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Signal peptides (SPs) are short amino acid sequences that 
control protein secretion and translocation in all living organ-
isms. SPs can be predicted from sequence data, but existing 
algorithms are unable to detect all known types of SPs. We 
introduce SignalP 6.0, a machine learning model that detects 
all five SP types and is applicable to metagenomic data.

SPs are short N-terminal amino acid sequences that target pro-
teins to the secretory (Sec) pathway in eukaryotes and for trans-
location across the plasma (inner) membrane in prokaryotes. As 
comprehensive experimental identification of SPs is impractical, 
computational prediction of SPs has high relevance to research in 
cell biology1. SP prediction tools enable identification of proteins 
that follow the general secretory or twin-arginine translocation 
(Tat) pathway and predict the position in the sequence where a sig-
nal peptidase (SPase) cleaves the SP2,3. SignalP 5.0 is able to pre-
dict Sec substrates cleaved by SPase I (Sec/SPI) or SPase II (Sec/
SPII, prokaryotic lipoproteins) and Tat substrates cleaved by SPase 
I (Tat/SPI)4. However, due to a lack of annotated data, SignalP 5.0 is 
unable to detect Tat substrates cleaved by SPase II or Sec substrates 
processed by SPase III (prepilin peptidase, sometimes referred to as 
SPase IV2). Such Sec/SPIII SPs control the translocation of type IV 
pilin-like proteins, which play a key role in adhesion, motility and 
DNA uptake in prokaryotes5. Furthermore, SignalP 5.0 is agnostic 
regarding the SP structure, as it cannot define the subregions (the 
N-terminal n-region, the hydrophobic h-region, and the C-terminal 
c-region) that underlie the biological function of SPs.

Here, we present SignalP 6.0, based on protein language models 
(LMs)6–9 that use information from millions of unannotated protein 
sequences across all domains of life. LMs create semantic represen-
tations of proteins that capture their biological properties and struc-
ture. Using these protein representations, SignalP 6.0 can predict 
additional types of SPs that previous versions have been unable to 
detect while better extrapolating to both proteins distantly related to 
those used to create the model and metagenomic data of unknown 
origin. In addition, it is capable of identifying the subregions of SPs.

We compiled a comprehensive dataset of protein sequences 
that are known to harbor SPs, containing 3,352 Sec/SPI, 2,261 
Sec/SPII, 113 Sec/SPIII, 595 Tat/SPI, 36 Tat/SPII, 16,421 intracel-
lular sequences and 2,615 transmembrane sequences (Methods). 
Moreover, we defined region-labeling rules according to known 

properties of the SP types (Fig. 1a and Methods). We applied 
threefold nested cross-validation to train and evaluate the model 
(Methods and Supplementary Note 1). In our data-partitioning pro-
cedure, we ensured that homologous sequences were placed in the 
same partition to accurately measure the model’s performance on 
unseen sequences.

For previous predictors, the SP types Sec/SPIII and Tat/SPII were 
omitted due to a lack of annotated samples, which makes learning 
their defining features challenging for models4. Notably, this lack 
does not correspond to prevalence in nature, as these types exist 
throughout most organisms present in the databases10,11. In addi-
tion, the available annotated sequences do not cover the full diver-
sity encountered in nature, as they are biased towards well-studied 
organisms. Furthermore, existing predictors require data for which 
the organism of origin is known, as this allows the predictors to 
explicitly account for known differences in SP structure among 
Eukarya, Archaea and Gram-positive and Gram-negative bacteria.

Protein LMs have been shown to improve performance on prob-
lems with limited annotated data12. Moreover, LM protein represen-
tations directly capture the evolutionary context of a sequence6,8. We 
hypothesized that when using an LM, we would (1) obtain better per-
formance on SP types with limited data availability, (2) achieve bet-
ter generalization to sequences that are distantly related to training 
sequences and (3) enable the prediction of sequences for which the 
species of origin is unknown. We opted for the bidirectional encoder 
representations from transformers (BERT) protein LM, which 
is available in ProtTrans6,7 and was trained on UniRef100 (ref. 13)  
(Fig. 1b). The LM was subsequently optimized on our dataset to 
predict SPs. We found that even before optimization, the LM cap-
tured the presence of SPs in its protein representations (Fig. 1c).  
We combined the LM with a conditional random field (CRF) proba-
bilistic model14 to predict the SP region at each sequence position 
together with the SP type, yielding the SignalP 6.0 architecture  
(Fig. 1d).

