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Retaining information in working memory is ademanding process that relies

on cognitive control to protect memoranda-specific persistent activity from
interference'?. However, how cognitive control regulates working memory storage is
unclear. Here we show that interactions of frontal control and hippocampal persistent
activity are coordinated by theta—gamma phase-amplitude coupling (TG-PAC). We
recorded single neurons in the human medial temporal and frontal lobe while patients
maintained multiple items in their working memory. In the hippocampus, TG-PAC was
indicative of working memory load and quality. We identified cells that selectively
spiked during nonlinear interactions of theta phase and gamma amplitude. The spike
timing of these PAC neurons was coordinated with frontal theta activity when cognitive

control demand was high. By introducing noise correlations with persistently active
neuronsinthe hippocampus, PAC neurons shaped the geometry of the population
code. This led to higher-fidelity representations of working memory content that
were associated with improved behaviour. Our results support a multicomponent
architecture of working memory"?, with frontal control managing maintenance

of working memory content in storage-related areas®. Within this framework,
hippocampal TG-PAC integrates cognitive control and working memory storage
across brain areas, thereby suggesting a potential mechanism for top-down control
over sensory-driven processes.

Working memory (WM), the ability to maintain and manipulate a
limited amount of information in mind for a brief period of time®,
is a crucial component of cognition that is often compromised in
disease. WM maintenance is an active process that retains informa-
tion that is no longer available in the external world. A mechanism
that is thought to support WM is persistent neural activity’'°. In
humans, memoranda-specific persistent activity has been observed
in the human medial temporal lobe (MTL)"*, an area of the brain that
becomesessential for WM when distractors are present or memory load
is high®. Itis thought that cognitive control is required to support the
maintenance of WM content under these circumstances"?. Models of
WM assign the role of control to the frontal lobes****, butlittle is known
about how storage and control mechanisms interact.

A ubiquitous macroscopic electrophysiological phenomenon is
TG-PAC" ™, Although its functional role remains poorly understood,
amajor hypothesisis that PAC enables theintegration of local sensory
information processing with brain-wide cognitive control?**, Within
this framework, localincreases in power in the gamma-frequency range

(30-140 Hz)** reflect local processing, whereas long-range interareal
interactionsin the thetarange (3-7 Hz) mediate cognitive control* ™,
TG-PAC could therefore serve as atool tointegrate these two processes
inlocal circuitries'®**2, However, to date, it remains unclear how these
theoriestranslate to single-neuron activity and how PAC exerts control
over WM maintenance processes. Here we test the hypothesis that
neurons whose activity is modulated by both theta phase and gamma
amplitude are engaged in interareal interactions between the frontal
and temporal lobes, thereby exerting PAC-mediated cognitive control
over WM storage. We examined whether top-down control directly
modulated the cells that carry information about the memoranda cur-
rently heldin WM or whether, alternatively, controlis exerted indirectly
through a different group of cells.

We recorded single-cell and local field potential (LFP) activity from
the medial frontal cortexand MTL while patients who had undergone
neurosurgery performed a WM task (36 patients, 44 sessions; Supple-
mentary Table 5) with pictures as stimuli. All of the pictures belonged to
one of five visual categories. In each trial, the patients maintained either
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Fig.1| Task, recordingsites and behaviour. a, Anexample trial. Each trial
consisted of either one (load 1) and three (load 3) consecutively presented
pictures, each presented for2 s (separated by a variable blank screen of up to
200 msasindicated by asmall dot). After a variable maintenance period withan
average durationof 2.7 s,aprobe picture was presented. The task was to decide
whether the probe picture has been part of the pictures shown duringencoding
inthis trial (the correctanswer was ‘No’in the example shown). For copyright
reasons, the pictures shownare similar but notidentical to those used inthe
study. b, Therecordinglocations. Each coloured dot represents the location
ofamicrowirebundle acrossall 44 sessions shown on astandardized MNI152
braintemplate (left) and in a3D model using the Brainnetome Atlas (right). The
slices (https://osf.io/r2hvk/) were obtained under a Creative Commons licence
CCBY4.0.c, Theproportionsofneuronsrecordedineachbrainarea.d, The
behaviour of the participants. Patients made fewer errors (P=0.0001) and
responded faster (P=0.0001) inload 1 compared withload 3 trials. Statistical
analysis was performed using two-sided permutation-based t-tests with
10,000 permutations. Each line connects the two dots belonging to the same
session.n =44 sessions. The RT was measured relative to the probe stimulus
onset.Dataaremean £s.e.m.**P<0.001.

one (load1) orthree (load 3) consecutively presented pictures in their
WMfor 2.5-2.8 s (Fig.1a). The patients were then asked whether a probe
stimulus shown wasidentical to one of the item(s) they were holdingin
WM. Mean accuracy was 93.66 + 7.04% (mean + s.d.; 78.34 £ 20.09% of
allerrors were false negatives) and the participants responded slower
(1.46 sversus 1.33 s; t,; = 6.42, P<0.001) and less accurately (91.60%
versus 95.71%; t,; = —4.45,P < 0.001) inload 3 trials compared with load
1trials (Fig.1d).

Hippocampal PAC is modulated by WM load

We recorded from 1,454 single neurons (Fig. 1b,c) and from 1,922
microwire channels with LFP (Extended Data Fig. 1f,g) across the hip-
pocampus, amygdala, pre-supplementary motor area (pre-SMA),
dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal
cortex (vmPFC). To determine whether PAC was present in the LFP
during the WM maintenance period, we estimated PAC as a function
of low-frequency (2-14 Hz) phase and high-frequency (30-150 Hz)
power. Across all of the recorded channels (Fig. 2a; average plots
per brain area are shown in Extended Data Fig. 2a), PAC was strong-
estbetween the phasein the thetarange (3-7 Hz) and the amplitude
in two different gamma-frequency bands—a lower (30-55Hz) and a
higher gamma range (70-140 Hz). For each channel, we then sepa-
rately averaged the normalized modulation indices in the theta to
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low-gamma and the theta to high-gamma combinations and assessed
which of the channels exhibited significant PAC across both load con-
ditionsinthe given frequency combination (averaged zscore > 1.64;
P<0.05; right sided). For theta to high-gamma PAC, 137 out of 586
hippocampal channels showed significant PAC across all correct trials
from both load conditions (Fig. 2b). For these 137 channels, we then
compared the PAC estimates between the two load conditions. This
comparison revealed significantly weaker theta-high-gamma PAC
inload 3 compared with load 1 trials (¢,5, = —4.26, P < 0.001; Fig. 2c
(left); false-discovery rate (FDR) corrected for the five brain regions
of interest®; Fig. 2d shows PAC for a single example channel in the
hippocampus; Fig. 2e shows the average PAC across all significant
PAC channels in the hippocampus).

Two other brain areas also exhibited substantial proportions of
channels with significant PAC: the amygdala and the vmPFC (Fig. 2b).
However, in contrast to the hippocampus, theta-high-gammaPAC did
not differ significantly between the two load conditions in neither of
these two areas (Fig. 2¢; t,,, =1.43, P=0.38, Bayes factor (BF),; =1.40;
and ¢, =0.16, P= 0.87, BF,, = 5.84, respectively). Inthe other two frontal
areas that we examined (pre-SMA and dACC), only asmall proportion
of channels had significant theta-high-gamma PAC (Fig. 2b) and PAC
in these channels did not differ significantly between the two loads
(pre-SMA:t,=-0.16,P=0.87;dACC: t;;=-0.82,P=0.73). These obser-
vations were qualitatively comparable when averaging channels within
each patient (Extended DataFig.2b). For PACinvolving the low gamma
band (30-55 Hz), there were no significant differences between the
load conditions in any of the regions (Extended Data Fig. 2c and Sup-
plementary Table 1). Next, we asked whether PAC is associated with
reaction times (RTs), with the idea that faster RTs indicate success of
control.Inthe hippocampus, faster RTs were associated with stronger
single-trial estimates of TG-PAC (Methods and Supplementary Table 2;
Fig. 2f shows univariate correlation coefficients for illustration; all
statistics and conclusions are based on the generalized linear model
(GLM) results). By contrast, there were no significant correlations
between PAC and RT in the amygdala and vmPFC (Fig. 2f and Supple-
mentary Table 2).

Lastly, we tested whether the differences in hippocampal PAC
between loads could be explained by changes in power, theta wave-
formshape, cross-frequency phase-phase coupling, preferred phase
or PAC peak frequency but did not find evidence for any of those fac-
tors (Extended DataFig. 3). These findings suggest that PAC is related
to ongoing WM processes during the maintenance period in the hip-
pocampus, but notin the amygdala or frontal lobe.

Category cells support WM maintenance

We nextinvestigated whether cells remained persistently active during
WM maintenance and, if so, whether their activity wasrelated to PAC. We
first selected for category neurons, which are cells of which the firing
rate (FR) wasrelated to the visual category of the stimuli shown during
encoding (Methods). We identified such cells at numbers higher than
expected by chance within the hippocampus (89 neurons (24.72%)),
amygdala (181 neurons (36.49%)) and vmPFC (37 neurons (17.96%)) but
not within the pre-SMA and dACC (Extended Data Fig. 4a; an example
hippocampal neuron is shown in Fig. 3a). During the maintenance
period, the FRs of the identified category neurons remained elevated
during the maintenance period compared with the baseline across all
of the correct trials in the MTL, but not in the vmPFC (Fig. 3b shows
the hippocampus and amygdala combined for simplicity; statistics
per areaare shownin Extended Data Fig. 4b). Furthermore, the FRs of
category cells were significantly higherin trials in which a stimulus of
the preferred category of a cellwas held in WM relative to when patients
held stimuliin mind that belonged to the non-preferred categories of
acellin the MTL, but not the vmPFC (¢, =2.93, P=0.001; Fig. 3b; see
Extended DataFig.4b for vmPFC). Category neuronsinthe MTL but not
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Fig.2| TG-PAC. a, Average normalized modulationindices for all phase-
amplitude pairs.n=1,917 channels. b, The proportion of channels with significant
theta-high-gammaPACineacharea, determined by comparisonsto trial-
shuffled surrogates (bothloads). The horizontal linesindicate the 99th
percentile of the surrogate null distribution per area (P=0.005 for hippocampus
(hippo.),amygdala (amy.) and vmPFC; right-sided permutation test, no
adjustment for multiple comparisons). ¢, log-normalized modulationindices
were averaged within the theta-high-gammabandineachload and compared
betweentheloadsineachsignificant PAC channelin eachregion. Onlyinthe
hippocampus, theta-high-gamma PAC differed as a function of load, with PAC
higherinload1versusload3trials (left:n =137 channels, P= 0.0005; amygdala
(middle):n=130, P=0.38; vmPFC (right):n=40, P= 0.87; two-sided permutation-
based t-tests; FDR corrected for all five brain areas). z-scored values were shifted
intoapositive range by an offset of 1and log-transformed for illustrative

the frontallobe therefore exhibited stimulus-specific persistent activity
(statistics per areaare shownin Extended DataFig.4b).For thisreason,
we focus on MTL category neurons for the remainder of the paper.

The activity of category neuronsin the MTL was modulated by load,
with FRs higher inload 1thaninload 3 in preferred trials (¢, = 2.65,
P=0.004;Fig.3c),but notinnon-preferred trials (t,,, = -1.46, P=0.14;
Extended DataFig.5a) during the maintenance period. Moreover, FRs
were higherin correctas comparedtoincorrect trials across both load
conditions (t,s = 2.43, P=0.02; Fig. 3d; 24 neurons were excluded from
this comparison due to insufficient data in the incorrect condition;
patient-level statistics are shown in Extended Data Fig. 5b). There was
no significant difference in the FRs between fast and slow RT trials
(mediansplit; computed per load conditionand thenaveraged across
loads for the preferred category and correct trials only; hippocampus,
tss=0.73,P=0.47;amygdala, t;s,=1.38, P=0.18). Together, these data
demonstrate the relevance of category cells to WM maintenance.

