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Fast and accurate protein structure search 
with Foldseek

Michel van Kempen    1,6, Stephanie S. Kim2,6, Charlotte Tumescheit2, 
Milot Mirdita    1,2, Jeongjae Lee    2, Cameron L. M. Gilchrist2, 
Johannes Söding    1,3   & Martin Steinegger    2,4,5 

As structure prediction methods are generating millions of publicly 
available protein structures, searching these databases is becoming a 
bottleneck. Foldseek aligns the structure of a query protein against a 
database by describing tertiary amino acid interactions within proteins 
as sequences over a structural alphabet. Foldseek decreases computation 
times by four to five orders of magnitude with 86%, 88% and 133% of the 
sensitivities of Dali, TM-align and CE, respectively.

The recent developments in in silico protein structure prediction at 
near-experimental quality1,2 are advancing structural biology and bio-
informatics. The European Bioinformatics Institute already holds over  
214 million structures predicted by AlphaFold2 (ref. 3), and the ESM 
Atlas contains over 617 million metagenomic structures predicted 
by ESMFold4. The scale of these databases poses challenges to 
state-of-the-art analysis methods.

The most widely used approach to protein annotation and  
analysis is based on sequence similarity search5–8. The goal is to  
find homologous sequences from which properties of the query 
sequence can be inferred, such as molecular and cellular functions 
and structure. Despite the success of sequence-based homology 
inference, many proteins cannot be annotated because detecting 
distant evolutionary relationships from sequences alone remains 
challenging9.

Detecting similarity between protein structures by three- 
dimensional (3D) superposition offers higher sensitivity for identify-
ing homologous proteins10. The availability of high-quality structures 
for any protein of interest allows us to use structure comparison to 
improve homology inference and structural, functional and evolution-
ary analyses. However, despite decades of effort to improve speed and 
sensitivity of structural aligners, current tools are much too slow to 
cope with today’s scale of structure databases.

Searching with a single query structure through a database with 
100 million protein structures would take the popular TM-align11 tool 
a month on one CPU core, and an all-versus-all comparison would 
take 10 millennia on a 1,000-core cluster. Sequence searching is four 

to five orders of magnitude faster: an all-versus-all comparison of  
100 million sequences would take MMseqs2 (ref. 6) only around a week 
on the same cluster.

Structural alignment tools (reviewed in ref. 12) are slower for two 
reasons. First, whereas sequence search tools employ fast and sensitive 
prefilter algorithms to gain orders of magnitude in speed, no similar 
prefilters exist for structure alignment. Second, structural similarity 
scores are non-local: changing the alignment in one part affects the 
similarity in all other parts. Most structural aligners, such as the popular 
TM-align, Dali and CE11,13,14, solve the alignment optimization problem 
by iterative or stochastic optimization.

To increase speed, a crucial idea is to describe the amino acid back-
bone of proteins as sequences over a structural alphabet and compare 
structures using sequence alignments15. Structural alphabets thus 
reduce structure comparisons to much faster sequence alignments. 
Many ways to discretize the local amino acid backbone have been pro-
posed16. Most, such as CLE, 3D-BLAST and Protein Blocks, discretize the 
conformations of short stretches of usually 3–5 Cα atoms17–19.

For Foldseek, we developed a type of structural alphabet that does 
not describe the backbone but, rather, tertiary interactions. The 20 
states of the 3D interaction (3Di) alphabet describe for each residue i 
the geometric conformation with its spatially closest residue j. 3Di has 
three key advantages over traditional backbone structural alphabets. 
(1) Weaker dependency between consecutive letters and (2) more 
evenly distributed state frequencies, both enhancing information 
density and reducing false positives (FPs) (Supplementary Table 1). 
(3) The highest information density is encoded in conserved protein 
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and TM-align, higher than the structural aligner CE and much above 
the structural alphabet-based search tools 3D-BLAST and CLE-SW 
(Fig. 2a). In a precision-recall analysis, Foldseek-TM and Foldseek have 
the highest and third-highest area under the precision-recall curve on 
each of the three levels (Fig. 2b and Supplementary Fig. 4). Notably, 
Foldseek-TM improves over TM-align because its prefilter suppresses 
high-scoring FPs. Both sort hits by the average query and target length 
normalized TM-scores for best performance in the SCOPe benchmark.

Foldseek’s performance is similar across all six secondary struc-
ture classes in SCOPe (Supplementary Fig. 5). On this small SCOPe40 
benchmark set, Foldseek is more than 4,000 times faster than TM-align 
and Dali and over 21,000 times faster than CE (Fig. 2c). On the much 
larger AlphaFoldDB (version 1), where Foldseek approaches its full 
speed, it is around 184,600 and 23,000 times faster than Dali and 
TM-align, respectively (see below).

We devised a reference-free benchmark to assess search sensitivity 
and alignment quality of structural aligners (Fig. 2d) on a realistic set 
of full-length, multi-domain proteins. We clustered the AlphaFoldDB 
(version 1) to 34,270 structures using BLAST and SPICi22. We randomly 
selected 100 query structures from this set and aligned them against 
the remaining structures. TP matches are those with an LDDT score23 
of at least 0.6 and FPs below 0.25, ignoring matches in between. We set 
the LDDT thresholds according to the median inter-fold and intra-fold 
superfamily and family LDDT scores of SCOPe40 alignments (Sup-
plementary Fig. 6). For other thresholds, see Supplementary Fig. 7. A 
domain-based sensitivity assessment would require a reference-based 
prediction of domains. To avoid it, we evaluated the sensitivity per resi-
due. Figure 2d shows the distribution of the fraction of query residues 
that were part of alignments with at least x TP targets with better scores 
than the first FP match. Again, Foldseek has similar sensitivity as Dali, CE 
and TM-align and much higher sensitivity than CLE-SW and MMseqs2.