As the baseline for evaluation, we retrained SignalP 5.0 on our 
new dataset. We measure performance for each SP type sepa-
rately per organism group (Archaea, Eukarya, Gram-positive and 
Gram-negative bacteria), reporting the Matthews correlation coeffi-
cient (MCC) for correctly detecting the SP type among both non-SP 
and other types of sequences as negative samples. For all categories 
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except Tat/SPI in Archaea, SignalP 6.0 showed improved perfor-
mance. Detection performance improved substantially, especially 
for the two underrepresented types, Sec/SPIII and Tat/SPII (Fig. 

2a and Supplementary Fig. 1), whereas the performance of SignalP 
5.0 remained too low to make it practically useful. This confirms 
the importance of LMs for low-data problems, making SignalP 6.0 
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Fig. 1 | Modeling SP structure using protein LMs. a, Region structures of the five SP types. Twin arginine (RR)-translocated SPs feature a twin-arginine 
motif, while SPs cleaved by SPase II feature a C-terminal lipobox. Sec/SPIII SPs have no substructure. b, Protein LM training procedure. BERT learns protein 
features by predicting masked amino acids in sequences from UniRef100. c, t-Distributed stochastic neighbor embedding (t-SNE) projection of protein 
representations before prediction training. Different SP types form distinct clusters, separated from sequences without SPs. d, SignalP 6.0 architecture. An 
amino acid sequence is passed through the LM, and the resulting representation serves as input for the CRF, which predicts region probabilities at each 
position and the SP type. CS, cleavage site.
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Fig. 2 | SignalP 6.0 shows strong performance on all types and organism groups. a, SP detection performance (ARC, Archaea; EUK, Eukarya; NEG, 
Gram-negative bacteria; POS, Gram-positive bacteria). SignalP 6.0 substantially improves performance on underrepresented types. b, CS prediction 
performance. SignalP 6.0 has improved precision for all categories. c, Dependence of performance on identity to sequences in the training data. At 
sequence identities lower than 60%, SignalP 6.0 outperforms SignalP 5.0.
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a model capable of simultaneously detecting all five types of SPs. In 
addition, we found substantial precision gains for predicting cleav-
age sites (CSs) (Fig. 2b).

We further benchmarked SignalP 6.0 against other publicly 
available predictors. In some cases, specialized predictors show 
stronger performance on the specific tasks they were optimized 
for (Supplementary Figs. 2 and 3 and Supplementary Tables 1–6). 
However, none of these predictors are capable of detecting all SP 
types, and the results are further biased, as they cannot be evaluated 
in a cross-validated setup.

When predicting a set of test sequences grouped by identity to 
any sequence in the training data, we find that detection perfor-
mance at high sequence identities remained comparable. However, 
at identities lower than 60%, SignalP 6.0 outperformed SignalP 5.0, 
showing better generalization to proteins distantly related to those 
present in the training data (Fig. 2c).

Most SP predictors require knowledge of a sequence’s organism 
group of origin for optimal performance4,15,16. SignalP 6.0 does not 
show reduced performance if this information is removed, indicat-
ing that the evolutionary context, as encoded in the LM representa-
tion, already captures the organism group (Supplementary Fig. 4). 
Ultimately, this makes SignalP 6.0 a multiclass SP prediction tool 
that is applicable to sequences of unknown origin, as is typically the 
case in metagenomic and metatranscriptomic assemblies. However, 
SignalP 6.0 still relies on start codons being correctly identified 
before application. For context, 1.7% of UniProt release 2021_02 
entries (i.e., 3.5 million sequences) have no organism specified.

SPs are traditionally described as consisting of three regions. 
We benchmarked our region identification by comparing the 
properties of predicted regions to known properties17, with pre-
dictions matching all expected properties (Supplementary Note 2 
and Supplementary Fig. 5). We additionally predicted a library of 
synthetic SPs that are either functional or nonfunctional in Bacillus 
subtilis18, revealing significant differences in the two groups’ regions 
that could not be identified before by traditional sequence analysis 
(Supplementary Fig. 6 and Supplementary Table 7).