We next examined how spike timing of category neuronsinthe MTL
relates to the phase of LFPs by examining their spike-field coherence
(SFC; Methods) during the maintenance period in channels with sig-
nificant PAC (Fig. 3e). Inthe hippocampus, high-gamma-band SFC was
significantly stronger in preferred trials than in non-preferred trials
for neuron-to-channel combinations that involved significant PAC
channels (cluster P=0.004; Fig. 3f). This difference in gamma-band
SFC was present in both load 1 and load 3 (Fig. 3g; preferred versus
non-preferredtrialsinload1(t;s,=3.14,P=0.003) and load 3 (¢;5, = 2.88,
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examplesshown:load1,z=16.52;l0ad 3,2=7.92. e, Average normalized
modulationindices for significant hippocampal PAC channels. n=137.f, TG-PAC
was significantly negatively correlated with RTsin the hippocampus (n =137,
P=6x107, mixed-effects GLM), but notin the amygdala (n =130, P=0.48) or
thevmPFC (n=40, P=0.24). GLMresults are shownin Supplementary Table 2.
Eachdotrepresentsasignificant PAC channel. For c,f, dataare meants.e.m.
*P<0.05; NS, notsignificant.

P=0.004)). Computing the same statistic for theta-band SFC did not
reveal any significant effects (Extended DataFig. 5c), confirming speci-
ficity togamma. Notably, this gamma cluster spanned approximately
the same frequencies at which theta—high-gamma PAC was present
(Extended DataFig. 5f,g shows comparisonsincluding all channels and
patient-level results). We did not find similar effects for the thetaband
(Fig. 3f), non-PAC channels (Extended Data Fig. 5e) or the amygdala
(Fig.3fand Extended DataFig. 5e,f). Finally, SFC was different between
preferred and non-preferred trials only for spikes that occurred dur-
ing high (t,5,=3.06, P= 0.002) but not low high-gammaband power in
the hippocampus (¢;5, = 0.26, P=0.85; Extended Data Fig. 5d). Thus,
specifically in periods in which gamma amplitude was high, spikes of
category neurons were more strongly synchronized to the phase of
gamma-band LFP.

We next determined whether spiking activity of category cells during
the WM maintenance period correlated with PAC trial-by-trial (Meth-
ods). Inthe hippocampus, PAC was weakly but significantly positively
correlated with the FR of category neurons (Supplementary Table 3;
Fig. 3h shows correlation coefficients for illustration only; all conclu-
sions are based on the GLM results). In the amygdala, there were no
significant correlations between single-trial TG-PAC and FR of category
neurons (Fig. 3h and Supplementary Table 3). Together, these results
show that persistently active hippocampal category-selective neu-
rons were more synchronized with gamma LFPs when their preferred
category was held in WM. This effect was specific to channels that
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Fig.3|FRsand SFC of category neuronsinMTL. a, Example hippocampal
category neuron. The preferred category of this neuron was ‘animals’. Pic.,
picture.b, Category neurons (n =270) remained active (preferred (pref.) versus
baseline (bsl), P=0.0001; non-preferred (non-pref.), P=0.0001) and retained
their selectivity during the maintenance period, with FRs higher for preferred
compared with non-preferred categories (P=0.001). FRsare shownasthe
percentage change compared with the baseline (-0.9to-0.3 sbefore picture
lonset).c, FRsof category neurons were higherinload 1compared withload
3trialswiththeir preferred category heldin WM (n =270, P=0.004) during
themaintenance period.d, Category neurons fired morein correct compared
withincorrecttrials (n=246,P=0.02).e,SFC between spikes and LFPs from
thesamearea. Theslice (https://osf.io/r2hvk/) was obtained under a Creative
Commonslicence CCBY 4.0.f, Paired with PAC channels, hippocampal category
neurons were more strongly phase-locked to localgamma LFPs with the preferred

showed significant TG-PAC during the maintenance period. Also, FRs
of hippocampal category neurons were correlated with single-trial
estimates of PAC.

Category neurons are not PAC neurons

Although the above results indicate a relationship between category
neurons and PAC within the hippocampus, they alone do not defini-
tively demonstrate that the spiking activity of category neurons was
sensitive tothenonlinearinteractionbetween theta-phase and gamma
amplitude aswould be expected from PAC. Thus, we next selected for
MTL neurons whose activity was modulated by PAC and determined
whether they significantly overlapped with the persistently active
category neurons. We defined PAC neurons as neurons whose FR was
afunction of the interaction between theta-phase and gamma ampli-
tude (Methods; an example is shown in Fig. 4). In the hippocampus,
79 (37.29%) out of 212 available neurons (P < 0.005; 200 permutations
(Methods); pre-processing steps removed broadband LFPs for some of
the neurons and those were therefore not part of this analysis) quali-
fied as PAC neurons. In the amygdala, 163 (45.53%) out of 358 neurons
(P<0.005) qualified as PAC neurons.

We next examined whether the selected PAC neurons were also
category neurons. In the hippocampus, 28 (35.44%) out of the 79 PAC
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category heldin WM (n=151combinations; P= 0.004). Differences were not
significantin the amygdala (n=423) or non-PAC channels (Extended DataFig. Se).
Statistical analysis was performed using two-sided cluster-based permutation
t-tests.g, Gamma (70-140 Hz) SFC for hippocampal category neurons was
stronger for preferred versus non-preferred trialsin both load conditions
(main effect preference, F, ;50 =16.23, P=0.0001;load1,P=0.003;load 3,
P=0.004). Nomaineffectofload (P=0.25) orinteraction (P=0.33) was found.
Each dotisaneuron-LFP channel pair (n=151). h, TG-PAC was positively
correlated with the FR of category neuronsin the hippocampus (n=151,P=0.017,
mixed-effects GLM), but notin the amygdala (n =423, P=0.45). The GLM
results are shownin Supplementary Table 3. For b-d,g, statistical analysis was
performed using two-sided permutation-based t-tests (b-d, lower bracketsin g)
and F-tests (top bracketing).Fora-d,f-h, dataare mean = s.e.m. (coloured
areasina,f);**P<0.01.

neurons were both PAC neurons as well as category neurons. In the
amygdala, this was the case for 68 (41.72%) out of the 163 PAC neurons
(Fig.4b). The proportion of category neurons among PAC neurons was
notsignificantly higher than expected by independent subpopulations
inany of thetwo regions (both P> 0.05; Methods). To further corrobo-
rate this finding, we trained a linear decoder to differentiate between
the five different picture categories based on the FRs extracted during
picture presentation (encoding). As expected, the decoder was able to
differentiate between the picture categories whenit was trained on FRs
from the category neurons (hippocampus, 72.77%, P= 0.001; amyg-
dala, 88.71%, P=0.001; Extended Data Fig. 7a). However, the decoder
could not differentiate between the categories when it was trained
on FRs from PAC neurons that were not also category neuronsin both
MTL areas (hippocampus, 26.06%, P = 0.16; amygdala, 25.86%, P= 0.15;
chance level =20%). In summary, the probabilities of a neuron being
a PAC or a category neuron were independent and the activity of PAC
neurons did not differ between the category of the presented stimuli.

Properties of PAC neurons

We next investigated whether PAC neuron activity was related to
WM maintenance in ways other than persistent activity. We identi-
fied three such relationships for PAC neurons in the hippocampus.
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estimates of TG-PACinthe hippocampus (c; n =79, P=0.028, mixed-effects
GLM), butnotinthe amygdala(d; n=163,P=0.98; GLMresults are shownin
Supplementary Table 4). e,f, FRs of PAC neurons during the maintenance period
differed between correctandincorrecttrialsinthe hippocampus (e; n=63;
correctversus baseline, P=0.01; incorrect, P=0.33; correct —incorrect,
P=0.0001;16 neurons were excluded due to insufficient datain the incorrect
condition), but notinthe amygdala (f; n =156; correct, P= 0.0001; incorrect,
P=0.0001; correct —incorrect, P=0.45; 7were neurons excluded due to
insufficient datain theincorrect condition). FRs are shown as the percentage
change compared with the baseline (-0.9to -0.3 s). g,h, FRs did not differ
betweenloads (hippocampus (g):n=79;load1,P=0.03;load 3, P=0.01;load
3-load1,P=0.20;amygdala (h):n=163;load1,P=0.0001;load 3, P=0.0001;
load3 -load1, P=0.80).For g-j, statistical analysis was performed using
two-sided permutation-based t-tests. For e-j, dataare mean + s.e.m.

First, FRs of PAC neurons were positively correlated with estimates
of single-trial PAC (Methods and Supplementary Table 4; Fig. 4c,d
shows univariate correlation coefficients for illustration). Second,
their FR was elevated throughout the maintenance period compared
with the baseline (t,3 =2.43, P=0.01). Third, FRs varied as a function of
accuracy (correct versus incorrect trials (¢, = 3.82, P< 0.001; Fig. 4e;
16 neurons were excluded from this comparison due to insufficient
dataintheincorrect condition), and were elevated as compared to
the baseline in correct trials (t,, = 2.67, P=0.01) but not inincorrect
trials (t,, = —0.98, P= 0.33). FRs were not significantly different between
the two load conditions (load 3 —load 1, £, =1.38, P= 0.20), but FRs
were elevated compared with the baseline in each condition consid-
ered separately (load 1, t,3=2.14, P=0.03; load 3, t,s = 2.45, P=0.01;
Fig. 4g; similar results concerning thetaand gamma SFC are showniin
Extended Data Fig. 7b). PAC neurons did not show a load-dependent
shiftin preferred theta phase (Extended Data Fig. 7d), or significant
FR differences between fast and slow RT trials (¢, = -0.07, P= 0.94). By
contrast, in the amygdala, FRs of PAC neurons were not significantly

correlated with single-trial estimates of TG-PAC (Fig. 4d and Supple-
mentary Table 4). PAC neurons in the amygdala also showed higher
FRs during the maintenance period compared with the baseline
(t,e, = 6.40,P<0.001), but there were no significant differences between
correct and incorrect WM trials (¢;5, =—0.77, P= 0.45; Fig. 4f), loads
(load3-loadl, t,,,=0.26, P=0.80; Fig. 4h; SFC and phase shift results
intheamygdala are shownin Extended Data Fig. 7c,d) or fast and slow
RT trials (¢4, =1.87,P=0.07). Thus, hippocampal PAC neurons, despite
not being tuned to WM content, were engaged in WM maintenance
because their FRs were elevated during WM maintenance and differed
as afunction of behavioural accuracy.

PAC neurons phaselock to the frontal cortex

Given the properties of PAC neurons shown above, we hypothesized
that PAC neurons might be involved in cognitive control of WM. We
therefore next examined whether the activity of PAC neuronsisrelated
to frontal activity®. To do so, we computed cross-regional SFC between
spiking activity of PACneuronsinthe MTL and the LFPsrecordedin the
pre-SMA, dACC and vmPFC (Fig. 5a). If PAC neuron activity isrelated to
frontal cognitive control, we expected cross-regional SFCin the theta
rangetobestrongerinload3thaninload1trials. The datasupport this
hypothesis—SFC was significantly stronger in load 3 compared with
load 1 between spiking activity of PAC neurons in the hippocampus
and theta-band LFPs recorded in the vmPFC (Fig. 5b and Methods;
cluster P<0.001). We did not observe significant differences for other
frequency bands, nor for the other two frontal brain areas (see Extended
DataFig. 8a-hfor narrow versus broad-spiking neurons, patient-level
statistics, load comparisons for within-vmPFC and cross-regional SFC
between vmPFC LFPs and hippocampal spiking, as well as comparisons
of non-specific global changes). Repeating the same analysis for cat-
egory neurons did not reveal significant differences in SFC strength
(Fig. 5c and Extended Data Fig. 8c). Furthermore, the difference in
SFC strength between the two load conditions for random subsets of
hippocampal neurons (the same number of connections as for PAC
neurons) was smaller for all tested 10,000 combinations compared
with that for hippocampal PAC neurons (P=0.0001; Fig. 5e). Lastly,
PAC neurons fromthe amygdala did not show significant cross-regional
SFC differences in any of the tested frequencies (Fig. 5d) or regions.
We further hypothesized that, if theta-band cross-regional SFCindeed
reflects levels of cognitive control, it should be stronger for faster RTs.
This was the case—theta SFC was stronger for fast compared with slow
RTs for PAC neurons fromthe hippocampus (¢, = 2.10, P= 0.03; Fig. 5f),
but not from the amygdala (¢,os =1.40, P= 0.16). Thus, we conclude that
the theta-band phase locking of PAC neurons in the hippocampus to
the vmPFCis related to cognitive control.