We analyzed the quality of alignments produced by the top five 
matches per query. We computed the alignment sensitivity as the num-
ber of TP residues divided by the query length and the precision as the 
number of TP residues divided by the alignment length. TP residues are 
those with residue-specific LDDT score above 0.6; FP residues are below 
0.25; and residues with other scores are ignored. Figure 2e shows the 
average sensitivity versus precision of the 100 × 5 structure alignments. 

cores and the lowest in non-conserved coil/loop regions, whereas the 
opposite is true for backbone structural alphabets.

Foldseek (https://foldseek.com/) (Fig. 1a) (1) discretizes the 
query structures into sequences over the 3Di alphabet and then uses 
a pre-trained 3Di substitution matrix (Supplementary Table 2) to 
search through the 3Di sequences of the target structures using the 
double-diagonal k-mer-based prefilter and gapless alignment prefilter 
modules from MMseqs2, our open-source sequence search software6. 
(2) High-scoring hits are aligned locally using 3Di (default) or globally 
with TM-align (Foldseek-TM). The local alignment stage combines 
3Di and amino acid substitution scores. The construction of the 3Di 
alphabet is summarized in Fig. 1b and Supplementary Figs. 1–3.

To reduce high-scoring FPs and provide reliable E values, we sub-
tracted the reversed query alignment score from the original score 
and applied a compositional bias correction within a local 40-residue 
sequence window (see the ‘Pairwise local structural alignments’ subsec-
tion). E values are calculated using an extreme-value score distribution, 
with parameters predicted by a neural network based on 3Di sequence 
composition and query length (see the ‘E values’ subsection). Ranking 
of hits is determined by alignment bit score multiplied by the geometric 
mean of alignment TM-score and local distance difference test (LDDT). 
Foldseek also reports the probability for each match to be homologous, 
based on a fit of true and false matches on SCOPe.

We measured the sensitivity and speed of Foldseek, six pro-
tein structure alignment tools, an alignment-free structure search 
tool (Geometricus20) and a sequence search tool (MMseqs2 (ref. 6)) 
on the SCOPe dataset of manually classified single-domain struc-
tures21. Clustering SCOPe 2.01 at 40% sequence identity yielded 11,211 
non-redundant protein sequences (SCOPe40). We performed an 
all-versus-all search and compared the tools’ performance for finding 
members of the same SCOPe family, superfamily and fold (true-positive 
(TP) matches) by measuring for each query the fraction of TPs out of all 
possible correct matches until the first FP, a match to a different fold 
(see the ‘SCOPe benchmark’ subsection).

We first measured the sensitivity to detect relationships at family 
and superfamily level by the area under the curve (AUC) of the cumu-
lative receiver operating characteristic (ROC) curve up to the first FP 
(Fig. 2a and Supplementary Fig. 4). Foldseek’s sensitivity is below Dali 
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Fig. 1 | Foldseek workflow. a, Foldseek searches a set of query structures through 
a set of target structures. (1) Query and target structures are discretized into 3Di 
sequences (see b). To detect candidate structures, we apply the fast and sensitive 
k-mer and ungapped alignment prefilter of MMseqs2 to the 3Di sequences, (2) 
followed by vectorized Smith–Waterman local alignment combining 3Di and 
amino acid substitution scores. Alternatively, a global alignment is computed 
with a 1.7-times accelerated TM-align version (Supplementary Fig. 12).  
b, Learning the 3Di alphabet. (1) 3Di states describe tertiary interaction between 
a residue i and its nearest neighbor j. Nearest neighbors have the closest virtual 

center distance (yellow). Virtual center positions (Supplementary Fig. 1) were 
optimized for maximum search sensitivity. (2) To describe the interaction 
geometry of residues i and j, we extract seven angles, the Euclidean Cα distance 
and two sequence distance features from the six Cα coordinates of the two 
backbone fragments (blue and red). (3) These 10 features are used to define  
20 3Di states by training a VQ-VAE28 modified to learn states that are maximally 
evolutionary conserved. For structure searches, the encoder predicts the best-
matching 3Di state for each residue.
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Foldseek alignments are more accurate and sensitive than MMseqs2, 
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise 
but 15% more sensitive than CE. In the reference-based HOMSTRAD 
alignment quality benchmark24, Foldseek performs slightly below CE, 
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between 
Foldseek and Dali in alignment quality for all HOMSTRAD families (see 
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we 
searched the set of unfragmented models in AlphaFoldDB (version 1)  
with average predicted LDDT1≥80 against itself. We inspected the 
1,675 (of 133,813) high-scoring FPs (score per aligned column ≥ 1.0, 
TM-score < 0.5), revealing queries with multiple structured segments 
but with incorrect relative orientations (Supplementary Table 3 and 
Supplementary Fig. 9). The folded segments were correctly aligned 
by Foldseek. This illustrates that 3D aligners such as TM-align may 
overlook homologous structures that are not globally superposable, 
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is 
independent of relative domain orientations and excels at detecting 
homologous multi-domain structures12.

We developed a webserver (https://search.foldseek.com) for 
multi-database searches, including AlphaFoldDB (version 4: Proteomes 
and Swiss-Prot), AlphaFoldDB (version 4) and CATH25 clustered at 50% 
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)26.

We compared Foldseek webserver, TM-align and Dali using 
SARS-CoV-2 RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version 1). Search times were 10 d for Dali, 33 h for TM-align and 
6 s for Foldseek, making it 180,000 and 23,000 times faster. All top 10 
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every 
folded protein is transformative for biology and bioinformatics. 