This study presents SignalP 6.0, a machine learning model 
covering all five known types of SPs that accurately predicts both 
sequences of unknown origin and evolutionarily distant proteins. 
Through the use of protein LMs, SignalP 6.0 is able to predict types 
with very limited training data available. By making the full spec-
trum of SPs accessible, the model allows us to further improve 
our understanding of protein translocation throughout evolution 
(Supplementary Note 3 and Supplementary Tables 8 and 9). In 
addition, identification of SP regions opens up new avenues into 
researching the defining properties that govern SP functionality. 
Given the potential of SPs as drug targets19 and their emerging role 
in synthetic biology18, investigating SPs and their properties at scale 
may lead to further advances in these fields.
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Methods
Sequence data. The dataset for SignalP 6.0 was obtained by extending the data 
published with SignalP 5.0 (ref. 4). For all classes that were already part of the 
original data (Sec/SPI, Sec/SPII, Tat/SPI and soluble and transmembrane proteins), 
we added sequences that had become available in the respective source databases 
(UniProt20 and Prosite21 for SPs and UniProt and TOPDB22 for soluble and 
transmembrane proteins) from 2018 until 7 November 2020, following the original 
selection criteria.

Tat/SPII sequences were identified using the combination of Prosite profiles 
PS51318 (Tat motif) and PS51257 (lipoprotein motif). By default, PS51318 is 
subject to postprocessing that prevents both profiles from matching the same 
sequence. As there is experimental evidence for the existence of Tat-translocated 
lipoproteins10,11, we considered this postprocessing rule to be biologically 
implausible. We disabled it manually in ScanProsite23 and scanned all prokaryotic 
sequences in Swiss-Prot, yielding a total of 25 sequences in which both profiles 
matched. Additional Tat/SPII sequences were found by training a simplified 
SignalP 6.0 model to discriminate SPII from non-SP sequences. We used this 
model to predict all Tat/SPI sequences in the training data, as we assumed that 
PS51257 is not sensitive enough to find all lipoproteins. We investigated the 
resulting hits in UniProt for supporting evidence that the proteins were true 
lipoproteins, yielding 12 sequences that we relabeled Tat/SPII from Tat/SPI. One 
additional sequence with manual evidence was found in the TatLipo 1.03 training 
data10. For Sec/SPIII sequences, we used Prosite pattern PS00409 for bacteria and 
Pfam24 family PF04021 for Archaea, yielding 103 and 10 sequences, respectively.

We improved the organism type classification of sequences by defining 
Gram-negative and Gram-positive bacteria more stringently, as we found that for 
edge cases such as Thermotogae, in which both gram stains can be observed25, 
the classification in SignalP 5.0 was unclear. We redefined Gram positive as 
all bacterial phyla that have a single membrane (monoderm): Actinobacteria, 
Firmicutes, Tenericutes, Thermotogae, Chloroflexi and Saccharibacteria.  
All remaining phyla have a double membrane (diderm) and were classified as 
Gram negative.

We followed the methodology introduced by Gíslason et al.26 for homology 
partitioning of the dataset into three partitions at 30% sequence identity. In brief, 
it achieves partitioning by computing the pairwise global sequence identities of all 
sequences using the Needleman–Wunsch algorithm27, followed by single-linkage 
clustering. The resulting clusters were grouped together into the desired number of 
partitions. If there were sequences in a partition that had pairwise identities to any 
sequence in another partition that were higher than the defined threshold, then 
those sequences were iteratively removed until the maximum sequence identity 
criterion was fulfilled. We performed the partitioning procedure separately for each 
SP type and the negative set, yielding three partitions for each of the six classes. 
The algorithm was further constrained to ensure that each generated partition 
was balanced for the four organism groups. We concatenated the resulting 3 × 6 
partitions to yield the three final partitions for cross-validation, thereby ensuring 
that both the SP types and the organism groups were equally represented across 
partitions.

