to
predict the mean y and scale parameter A of the extreme value distri-
bution for each query. The module computemulambda takes a query
and database structures as input and aligns the query against a ran-
domly shuffled version of the database sequences. For each query
sequence, the module produces Nrandom alignments and fits to their
scores an extreme value (Gumbel) distribution. The maximum likeli-
hood fitting is done using the Gumbel fitting function taken from
HMMER3 (hmmcalibrate)®. To train the neural network, it is critical
to use query and target proteins that include problematic regions,
suchasstructurally biased, disordered or badly modeled regions that
occur ubiquitously in full-length proteins or modeled structures. We,
therefore, trained the network on 100,000 structures sampled from
the AlphaFoldDB (version1). We trained a neural network to predict u
andAfrom the amino acid composition of the query and its length (so
a scrambled version of the query sequence would produce the same
pand A). The network has 22 input nodes, two fully connected layers
with 32 nodes each (ReLU activation) and two linear output nodes. The
optimizer Adam with learning rate 0.001 was used for training. When
testing the resulting E values on searches with scrambled sequences,
the log of the mean number of FPs per query turned out to have an
accurately linear dependence on the log of the reported E values, albeit
withaslopeof 0.32instead of 1. We, therefore, correct the E values from
the neural network by taking them to the power of 0.32. We compared
how well the mean number of FPs at a given E value agreed with the
Evaluesreported by Foldseek, MMseqs2 and 3D-Blast (Supplementary
Fig.10; see Supplementary Fig. 11 for AlphaFoldDB). We considered a
hitas FPifit was in a different fold and had a TM-score lower than 0.3.
Furthermore, we ignored all cross-fold hits within the four-bladed to
eight-bladed S-propeller superfamilies (SCOPe b.66-b.70) and within

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://github.com/simd-everywhere/simde
https://github.com/simd-everywhere/simde
https://gemmi.readthedocs.io/en/latest/
https://gemmi.readthedocs.io/en/latest/

Brief Communication

https://doi.org/10.1038/s41587-023-01773-0

the Rossman-like folds (c.2-c.5,c.27,¢.28, c.30 and c.31) because of the
extensive cross-fold homologies within these groups”.

Probability of TP match

Foldseek computes for eachmatchasimple estimate for the probability
that the match is a TP match given its structural bit score. Here, hits
within the same superfamily are TP; hits to another fold are FP; and hits
to the same family or to another superfamily are ignored. We estimate
the structural bit score distributions of TP and FP hits (p(score|TP)
and p(score|FP)), which allow us to calculate the probability of a

TP p(TP|score) = P(SCOTE|TP) p(TP)
P(SCOT€ [TP) p(TP)+p( SCOTE |FP) p(FP)

.Both score distributions

were fitted on SCOPe40 with amixture model consisting of two gamma
distributions (resulting in five parameters for each function). For the
fitting, the function gammami xEMfrom the R package mixtools*was
used. We excluded cross-fold hits between certain folds asin the E value
estimation. For example, Foldseek finds around the same number of
FPsand TPs withascore of 51in SCOPe40. The probability for a hit with
score 51is, therefore, 50%.

Pairwise global structural alignments using TM-align

We also offer the option to use TM-align for pairwise structure align-
ment instead of the 3Di-based alignment. We implemented TM-align
based on the C,atom coordinates and made adjustments to improve
the (1) speed and (2) memory usage. (1) TM-align performs multiple
floating-point-based Needleman-Wunsch (NW) alignment steps while
applying different scoring functions (for example, score secondary
structure, Euclidean distance of superposed structures or fragments).
TM-align’s NW code did not take advantage of SIMD instructions;
therefore, we replaced it by parasail’'s* SIMD-based NW implemen-
tation and extended it to support the different scoring functions.
We also replaced the TM-score computation using fast_protein_clus-
ter’s SIMD-based implementation*’. Our NW implementation does
not compute exactly the same alignment because we apply affine
gap costs, whereas TM-align does not (Supplementary Fig. 12).
(2) TM-alignrequires17 bytes x query length x target length of memory,
and wereduce the constant overhead from17 bytes to 4 bytes. If Fold-
seek is used in TM-align mode (parameter --alignment-type 1),
TM-alignis used for the alignment stage after the prefilter step, where
we replace the reported E value column with TM-scores normalized
by the query length. The results are ordered in descending order by
average TM-score by default.