Information-enhancing noise correlations

Cells that by themselves carry no information in their FR can influ-
ence the representation of a variable at the population level if their
activity is correlated with other cells*?¢, We hypothesized that PAC
neurons might have this role during WM maintenance. In both the
hippocampus (162 pairs; t,¢, = 5.26; P < 0.001) and the amygdala (892
pairs; tg; = 15.51; P < 0.001), pairs of category neurons and PAC neu-
rons had on average positive co-fluctuations of spike counts (Fig. 6a
(left); see Extended Data Fig. 9a for amygdala). As a control, we
shuffled trials within conditions to remove noise correlations while
leaving all other properties of the signal intact, including common
category-related input, interspike-interval distributions, FR distribu-
tions and temporal relations to task events (Methods). The correlation
coefficients across all PAC and category neuron pairs were signifi-
cantly greater than the same correlations computed after shuffling
trials this way (see Fig. 6a (right) for hippocampal pairs; noise correla-
tions computed across trials are shown in Extended Data Fig. 9b-d).
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Fig.5|Remote connectivity of PACneuronsinthe MTL to frontal theta
LFPs. a, Long-range SFC between MTL spiking activity and LFPs recorded from
allthree frontal regions. Thesslices (https://osf.io/r2hvk/) were obtained under
aCreative Commons licence CCBY 4.0.b, Spikes of hippocampal PAC neurons
were more strongly synchronized with theta-band LFPs recorded in the vmPFC
during the maintenance period duringload 3 compared withload 1trials
(n=175 connections; cluster P=0.0001). This was not the case for the pre-SMA
and dACC (Extended DataFig. 8). ¢,d, Category neurons from the hippocampus
(c; n=215) or PAC neurons from the amygdala (d; n = 767) did not show
significant SFC differences between loadsrelative to the vmPFC LFP.Forb-d,
statistical analysis was performed using two-sided cluster-based permutation
t-tests with aBonferroni-corrected alpha-level for two MTL areas, three frontal
areasand two cell populations. e, Hippocampal PAC cells (n =175, cyan line)
yielded the strongest long-range theta SFC difference betweenload 3 and load
1trialsamong 10,000 random selections of hippocampus-vmPFC connections
(P=0.0001, right-sided permutation test). t values correspond to comparisons
betweenload 3 andload 1trials for an average of SFC valuesin the significant
thetarange (2.5-4.3 Hz). Forb-d, dataare mean (centreline) + s.e.m. (coloured
areas). f, Theremote theta-band SFC between spiking activity of PAC neurons
and LFPsrecorded in the vmPFC was significantly stronger for fast compared
with slow RT trials (P=0.03, two-sided permutation-based t-test). Each dot
isaneuron-channel connection (n=167; 8 connections were excluded due to
inefficient spike countin atleast one of the conditions). Dataare mean +s.e.m.
A, amygdala; H, hippocampus.

This was also true for correlations among pairs of category neurons
and PAC neurons that were not also category neurons (Extended
Data Fig. 9e,f).

We next examined whether PAC neurons contributed to the decod-
ability of image category during WM maintenance at the population
level. Weiiteratively added neurons to the population through greedy
selection of the neuron that adds most decodability above and beyond
that provided by the already included neurons (Methods; see Fig. 6b
for an example from asingle session for neurons up to peak decodabil-
ity). Inthe hippocampus, adding single PAC neurons to the optimized
decoding ensemble significantly enhanced category decoding when
noise correlations were intact (¢,, = 3.16, P < 0.001) but not when they
wereremoved (t,,=-0.12, P=0.91, BF,, = 4.37; intact versus removed,
t,0=3.33, P=0.003; Fig. 6¢). This suggests that specifically the noise
correlations of PAC neurons enhanced the decodability of category
information, not their category-related FRs per se.

We next compared the maximal decoding performance for intact
and removed noise correlations before and after all PAC neurons were
removed from the ensembles. PAC neurons enhanced the decodability
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of category, but only when noise correlations were intact (¢,, = 2.94;
P=0.004; FDR corrected for all comparisons; Fig. 6d). Removing PAC
neurons from the ensemble after noise correlations were removed did
notsignificantly change the decoding performance (¢,, =1.36, P= 0.20;
Fig. 6d (red)). The decoding performance dropped to a similar extent
whenonly removing PAC neurons that were not also category neurons
(Extended DataFig. 9g). Together, this pattern of results suggests that
the decrease in decoding performance was not caused by removing
PAC neurons that also carried category information. Rather, drop-
ping neurons that were modulated by PAC from the ensemble led to
areductionindecodingaccuracy.Inaccordance with theseresults, the
maximal differences between intact and removed noise correlations
were larger when PAC neurons were part of the ensembles as compared
to being removed (¢,, = 3.59, P < 0.001; Fig. 6e).

To assess the specificity of those results, we repeated the above
analysis after removing randomly chosen neurons that were not PAC
neurons fromthe ensembles (Fig. 6d (without non-PAC); averaged over
500 random selections; the same number as for PAC neurons in each
session). This revealed that removing non-PAC neurons in the ensem-
bles without noise correlations led to further decreases of decoding
performance (¢, = 3.89; P< 0.001), thereby indicating that non-PAC
neurons contributed information to the populationthat did not depend
onnoise correlations. Accordingly, we did not find a significant differ-
ence when comparing the maximal decoding difference betweenintact
and removed noise correlations for ensembles for which we removed
randomly selected non-PAC neurons (¢, = -1.77, P= 0.10; Fig. 6e). In
contrast to in the hippocampus, in the amygdala, PAC neurons con-
tributed to category decodability not only when noise correlations
were intactbut also when noise correlations were removed; Extended
Data Fig. 9j,k).

We quantified geometric features of the data manifold to deter-
mine why noise correlations enhanced decodability of WM content.
We quantified the angle between the two vectors that describe the
signal and the noise axis in the n-dimensional space formed by the n
simultaneously recorded neurons in a given session. Whether noise
correlations are information limiting or enhancing depends on this
angle¥. As noise correlations are information enhancing in our case,
we hypothesized that the angle between the signal and the noise axes
should (1) be relatively large to begin with; and (2) increase when noise
correlations are present compared with when they are absent (Fig. 6f).
This was the case—when noise correlations were intact, the signal-noise
axisangle was around 69° (out of maximally 90°). After removing noise
correlations, this angle became significantly smaller, as hypothesized
(t3,=2.77,P=0.009; Fig. 6g).

We examined the variance of the signal projected onto the signal
axis®® in populations with and without PAC neurons present to exam-
ine whether noise correlations are related to PAC. Removing PAC
neurons from the ensembles significantly increased the s.d. of the
projection values (main effect for ensemble, F; ;3 =12.55, P= 0.0013;
Fig. 6h). Moreover, the s.d. of the projected values was larger when
noise correlations were removed (main effect for noise correlations,
F,1s=7.24, P=0.014). This was only the case if PAC neurons were part
of the ensembles (¢,3 =-2.66, P=0.014), and there was no significant
difference between intact and removed noise correlations when PAC
neurons were removed (3 = -1.69, P= 0.11). These findings suggest that
specifically the noise correlationsintroduced by PAC neurons affected
the geometry of the population code.

If noise correlations are beneficial to WM, they should be stronger
incorrect fast RT trials as compared to correct slow RT trials, specifi-
cally when category neurons’ preferred categories were maintained
in WM. In the hippocampus, noise correlations were significantly
stronger for fast compared with slow RT trials (¢,;; = 2.15, P=0.028;
Fig. 6i (left); patient-level results are shown in Extended Data Fig. 9h)
for pairs of PAC-category cellsin trials in which the preferred stimu-
lus of the category cell in the pair was maintained in WM (Methods).
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Noise correlations were on average significantly positive only in fast
trials (t;; = 4.10, P < 0.001) but not in slow trials (¢,;; =1.94, P=0.06).
For non-preferred trials, we did not observe a significant difference
between fast and slow RT trials (Extended Data Fig. 9h). Separating
trials into the two load conditions, we observed a significant differ-
enceonly between fast and slow trialsinload 3 (¢4, = 2.60, P=0.009;
Fig. 6i (right)), but notinload1(¢,, = 0.96, P=0.34; Fig. 6i (middle)).
In the amygdala, comparing fast to slow RT trials in preferred trials
did not reveal asignificant difference (Extended Data Fig. 91). Lastly,
we examined whether the effect of noise correlations on RTs in
the hippocampus was specific to PAC-to-category neuron pairs or a
common feature across the entire population of simultaneously
recorded neurons. PAC-to-category neuron pairs showed a signifi-
cantly stronger effect compared with most randomly selected cell pairs
(P=0.016;Fig. 6j), showing that noise correlations between category
and PAC neurons within the hippocampus contributed to enhanced
WM fidelity.

Discussion

Although TG-PAC s ubiquitous at the electroencephalogram and LFP
level, it has remained unclear how PACis reflected at the single-neuron
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g, The signal-noise anglein the datawas reduced after removing noise
correlations (n=32sessions, P=0.009). h, The variance along the signal axis
was reduced when noise correlations were intact only when PAC neurons
were present (n =19 sessions, P=0.014; main effect ensemble: P=0.0013;
permutation-based F-test). i, Correlations of PAC-category pairs (n=162)
were stronger in fast (P=0.0001) compared withslow (P=0.06; median split;
fast —slow, P=0.028; preferred category trials only) RT trials. This effect
wassignificantinload 3 (P=0.009) butnotinload1(P=0.34)trials.j, The
PAC-category pair correlation difference between fast and slow RT trials was
larger than for random non-PAC-category pairs (P=0.016, right-sided
permutation test). For a,c-e,g-i, statistical analysis was performed using
two-sided permutation-based ¢-tests. Dataare meants.e.m.

level. We find that TG-PAC has adirectrelationship to the spiking activ-
ity of individual neurons. However, while by definition PAC neurons
were related to local gamma activity, they were not directly involved
in the processing of the memoranda held in WM per se. Rather, their
activity was coordinated with frontal theta, with stronger phase lock-
ing for higher WM load and faster RTs. This finding indicates that PAC
neurons have arole in cognitive control.

Long-range theta phase locking between frontal and temporal/
occipital areas hasbeen suggested toreflect frontal cognitive control
exerted over task-relevant brain processes?*%*, In WM maintenance,
frontotemporal interactions are crucial, especially wheninvolving the
hippocampus®*>4°, Theta-based prefrontal coordination of posterior
WM content-specific processes could ensure efficient information
processing at phases that are optimal for network-wide communica-
tion within the memoranda-processing population of neurons®®*,
According to this model, higher levels of cognitive control are indi-
cated by stronger phase locking between regions to facilitate faster and
more efficient readout of WM content. Our results support this model
and provide evidence for a specific mechanism to implement it. SFC
between hippocampal PAC neurons and vmPFC theta was stronger in
periodsinwhich more cognitive control was required. Cross-regional
hippocampus-vmPFC SFC was enhanced for fast compared with slow
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RT trials, suggesting that amore efficient interaction between distant
areas might lead to abehaviourally beneficial read-out of WM content
with stronger levels of control.