Sequence-based analyses will soon be largely superseded by 
structure-based analyses. The main limitation in our view—the four 
orders of magnitude slower speed of structure comparisons—is 
removed by Foldseek.

Online content
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Methods
Overview
Foldseek enables fast and sensitive comparison of large structure sets. 
It encodes structures as sequences over the 20-state 3Di alphabet and, 
thereby, reduces structural alignments to 3Di sequence alignments. The 
3Di alphabet developed for Foldseek describes tertiary residue–residue 
interactions instead of backbone conformations and proved critical for 
reaching high sensitivities. Foldseek’s prefilter finds two similar, spaced 
3Di k-mer matches in the same diagonal of the dynamic programming 
matrix. By not restricting itself to exact matches, the prefilter achieves 
high sensitivity while reducing the number of sequences for which full 
alignments are computed by several orders of magnitude. Further 
speed-ups are achieved by multi-threading and using single instruction, 
multiple data (SIMD) vector units. Owing to the SIMDe library (https://
github.com/simd-everywhere/simde), Foldseek runs on a wide range of 
CPU architectures (x86_64, arm64 and ppc64le) and operating systems 
(Linux and macOS). The core modules of Foldseek, which build on the 
MMseqs2 framework6, are described in the following paragraphs.

Create database
The createdb module converts a set of PDB (ref. 29), macromolecular 
crystallographic information file (mmCIF) formatted files or Foldcomp 
compressed structure (FCZ (ref. 30)) files into an internal Foldseek 
database format using the Gemmi package (https://gemmi.readthe-
docs.io/en/latest/) or the Foldcomp library. The format is compatible 
with the MMseqs2 database format, which is optimized for parallel 
access. We store each chain as a separate entry in the database. The 
module follows the MMseqs2 createdb module logic. However, in 
addition to the amino acid sequence, it computes the 3Di sequence 
from the 3D atom coordinates of the backbone atom and Cβ coordi-
nates (see the ‘Descriptors for 3Di structural alphabet’ and ‘Optimize 
nearest-neighbor selection’ subsections). Backbone atom and Cβ 
coordinates are needed only for the nearest-neighbor selection. For 
Cα-only structures, Foldseek reconstructs backbone atom coordinates 
using PULCHRA31. Missing Cβ coordinates (for example, in glycines) are 
defined such that the four groups attached to the Cα are arranged at the 
vertices of a regular tetrahedron. The 3Di and amino acid sequences 
and the Cα coordinates are stored in the Foldseek database. To save disk 
space, we optionally compress the Cα coordinates losslessly, beginning 
with three uncompressed 4-byte floating-point Cα coordinates and stor-
ing all subsequent coordinates as 2-byte signed integer differences32. 
If any difference is too large to be represented with a 2-byte signed 
integer, we fall back to 4-byte floats for all Cα coordinates.

Prefilter
The prefilter module detects double matches of similar, spaced 
words (k-mers) that occur on the same diagonal. The k-mer size is 
dynamically set to k = 6 or k = 7 depending on the size of the target 
database. Similar k-mers are those with a 3Di substitution matrix score 
above a certain threshold, whereas MMseqs2 uses an amino acid substi-
tution matrix to compute the similarity (see the ‘3Di substitution score 
matrix’ subsection). The gapless double-match criterion suppresses 
hits to non-homologous structures effectively, as they are less likely to 
have consecutive k-mer matches on the same diagonal by chance. To 
avoid FP matches due to regions with biased 3Di sequence composi-
tion, a compositional bias correction is applied in a way analogous to 
MMseqs2 (ref. 33). For each hit, we perform an ungapped alignment 
over the diagonals with double, consecutive, similar k-mer matches 
and sort those by the maximum ungapped diagonal score. Alignments 
with a score of at least 15 bits are passed on to the next stage. We imple-
mented an optional taxonomy filter within the prefiltering step to help 
users search through taxonomic subsets of the target database. After 
the gapless double-diagonal matching stage and before the ungapped 
alignment stage, we reject all potential target hits that do not lie within 
a taxonomic clade specified by the user.

Pairwise local structural alignments
After the prefilter has removed the vast majority of non-homologous 
sequences, the structurealign module computes pairwise align-
ments for the remaining sequences using an SIMD-accelerated 
Smith–Waterman algorithm34,35. We extended this implementation 
to support amino acid and 3Di scoring, compositional bias correction 
and 256-bit-wide vectorization. The score linearly combines amino 
acid and 3Di substitution scores with weights 1.4 and 2.1, respectively. 
We optimized these two weights and the ratio of gap extend to gap 
open penalty on ~1% of alignments (all-versus-all on 10% of randomly 
selected SCOPe40 domains). A compositional bias correction is applied 
to the amino acid and 3Di scores. To further suppress high-scoring FP 
matches, for each match we align the reversed query sequence against 
the target and subtract the reverse bit score from the forward bit score.

Structural bit score
We rank hits by a ‘structural bit’ score—that is, the product of the bit 
score produce by the Smith–Waterman algorithm and the geometric 
mean of average alignment LDDT and the alignment TM-score.

Fast alignment LDDT computation
To improve the LDDT score computation speed, we store the 3D coor-
dinates of the query in a grid using spatial hashing. Each grid cell spans 
15 Å, which is the default radius considered for the LDDT computation. 
For each aligned query residue i, we compute the distances to all Cα 
atoms within a 15 Å radius by searching all neighboring grid cells of the 
query residue’s grid cell. For each residue j, we compute the distance 
between the Cα atoms of i and j and the distance of the corresponding 
aligned target residues. Query and target distances for the aligned 
pairs are subtracted, and the differences d are transformed into LDDT 
scores s = 0.25 × ((d < 0.5) + (d < 1.0) + (d < 2.0) + (d < 4.0)). For each i, we 
obtain the means of the scores for all Cα atoms j within the 15 Å radius of 
i. The LDDT score is the mean of these means over all query residues i.