Descriptors for 3Di structural alphabet

The 3Dialphabet describes the tertiary contacts between residues and
their nearest neighborsin3D space. For eachresidue i, the conforma-
tion of the local backbone around i, together with the local backbone
around its nearest neighbor j, is approximated by 20 discrete states
(Supplementary Fig. 3). We chose the alphabet size A = 20 as a tradeoff
between encoding as much information as possible (large A; Supple-
mentary Fig.13) and limiting the number of similar 3Di k&-mers that we
need to generate in the k-mer-based prefilter, which scales with AX. The
discrete single-letter states are formed from neighborhood descrip-
tors containing 10 features encoding the conformation of backbones
around residues i and,j represented by the C,atoms (C, ., C,;, Cy i)
and (C, ., C,;, C, »1). The descriptors use the five unit vectors along
the following directions:

U Gy =G Uy 1 Gy = Gy

u; : Ca,i = Cgip1 Us : Cy i — Ca,j

us : Ca,j—l = Ca,j-

We define the angle between u,and u;as ¢y, S0 cos ¢ = u/ u,. The seven
features cos ¢y,, COS (34, COS Pys, COS P35, COS P14, COS 3, COS P13 and the

distance|C,,; - C, jl describe the conformation between the backbone
fragments. In addition, we encode the sequence distance with the two
features sign (i —j) min(Ji —j|,4) and sign (i —j) log(|i —j| + 1).

Learning the 3Di states using a vector quantized variational
autoencoder

The 10-dimensional descriptors were discretized into an alphabet of
20 states using a vector quantized variational autoencoder (VQ-VAE)*.
Incontrast tostandard clustering approaches such as k-means, VQ-VAE
is a nonlinear approach that can optimize decision surfaces for each
of its states. In contrast to the standard VQ-VAE, we trained the VQ-VAE
not as a simple generative model but, rather, to learn states that are
maximally conservedin evolution. Tothat end, we trained it with pairs
of descriptors x,,,y, € R°fromstructurally aligned residues, to predict
the distribution of y, from x,,.

The VQ-VAE consists of an encoder and decoder network with the
discrete latent 3Di state as a bottleneck in between. The encoder net-
work embeds the 10-dimensional descriptor X, into a 2D continuous
latent space, where the embedding is then discretized by the nearest
centroid, each centroid representing a 3Di state. Given the centroid,
the decoder predicts the probability distribution of the descriptory,
of the aligned residue. After training, only encoder and centroids are
used todiscretize descriptors. Encoder and decoder networks areboth
fully connected with two hidden layers of dimension 10, a batch nor-
malization after each hidden layer and ReLU as activation functions.
Theencoder, centroids and decoder have 242,40 and 352 parameters,
respectively. The output layer of the decoder consists of 20 units pre-
dicting ¢ and 0” of the descriptors x of the aligned residue, such that
the decoder predicts V(x|u, I6?) (with diagonal covariance).

We trained the VQ-VAE onthe loss function defined in Equation (3)
inref. 28 (with commitmentloss = 0.25) using the deep learning frame-
work PyTorch (version1.9.0), the Adam optimizer, with abatch size of
512,and alearning rate of 10 over four epochs. Using Kerasify (https://
github.com/moof2k/kerasify), weintegrated the encoder networkinto
Foldseek. The domains from SCOPe40 were split 80%/20% by fold into
training and validation sets. For the training, we aligned the structures
with TM-align, removed all alignments with a TM-score below 0.6
and removed all aligned residue pairs with a distance between their
C, atoms of more than 5 A. We trained the VQ-VAE with 100 different
initial parameters and chose the model that was performing best in the
benchmark onthevalidation dataset (the highest sum of ratios between
3Di AUC and TM-align AUC for family, superfamily and fold level).

3Di substitution score matrix

We trained a BLOSUM:-like substitution matrix for 3Di sequences from
pairs of structurally aligned residues used for the ‘VQ-VAE training’.
First, we determined the 3Distates of all residues. Next, the substitution
frequencies among 3Di states were calculated by counting how often
two 3Di states were structurally aligned. (Note that the substitution
frequencies from state A to state B and the opposite direction are
equal.) Finally, the score S (x.y) = 2log, p:;(;;y()y) for substituting state x
through state y is the log-ratio between the substitution frequency
p(x,y) and the probability that the two states occur independently,
scaled by the factor 2.