The goal of successful cognitive controlis toincrease the fidelity of
the retained memories. Here we show that one way PAC neurons con-
tributed to achieving this goalis by introducing noise correlations that
enhance information content at the population level. Noise correla-
tions area population phenomenon and are therefore not expected to
occur only between specific subpopulations of neurons. However, our
results show that the noise correlations of PAC neurons with other neu-
rons predicted behaviour better than pairs notinvolving PAC neurons.
Although the numerical strength of the pairwise noise correlations
between single pairs of neurons was low (as expected®), noise correla-
tions of this magnitude can have large effects at the population level*¢¥.
Noise correlations are typically thought to be information limiting*$*,
but theoretical work shows that this is not always the case®*°2,
Rather, inour case, noise correlations of PAC neurons shaped the geo-
metry of stimulus category information such that decodability of
WM content improved. That is, noise correlations were informa-
tion enhancing. These decodability enhancements were abolished
when noise correlations among neurons were removed. By contrast,
although non-PAC neurons also improved decoding accuracy, these
improvements were not due to noise correlations because decoding
improvement did not change when noise correlations were removed.
Geometrically, the effect of PAC neurons was to increase the angle
between the signal and the noise axis, which improved the read-out
ofencoded WM content and enhanced the fidelity of WM memoranda
representations.

Takentogether, our results are in agreement with amulticomponent
view of WM"?, whereby frontal control processes regulate and man-
age maintenance of WM content in storage-related areas such as the
hippocampus®>™, Thisinterplay between the control and processing
of WM content was revealed by jointly analysing the activity of both
PAC and category neurons. PAC neurons are a single-cell correlate of
the widespread macro-scale phenomena of TG-PAC. They mediate
interarealinteractions that have arolein cognitive control and shape
WM fidelity through noise correlations with information-carrying,
persistently active category neurons, with stronger interactions in
trials with successful control. PAC-mediated interareal interactions
might serve as a general mechanism for top-down control to influ-
encebottom-up processes, a hypothesis that we confirm here for WM,
but that remains to be tested for other high-level cognitive functions
involving top-down control from frontal regions such as attention®?,
decision making>**, speech comprehension® and long-term memory
retrieval®,
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Methods

Patients

Atotal of 36 patients (44 sessions; 21 female individuals; 15 male indi-
viduals; age: 40.47 +13.76 years; Supplementary Table 5; no statistical
methods were used to predetermine sample sizes) participated in the
study. All of the patients had Behnke-Fried hybrid electrodes (AdTech)
implanted for intracranial seizure monitoring and evaluation for sur-
gical treatment of drug-resistant epilepsy. Their participation was
voluntary, and all of the patients gave their informed consent. This
study was part of an NIH Brain consortium between three institutions
(Cedars-Sinai Medical Center, Toronto Western Hospital and Johns
Hopkins Hospital) and was approved by the Institutional Review Board
of the institution at which the patient was enrolled. A pre-operative
magnetic resonance imaging (MRI) image together with MRl or com-
puted tomography post-operative images were used to localize the
electrodes using Freesurfer as previously described®. Electrode posi-
tionsare plotted on the CITI168 Atlas Brain® in MNI152 coordinates for
the sole purpose of visualization (Fig. 1b). The 3D plot was generated
using FieldTrip (v.20200409) and the Brainnetome Atlas®. Coordi-
nates appearing in white matter or outside of the target areais due to
usage of a template brain. Electrodes that were localized outside of
the target area in native space were excluded from analysis (8 out of
atotal of 265 recording sites). Data used in this study are available in
the DANDI archive®.

Task

Thetask consists of 140 trialsand 280 novel pictures. Each trial started
withafixation cross presented for 0.9to1.2 s (Fig.1a). Depending onthe
load condition, the fixation cross was followed by either one (load 1; 70
trials) or three (load 3; 70 trials) consecutively presented pictures, each
remainingonthescreenfor2s.Inload 3 trials, pictures were separated
by ablank screen randomly shown for 17 to 200 ms. Picture presenta-
tion was followed by a2.55t0 2.85 slong maintenance period in which
only the word “HOLD” was presented on the screen. The maintenance
period was terminated by the presentation of a probe picture, which
was either one of the pictures shown earlier in the trial (match) or a
picturealready presented in one of the previous trials (non-match; see
below). The task was to indicate whether the probe picture matched on
ofthepicturesshown earlierinthe same trial or not. The probe picture
was shown until the patients provided their response through abutton
press. The response mapping switched after half the trials, which was
communicated to patients during a short half-time break. Responses
were provided using a Cedrusresponse pad (RB-844; Cedrus). All of the
pictures were novel (that is, the patient had never seen this particular
image) and were drawn from five different visual categories: faces,
animals, cars (or tools depending on the version), fruits and landscapes.
Images (width x height: 10.5 x 7 visual degrees) were presented in the
centre of the screen and never more than twice (thatis, when serving as
the probe picture). Pictures were only repeated when presented as the
probe stimulus. To make sure that also the non-match probe pictures
were never completely new to patients (as were the matching probe
pictures), which could have been used as a strategy to solve the task
without using WM, we always used a picture that the patients had seen
alreadyinoneof theearlier trials, randomly drawn from one of the cat-
egoriesnot used during encoding. Ifa patient participated in more than
one session, we used a completely new set of pictures in each session
to ensure that all pictures were novel in all of the sessions. The overall
longer durationofload 3 ascomparedtoload 1trials ensured increased
cognitive controldemandsin trials with higher load. The maintenance
period was the same length regardless of load, and all analysis of neural
activity during the maintenance period was performed within this time
window (0-2.5 s after the maintenance period onset). Note that, inload
3trials, the three encoded items were from three different categories,
assuring that the participants always had to maintain pictures from

three different categories. Thus, when comparing trials between load 1
and 3 for preferred trials, eachload condition always contained exactly
one item from the preferred category.

Spike sorting

Each hybrid depth electrode contained eight microwires from which
we recorded the broadband LFP signal between 0.1 and 8,000 Hz at
asampling rate of 32 kHz (ATLAS system, Neuralynx; Cedars-Sinai
Medical Center and Toronto Western Hospital) or 30 kHz (Blackrock
Neurotech;Johns Hopkins Hospital) depending on the institution. All
recordings were locally referenced within each recording site by using
either one of the eight available micro channels or adedicated reference
channelwith lowerimpedance provided in the bundle, especially when
all channels contained recordings of neuronal spiking. To detect and
sort spikes from putative single neuronsineachwire, we used the semi-
automated template-matching algorithm OSort (v.4.1)°. Spikes were
detected after band-pass filtering the raw signal in the 300-3,000 Hz
band (single-cell quality metrics are shownin Extended Data Fig.1). All
analysis in this paper (including the LFP) is based on signals recorded
from micro wires. We isolated 360 neurons in the hippocampus, 496
in the amygdala, 204 in the pre-SMA, 188 in the dJACC and 206 in the
vmPFC. Of the LFP channels, 586 channels were in the hippocampus,
421inthe amygdala, 283 in the pre-SMA, 325 in the dACC and 307 in
the vmPFC.

LFP preprocessing

Before analysing the LFPs, we removed spike waveforms (action poten-
tials) and excluded trials withinterictal discharges and high-amplitude
noise. First, to avoid leakage of spiking activity into lower frequency
ranges®"“?, we removed the waveforms of detected spikes from the
raw signal by linear interpolating the raw data from -1to 2 ms around
each spike onset in the raw recording before downsampling. As the
same spike can, in rare instances, be recorded on more than one wire,
we not only interpolated the data for the wire on which the neuron
was detected but also for all other wires in the same wire bundle. We
then low-pass filtered the raw signal using a zero phase-lag filter at
175 Hz and downsampled to 400 Hz. Line noise was then removed
between 59.5 and 60.5 Hz as well as between 119.5 and 120.5 Hz using
zero phase-lagband-stop filters. Extended Data Fig. 1f,g shows the raw
LFPaswell asthe log-log power spectrum for an example channel from
the hippocampus. The slope of log-log power spectra did not differ
significantly betweenload1andload 3 trialsin hippocampal channels
(n=586 channels; meanslope -1.7526 + 0.3902 versus —1.7517 + 0.3928,
tsss=-0.86,P=0.39).

Artefactand inter-ictal discharge detection was performed ona per
trial and wire basis using a semiautomated algorithm together with
subsequent visual inspection of the data. To detect high-amplitude
noise events as well asinter-ictal discharges, we z-scored the amplitude
ineach channelacrossalltrials. To avoid artefactual amplitude biasing,
we first capped the data at 6 s.d. from the mean and re-performed the
z-scoring on the capped data®***. If a single time sample in each trial
andwire exceeded athreshold of 4 s.d., the trial was removed from the
analysis for that wire.Jumps in the signal were detected by z-scoring the
difference between every fourth sample of the capped signal. Trialsin
whichanyjump exceeded az-score 0f 10 s.d. were removed. The result
of'this cleaning process was visually inspected in every recording and
any remaining artefactual trials were removed manually. If a wire or
brainregion showed excessive noise or epileptic activity, it was entirely
removed from the analysis. On average, 20.4 +13.9 trials (14.6% of the
data) were removed per wire.

PAC

We measured the strength of PAC for a wide set of frequency combina-
tionsinall ofthe recorded micro channels (except those excluded, see
above) using the modulation index (MI) as introduced previously®.



As the cleaning process described above produced a different set of
available trials for each channel, we first randomly subsampled from
allcorrecttrialsin each channel such that the number of trials were the
same for both load 1and load 3. We then extracted the LFP starting at
=500 until 3,000 ms following the maintenance period onset in each
selected trial. We then filtered (using pop_eegfiltnew.m from EEGLAB,
v.2019.1)% each trial separately within the respective frequency bands
of interest (see below for more details). We then extracted the instanta-
neous phase fromthe lower-frequency signal and the amplitude from
the higher-frequency signal using the Hilbert transform. Lastly, we cut
each trial to the final time window of interest of 0-2,500 msrelative to
maintenance period onset. This last step ensures that filter artefacts
that arise at the edges of the signal are removed. All analysis of neural
activity during the maintenance period was performed in this 2.5-s-long
time window that started at the onset of the maintenance period. The
length of the analysis window was the same in both load conditions.
Next, we concatenated the phase and the amplitude signal across tri-
alsand computed the Ml as described previously® (18 phase bins). We
computed MIs separately for load 1 and load 3 trials. All subsampled
trials from both load conditions were used to select for significant
PAC channels in an unbiased fashion (see below). Example code to
reproduce parts of the results in this study in published at Zenodo®.

Tostandardize the Mlin each channel, frequency and condition, we
computed 200 surrogate MlIs by randomly combining the phase and
amplitude signals from different trials (trial-shuffling), again separately
forload1,load 3 and for all trials. We fit anormal distribution to these
surrogate data (normfit.m) to obtain the mean and s.d. of each distri-
bution. These values were then used to z-transform the raw Ml values.
Standardizing Ml values eliminates potential systematic differences
that might arise due to load-related power or phase differences, which
could drive observed differences in PAC. Moreover, low frequencies
are more vulnerable to non-specific correlations to high-frequency
power due to non-stationarities in the LFP signal caused by factors
such phase resets. Comparing raw modulationindices to trial-shuffled
surrogates within the same condition will reduce PAC thatis caused by
suchnon-specificinteractions (discussed in detail previously®®). In addi-
tionto providing ameasure of significance, normalizing the Ml values
therefore allows for comparisons across conditions, frequencies and
channels®. A channel was indicated as having significant PAC present if
the normalized Ml computed across all subsampled trials (both loads)
exceeded az-score of 1.64 (P < 0.05, right-sided).

We repeated the above procedure for all frequency combinations.
The phase signals were extracted for centre frequencies between 2 and
14 Hz in steps of 2 Hz (2 Hz fixed bandwidth). The amplitude signals
were extracted for frequencies between 30 and 150 Hzin steps of 5 Hz.
The bandwidth of the amplitude signals was variable and depended
on the centre frequency of the low-frequency signal. It was chosen
such thatit constituted twice the centre frequency of the phase signal
(forexample, if combined withan 8 Hz centre frequency for the phase
signal, the bandwidth of the amplitude signal was chosentobe 16 Hz).
This procedure ensures that the side peaks that arise if the amplitude
signal ismodulated by alower-frequency phase signal are included®®.