E values
To estimate E values for each match, we trained a neural network to 
predict the mean μ and scale parameter λ of the extreme value distri-
bution for each query. The module computemulambda takes a query 
and database structures as input and aligns the query against a ran-
domly shuffled version of the database sequences. For each query 
sequence, the module produces N random alignments and fits to their 
scores an extreme value (Gumbel) distribution. The maximum likeli-
hood fitting is done using the Gumbel fitting function taken from 
HMMER3 (hmmcalibrate)36. To train the neural network, it is critical 
to use query and target proteins that include problematic regions, 
such as structurally biased, disordered or badly modeled regions that 
occur ubiquitously in full-length proteins or modeled structures. We, 
therefore, trained the network on 100,000 structures sampled from 
the AlphaFoldDB (version 1). We trained a neural network to predict μ 
and λ from the amino acid composition of the query and its length (so 
a scrambled version of the query sequence would produce the same 
μ and λ). The network has 22 input nodes, two fully connected layers 
with 32 nodes each (ReLU activation) and two linear output nodes. The 
optimizer Adam with learning rate 0.001 was used for training. When 
testing the resulting E values on searches with scrambled sequences, 
the log of the mean number of FPs per query turned out to have an 
accurately linear dependence on the log of the reported E values, albeit 
with a slope of 0.32 instead of 1. We, therefore, correct the E values from 
the neural network by taking them to the power of 0.32. We compared 
how well the mean number of FPs at a given E value agreed with the  
E values reported by Foldseek, MMseqs2 and 3D-Blast (Supplementary 
Fig. 10; see Supplementary Fig. 11 for AlphaFoldDB). We considered a 
hit as FP if it was in a different fold and had a TM-score lower than 0.3. 
Furthermore, we ignored all cross-fold hits within the four-bladed to 
eight-bladed β-propeller superfamilies (SCOPe b.66-b.70) and within 
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the Rossman-like folds (c.2–c.5, c.27, c.28, c.30 and c.31) because of the 
extensive cross-fold homologies within these groups37.

Probability of TP match
Foldseek computes for each match a simple estimate for the probability 
that the match is a TP match given its structural bit score. Here, hits 
within the same superfamily are TP; hits to another fold are FP; and hits 
to the same family or to another superfamily are ignored. We estimate 
the structural bit score distributions of TP and FP hits (p(score∣TP) 
and p(score∣FP)), which allow us to calculate the probability of a 

TP p(TP|score) = p(score |TP)p(TP)
p(score |TP)p(TP)+p(score |FP)p(FP). Both score distributions 

were fitted on SCOPe40 with a mixture model consisting of two gamma 
distributions (resulting in five parameters for each function). For the 
fitting, the function gammamixEM from the R package mixtools38 was 
used. We excluded cross-fold hits between certain folds as in the E value 
estimation. For example, Foldseek finds around the same number of 
FPs and TPs with a score of 51 in SCOPe40. The probability for a hit with 
score 51 is, therefore, 50%.

Pairwise global structural alignments using TM-align
We also offer the option to use TM-align for pairwise structure align-
ment instead of the 3Di-based alignment. We implemented TM-align 
based on the Cα atom coordinates and made adjustments to improve 
the (1) speed and (2) memory usage. (1) TM-align performs multiple 
floating-point-based Needleman–Wunsch (NW) alignment steps while 
applying different scoring functions (for example, score secondary 
structure, Euclidean distance of superposed structures or fragments). 
TM-align’s NW code did not take advantage of SIMD instructions; 
therefore, we replaced it by parasail’s39 SIMD-based NW implemen-
tation and extended it to support the different scoring functions. 
We also replaced the TM-score computation using fast_protein_clus-
ter’s SIMD-based implementation40. Our NW implementation does 
not compute exactly the same alignment because we apply affine 
gap costs, whereas TM-align does not (Supplementary Fig. 12).  
(2) TM-align requires 17 bytes × query length × target length of memory, 
and we reduce the constant overhead from 17 bytes to 4 bytes. If Fold-
seek is used in TM-align mode (parameter --alignment-type 1), 
TM-align is used for the alignment stage after the prefilter step, where 
we replace the reported E value column with TM-scores normalized 
by the query length. The results are ordered in descending order by 
average TM-score by default.

Descriptors for 3Di structural alphabet
The 3Di alphabet describes the tertiary contacts between residues and 
their nearest neighbors in 3D space. For each residue i, the conforma-
tion of the local backbone around i, together with the local backbone 
around its nearest neighbor j, is approximated by 20 discrete states 
(Supplementary Fig. 3). We chose the alphabet size A = 20 as a tradeoff 
between encoding as much information as possible (large A; Supple-
mentary Fig. 13) and limiting the number of similar 3Di k-mers that we 
need to generate in the k-mer-based prefilter, which scales with Ak. The 
discrete single-letter states are formed from neighborhood descrip-
tors containing 10 features encoding the conformation of backbones 
around residues i and j represented by the Cα atoms (Cα,i−1, Cα,i, Cα,i+1) 
and (Cα, j−1, Cα, j, Cα, j+1). The descriptors use the five unit vectors along 
the following directions:

u1 ∶ Cα,i−1 → Cα, i u4 ∶ Cα, j → Cα, j+1

u2 ∶ Cα, i → Cα, i+1 u5 ∶ Cα, i → Cα, j

u3 ∶ Cα, j−1 → Cα, j.