The CD-HIT clustering method28 that was employed in SignalP 5.0 enforces 
the homology threshold for cluster centers. However, as the training set was not 
homology reduced but rather homology clustered, other data points can have a 
homology overlap notably above the chosen threshold of 20% (Supplementary  
Fig. 7). When using the partitioning method of Gíslason et al., which strictly 
enforces the defined threshold, 20% maximum identity was impossible to achieve. 
Even at the relaxed threshold of 30%, the procedure resulted in the removal 
of a substantial part of the dataset to achieve separation in three partitions 
(Supplementary Table 10).

For benchmarking, we reused the benchmark set of SignalP 5.0, from which we 
excluded all sequences that were removed in the homology partitioning procedure 
of the new dataset. For sequences that were reclassified (to Gram positive or Tat/
SPII), we changed the label accordingly (Supplementary Table 11).

For the synthetic SP dataset, we used the data reported by Wu et al.18. 
We gathered all synthetic SP-mature protein pairs that were experimentally 
characterized, yielding 57 nonfunctional and 52 functional sequences. For the 
region analysis, we only considered sequences predicted as Sec/SPI SPs by SignalP 
6.0, reducing the number of nonfunctional sequences to 55.

Reference proteomes and proteins of unknown origin were obtained from 
UniProt release 2021_02. To identify sequences of unknown origin, we used 
taxonomy identifiers 48479 (environmental samples), 49928 (unclassified bacteria) 
and 2787823 (unclassified entries).

Generation of SP region labels. We defined the task of learning SP regions as a 
multilabel classification problem at each sequence position. Multilabel differs from 
multiclass in the sense that more than one label can be true at a given position. 
This approach was motivated by the fact that there is no strict definition of 
region borders that is commonly agreed upon, making it impossible to establish 
ground-truth region labels for models to train on. We thus used the multilabel 
framework as a method for training with weak supervision, allowing us to use 
overlapping region labels during the learning phase that could be generated from 
the sequence data using rules. For inference, we did not make use of the multilabel 

framework, as we only predicted the single most probable label at each position 
using Viterbi decoding, yielding a single unambiguous solution.

We defined a set of three rules based on known properties of the n-, h-, and 
c-regions. The initial n-region must have a minimum length of two residues and 
the terminal c-region a minimum length of three residues. The most hydrophobic 
position, which is identified by sliding a seven-amino-acid window across the SP 
and computing the hydrophobicity using the Kyte–Doolittle scale29, belongs to the 
h-region. All positions between these six labeled positions are labeled as either 
both n and h or h and c, yielding multitag labels.

This procedure was adapted for different SP classes, with only Sec/SPI 
completely following it. For Tat SPs, the n–h border was identified using the 
twin-arginine motif. All positions before the motif were labeled n, followed by 
two dedicated labels for the motif, again followed by a single position labeled 
n. For SPII SPs, we did not label a c-region, as the C-terminal positions cannot 
be considered as such30. The last three positions were labeled as the lipobox, all 
positions before that as h only. For SPIII SPs, no region labels were generated 
within the SP.

Modeling. SignalP 6.0 uses a pretrained protein LM to encode the amino acid 
sequence and a CRF14 decoder to predict the regions, CSs and sequence class labels. 
Specifically, we used the 30-layer BERT LM 31 that is available in ProtTrans6, which 
was pretrained on UniRef100 (ref. 13). We removed the last layer of the pretrained 
model and extended the pretrained embedding layer by four additional randomly 
initialized vectors to represent the tokens for the four organism group identifiers. 
We prepend the organism group identifier to each sequence s of length T and 
encode it. From the resulting sequence of hidden states, we trim the positions 
corresponding to the organism group token and the special sequence start and end 
tokens used by BERT (CLS and SEP) to obtain a sequence of hidden states h of 
equal length as the original amino acid input x:

h = BERT(x).

The hidden states serve as input for a linear-chain CRF. The CRF models the 
conditional probability of a sequence of states y = y1...yt given a sequence of 
hidden states h = h1...ht using the following factorization:

P(y|h) =
1

Z(h)

T∏

t=1
exp(ψ(ht))

T−1∏

t=1
exp(φyt ,yt+1 ),

where Z(h) is the normalization constant of the modeled distribution; φ is the 
learnable transition matrix of the CRF with C × C parameters, with C being 
the number of states (labels) modeled by the CRF; and ψ is a learnable linear 
transformation that maps from the dimension of the hidden state h to the number 
of CRF states C, yielding the emissions for the CRF:

ψ(ht) = Wψht + bψ .