To determine the influence of theta waveform shape on PAC, we
tested for differences in theta waveform peak-to-trough as well as
rise-to-decay asymmetries between the two load conditions, which
could potentially cause differences in TG-PAC’*”". To extract and char-
acterize each theta cycle during the delay period inall significant hip-
pocampal PAC channels, we used the bycycle toolbox’?in Python. We
averaged estimates for peak-to-trough as well as rise-to-decay asym-
metries across cycles during the maintenance period from the same
trials used for our PAC analysis within each load and tested the esti-
mates between the conditions. Results of this analysis are presented
in Extended DataFig. 3c.

Moreover, we determined the number of significant PAC channels
that showed theta-high-gamma nesting using the method described

previously®. To do so, in each PAC channel we determined the theta
phase bin for which gamma amplitude was maximal, that is, the pre-
ferred theta phase of gamma amplitude. Inthe band-pass-filtered and
phase-binned theta (3-7 Hz) signal, we then determined all instances
during the delay periods of all of the correct trials in which this phase bin
occurred, and extracted the precise timepoint at which the concurrent
instantaneous gamma amplitude (70-140 Hz) was maximal within each
bin. To obtain the average waveform, we selected awindow of 500 ms
centred on each timepoint in the raw (unfiltered) LFP recording and
averaged the signals across allwindows in each channel. Example aver-
age waveforms from two channels are shown in Extended Data Fig. 3e.
Inaccordance with ref. 69, we characterized awaveformas being nested
if at least three local maxima fell within a window of 45 ms (that is,
3 cycles at 70 Hz) around the preferred phase. Results are presented
in Extended Data Fig. 3e.

Relationship between single-trial PACand FR or RT

We calculated single-trial estimates of TG-PAC for all significant PAC
channels of both MTL regions and the vmPFC. We used mixed-effect
GLMs to assess whether RT is related to PAC in a trial-by-trial manner
(using only correct trials). We included load as a confounder and mod-
elled random intercepts for each significant PAC channel nested into
patientID. To examine whether there was a correlation between FR of
category neurons (see below) and single-trial estimates of PAC, we used
amixed-effects GLM withload as a confounder and modelled random
intercepts for each neuron to significant PAC channel combination.
Only correct trials were used.

Category cell selection

We selected for neurons of which the response after stimulus onset
during encoding differed systematically between the picture categories
of the stimuli shown. To do so, for each trial, we counted the number
of spikes a neuron fired in a window between 200 to 1,000 ms after
stimulus onset (all encoding periods and the probe period). We then
grouped spike counts based on the category of the picture showninthat
trial. For eachneuron, we computed al x 5permutation-based analysis
of'variance (ANOVA) with visual category as the grouping variable, fol-
lowed by a post hoc one-sided permutation-based ¢-test between the
category with maximum spike countand all other categories. We clas-
sified agiven neuron asacategory neuronifboth tests were significant
(P<0.05,2,000 permutations (see below)). We refer to the category
withthe maximumFRas the preferred category of a cell. To test whether
the observed number of category cells was significantly larger than that
expected by chancein each area, we repeated the above selection for
500 times after shuffling the category labels for each stimulus across
all picture presentations. If the observed number of category cells in
the unshuffled data was higher than the 99th percentile (P < 0.01) of the
resulting shuffled distribution (which, across all five brain areas, cor-
responds to a Bonferroni-corrected alphalevel of 0.05), we considered
the number of category cells observed in a given area as significant.
Note that category cells are selected only using spiking activity from
the encoding period, leaving the FRs during the maintenance period
independent for later analyses.

SFC

To measure how strongly the spiking activity of a neuron followed
the phase of an LFP in a certain frequency, we computed the SFC. We
measured SFC as the mean vector length (MVL) across spike-phases for
allneuron-to-channel combinations available within abundle oracross
regions (within the same hemisphere) in correct trials”. To estimate
the instantaneous phase from LFPs in different frequency ranges in
eachtrial, we applied continuous wavelet transforms using 40 complex
Morlet wavelets™ spanning from 2 to 150 Hzin logarithmic steps. The
number of cycles for eachwavelet changed as a function of frequency
from3to10 cycles, alsoin 40 logarithmic steps”™. This ensured a higher
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temporal precision for longer wavelets at low frequencies and higher
frequency precision for faster wavelets at high frequencies as compared
tousing aconstant number of cycles across all frequencies’. Extended
Data Figure 1 shows the temporal and spectral characteristics across
all wavelets used in this analysis. To assess the quality of our wavelet
transform, we tested how well we were able to reconstruct the original
signal after applying the wavelets to our data. To reconstruct the signal,
we extracted the real-valued (bandpass-filtered) signal after applying
each wavelet to the data and then summed up these signals across all
frequencies. Thisresultedinasignal that closely followed the original
recording in each trial (an example trial is shown in Extended Data
Fig.1j). We assessed how well the reconstructed signal predicted the
original signal by computing R? values extracted from linear models
using the reconstructed signal as predictors and the original signal
asresponse variables in each trial and channel. As the quality of the
reconstruction could change as a function of frequency or time, we
performed this analysis for several time and frequency bins. First, we
band-pass filtered both signals within the spectral bandwidth of each
wavelet and then applied the linear modelinsliding windows of 500 ms
with a step size of 25 ms. The results of this analysis are presented in
Extended Data Fig. 1.

For our SFC analysis, we first extracted data between -500 and
3,000 ms around the maintenance period onset from all clean trials
in each channel and then computed a complex Morlet wavelet con-
volution to extract the instantaneous phase of the LFP as described
above. The trials were then cut to the final time window of interest
of 0to0 2,500 ms after the maintenance period onset to remove filter
artefacts at the edges of each trial. To further avoid a bias of the MVL
based on differences in spike count, we subsampled spikes such that
anequal number of spikes was available in each condition. We included
neurons that had at least 50 spikes available in each condition (we
used a minimum of ten spikes for the preferred versus non-preferred
analysisin category neurons due to a potentially low spike countin the
non-preferred condition”). Next, we extracted the phase in the LFP
closest tothe timestamp of each spike, averaged across all spike-phases
inpolar space, and computed the MVL for each of the 40 frequencies.
We repeated this subsampling 500 times and averaged the resulting
MVLs across all repetitions within conditions. To avoid potential bias
ofload within the preferred versus non-preferred (category neurons;
Fig.3) or fast versus slow RT SFC comparison (cross-regional analysis;
Fig.5), we computed the SFC estimates within each load conditionand
then averaged across the loads.

Theresulting MVL in each neuron-to-channel combination was fur-
ther normalized using a surrogate distribution, which was computed
after adding random noise to the timestamps of all spikes within a
condition 500 times. Potential biases of the MVL based on systematic
differences betweenthe conditions (such as power differences between
conditions within agiven frequency band) were thereby reduced. Like
for the measure of PAC (see above), we fit anormal distribution to the
surrogate data and used the mean and the s.d. of that distribution to
z-score the raw MVL within each condition.

To compare SFC between preferred and non-preferred trials, we
computed SFCfor all category neuron-to-channel combinations within
thesameregioninfrequencies between2and150 Hz during the mainte-
nance period and compared trials in which preferred or non-preferred
stimuli were correctly maintained. We used cluster-based permutation
statistics toidentify ranges of frequencies with significant differences
(Fig. 3f). To determine whether the observed gamma SFC difference
between preferred and non-preferred trials was dependent on gamma
amplitude, we tested whether gammaSFC (averaged across 70-140 Hz)
for category neuronsin the hippocampus differed between preferred
and non-preferred trials for high and low gamma amplitudes separately
(median split).

Whether theta or gamma-band SFC was related to the preference of
thecelland/orload was tested by averaging SFC withinthe theta (3-7 Hz)

orgammaband (70-140 Hz) and computing a2 x 2 permutation-based
ANOVA with the factorsload and preference for all category neuronto
PAC channel combinations in the hippocampus.

To examine whether cross-regional SFC differed between the twoload
conditions, we computed SFC for all neuron-to-channel combinations
between the respective areas in each load condition. We then used
cluster-based permutation statistics to identify ranges of frequencies
with significant differences (Fig. 5b; alphalevel Bonferroni-corrected
for all tests across two MTL areas, three frontal areas and two cell
populations). To further determine arelationship to RT (Fig. 5f), we
performed a median split of RTs for all correct trials within each load
condition and compared cross-regional SFC between hippocampal
PAC neurons and the vmPFC, averaged within and the significant
thetarange, between fast and slow RTs (averaged across both load
conditions).

Selection of PAC neurons
Wesselected for neurons whose FR was correlated with both theta phase
and gamma amplitude during the maintenance period of the task. For
all neuron-to-channel combinations within a bundle of microwires,
we extracted the data from correct trials between -500 and 3,000 ms
relative to the maintenance period onset and estimated the phase of
theta signals by filtering between 3 and 7 Hz and computing a Hilbert
transformineach trial. Gammaamplitude was determined by comput-
ing wavelet convolutions for frequencies between 70 and 140 Hz in
frequency steps of 5 Hz (each wavelet using 7 cycles). Trials were cut
to 0t02,500 ms after maintenance period onset to remove edge arte-
facts, and were then concatenated. The extracted amplitudesin each
gamma frequency were z-scored across all trials and averaged across
all frequencies. Computing wavelet convolutions in 5 Hz steps and
z-scoring the databefore averaging avoided biasing power estimates to
lower frequencies due to the power law. Next, for each neuron-channel
pair, we performed a median split of gamma amplitudes and binned
all amplitudes into low and high gamma, respectively. In each of the
two gamma groups, we further binned the corresponding theta phases
into 10 groups (36°bins), resultingin atotal of 20 bins (Fig. 4a).Ineach
of those bins, we then counted the number of spikes that occurred in
each theta-gamma bin.

Wefit three Poisson GLMs for each neuron-to-channel combination.
In model 1, spike count (SC) was a function of theta phase (10 levels),
gamma amplitude (2 levels), and the interaction between theta phase
and gamma amplitude. We included theta separately as cosine and
sine due to the circularity of phase values’, which enabled us to treat
theta phase as alinear variable. Model 2 included the theta phase and
gamma amplitude as main effects but not the interaction term. Model
3included amain effect for theta phase and aninteraction termbut no
main effect for gamma amplitude:

Model 1: SC -1+ Theta, + Thetag, + Gamma + (Theta,, + Theta,)
x Gamma

Model 2: SC -1+ Theta,, + Thetag;, + Gamma

Model 3: SC -1+ Theta,, + Thetag, + (Theta,, + Thetag,) x Gamma

We next compared pairs of models using a likelihood-ratio test
between model 1 and the two other models (using compare.m). A
neuron qualified as a PAC neuron if model 1 explained variance in
spike counts significantly better than both of the other two models
(P<0.01, FDR corrected for all possible channel combinations). The
rationale behind each model comparison was as follows. First, we
were specifically interested in neurons that followed the interaction
of theta phase and gamma amplitude, that is, PAC, and not just theta
phase or gammaamplitude alone. Selecting neurons for whichmodel 1,



including the interaction term, explained spike count variance of a
givenneuronsignificantly better thanmodel 2, lacking the interaction
term, ensured extracting those neurons. Second, we also compared
model1to model 3, lacking the gamma term, for the following reason.
Assume that a given neuron-channel combination has an LFP with
strong PAC at the field potential level, that is, strong interactions
between theta phase and gamma amplitude, and a neuron of which
theFRisnotrelated to neither theta phase nor gamma amplitude. Nev-
ertheless, this situation would resultin a significantinteraction term
in model 1 because the spikes that fall into the low and high gamma
amplitude groups will have different theta phases (due to PAC). This
isonly the caseifthe underlying PACin the LFPis very strong (anillus-
tration and further discussion is provided in Extended Data Fig. 6).
However, in this scenario, the gamma amplitude term (or the theta
phase term) would not be significant. Comparing model 1 to model
2 and model 3 therefore ensures that cells were selected only at PAC
neurons in which the interaction term explained variance above and
beyond the main effects and interactions alone.