We define the angle between uk and ul as ϕkl, so cosϕkl = uT
kul. The seven 

features cosϕ12, cosϕ34, cosϕ15, cosϕ35, cosϕ14, cosϕ23, cosϕ13  and the 

distance ∣Cα,i − Cα, j∣ describe the conformation between the backbone 
fragments. In addition, we encode the sequence distance with the two 
features sign (i − j) min(|i − j|,4) and sign (i − j) log(|i − j| + 1).

Learning the 3Di states using a vector quantized variational 
autoencoder
The 10-dimensional descriptors were discretized into an alphabet of 
20 states using a vector quantized variational autoencoder (VQ-VAE)28. 
In contrast to standard clustering approaches such as k-means, VQ-VAE 
is a nonlinear approach that can optimize decision surfaces for each 
of its states. In contrast to the standard VQ-VAE, we trained the VQ-VAE 
not as a simple generative model but, rather, to learn states that are 
maximally conserved in evolution. To that end, we trained it with pairs 
of descriptors xn,yn ∈ ℝ10 from structurally aligned residues, to predict 
the distribution of yn from xn.

The VQ-VAE consists of an encoder and decoder network with the 
discrete latent 3Di state as a bottleneck in between. The encoder net-
work embeds the 10-dimensional descriptor xn into a 2D continuous 
latent space, where the embedding is then discretized by the nearest 
centroid, each centroid representing a 3Di state. Given the centroid, 
the decoder predicts the probability distribution of the descriptor yn 
of the aligned residue. After training, only encoder and centroids are 
used to discretize descriptors. Encoder and decoder networks are both 
fully connected with two hidden layers of dimension 10, a batch nor-
malization after each hidden layer and ReLU as activation functions. 
The encoder, centroids and decoder have 242, 40 and 352 parameters, 
respectively. The output layer of the decoder consists of 20 units pre-
dicting μ and σ2 of the descriptors x of the aligned residue, such that 
the decoder predicts 𝒩𝒩(x|μ, Iσ2) (with diagonal covariance).

We trained the VQ-VAE on the loss function defined in Equation (3) 
in ref. 28 (with commitment loss = 0.25) using the deep learning frame-
work PyTorch (version 1.9.0), the Adam optimizer, with a batch size of 
512, and a learning rate of 10−3 over four epochs. Using Kerasify (https://
github.com/moof2k/kerasify), we integrated the encoder network into 
Foldseek. The domains from SCOPe40 were split 80%/20% by fold into 
training and validation sets. For the training, we aligned the structures 
with TM-align, removed all alignments with a TM-score below 0.6 
and removed all aligned residue pairs with a distance between their 
Cα atoms of more than 5 Å. We trained the VQ-VAE with 100 different 
initial parameters and chose the model that was performing best in the 
benchmark on the validation dataset (the highest sum of ratios between 
3Di AUC and TM-align AUC for family, superfamily and fold level).

3Di substitution score matrix
We trained a BLOSUM-like substitution matrix for 3Di sequences from 
pairs of structurally aligned residues used for the ‘VQ-VAE training’. 
First, we determined the 3Di states of all residues. Next, the substitution 
frequencies among 3Di states were calculated by counting how often 
two 3Di states were structurally aligned. (Note that the substitution 
frequencies from state A to state B and the opposite direction are 
equal.) Finally, the score S (x, y) = 2 log2

p(x,y)
p(x)p(y)  for substituting state x 

through state y is the log-ratio between the substitution frequency 
p(x, y) and the probability that the two states occur independently, 
scaled by the factor 2.

3Di alphabet cross-validation
We trained the 3Di alphabet (the VQ-VAE weights) and the substitution 
matrix by four-fold cross-validation on SCOPe40. We split the SCOPe40 
dataset into four parts, such that all domains of each fold ended up in 
the same part of the four parts. 3Di alphabets were trained on three 
parts and tested on the remaining part, selecting each of the four parts 
in turn as a test set. The 80:20 split between training and validation sets 
to select the best alphabet out of the 100 VQ-VAE runs happens within 
the 3/4 of the cross-validation training data. Supplementary Fig. 14 
shows the mean sensitivity (black) and the standard deviation (gray 
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area) in comparison to the final 3Di alphabet, for which we trained the 
3Di alphabet on the entire SCOPe40 (red). No overfitting was observed, 
despite training 492 parameters (282 neural network and 210 substitu-
tion matrix entries). In Fig. 2, we, therefore, show the benchmark results 
for the final 3Di alphabet, trained on the entire SCOPe40.

Nearest-neighbor selection
To select nearest-neighbor residues that maximize the performance 
of the resulting 3Di alphabet in finding and aligning homologous 
structures, we introduced the virtual center V of a residue. The virtual 
center position is defined by the angle θ (V-Cα-Cβ), the dihedral angle  
τ (V-Cα-Cβ-N) and the length l (∣V − Cα∣) (Supplementary Fig. 1). For each 
residue i, we selected the residue j with the smallest distance between 
their virtual centers. The virtual center was optimized on the training 
and validation structure sets used for the VQ-VAE training by creating 
alphabets for positions with θ ∈ [0, 2π], τ ∈ [ − π, π] in 45∘ steps and  
l ∈ {1.53 Å k: k ∈ {1, 1.5, 2, 2.5, 3}} (1.53 Å is the distance between Cα  
and Cβ). The virtual center defined by θ = 270∘, τ = 0∘ and l = 2 performed 
best in the SCOPe benchmark.

This virtual center preferably selects long-range, tertiary interac-
tions and only falls back to selecting interactions to i + 1 or i − 1 when no 
other residues are nearby. In that case, the interaction captures only 
the backbone conformation.

SCOPe benchmark
We downloaded the SCOPe40 structures (available at https://wwwuser.
gwdg.de/~compbiol/foldseek/scop40pdb.tar.gz).