3Dialphabet cross-validation

Wetrained the 3Dialphabet (the VQ-VAE weights) and the substitution
matrix by four-fold cross-validation on SCOPe40. We split the SCOPe40
dataset into four parts, such that all domains of each fold ended up in
the same part of the four parts. 3Di alphabets were trained on three
partsand tested on the remaining part, selecting each of the four parts
inturnasatestset. The 80:20 splitbetweentraining and validation sets
toselectthe bestalphabet out of the 100 VQ-VAE runs happens within
the 3/4 of the cross-validation training data. Supplementary Fig. 14
shows the mean sensitivity (black) and the standard deviation (gray
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area) incomparison to the final 3Di alphabet, for which we trained the
3Dialphabet onthe entire SCOPe40 (red). No overfitting was observed,
despite training 492 parameters (282 neural network and 210 substitu-
tion matrix entries). InFig. 2, we, therefore, show the benchmark results
for the final 3Di alphabet, trained on the entire SCOPe40.

Nearest-neighbor selection

To select nearest-neighbor residues that maximize the performance
of the resulting 3Di alphabet in finding and aligning homologous
structures, we introduced the virtual center Vof aresidue. The virtual
center position is defined by the angle 6 (V-C,-Cp), the dihedral angle
7(V-C,-Cp-N) andthelength [ (|V - C,|) (Supplementary Fig.1). For each
residue i, we selected theresiduejwith the smallest distance between
their virtual centers. The virtual center was optimized on the training
and validation structure sets used for the VQ-VAE training by creating
alphabets for positions with 8 € [0, 2], T € [ - m, ] in 45" steps and
le{1.53Ak:ke{1,1.5,2,2.5,3}} (1.53 A is the distance between C,
and Cy). Thevirtual center defined by 0=270", 7= 0"and /=2 performed
bestin the SCOPe benchmark.

This virtual center preferably selects long-range, tertiary interac-
tions and only falls back to selecting interactionstoi+1ori-1whenno
other residues are nearby. In that case, the interaction captures only
the backbone conformation.

SCOPe benchmark
We downloaded the SCOPe40 structures (available at https://wwwuser.
gwdg.de/~compbiol/foldseek/scop40pdb.tar.gz).

The SCOPe benchmark set consists of single domains with an aver-
agelength of 174 residues. In our benchmark, we compare the domains
all-versus-all. Per domain, we measured the fraction of detected TPs
up to the first FP. For family-level, superfamily-level and fold-level
recognition, TPs were defined as same family, same superfamily and
notsame family and same fold and not same superfamily, respectively.
Hits from different folds are FPs.

Evaluation SCOPe benchmark

Aftersorting the alignment result of each query (described in the ‘Tools
and options for benchmark comparison’ subsection), we calculated
the sensitivity as the fraction of TPs in the sorted list up to the first FP,
all excluding self-hits. For comparison, we took the mean sensitivity
over all queries for family-level, superfamily-level and fold-level clas-
sifications. We evaluated only SCOPe members with at least one other
family, superfamily and fold member. We measure the sensitivity up
to the 1st FP (ROC1) instead, for example, up to the 5th FP, because
ROCl1 better reflects the requirements for low false discovery rates in
automatic searches.

Additionally, we plotted precision-recall curves for each tool
(Fig. 2b and Supplementary Fig. 4). After sorting the alignment
results by the structural similarity scores (as described in the ‘Tools
and options for benchmark comparison’ subsection) and excluding
self-matches, we generated a weighted precision-recall curve for
family-level, superfamily-level and fold-level classifications (preci-
sion=TP/(TP+FP)andrecall=TP/ (TP + FN)). All counts (TP, FP and
FN) were weighted by the reciprocal of their family, superfamily or fold
size. In this way, folds, superfamilies and families contribute linearly
with their size instead of quadratically®.