As we did not observe strong PAC nor persistently active category
neuronsinfrontal regions, we restricted this analysis to channels from
the MTL regions and performed it separately in each load condition.
If spike count variance was significantly better explained by model 1
than the two other models in either of the load conditions for at least
one neuron-to-channel combination, weincluded this neuronasaPAC
neuron. If aneuron was selected in more than one neuron-to-channel
combination, we selected the combination with the highest R? in
the full model (model 1). This combined channel was later used for
within-region SFC aswell as FR correlation analyses. Lastly, to determine
whether the number of selected PAC neurons per area was significantly
higher than chance, we repeated the entire selection process 200 times
after pairing spikes and LFPs from different, randomly selected trials,
therefore destroying their relationship with theta phase and gamma
amplitude. The Pvalues indicate the proportion of repetitions that
resulted in a higher number of selected neurons using the shuffled
data than the original number of PAC neurons determined using the
unshuffled data.

Properties of PAC neurons

We used mixed-effects GLMs with load as a confounder and model-
lingarandom intercept for each PAC neuron-to-channel combination
nested into patientID (using only correct trials and the LFP channel
selected for each neuron; see above) to examine the relationship
between FR of PAC neurons and single-trial estimates of PAC. Note
thattrial-by-trial correlations areindependent from the selection pro-
cedure as PAC neurons were selected on the basis of trial-averaged
theta—gamma interactions, irrespective of their trial-by-trial
variance.

Noise correlations and population category decoding

Weinvestigated the effect of noise correlations among groups of simul-
taneously recorded neurons on population decoding accuracies for the
image category currently held in mind and on WM behaviour during
the maintenance period. To estimate noise correlations among pairs
of category and PAC neurons, for each neuron, we counted spikes in
bins of 200 ms that slid across the maintenance period (0-2.5 s after
the last picture offset) in steps of 25 ms. We then computed the cor-
relation coefficientacross all101timebinsineach single trial for each
pair of neurons and averaged across all considered trials within each
condition. We used only correct trials for this analysis, and paired only
neurons that were recorded in the same session and within the same
brainregion. Pairs of neurons recorded on the same channel were not
considered as a precaution against spurious correlations caused by
spike sorting inaccuracies. To assess the significance of noise corre-
lations among pairs of neurons, we shuffled trial labels within con-
ditions, that is, within the preferred and non-preferred category as

wellaswithineachload, 1,000 timesin each pair and recomputed the
average correlation coefficient across all pairs. The original average
correlation coefficient was then compared against the distribution of all
average correlation coefficients obtained from the 1,000 trial shuffles
(Fig. 6a (right)).

To investigate the contribution of PAC neurons to the population
category decoding accuracy when noise correlations among neurons
wereintact or removed, we used an approachintroduced previously*®
(Fig. 6b). To measure how much a single neuron affects the decoding
accuracy of an ensemble of neurons, this approach finds optimized
neuron ensembles that have maximal decoding accuracy by adding
eachsingle neurontothe ensemblein astepwise manner. Each neuron’s
contribution to the ensemble can thereby be determined. In more
detail, using alinear decoder, first the decoding performance for each
single neuronineachregionis determined fromall correct trials. The
neuron with the best decoding performance is then paired with each
remaining neuron to determine which pair yields the best decoding
accuracy. This most informative pair of neuronsis then again combined
with each remaining neuron to determine the most informative triplet
of neurons, and so on. These steps were repeated until all neurons were
part of the decoding ensemble.

As we were most interested in decoding picture category from FRs
in the maintenance period, we used trials from load 1 only. This is
because the maintenance period in load 3 trials contains intermixed
information about the three different categories maintained in WM.
We trained alinear support vector machine (SVM) decoder (fitcecoc.m;
one-versus-one) on 80% of trials and tested it on the remaining 20%
using z-scored FRs. To ensure an equal amount of data for all five cat-
egories, we subsampled trials to match the lowest number of trials
availablein each stimulus category. Noise correlations among neurons
were leftintact by using the same trials for each neuron or removed by
shuffling trials per neuron within each category. Shuffling trials within
each category ensured that the original category label remained correct
but correlationsamong neurons were removed. Any decoding benefit
thatis purely based on category-selective firing activity is therefore not
affected (Fig. 6b (red)). Note that, if PAC neurons enhanced the decod-
ability by ‘residual coding’ of category information, they should have
donesoalsowhen noise correlations were removed through shuffling.
Werepeated each decoding analysis 500 times and averaged the results
to generalize across trial selections.

Totest theinfluence of PAC neurons as well as their noise correlations
on decoding performances, we first tested contributions between
intact and removed noise correlations for PAC neurons that were
added to the ensemble before maximal decoding performance was
reachedin each sessionand area®. This approach therefore tested the
effect that single PAC neurons had on information encoding within a
neural population (Fig. 6¢). To determine a functional specificity of
PAC neurons as agroup, we further compared the maximal decoding
performance before and after all PAC neurons were removed from the
neuronal ensemblein each session. We did this for all sessions that had
at least one PAC neuron, and at least two neurons left after removing
all PAC neurons. We then compared this effect with removing the same
number of non-PAC neurons from the ensembles (averaged across 500
iterations of random selections).

We quantified the effect of noise correlations on the geometry of
the population response. The effect that noise correlations have on
the encoded information in a population of neurons depends on the
angle between the signal and the noise axis®. Toillustrate how the angle
between the noise and the signal axes changes with noise correlations,
we first simulated neural responses for a population of neurons that
were partially tuned to two different categories (see Fig. 6f for asimula-
tion of two neurons for which one was tuned and the other was untuned
to category). Firing rates for each neuron were drawn from a normal
distribution with variable variance. We simulated 200 trials for each
category. For tuned neurons, a variable offset was added to the mean
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of one of the categories. To add noise correlations to the population
of neurons, in each trial, we added a random number drawn from a
normal distribution to the FRs of all neurons. To compare our simula-
tionto acondition with removed noise correlations, we shuffled trials
within each category to destroy noise correlations within conditions but
leave signal correlations among neurons intact. We then determined
the signal axis by training a linear SVM classifier on the FRs from all
neurons and extracting the hyperplane (decisionboundary) obtained
from the model. The signal axisis defined asa vector orthogonal to that
plane. The noise axis was determined by extracting the first principal
component of the data across both categories.

We then quantified and compare the angle between the signal and
thenoise axisinthe recorded data (Fig. 6g). For eachrecording session,
we extracted the signal and the noise axis for the neuronal ensemble
at which the difference in category decoding was maximal between
removed and intact noise correlations. For this analysis, we included
all sessions that had at least two hippocampal neurons available. To
obtain the direction of the signal axis, we extracted the hyperplane
fromeach of the ten trained binary SVM classifiers (trained on 80% of
the data; one-versus-one decoding, see above) and derived a vector
orthogonal to that plane using a QR decomposition. The noise axis
was determined by extracting the first principal component of the
data across categories. The resulting angle between the two vectors
was determined and then averaged across all10 binary learners and all
500 decodingrepetitions, resulting in one angle per session separately
forintact and removed noise correlations.

To further determine the functional specificity of PAC neurons, we
projected the population responses onto the signal axes and deter-
mined the variance of the projection values before and after PAC
neurons were removed from the ensembles at which the difference
betweenintact and removed noise correlations was maximal (Fig. 6h).
This analysis was performed for all sessions that had at least one hip-
pocampal PAC neuron, and at least two neurons left after removing all
PAC neurons from those ensembles. The rationale of the analysis was
based on the idea that the variance of the projected values should be
small when the angle between the noise and signal axis is large and
vice versa®, For each binary classifier, we projected the population
responses for each category onto the signal axis and determined their
s.d. We then averaged the obtained variances across both categories,
all10 binary classifiersand all 500 iterations, and tested the variances
betweenintactand removed noise correlations before and after all PAC
neurons were removed from the ensembles.

To compare noise correlations between fast and slow RT trials, we
examined all possible PAC-category cell pairsinagiven session (Fig. 6i).
We analysed the trialsinwhich the preferred or non-preferred catego-
ries of the category cell were held in WM separately. Fast and slow RT
trials were defined by median split, computed separately in each load
condition, and then averaged to avoid abias of load in RTs. To assess the
specificity of the fast versus slow RT trial difference to PAC neurons, we
randomly paired category neurons with any other non-PAC neuron and
compared noise correlations between fast and slow RT trials (for n =162
randomly selected pairs; same n as for PAC-to-category neuron pairs).

Thesignificance of population decoding (Extended Data Fig. 7a) was
assessed by comparing the original decoding accuracy to adistribution
0f1,000 decoding accuracies after randomly shuffling category labels.

Statistics

Throughout this Article, we use (cluster-based) nonparametric per-
mutation tests (statcond.m as implemented in EEGLab, using option
‘perm’, or ft_freqstatistics.min FieldTrip), thatis, tests that do not make
assumptions about the underlying distributions, or mixed-effects
GLMs (fitglme.min MATLAB) to assess statistical differences between
conditions. In these tests, random permutations of condition labels
were performed to estimate an underlying null distribution, which was
then used to assess the statistical significance of the effect. The paired

permutation ¢-tests that we performed are equivalent to computing
pair-wise condition differences and testing the differences against zero.
All permutations statistics used 10,000 permutations, and ¢-tests were
tested two-sided unless stated otherwise. The corresponding t and F
estimates, which are computed based on a normal distribution, are
provided as a reference only. Bayes factors were computed using the
BayesFactor package”. BF , indicates the evidence of HO (null hypoth-
esis; no evidence between conditions) over H1. A value of 1 indicates
equal evidence for HO and H1, and values larger than 1 indicate more
evidence for HO over H1 and vice versa. SFC estimates tested across
several frequencies were corrected for multiple comparisons using
cluster-based permutation statistics asimplemented in FieldTrip*® with
10,000 permutations and an alpha level of 0.025 for each one-sided
cluster, which was also Bonferroni corrected for the number of tests
involved. Depending on whether we used z-scored FRs or spike counts,
we used mixed-effects GLMs based on anormal or Poisson distribution,
respectively. Finally, error bars shownin figures show the s.e.m. unless
otherwise stated.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Alldatausedin this study are publicly available in the DANDI Archive®
(https://dandiarchive.org/dandiset/000673). The published data-
set contains the timestamps and waveforms of the sorted neurons,
LFPs, electrode coordinates, behavioural data, as well as the stimuli,
triggers, experimental parameters, anonymized patient metadata of
each session.
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Extended DataFig.1|Spike-sorting quality metrics for allidentified
putativesingle units and wavelet characteristics. (a-e) Spike-sorting quality
metrics. (a) Proportion ofinter-spike intervals (ISI) below 3 ms. (b) Average
firingrate. (c) Coefficient-of-variation. (d) Signal-to-noise ratio (SNR) for the
peak of the mean waveform across all spikes as compared to the standard
deviation of the background noise. (e) Mean SNR of the waveform. (f) Example
raw LFPrecordedinahippocampal channel during the delay period of asingle
trial (time O denotes onset of the delay period). (g) Power-spectrum of LFP data
shownin (f). (h,i) Wavelet characteristics for all 40 wavelets used. Left: Wavelet
family. The upper panel shows the temporal outline and the magnitude of the
real part for allwavelets smoothed across all frequencies. The maximal
magnitude of each waveletis scaled to1. Warm colours denote positive, cold
colours negative magnitude. The lower panel shows the real part of all wavelets
plotted on top of each other. Centre: The upper panel shows the spectral
bandwidth of each wavelet as afunction of centre frequency. The lower panel
plots the FFT-spectrum for each wavelet. Right: The upper panel shows the
temporal width of all wavelets as a function of centre frequency. The horizontal