The SCOPe benchmark set consists of single domains with an aver-
age length of 174 residues. In our benchmark, we compare the domains 
all-versus-all. Per domain, we measured the fraction of detected TPs 
up to the first FP. For family-level, superfamily-level and fold-level 
recognition, TPs were defined as same family, same superfamily and 
not same family and same fold and not same superfamily, respectively. 
Hits from different folds are FPs.

Evaluation SCOPe benchmark
After sorting the alignment result of each query (described in the ‘Tools 
and options for benchmark comparison’ subsection), we calculated 
the sensitivity as the fraction of TPs in the sorted list up to the first FP, 
all excluding self-hits. For comparison, we took the mean sensitivity 
over all queries for family-level, superfamily-level and fold-level clas-
sifications. We evaluated only SCOPe members with at least one other 
family, superfamily and fold member. We measure the sensitivity up 
to the 1st FP (ROC1) instead, for example, up to the 5th FP, because 
ROC1 better reflects the requirements for low false discovery rates in 
automatic searches.

Additionally, we plotted precision-recall curves for each tool 
(Fig. 2b and Supplementary Fig. 4). After sorting the alignment 
results by the structural similarity scores (as described in the ‘Tools 
and options for benchmark comparison’ subsection) and excluding 
self-matches, we generated a weighted precision-recall curve for 
family-level, superfamily-level and fold-level classifications (preci-
sion = TP / (TP + FP) and recall = TP / (TP + FN)). All counts (TP, FP and 
FN) were weighted by the reciprocal of their family, superfamily or fold 
size. In this way, folds, superfamilies and families contribute linearly 
with their size instead of quadratically36.

Runtime evaluations on SCOPe and AlphaFoldDB
We measured the speed of structural aligners on a server with an AMD 
EPYC 7702P 64-core CPU and 1,024 GB RAM memory. On SCOPe40, we 
measured or estimated the runtime for an all-versus-all comparison. 
To avoid excessive runtimes for TM-align, Dali and CE, we estimated 
the runtime by randomly selecting 10% of the 11,211 SCOPe domains 
as queries. We measured runtimes on AlphaFoldDB for searches with 
the same 100 randomly selected queries used for the sensitivity and 

alignment quality benchmarks (Fig. 2d,e). Tools with multi-threading 
support (MMseqs2 and Foldseek) were executed with 64 threads; tools 
without were parallelized by breaking the query set into 64 equally 
sized chunks and executing them in parallel.

Reference-free multi-domain benchmarks
We devised two reference-free benchmarks that do not rely on any 
reference structural alignments. We clustered the AlphaFoldDB (ver-
sion 1)3 using SPICi22. For this, we first aligned all protein sequences all 
against all using an E value threshold <10−3 using BLAST (2.5.0+)5. SPICi 
produced 34,270 clusters from the search result. For each cluster, we 
picked the longest protein as representative. We randomly selected 100 
representatives as queries and searched the set of remaining structures. 
The top five alignments of all queries are listed at https://wwwuser.
gwdg.de/~compbiol/foldseek/multi_domain_top5_alignments/.

For the evaluation, we needed to adjust the LDDT score function 
taken from AlphaFold2 (ref. 1). LDDT calculates for each residue i in the 
query the fraction of residues in the 15 Å neighborhood that have a dis-
tance within 0.5, 1, 2 or 4 Å of the distance between the corresponding 
residues in the target23. The denominator of the fraction is the number 
of 15 Å neighbors of i that are aligned to some residue in the target. This 
does not properly penalize non-compact models in which each residue 
has few neighbors within 15 Å. We, therefore, use as denominator the 
total number of neighboring residues within 15 Å of i.

For the alignment quality benchmark (Fig. 2e), we classified each 
aligned residue pair as TP or FP depending on its residue-wise LDDT 
score—that is, the fraction of distances to its 15 Å neighbors that are 
within 0.5, 1, 2 and 4 Å of the distance to the corresponding residues in 
the query, averaged over the four distance thresholds. TP residues are 
those with a residue-wise LDDT score of at least 0.6 and FPs below 0.25, 
ignoring matches in between. For the search sensitivity benchmark 
(Fig. 2d), TP residue–residue matches are those with an LDDT score of 
the query-target alignment of at least 0.6 and FPs below 0.25, ignoring 
matches in between. (The LDDT score of the query-target alignment 
is the average of the residue-wise LDDT score over all aligned residue 
pairs.) The choice of thresholds is illustrated in Supplementary Fig. 6. 
The benchmark for other thresholds is shown in Supplementary Fig. 7.

All-versus-all search of AlphaFoldDB with Foldseek
We downloaded the AlphaFoldDB (version 1)3 containing 365,198 pro-
tein models and searched it all-versus-all using Foldseek -s 9.5 –
max-seqs 2000. For our second-best hit analysis, we consider only 
models with (1) an average Cαʼs predicted LDDT (pLDDT) greater than 
or equal to 80 and (2) models of non-fragmented domains. We also 
computed the structural similarity for each pair using TM-align (default 
options).

Tools and options for benchmark comparison
Owing to dataset overlap, we excluded methods from the benchmark 
that are likely to be overfitted on SCOPe. This applies to methods that 
trained many thousands of parameters (for example, deep neural 
networks) with strong data leakage among training, validation and test 
sets. For example, several tools allowed up to 40% sequence identity 
between sets. The following command lines were used in the SCOPe as 
well as the multi-domain benchmark:

Foldseek
We used Foldseek commit aeb5e during this analysis. Foldseek was 
run with the following parameters: --threads 64 -s 9.5 -e 10 
--max-seqs 2000.