Runtime evaluations on SCOPe and AlphaFoldDB

We measured the speed of structural aligners onaserver withan AMD
EPYC 7702P 64-core CPU and 1,024 GBRAM memory. OnSCOPe40, we
measured or estimated the runtime for an all-versus-all comparison.
To avoid excessive runtimes for TM-align, Dali and CE, we estimated
the runtime by randomly selecting 10% of the 11,211 SCOPe domains
as queries. We measured runtimes on AlphaFoldDB for searches with
the same 100 randomly selected queries used for the sensitivity and

alignment quality benchmarks (Fig. 2d,e). Tools with multi-threading
support (MMseqs2 and Foldseek) were executed with 64 threads; tools
without were parallelized by breaking the query set into 64 equally
sized chunks and executing themin parallel.

Reference-free multi-domain benchmarks

We devised two reference-free benchmarks that do not rely on any
reference structural alignments. We clustered the AlphaFoldDB (ver-
sion1)® using SPICi?. For this, we first aligned all protein sequencesall
againstallusingan Evalue threshold <10 using BLAST (2.5.0+)°. SPICi
produced 34,270 clusters from the search result. For each cluster, we
picked thelongest protein as representative. We randomly selected 100
representatives as queries and searched the set of remaining structures.
The top five alignments of all queries are listed at https://wwwuser.
gwdg.de/~compbiol/foldseek/multi_domain_top5_alignments/.

For the evaluation, we needed to adjust the LDDT score function
taken from AlphaFold2 (ref.1). LDDT calculates for eachresidueiinthe
query the fraction of residuesin the 15 A neighborhood that have a dis-
tance within 0.5,1,2 or 4 A of the distance between the corresponding
residuesin the target”. The denominator of the fractionis the number
of15 A neighbors of ithat are aligned to some residue in the target. This
does not properly penalize non-compact modelsin whicheachresidue
has few neighbors within 15 A. We, therefore, use as denominator the
totalnumber of neighboring residues within 15 A of i.

For the alignment quality benchmark (Fig. 2e), we classified each
aligned residue pair as TP or FP depending on its residue-wise LDDT
score—that is, the fraction of distances to its 15 A neighbors that are
within 0.5,1,2and 4 A of the distance to the corresponding residuesin
the query, averaged over the four distance thresholds. TP residues are
those witharesidue-wise LDDT score of atleast 0.6 and FPs below 0.25,
ignoring matches in between. For the search sensitivity benchmark
(Fig.2d), TPresidue-residue matches are those withan LDDT score of
the query-target alignment of at least 0.6 and FPsbelow 0.25, ignoring
matches in between. (The LDDT score of the query-target alignment
is the average of the residue-wise LDDT score over all aligned residue
pairs.) The choice of thresholds isillustrated in Supplementary Fig. 6.
Thebenchmark for other thresholdsis showninSupplementaryFig. 7.

All-versus-all search of AlphaFoldDB with Foldseek

We downloaded the AlphaFoldDB (version 1)’ containing 365,198 pro-
tein models and searched it all-versus-all using Foldseek -s 9.5 -
max-segs 2000.For our second-best hit analysis, we consider only
models with (1) anaverage C,’s predicted LDDT (pLDDT) greater than
or equal to 80 and (2) models of non-fragmented domains. We also
computed the structural similarity for each pair using TM-align (default
options).

Tools and options for benchmark comparison

Owing to dataset overlap, we excluded methods from the benchmark
that are likely to be overfitted on SCOPe. This applies to methods that
trained many thousands of parameters (for example, deep neural
networks) withstrong dataleakage among training, validation and test
sets. For example, several tools allowed up to 40% sequence identity
between sets. The following command lines were used in the SCOPe as
well as the multi-domain benchmark:

Foldseek

We used Foldseek commit aeb5e during this analysis. Foldseek was
run with the following parameters: --threads 64 -s 9.5 -e 10
--max-seqgs 2000.

Foldseek-TM

For the Foldseek-TM benchmark, we first run a regular 3Di/AA-based
Foldseek search using the following parameters: - -threads 64 -s
9.5 -e 10 --max-segs 4000 --alignment-mode 1.Allhits
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passingarethenaligned by Foldseeks’stmalign --tmalign-fast 1
--tmscore-threshold 0.0 -a.WeusedFoldseek commitaebsedur-
ing thisanalysis. We expose Foldseek-TMin our command-lineinterface
asasearchmode that combines regular Foldseek 3Di/AA-based work-
flow with our TM-align implementation within the tmalign module.