linesindicate the spectralbandwidth for each wavelet. The lower panel contains
theamplitude envelope for each wavelet as afunction of time. (j) Example
original and reconstructed signal after applying the continuous wavelet
transform (see Methods). Small deviations from the original signal are due to
thefact thatsignals at frequencies lower or higher than the edge frequencies
of2and 150 Hz, respectively, were not represented by the wavelet transform
butpresentinthe original signal. (k) Assessment of the wavelet-based signal
reconstruction. We computed linear models using the reconstructed signal as
predictor for the original signal and extracted R-squared values as a function of
time and frequency in each trial and channel. Values were averaged across all
trialsand all hippocampal channels. An R-squared values of close to lindicates
almost perfectreconstruction ofthe original signal. As stated above, the slight
dropinreconstruction quality at extreme frequencies is explained by the

fact thatsignals at frequencieslower or higher than the edge frequencies,
respectively, were not represented by the wavelet transform but presentinthe
originalssignal.
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Extended DataFig.2|Additional PAC analyses. (a) PAC comodulogram
averaged across all channels separately for each area. Strongest PAC was
observed between thetaand gammainboth areas ofthe MTL. Frontal areas did
notshow strong PAC, withweak PAC at <2 Hzin pre-SMA and vmPFC. We focused
our analysis on frequencies above 2 Hz (1-3 Hzbandpass) to ensure that at least
2 full cycles fit within our analysis window of 2.5 s (length of maintenance
period). (b) Inaddition to testing theta-gamma PAC across significant channels
(see main text), we tested PAC between the load conditions across patients
afteraveraging all significant PAC channels within each patient. The results
were similar to the analysis across channels, with strongest PACin MTL areas
and only weak PACin frontal channels (see percent of patients with significant
PAC channels below each figure), suggesting that the results were not driven by
channels fromasingle patient. Only in the hippocampus again, PAC was stronger
forload1ascomparedtoload 3 (n=23 patients, p=0.0049), observablein

almost each single patient. No significant differences were found between the
load conditionsin other regions (amygdala:n=25; pre-SMA:n=4;dACC:n=8§;
vmPFC:n =13).z-scored PAC values were shifted into a positive range by an
offset of1and log-transformed for illustrative purposes only. All statistics are
based on non-transformed z-values. (c) Thetatolow gamma (30-55 Hz) PAC
analyses. We also found strongest theta-low gammaPACin MTL regions as
opposedto frontal regions (see percentages below each figure). But for the low
gammaband, we did not observe significant differences between the load
conditionsinany of theregions (hippocampus: n =148 channels; amygdala:
n=155; pre-SMA:n=10; dACC: n=22; vmPFC:n=48).See Supplementary Table 2
for additional PAC analysis separated into slow and fast theta. In (b,c), we
performed two-sided permutation-based t-test and centre values denote mean
+s.e.m.;**p <0.01; ns=notsignificant.



Article

a  Gamma distribution b Power analysis
0.2 Theta Gamma
— ns ns
55 — 25 —
0.16 . . ¢ = 2
5 R
£
545 2 3 4
0.12 2
. : §
§ N i 35 =
<0.08 z %
g5k '
4 z
0.04 3 A
25t % D
0 P
2
1 3 1 3 1 3
Memory load Memory load Memory load
e Theta - high gamma nesting f x10° Raw MI
40 ” e
— [ 25 | ——
EE =~ 16 e : .
g T . —_
So & ~—~ . s Ll . /
= ° . ©
=3 = K3 = .
g 20 2 12 * . %
= 3 ‘ 2 215
40 ) > kS £ 1 CND .
10 2 o8t < . s :
s 5 } g, -
5 o = = >
3 kS : 3 . ':
So 3 0.4 =
s = 0.5
£ -5
< of .
0 5 0

-200-100 0 100 200 1 3

Time (ms) Memory load Memory Ioad

Extended DataFig. 3| Theta-high gammaPAC control analysesin the
hippocampus. (a) Higher memory loads are thought to be accompanied by a
wider distribution of gamma amplitudes across theta phases, thereby leading
to lower PAC values®. To quantify the width of the distribution of gamma
amplitude asafunction of thetaphaseinload 3 thanload 1, we estimated kappa.
Kappaisameasure that describes the concentration (inverse of variance) of a
circular variable around the mean direction. Across all PAC channels, kappa was
significantly lowerinload3 comparedtoload1(n=137 channels, t(136) = -3.7453,
p=0.0001) trials. This shows that gamma amplitudes are high for awider range
oftheta phases for higher memory loads, thereby explaining why PAC decreases
for higher memory loads. (b) Comparison of thetaand gamma power. The
significant hippocampal PAC channels showed no significant differencesintheta
orgamma power between the two load conditions (n =137). (c) Todetermine
theinfluence of theta waveform shape on PAC, we tested for differencesin
theta waveform peak-to-trough as well as rise-to-decay asymmetries between
the two load conditions (see Methods). We did not find systematic differences
between the conditions for both measures (n=137). Moreover, average theta
waveforms were overall symmetric as both measures were not significantly
differentfrom.5inany of the conditions. (d) Moreover, if the differences
betweentheload conditions observed for PAC channelsin the hippocampus
were explained by waveform shape differences/theta harmonics, we should
also observe an effect for cross-frequency phase-phase coupling between the
same frequency bands. We tested for thatin all significant hippocampal PAC
channelsand did not observe asignificant difference (n =137). Theta-high
gamma phase-phase coupling was computed as described in”>*. () We
determined the number of significant PAC channels that showed theta-high
gamma nesting as described by Vaz et al.® The left upper and lower panels
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show two examples of significant PAC channels from the hippocampus that
were determined to have nesting by the Vaz et al. method (at least three local
maxima withinawindow of 45 ms around the preferred phase (see Methods)).
110 of the 137 significant PAC channels (80.29%) in the hippocampus showed
nesting between high gammaand theta. When testing PAC between the load
conditions after removing channels that did not show significant nesting, PAC
wasstill significantly lowerinload 3 than1(n=110;t(109) = -4.10; p = 0.0001).
(f) Comparison of theta-gamma PAC strength in the hippocampus assessed
using the raw modulationindex rather than the of z-transformed MI. Raw
theta-gamma PAC was significantly largerinload1comparedtoload 3 (n=137;
t(136) =-4.0264, p=0.0001). (g) Distribution of theta phases at whichgamma
amplitude was maximal across all significant PAC channels in the hippocampus
inload1and 3 (upper part). Inmost channels, gamma amplitude was maximal at
the peak or the trough of theta. Note that the local referencing schemein our
datadoesnotallow do make statements about the polarity of theta. Red bars
indicate the meanvectorlength acrossall phases. The difference in theta phase
atwhich gamma amplitude was maximal between the two load conditions was
notsignificantly different from zero (bottom part). (h) We further assessed
whether PAC peak frequencies differed between the load conditions either
within the theta or the gammaband. Todo so, we recomputed PAC using a finer
resolution for phase frequencies (i.e., astep size of 0.5 instead of 2 Hz) and
determined the frequency bin for which PAC was maximal for the thetaand
thegammaband separately for all channels and both loads. We did not find
significant systematic shiftsin PAC peak frequencies between the load
conditionsin thetaorgamma frequencies (n =137).In (a-f,h), we performed
two-sided permutation based-t-tests and centre values denote mean +s.e.m.
***p < 0.001, ns=notsignificant.
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Extended DataFig. 4 |Category neuronselection and persistentactivity.
(a) In hippocampus, amygdala, and vmPFC (all p=0.002, right-sided
permutation test) the selected number of category neurons was larger than
expected by chance (p < 0.01; Bonferroni corrected; see Methods). The null
distribution (grey) was estimated by repeating the selection procedure after
shuffling the category labels for 500 times. Numbers of selected neuronsin
dACCand pre-SMA were not significantly different from those expected by
chance. (b). Category neuronsinboth areas of the MTL, hippocampus (n = 89;
pref.vs.baseline: p=0.0001; non-pref.: p=0.0001) and amygdala (n =181;
pref.: p=0.0001; non-pref.: p=0.0001), showed persistent activity during the
delay period of the task, during which no picture was presented on the screen.
Note that category neurons were selected during the encoding period only,
making the delay period independent from the selection criteria. FR remained

significantly higher when their preferred as compared to non-preferred
categories were maintained in memory (hippocampus: p = 0.025; amygdala:
p=0.037).Theactivity of category neuronsinthe vmPFC (right) during the
delay period was not significantly larger than that during baseline (n =37; pref.:
p=0.12;non-pref.: p=0.26). Also, their FRs did not differ significantly between
whenthe preferred and the non-preferred category of a cell was maintained
inWM (t(36) =1.03, p = 0.32, BF,; = 3.47). The FR of vmPFC neurons thus went
backtobaseline levels when no stimulus was presented on the screen. FR for
selected neuronsinthe pre-SMA (n=18) and dACC (n = 14) are shown only

for completeness despite the proportion of these cells not exceeding those
expected by chance. Allcomparisons are based on two-sided permutation-
based t-tests. Centre values denote mean +s.e.m.***p <0.001,**p < 0.01,

*p <0.05,ns=notsignificant.
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Extended DataFig. 5| Additional analyses for category cellsinthe MTL.

(a) Unlike for preferred trials, we did not observe aload effect for MTL category
cellswhennon-preferred categories were maintained during the maintenance
period (n=270). (b) Inaddition to our statistics across single neurons, we
performed nested random-intercept GLMs for patient-level statistics®. In the
hippocampus, FR of category cells was significantly higher for preferred as
compared tonon-preferred as well as for correct vs.incorrect trials. There was
no main effect of load asexpected, which only emerged when we tested for
load differences in preferred trials only (data not shown). In the amygdala, we
observed asignificant effect for preference, where FRwas higherin preferred
than non-preferredtrials. Again, the load effect was only significant when
tested in preferred trials only (datanot shown). There was no effect for
accuracy. (c) When averaging thetaband (3-7 Hz) SFC values for hippocampal
category neurons paired with significant PAC channels, we did not observea
significant main effect for load or preference nor asignificantinteraction
(n=151; permutation-based F-test). (d) We performed a median split of gamma
amplitudesacross trials and tested gamma SFC between category cellsand
significant PAC channelsin the hippocampus separately for spikes that occurred
during high and low gamma amplitudes (spike counts were adjusted across
conditions). We observed asignificant difference ingamma SFCbetween
preferred and non-preferred trials only for spikes that occurred during high

(n=151, p=0.0015), not during low gamma amplitudes (n =151, p = 0.84).