Foldseek-TM
For the Foldseek-TM benchmark, we first run a regular 3Di/AA-based 
Foldseek search using the following parameters: --threads 64 -s 
9.5 -e 10 --max-seqs 4000 --alignment-mode 1. All hits 
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passing are then aligned by Foldseeks’s tmalign --tmalign-fast 1 
--tmscore-threshold 0.0 -a. We used Foldseek commit aeb5e dur-
ing this analysis. We expose Foldseek-TM in our command-line interface 
as a search mode that combines regular Foldseek 3Di/AA-based work-
flow with our TM-align implementation within the tmalign module.

MMseqs2
We used the default MMseqs2 (release 13-45111) search algorithm to 
obtain the sequence-based alignment result. MMseqs2 sorts the results 
by E value and score. We searched with: --threads 64 -s 7.5 -e 
10000 --max-seqs 2000.

CLE-Smith–Waterman
We used PDB Tool version 4.80 (https://github.com/realbigws/
PDB_Tool) to convert the benchmark structure set to CLE sequences. 
After the conversion, we used SSW35 (commit ad452e) to align CLE 
sequences all-versus-all. We sorted the results by alignment score. 
The following parameters were used to run SSW: (1) protein align-
ment mode (-p); (2) gap open penalty of 100 (-o 100); (3) gap 
extend penalty of 10 (-e 10); (4) CLE’s optimized substitution matrix  
(-a cle.shen.mat); and (5) returning alignment (-c). The gap open 
and extend values were inferred from DeepAlign41. The results are 
sorted by score in descending order.

ssw_test -p -o 100 -e 10 -a cle.shen.mat -c

3D-BLAST
We used 3D-BLAST (beta102) with BLAST+ (2.2.26) and SSW34 (version 
ad452e). We first converted the PDB structures to a 3D-BLAST database 
using 3d-blast -sq_write and 3d-blast -sq_append. We searched 
the structural sequences against the database using blastp with the 
following parameters: (1) 3D-BLAST’s optimized substitution matrix 
(-M 3DBLAST); (2) number of hits and alignments shown of 12,000 
(-v 12000 -b 12000); (3) E value threshold of 1,000 (-e 1000); (4) 
disabling query sequence filter (-F F); (5) gap open of 8 (-G 8); and 
(6) gap extend of 2 (-E 2). 3D-BLAST’s results are sorted by E value in 
ascending order:

blastall -p blastp -M 3DBLAST -v 12000 -b 12000 -e 
1000 -F F -G 8 -E 2

For Smith–Waterman, we used (1) gap open of 8; (2) gap extend of 
2; (3) returning alignments (-c); (4) 3D-BLAST’s optimized substitution 
matrix (-a 3DBLAST); and (5) protein alignment mode (-p): ssw_test 
-o 8 -e 2 -c -a 3DBLAST -p. We noticed that the 3D-BLAST matrix 
with Smith–Waterman resulted in a similar performance to CLE: 0.717, 
0.230 and 0.011 for family classification, superfamily classification and 
fold classification, respectively. We excluded 3D-BLAST’s measurement 
from the multi-domain benchmark because it produced occasionally 
high scores (>107) for single residue alignments.

TM-align
We downloaded and compiled the TMalign.cpp source code (version 
2019/08/22) from the Zhang group website. We ran the benchmark 
using default parameters and -fast for the fast version. TM-align 
reports two TM-scores: (1) normalized by the length of 1st chain (query) 
or (2) normalized by the length of the 2nd chain (target). We used the 
average of TM-scores normalized by the 1st chain (query) and 2nd chain 
(target) in all our analyses. We evaluated TM-align’s performance by 
sorting the results based on both the query TM-score and the minimum, 
maximum and average TM-score for both the query and target. Our 
results showed that the average TM-score performed the best in our 
single-domain benchmark.

Default: TMalign query.pdb target.pdb
Fast: TMalign query.pdb target.pdb -fast

Dali
We installed the standalone DaliLite.v5. For the SCOPe40 benchmark 
set, input files were formatted in DAT files with Dali’s import.pl. The 
conversion to DAT format produced 11,137 valid structures out of the 
11,211 initial structures for the SCOPe benchmark and 34,252 structures 
out of 34,270 SPICi clusters. After formatting the input files, we calcu-
lated the protein alignment with Dali’s structural alignment algorithm. 
The results were sorted by Dali’s z-score in descending order:

import.pl –pdbfile query.pdb –pdbid PDBid –dat DAT 
dali.pl –cd1 queryDATid –db targetDB.list –TITLE 
systematic –dat1 DAT –dat2 DAT –outfmt "summary" 
–clean

CE
We used BioJava’s42 (version 5.4.0) implementation of the combinatorial 
extension (CE) alignment algorithm. We modified one of the modules of 
BioJava under shape configuration to calculate the CE value. Our modi-
fied CEalign.jar file requires a list of query files, path to the target PDB 
files and an output path as input parameters. This Java module runs an 
all-versus-all CE calculation with unlimited gap size (maxGapSize -1)  
to improve alignment results14. The results were sorted by z-score in 
descending order. For the multi-domain benchmark, we excluded one 
query that was running over 16 d. The Jar file of our implementation of 
CE calculation is provided (see ‘Code availability’).