MMseqs2

We used the default MMseqs2 (release 13-45111) searchalgorithmto
obtainthesequence-based alignment result. MMseqs2 sorts the results
by E value and score. We searched with: --threads 64 -s 7.5 -e
10000 --max-segs 2000.

CLE-Smith-Waterman

We used PDB Tool version 4.80 (https://github.com/realbigws/
PDB_Tool) to convertthe benchmark structure set to CLE sequences.
After the conversion, we used SSW* (commit ad452e) to align CLE
sequences all-versus-all. We sorted the results by alignment score.
The following parameters were used to run SSW: (1) protein align-
ment mode (-p); (2) gap open penalty of 100 (-o 100); (3) gap
extend penalty of 10 (-e 10);(4) CLE’s optimized substitution matrix
(-a cle.shen.mat);and (5) returningalignment (-c). The gap open
and extend values were inferred from DeepAlign*. The results are
sorted by scorein descending order.

ssw_test -p -o 100 -e 10 -a cle.shen.mat -c

3D-BLAST

We used 3D-BLAST (betal02) with BLAST+ (2.2.26) and SSW>* (version
ad452e). Wefirst converted the PDB structures to a3D-BLAST database
using3d-blast -sq writeand3d-blast -sq_append. Wesearched
the structural sequences against the database using blastp with the
following parameters: (1) 3D-BLAST’s optimized substitution matrix
(-M 3DBLAST); (2) number of hits and alignments shown of 12,000
(-v 12000 -b 12000);(3) Evalue threshold of 1,000 (-e 1000);(4)
disabling query sequence filter (-F F); (5) gap openof 8 (-G 8);and
(6) gap extend of 2 (-E 2).3D-BLAST’s results are sorted by Evaluein
ascendingorder:

blastall -p blastp -M 3DBLAST -v 12000 -b 12000 -e
1000 -F F -G 8 -E 2

For Smith-Waterman, we used (1) gap open of 8; (2) gap extend of
2;(3) returning alignments (-c); (4) 3D-BLAST’s optimized substitution
matrix (-a 3DBLAST); and (5) proteinalignmentmode (-p):ssw_test
-0 8 -e 2 -c -a 3DBLAST -p.Wenoticed thatthe 3D-BLAST matrix
with Smith-Waterman resulted inasimilar performance to CLE: 0.717,
0.230 and 0.011 for family classification, superfamily classification and
fold classification, respectively. We excluded 3D-BLAST’s measurement
from the multi-domain benchmark because it produced occasionally
high scores (>10°) for single residue alignments.

TM-align
We downloaded and compiled the TMalign. cppsource code (version
2019/08/22) from the Zhang group website. We ran the benchmark
using default parameters and - fast for the fast version. TM-align
reports two TM-scores: (1) normalized by the length of 1st chain (query)
or (2) normalized by the length of the 2nd chain (target). We used the
average of TM-scores normalized by the 1st chain (query) and 2nd chain
(target) in all our analyses. We evaluated TM-align’s performance by
sorting theresults based onboththe query TM-score and the minimum,
maximum and average TM-score for both the query and target. Our
results showed that the average TM-score performed the best in our
single-domain benchmark.

Default: TMalign query.pdb target.pdb

Fast: TMalign query.pdb target.pdb -fast

Dali

We installed the standalone DaliLite.v5. For the SCOPe40 benchmark
set, input files were formatted in DAT files with Dali’s import .pl.The
conversion to DAT format produced 11,137 valid structures out of the
11,211initial structures for the SCOPe benchmark and 34,252 structures
outof 34,270 SPICi clusters. After formatting the input files, we calcu-
lated the proteinalignment with Dali’s structural alignment algorithm.
The results were sorted by Dali’s z-score in descending order:

import.pl -pdbfile query.pdb -pdbid PDBid -dat DAT
dali.pl -cdl queryDATid -db targetDB.list -TITLE
systematic -datl DAT -dat2 DAT -outfmt "summary"
-clean

CE

We used BioJava’s* (version 5.4.0) implementation of the combinatorial
extension (CE) alignment algorithm. We modified one of the modules of
BioJavaunder shape configuration to calculate the CE value. Our modi-
fiedCEalign.jarfilerequiresalistof queryfiles, pathtothetarget PDB
filesand anoutput pathasinput parameters. This Javamodule runs an
all-versus-all CE calculation with unlimited gap size (maxGapSize -1)
to improve alignment results™. The results were sorted by z-score in
descending order. For the multi-domain benchmark, we excluded one
query that was running over 16 d. TheJar file of ourimplementation of
CE calculation is provided (see ‘Code availability’).