For each class of SP G, there are multiple possible CRF states, corresponding 
to the defined regions of the SP class. We constrained the transitions in φ to 
ensure that regions are predicted in the correct order, leading to the possible state 
sequences depicted in Supplementary Fig. 8.

For inference, we compute both the most probable state sequence (using 
Viterbi decoding) and the marginal probabilities at all sequence positions (using 
the forward-backward algorithm). The most probable state sequence is used to 
predict the CS, which is inferred from the last predicted SP state as indicated in 
Supplementary Fig. 8.

As each SP consists of multiple regions, multiple states of C belong to a single 
global sequence class G. To predict the global class probabilities, we sum the 
marginal probabilities of all states that belong to a given class and divide the sum 
by the sequence length. This transforms a matrix of probabilities of shape C × T to 
a G × 1 vector of global class probabilities:

p(Gi|x) =
1
T

T∏

t=1

∑

C∈Gi

p(yCt|x).

Training. For training, we minimize the negative log likelihood of the CRF. As 
we can have multiple true labels yt at a given position, we use an extension of the 
equation known as multitag CRF. Multiple labels are handled by summing over the 
set of true labels Mt at each position:

−log (P (y|h)) = log (Z (h)) − log



exp




T∑

t=1

∑

yt∈Mt

ψ (ht) + φ (yt, yt−1)







 .

As we designed our region labels to be overlapping, the model is free to 
distribute its probability mass in any ratio between the correct labels at a given 
position. There are thus multiple solutions for the specific borders of n-, h- and c- 
regions that yield the same negative log likelihood but are not equally biologically 
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plausible. For instance, the model could learn a solution where it uniformly 
predicts an n-region of length 2 in all SPs, irrespective of the actual sequence. We 
employ regularization to promote the finding of biologically plausible solutions. 
Our regularization is based on the fact that the three SP regions have divergent 
amino acid compositions, which we can quantify by computing the cosine 
similarity between the amino acid distributions.

The most obvious approach would be to compute the amino acid distribution 
of each region based on the region borders inferred from the predicted most 
probable path of the sequence. This, however, cannot be used for regularization, 
as we require the term to be differentiable, which our Viterbi decoding 
implementation is not. We therefore based our regularization term on the marginal 
probabilities of the CRF computed by the forward-backward algorithm, which are 
used to compute a score for each amino acid for each region, approximating the 
discrete amino acid distributions.

For each region r ∈ {n, h, c}, we sum the marginal probabilities of all CRF 
states c belonging to region r at position t, yielding st,r. We sum st,r of all positions 
t of the sequence that have amino acid a, yielding the elements of the score vector 
scorer for each region. We compute the cosine similarity between the normalized 
score vectors of n and h and h and c:

st,r =
∑
c∈r

p (yt,c|x)

scorea,r =
∑
t∈I

st,r

I = {t ∈ T|xt = a}

scorer′ = scorer/
A∑

a=1
scorea,r

.

We perform this operation for each sequence. Sequences for which a region 
does not exist (for example no c-region in Sec/SPII) are ignored for the respective 
similarity. The mean over all sequences for both similarities, multiplied by a factor 
α, was added to the loss. We observed that for about half the random seeds we 
tested, training runs with regularization enabled converged to a n-region length of 
2 after one epoch. This is a degenerate solution, as this causes the n-region amino 
acid distribution to be nonzero at a single position, yielding low similarity scores 
while being biologically implausible (a length of 2 is expected as the minimum, not 
the average over all sequences). Such runs were stopped and discarded after one 
epoch.

The model was trained end-to-end, including all layers of BERT for 15 epochs, 
using Adamax as the optimizer and a slanted triangular learning rate. We applied 
dropout on the hidden state outputs of BERT to avoid overfitting. Hyperparameters 
were optimized using SigOpt (https://app.sigopt.com/docs/intro/overview). We 
employed threefold nested cross-validation (outer loop is threefold and inner loop 
is twofold), yielding a total of 3 × 2 models for evaluation.