java -jar CEalign.jar querylist.txt 
TargetPDBDirectory OutputDirectory

Geometricus
We included Geometricus20 in the SCOPe benchmark as a representa-
tive of alignment-free tools, which are fast but can find only globally 
similar structures. Geometricus discretizes fixed-length backbone 
fragments (shape-mers) using their 3D moment invariants and repre-
sents structures as a fixed-length count vector over the shape-mers. To 
calculate the shape-mer-based structural similarity of the benchmark 
set, we used Caretta-shape’s Python implementation (1e3adb0) of 
multiple structure alignment (https://github.com/TurtleTools/caretta/
caretta/multiple_alignment.py), which computes the Bray–Curtis 
similarity between the Geometricus shape-mer vectors. Our modified 
version extracts structural information from the input files and gener-
ates all-versus-all pairwise structural similarity score as an output. We 
ran Geometricus on a single core because it would require substantial 
engineering efforts to implement parallelization on multiple cores. 
With an efficient multi-core implementation, Geometricus might be as 
fast as MMseqs2 on 64 cores. The Python code of our implementation 
of Geometricus is provided:

python runGeometricus_caretta.py -i querylist.txt 
-o OutputDirectory

HOMSTRAD alignment benchmark
The HOMSTRAD database contains expert-curated homologous 
structural alignments for 1,032 protein families24. We downloaded 
the latest HOMSTRAD version (https://mizuguchilab.org/homstrad/
data/homstrad_with_PDB_2022_Aug_1.tar.gz) and picked the pairwise 
alignments between the first and last members of each family, which 
resulted in structures of a median length of 182 residues. We used the 
same parameters as in the SCOPe and multi-domain benchmark. We 
forced Foldseek, MMseqs2 and CLE-Smith–Waterman to return an 
alignment by switching off the prefilter and E value threshold. With the 
HOMSTRAD alignments as reference, we measured for each pairwise 
alignment the sensitivity (fraction of residue pairs of the HOMSTRAD 
alignment that were correctly aligned) and the precision (fraction of 
correctly aligned residue pairs in the predicted alignment). Dali, CE 
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and CLE-Smith–Waterman failed to produce an alignment for 35, 1 and 
1 out of 1,032 pairs, respectively, which were rated with a sensitivity 
of 0. The mean sensitivity and precision are shown in Fig. 2e, and all 
individual alignments are listed in homstrad_alignments.txt at 
https://wwwuser.gwdg.de/~compbiol/foldseek/.

Limitations of benchmarks
The SCOPe benchmark to measure search sensitivity uses only 
single-domain proteins as queries and targets (Fig. 2a–c). It, therefore, 
cannot assess the ability of tools to find local similarities—for example, 
finding homologous domains shared between two multi-domain pro-
teins. The alignment benchmark based on HOMSTRAD (Fig. 2e) has 
the same limitation, as the vast majority of proteins in HOMSTRAD 
have a single domain (median length = 182 residues). A drawback of 
our reference-free multi-domain benchmark is the need to choose 
thresholds for TPs and FPs (Supplementary Fig. 6).

Pre-built and ready-to-download databases
Foldseek includes the databases module to aid users with the down-
load and setup of structural databases. Currently, we include the four 
variants of the AlphaFoldDB (version 4): UniProt (214 million struc-
tures), UniProt50, a clustered database to 50% sequence identity and 
90% bi-directional coverage using MMseqs2 (parameters -c 0.9 
--min-seq-id 0.5 --cluster-reassign; 54 million structures), 
Proteome (564,000 structures) and Swiss-Prot (542,000 structures). 
Additionally, we regularly build and offer a 100% sequence identity clus-
tered PDB. The update pipeline is available in the util/update_web-
server_pdb folder in the main Foldseek repository. These databases 
are hosted on Cloudflare R2 for fast downloading. We additionally 
link to and provide an automatic setup procedure for the ESM Atlas 
High-Quality Clu304 database.

Webserver
The Foldseek webserver is based on the MMseqs2 webserver43. To allow 
for searches in seconds, we implemented MMseqs2ʼs pre-computed 
database indexing capabilities in Foldseek. Using these, the search data-
bases can be fully cached in system memory by the operating system and 
instantly accessed by each Foldseek process, thus avoiding expensive 
accesses to slow disk drives. A similar mechanism was used to store and 
read the associated taxonomic information. The AlpaFoldDB/UniProt50 
(version 4), AlphaFoldDB/Proteome (version 4), AlphaFoldDB/Swiss-Prot 
(version 4), CATH50, ESM Atlas High-Quality Clu30 and PDB100 require 
191 GB, 3.8 GB, 3.4 GB, 1.4 GB, 110 GB and 2.0 GB RAM, respectively. The 
databases are kept in memory using vmtouch (https://github.com/hoy-
tech/vmtouch). Databases are only required to remain resident in RAM if 
Foldseek is used as a webserver. During batch searches, Foldseek adapts 
its memory use to the available RAM of the machine. We implemented a 
structural visualization using the NGL viewer44 to aid the investigation of 
pairwise hits. Because we only store Cα traces of the database proteins, 
we use PULCHRA30 to complete the backbone of these sequences, and 
also of the query if necessary, to enable a ribbon visualization45 of the 
proteins. For a high-quality superposition, we use TM-align11 to super-
pose the structures based on the Foldseek alignment. Both PULCHRA 
and TM-align are executed within the users’ browser using WebAssembly. 
They are available as pulchra-wasm and tmalign-wasm on the npm 
package repository as free open-source software.

Structure prediction in the webserver
We use the ESM Atlas API to predict structures of user-supplied 
sequences that are, at most, 400 residues long. This enables 
sequence-to-structure searches in the webserver.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Benchmark data are available at https://wwwuser.gwdg.de/~compbiol/
foldseek.

Code availability
Foldseek is GPLv3-licensed free open-source software. The source code 
and binaries for Foldseek can be downloaded at https://github.com/
steineggerlab/foldseek. The webserver code is available at https://
github.com/soedinglab/mmseqs2-app. The analysis scripts are avail-
able at https://github.com/steineggerlab/foldseek-analysis.
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