java -jar CEalign.jar querylist.txt
TargetPDBDirectory OutputDirectory

Geometricus

We included Geometricus® in the SCOPe benchmark as arepresenta-
tive of alignment-free tools, which are fast but can find only globally
similar structures. Geometricus discretizes fixed-length backbone
fragments (shape-mers) using their 3D moment invariants and repre-
sents structures as a fixed-length count vector over the shape-mers. To
calculate the shape-mer-based structural similarity of the benchmark
set, we used Caretta-shape’s Python implementation (1e3adbO0) of
multiple structure alignment (https://github.com/TurtleTools/caretta/
caretta/multiple_alignment.py), which computes the Bray-Curtis
similarity between the Geometricus shape-mer vectors. Our modified
version extracts structural information fromtheinput files and gener-
ates all-versus-all pairwise structural similarity score as an output. We
ran Geometricusonasingle corebecause it would require substantial
engineering efforts to implement parallelization on multiple cores.
With an efficient multi-core implementation, Geometricus might be as
fast as MMseqs2 on 64 cores. The Python code of ourimplementation
of Geometricusis provided:

python runGeometricus caretta.py -i querylist.txt
-o OutputDirectory

HOMSTRAD alignment benchmark

The HOMSTRAD database contains expert-curated homologous
structural alignments for 1,032 protein families**. We downloaded
the latest HOMSTRAD version (https://mizuguchilab.org/homstrad/
data/homstrad_with_PDB_2022_Aug_1.tar.gz) and picked the pairwise
alignments between the first and last members of each family, which
resulted in structures of amedian length of 182 residues. We used the
same parameters as in the SCOPe and multi-domain benchmark. We
forced Foldseek, MMseqs2 and CLE-Smith-Waterman to return an
alignment by switching offthe prefilter and E value threshold. With the
HOMSTRAD alignments as reference, we measured for each pairwise
alignment the sensitivity (fraction of residue pairs of the HOMSTRAD
alignment that were correctly aligned) and the precision (fraction of
correctly aligned residue pairs in the predicted alignment). Dali, CE
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and CLE-Smith-Waterman failed to produce an alignment for 35,1and
1out of 1,032 pairs, respectively, which were rated with a sensitivity
of 0. The mean sensitivity and precision are shown in Fig. 2e, and all
individual alignments are listed in homstrad_alignments.txt at
https://wwwuser.gwdg.de/~compbiol/foldseek/.

Limitations of benchmarks

The SCOPe benchmark to measure search sensitivity uses only
single-domain proteins as queries and targets (Fig. 2a-c).It, therefore,
cannot assess the ability of tools to find local similarities—for example,
finding homologous domains shared between two multi-domain pro-
teins. The alignment benchmark based on HOMSTRAD (Fig. 2e) has
the same limitation, as the vast majority of proteins in HOMSTRAD
have a single domain (median length =182 residues). A drawback of
our reference-free multi-domain benchmark is the need to choose
thresholds for TPs and FPs (Supplementary Fig. 6).

Pre-built and ready-to-download databases

Foldseekincludes the databases module to aid users with the down-
load and setup of structural databases. Currently, we include the four
variants of the AlphaFoldDB (version 4): UniProt (214 million struc-
tures), UniProt50, a clustered database to 50% sequence identity and
90% bi-directional coverage using MMseqs2 (parameters -c 0.9
--min-seqg-id 0.5 --cluster-reassign;54 millionstructures),
Proteome (564,000 structures) and Swiss-Prot (542,000 structures).
Additionally, we regularly build and offer a100% sequence identity clus-
tered PDB. The update pipelineisavailableintheutil /update web-
server_ pdbfolderinthe mainFoldseek repository. These databases
are hosted on Cloudflare R2 for fast downloading. We additionally
link to and provide an automatic setup procedure for the ESM Atlas
High-Quality Clu30* database.