Evaluation and benchmarking. For comparability, we employed the same 
metrics that were used in SignalP 5.0. SP detection performance was measured 
using the MCC32. We computed the MCC twice, once with the negative set 
only consisting of transmembrane and soluble proteins (MCC1) and once with 
it additionally including sequences of all other SP types (MCC2). Most of the 
competing single-class predictors considered for benchmarking are optimized 
for detecting their respective SP type in a dataset of true and non-SP (soluble 
and transmembrane) sequences; thus, MCC1 best captures their performance 
on the task they were designed for. MCC2, on the other hand, includes the 
more challenging task of discriminating between SP types, which is difficult for 
single-class predictors because of the structural similarity of different SP types. 
MCC2 represents the performance in most real-world applications, as the presence 
of a specific SP type usually cannot be ruled out a priori in a set of unknown 
protein sequences. For CS prediction, we computed the precision and recall. 
Precision was defined as the fraction of correct CS predictions over the number of 
predicted CSs, and recall was defined as the fraction of correct CS predictions over 
the number of true CSs. In both cases, a CS was only considered correct if it was 
predicted in the correct SP class (e.g., when the model predicts a CS in a Sec/SPI 
sequence but predicts Sec/SPII as the sequence label, then the sample is considered 
‘no CS predicted’). To account for possible uncertainty of the CSs in the training 
data labels, we additionally report these metrics with tolerance windows of one, 
two and three residues left and right of the true CS (Supplementary Tables 2, 4 and 
6).

For the predicted SP regions, in the absence of true labels, no quantitative 
performance metrics could be established. To still be able to assess the quality 
of the predictions, we compared the properties of predicted regions with 
characteristics of regions that are described in the literature. We followed the 
review by Owji et al.17 as a guideline to identify region characteristics. Specifically, 
we evaluated the length, hydrophobicity and charge of each predicted region. 
Hydrophobicities were computed using the Kyte–Doolittle scale29, and charges 
were computed by summing the net charges at pH 7 of all residues. The net 
charge computation differed between the groups, as in Eukarya and Archaea the 
N-terminal methionine is not formylated33, thus contributing an additional positive 
charge to the n-region by its amino group.

We benchmarked our model against the state-of-the-art model SignalP 5.0, 
which was reimplemented in PyTorch. Hyperparameter optimization on the 
new dataset was performed using SigOpt. We also repeated the benchmarking 
experiment of SignalP 5.0 for all predictors using the adapted benchmark set. 
We could not add Signal-3L 3.016 to the experiment, as the implementation 
that is available does not allow for processing of more than one sequence at a 
time, rendering benchmarking intractable. Notably, predictions for all methods 
except for SignalP 5.0 and SignalP 6.0 were obtained from their publicly available 
web services, resulting in potential performance overestimation due to the 
lack of homology partitioning. In addition, performance overestimation is still 
present for the published version of SignalP 5.0 (named “SignalP 5.0 original” in 
Supplementary Tables 1–6 and Supplementary Figs. 1 and 2) due to insufficient 
homology partitioning of its training data by CD-HIT. We thus excluded its values 
from determining the best-performing tools in the benchmark.

To assess the effect of sequence identity to training sequences on performance, 
we used the set of sequences that were removed by the partitioning procedure. We 
predicted all sequences in the removed set and binned the sequences according to 
the maximum sequence identity to any sequence in the training set. We did this 
for all six cross-validated models and pooled the resulting binned predictions. For 
each bin, we computed the multiclass MCC as defined by Gorodkin34.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article

Data availability
The datasets used for training and testing SignalP 6.0 can be downloaded from 
https://services.healthtech.dtu.dk/service.php?SignalP-6.0. The investigated 
reference proteomes are available from UniProt at https://www.uniprot.org/
proteomes. The dataset of synthetic SPs was extracted from the supplementary 
material of the original publication18 and is included in our GitHub repository.

Code availability
SignalP 6.0 is available at https://services.healthtech.dtu.dk/service.
php?SignalP-6.0. The web version of SignalP 6.0 is free for all users, while the 
standalone Python package is free for academic users (and can be provided upon 
request) but is licensed for a fee to commercial users. The model source code in 
PyTorch 1.7 is available at https://github.com/fteufel/signalp-6.0.
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