(e) When paired with non-PAC channels, we did not observe differencesinthe
gammaband between preferred and non-preferred trials for normalized SFC
values for category cells in hippocampus or amygdala. In the hippocampus,
we observed asignificant difference in the alpha range (7-11 Hz) with SFC for
non-preferred trials higher than for preferred trials, which we did not further
considerinouranalyses. (f) Comparing SFC for category neurons acrossall
channels (not separated into PAC/Non-PAC channels) revealed significantly
higher gamma-band SFC for preferred than non-preferred trialsin the
hippocampus (cluster-p = 0.007, two-sided cluster-based permutation t-test
with Bonferroni-corrected alpha-level for two MTL areas), similar to what

we observed for PAC channels only. There were no significant differencesin
theamygdala. (g) To test whether the gamma SFC effect for category cellsin
the hippocampus persisted at the patient level, we averaged gamma SFC across
all category neuron to channel pairs within each patient and then compared
the per-patient average between preferred and non-preferred trials. Patient-
averaged gamma SFC was significantly higher for preferred trials, suggesting
that the effect was not driven by afew channels or patients (n =19, t(18) =2.8512,
p=0.005).In(a,c,d,g), we performed two-sided permutation-based -tests.
Centre valuesdemote mean +s.e.m(coloured areasine,f). ***p <0.001;

**p <0.01;*p <0.05; ns=notsignificant.
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Extended DataFig. 6 | Simulations supporting the PACneuronselection
approach. Weargue thataneuronthat firesrandomly withrespect totheta
phase and gamma power could still be selected asa PAC neuronifonly the GLM
interaction term between theta phase and gamma amplitudeis considered.
Inadditionto selecting neurons whose FRs are better explained by amodel
including aninteraction termas compared to amodel withnointeraction term,
we therefore introduced asecond criterion by comparing the full model against
amodel thatlacks the gamma amplitude term. The simulations presented here
are meant to visualize our reasoning. In (a), we simulate theta (6 Hz) and gamma
(80 Hz) signals, where gamma amplitudes perfectly couple to theta phase. This
highly artificial LFP signal only serves to simplify visualization. We also include
illustrationsin (b) to (d) using an originally recorded LFP channel from our
dataset (filtered between 3-7 Hzand 70-140 Hz) that shows strong levels of
PAC. Thisis toshow that the same arguments also hold for real data. For the
purpose of theseillustrations, we used an LFP signal of roughly 160 s length and
simulated 300 spike timestamps (black ticks), of which 9 s are plotted. (a) In
thissimulation, we modelled random spike timestamps with respect to theta
phase and gamma amplitude (upper panel). According to our GLM selection
approach, wegrouped spikesin10 theta phase binsand 2 gamma amplitude
bins and determined spike countsineach bin (lower panels). As canbe seen
from the histograms in the lower panels, the theta phase distribution of spike
counts differs between low and high gamma amplitudes, resulting in a highly
significantinteraction term between theta phase and gammaamplitude. The
reason for thisis thatgammaamplitudeitselfis already perfectly coupled to
theta phase. Separating spikes into low and high gamma will therefore also
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resultin different theta distributions among the two spike count groups.
Thus, when testing amodel that contains theta phase and gamma amplitudes
aswellastheirinteraction againsta model without theinteraction, spike
counts will be highly significantly better explained by the fullmodel, as was the
caseinthis example (p < 0.001; seelikelihood-ratio test results on the right).
However, since the time stamps are random, we should not observe a difference
inoverall spike counts between low and high gamma amplitudes, which was
alsothecaseinthisexample (p = 0.98). Introducing suchagammaterm
comparisonasasecond selection criterion thus ensures that this simulated
random neuron would not have been selected.In1000 repetitions of this
simulation, our approach would have selected only 1.8% of such randomly
spiking neurons (see text onright side). (b) Similar to (a) but using areal LFP
recording from our dataset that shows strong levels of PAC.300 spike
timestamps were again modelled randomly with respect to theta phase and
gamma amplitude. Similar albeit weaker statistics were observed in these
simulations. (c) Using the same LFP as in (b) but now simulating 300 spike
timestamps that prefer high gamma amplitudes and a theta phase of O (i.e., PAC
spiking plus10% noise). Here, as desired, the fullmodel explains spike counts
significantly better thanboth the other models and this neuron would be
selected asaPAC neuron. (d) In this example, we simulate a“gamma neuron”,
i.e.,aneuronwhose FRfollows gammaamplitude, but not theta phase. In most
cases (79.3% of 1000 repetitions), these gamma neurons were successfully
rejected. Since we did not control for theta phase in these simulations using a
strong LFP channel, however, around 20% of the simulations modelled PAC
rather than pure gammaspiking.
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Extended DataFig.7 | SFC and theta phase shift analysis for PAC neurons.
(a) PACneurons were not selective for category in hippocampus (left) and
amygdala (right). Even during encoding, category could not be efficiently
decoded from FR of “PAC only” neurons (all other p = 0.001, right-sided
permutation test). Decoding performance isshownas mean +s.d. across 1,000
decodingrepetitions. Black horizontal lines indicate mean decoding of 1,000
randomly shuffled category labels (chance level). Decoding was performed for
pseudo-populations of category or PAC neurons, respectively. (b,c) Thetaand
gamma SFC between PAC neurons and local LFPrecordings did not differasa
function ofloadin (b) the hippocampus (theta: t(78) =-1.54, p=0.13; gamma:

t(78)=-1.12,p=0.27,n=79), or (c) the amygdala (theta: t(162) =-0.71,p = 0.47;
gamma: t(162) = 0.76, p = 0.45,n =163). Thetaand gamma SFC, however, were
bothssignificantly stronger thanshuffled surrogatesinbothareas (allp=0.0001).
Each dotisaneuron-channel combination. In (a,b), we performed two-sided
permutation-based t-tests and centre values denote mean +s.e.m. (d) The
preferred theta phase of PAC neurons did not differ significantly as a function
ofloadinbothareas of the MTL. Red bars show the mean difference in preferred
thetaphasesbetweenload1and 3 across all PAC neurons. ***p < 0.001; ns =not
significant.
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Extended DataFig. 8| Cross-regional SFC for pre-SMA, dACC, and vmPFC,
aswell asfor fast-and broad-spiking PAC neurons from the hippocampus.
Related toFig. 5. (a) Cross-regional SFC between hippocampal PAC neurons and
LFPsrecordedin pre-SMA (left) or dACC (right) did not reveal any difference
betweenthe two WM load conditionsin any of the frequencies. (b) To test
whether theload modulation of theta-band cross-regional SFC between
hippocampal PAC neurons and vmPFC LFPs persisted on the patientlevel,

we averaged theta SFC across all PAC neuron to channel pairs withineach
patientand then compared the within-patient averages between the two load
conditions. At the patient-level, theta cross-regional SFC was significantly
higher forload 3 thanload 1trials, suggesting that the effect was not drivenby a
few channels or patients (n =20; t(19) =-2.8297, p = 0.0071). (c) Comparison of
cross-regional hippocampal-vmPFC SFC between PAC and category neurons
revealed theload modulation of cross-regional theta SFC between hippocampal
neurons and vmPFC LFPs was significantly stronger for PAC than for category
neurons (PAC: n =175, Cat: n =215;t(376.07) =3.3942, p=0.0001; unpaired
two-sided permutation t-test). Each dot is aneuron-channel combination.
(d) Earlier work has suggested that cognitive control might especially be
governed throughlong-range connections between frontaland sensory
regions thattarget inhibitory interneurons to (dis-)inhibit local circuitries
Wethus asked if we observe a differential effect for the hippocampal PAC
neuron connections after separating theminto narrow- and broad-spiking

41,53,85

neurons based offtheir waveform shapes, which has been suggested to
categorize neuronsintoinhibitory and excitatory neurons, respectively
For analysis of connections involving narrow- and broad-spiking PAC neurons
separately, we observed asignificant differencein theta SFC between load
3andload1only forthe narrow-spiking PAC neurons (trough-to-peak time
<0.5ms; n=91connections; cluster-p=0.0001, left). No effect was found for
broad-spiking PAC neurons (n = 84) (e) Similarly, theta SFC for fast RT was
significantly stronger than for slow RT only for narrow-spiking (t(90) =3.02,
p=0.003,n=91,left), not for broad-spiking PAC neuron connections between
hippocampus and vmPFC (t(75) =-0.66, p = 0.52,n =76, right; spikes were
mediansplitinto fast and slow RT trials per load condition and then averaged
acrossloadsto avoid potential confounds). (f,g) We did not find significant
differences between the load conditions for (f) within-region SFC or (g) cross-
regional SFC to hippocampal LFPs across all neurons from the vmPFC. (h) We
further tested whether there were any non-specific global state changes
between correctandincorrecttrialsinany of the three frontal regions. FRs for
allneuronsrecordedinthethree frontal areas were not significantly different
between correctandincorrecttrials during the delay period (pre-SMA: n=201;
dACC:n=180; vmPFC:n=201).In (a,d,f,g) we performed two-sided cluster-
based permutation t-tests, centre values denote mean, coloured areas s.e.m.
In(b,c,e,h), we performed two-sided permutation t-tests and centre values
denote mean +s.e.m.**p < 0.001;**p <0.01; ns = notsignificant.

86,87
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Extended DataFig. 9| Further analysis of noise correlationsamong PAC
and category neurons. Related to Fig. 6. (a) Distribution of trial-averaged,
bin-wise correlation coefficients for all possible pairs of category and PAC
neuronsinthe hippocampus (n=162) and amygdala (n=892).Inbothregions,
correlation coefficients were significantly higher than zero on average (both
p=0.0001). (b) Example showing trial-by-trial noise correlations for a pair of
simultaneously recorded category and PAC neurons from the hippocampus.
Eachdotrepresents the spike countinacorrecttrial during the maintenance
period for each neuron. For this example, the firing rate of the two neurons was
positively correlated across trials. (c) Correlation coefficients for all possible
pairs of category and PAC neuronsin the hippocampus (n =162) and amygdala
(n=892) for trial-by-trial noise correlations, computed within conditions and
thenaveraged.Inbothregions, correlation coefficients covered abroad range
of both positive and negative values and were significantly higher thanzeroon
average (both p=0.0001). (d) Repeat of the trial-wise correlation analysis for
all possible PAC-category neuron pairsin the hippocampus. Shuffling trial
labels within conditions for 1000 times resulted in far lower correlations
between pairs of neurons than unshuffled trial labels (cyan line; mean of
correlation coefficients across all pairs), showing that trial shuffling successfully
removed noise correlations (p = 0.0001, right-sided permutation test).

(e) Bin-wise correlations among pairs of category neurons and PAC neurons
that were not also category neurons were significantly positive on average
inhippocampus (n =101, p = 0.0003) and amygdala (n = 555, p = 0.0001).

(f) Correlations between pairs of category neuron and PAC neurons that were
notalso category neuronsin the hippocampus (cyanline). Within-condition

trial shuffling (grey) significantly reduced noise correlations (p = 0.0001, right-
sided permutation test). (g) Maximal decoding performance forintactand
removed noise correlations before and after removing only PAC neurons that
were notalso category neurons fromthe ensembles (“nonCatPAC” neurons).
Like for all PAC neurons, decoding performance was enhanced by nonCatPAC
neurons only when noise correlations were intact (n =23 sessions, p=0.0005).
(h) Bin-wise correlations (averaged across trials) among pairs of hippocampal
PACand category neurons did not differ between fast and slow RT trials for
non-preferred trials (n =162, p = 0.90). Each dot represents the correlations
coefficient for a pair after averaging, computed per trial and then averaged
acrossall considered trials. (i) Correlations for pairs of PAC and category
neuronsin preferred trials were averaged within each patientand then
compared between fastand slow RTs across all patients (n =16, p=0.0027).
Eachdotisapatient. (j) Intheamygdala, adding single PAC neurons (n =28)

to the decoding ensemble did not only enhance decodability when noise
correlations wereintact (p =0.0001), but also when removed (p = 0.049; intact
-removed: p =0.0009). (k) Similarly, removing all PAC neurons from the
ensembles inthe amygdala - like removing randomly selected cells-ledtoa
significant decrease in decoding for both, intact (p = 0.0001) and removed
(p=0.0001) noise correlations (n = 32 sessions). (I) Comparing correlations
among PAC and category neurons between fast and slow RT trials in preferred
trialsdid not reveal asignificant difference in the amygdala (n = 884 pairs). In
(a,c.e,g-1), we performed two-sided permutation-based t-tests and centre values
denotemeants.e.m.***p<0.001;**p < 0.0L *p < 0.05; ns = not significant.
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do not speak english and low cognitive function.

Ethics oversight The study was approved by the institutional review boards of Cedars-Sinai Medical Center, Toronto Western Hospital, and

John's Hopkins School of Medicine. Patients provided informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size Our analysis is based on 1452 neurons recorded from 36 patients. No statistical methods were used to pre-determine sample sizes.

Data exclusions  We excluded individual channels and trials that contained epileptic activity, electrical artifacts or movement-related electrical noise. The
methods section contains detailed descriptions of the criteria used to exclude these data. These exclusion criteria were not pre-established
but are commonly used.

Replication The analyses were performed at the single neuron and channel level. The effects reported in the study were consistent and replicated across
36 subjects.

Randomization  Our design is a within-subject analysis: all the patients were in the same analysis set and had all types of trials. We performed permutation
testing where appropriate to ensure statistical validity of our results.

Blinding Patients were not aware of the goals of the study. There was no subjective measurement or decision that the investigator needed to make

during the experiment. All the data are collected and analyzed off-line. Data collection and analysis were not performed blind to the
conditions of the experiments as conditional information is required for further analyses.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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