Webserver

TheFoldseek webserver is based on the MMseqs2 webserver*’. To allow
for searches in seconds, we implemented MMseqs2’s pre-computed
databaseindexing capabilities in Foldseek. Using these, the search data-
bases canbe fully cached insystem memory by the operating systemand
instantly accessed by each Foldseek process, thus avoiding expensive
accesses to slow disk drives. A similar mechanismwas used tostore and
read the associated taxonomicinformation. The AlpaFoldDB/UniProt50
(version4), AlphaFoldDB/Proteome (version4), AlphaFoldDB/Swiss-Prot
(version4), CATH50, ESM Atlas High-Quality Clu30 and PDB100 require
191GB, 3.8 GB, 3.4 GB, 1.4 GB,110 GB and 2.0 GBRAM, respectively. The
databases are keptinmemory using vmtouch (https://github.com/hoy-
tech/vmtouch). Databases are only required toremainresidentin RAM if
Foldseekis used asawebserver. During batchsearches, Foldseek adapts
itsmemory use to the available RAM of the machine. Weimplemented a
structural visualization using the NGL viewer** to aid the investigation of
pairwise hits. Because we only store C, traces of the database proteins,
we use PULCHRA®*’ to complete the backbone of these sequences, and
also of the query if necessary, to enable a ribbon visualization® of the
proteins. For a high-quality superposition, we use TM-align™ to super-
pose the structures based on the Foldseek alignment. Both PULCHRA
and TM-align are executed withinthe users’ browser using WebAssembly.
They are available as pulchra-wasmand tmalign-wasmon the npm
package repository as free open-source software.

Structure predictionin the webserver

We use the ESM Atlas API to predict structures of user-supplied
sequences that are, at most, 400 residues long. This enables
sequence-to-structure searches in the webserver.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Benchmark dataare available at https://wwwuser.gwdg.de/-compbiol/
foldseek.

Code availability

Foldseek is GPLv3-licensed free open-source software. The source code
and binaries for Foldseek can be downloaded at https://github.com/
steineggerlab/foldseek. The webserver code is available at https://
github.com/soedinglab/mmseqs2-app. The analysis scripts are avail-
able at https://github.com/steineggerlab/foldseek-analysis.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

X XX X X[

X
Oddg d 0O dgod

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No data collection was performed as the data was downloaded from publicly available databases (SCOPe, AlphafoldDB and HOMSTRAD).

Data analysis Foldseek (commit aeb5e), MMseqs (realease 13-45111), CLE-SW (PDB Tool v4.80), 3D-BLAST (betal02, with BLAST+ 2.2.26), BLAST (2.5.0+),
SPICi, TM-align (2019/08/22), Dali (DaliLite.v5), CE (BioJava 5.4.0), Geometricus (https://github.com/TurtleTools/caretta, commit 1e3adb0)
The analysis scripts are publicly available at https://github.com/steineggerlab/foldseek-analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Used datasets:

https://scop.berkeley.edu/downloads/ver=2.01
https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/
https://mizuguchilab.org/homstrad/data/ (version from 1. Aug 2022)

Foldseek, analysis scripts, Foldseek server:




https://github.com/steineggerlab/foldseek
https://github.com/steineggerlab/foldseek-analysis
https://github.com/soedinglab/mmseqs2-app

Benchmark data:
https://wwwuser.gwdg.de/~compbiol/foldseek

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

>
Q
—
C
=
D
=
D
w
)
QU
=
()
>
@
o,
O
=
)
Q
wv
<
3
Q)
2

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No samples were collected.
Data exclusions | No data was excluded from the public data sets.

Replication We performed our analyses on public data sets (AlphaFoldDB, SCOPe, HOMSTRAD). The analysis scripts were published to ensure
reproducibility.

Randomization | No randomization was performed as this was not relevant to this study

Blinding No blinding was performed as this was not relevant to this study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.




Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
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Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for

these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [ _]Yes [ ]No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies & |:| ChiIP-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XX XXXXX &
oogoood

Dual use research of concern




Antibodies 3
2

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number. o~
D

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the D
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript. w

2

>

Eukaryotic cell lines 3
©

S . . O
Policy information about cell lines =
Cell line source(s) State the source of each cell line used. o)
wv

c

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated. 3
5

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 2

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  ygme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

[ ] National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

OO0oogds

Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OoOoOodoods
Ooogoogo

Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and




Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot
number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
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|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state,; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.
Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used




Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MINI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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