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Dynamic behaviour restructuring mediates 
dopamine-dependent credit assignment

Jonathan C. Y. Tang1,2,3, Vitor Paixao4,5, Filipe Carvalho4,6, Artur Silva4, Andreas Klaus4, 
Joaquim Alves da Silva4,7,8 & Rui M. Costa1,9,10 ✉

Animals exhibit a diverse behavioural repertoire when exploring new environments 
and can learn which actions or action sequences produce positive outcomes. 
Dopamine release after encountering a reward is critical for reinforcing reward- 
producing actions1–3. However, it has been challenging to understand how credit is 
assigned to the exact action that produced the dopamine release during continuous 
behaviour. Here we investigated this problem in mice using a self-stimulation paradigm 
in which specific spontaneous movements triggered optogenetic stimulation of 
dopaminergic neurons. Dopamine self-stimulation rapidly and dynamically changes 
the structure of the entire behavioural repertoire. Initial stimulations reinforced not 
only the stimulation-producing target action, but also actions similar to the target 
action and actions that occurred a few seconds before stimulation. Repeated pairings 
led to a gradual refinement of the behavioural repertoire to home in on the target 
action. Reinforcement of action sequences revealed further temporal dependencies 
of refinement. Action pairs spontaneously separated by long time intervals promoted 
a stepwise credit assignment, with early refinement of actions most proximal to 
stimulation and subsequent refinement of more distal actions. Thus, a retrospective 
reinforcement mechanism promotes not only reinforcement, but also gradual 
refinement of the entire behavioural repertoire to assign credit to specific actions and 
action sequences that lead to dopamine release.

Animals spontaneously transition among a repertoire of move-
ments when exploring new environments. Movements or movement 
sequences that produce positive outcomes are reinforced and increase 
their frequency to maximize the production of such outcomes4,5. How-
ever, it is not completely clear how animals assign credit to the exact 
action that produces a reward in the context of a continuous behav-
ioural space. This credit-assignment problem2,6–9 during spontaneous 
behaviour poses at least two main challenges. First, it is unclear how 
animals refine their behaviour to preferentially perform a specific 
reward-producing action compared to similar actions in the behav-
ioural repertoire. Second, it is unclear how animals derive contingency 
between reward-producing actions or action sequences and reward if 
there can be variable delays between action or sequence performance 
and reward delivery, with many actions interleaved.

Dopamine (DA) has been proposed to mediate credit assignment6,10. 
At the cellular level, DA can facilitate synaptic plasticity in corticos-
triatal synapse11 within a critical time window that is behaviourally 
relevant12–14. Still, it is unclear how DA changes the dynamics of sponta-
neous behaviour to mediate credit assignment. We therefore developed 
a paradigm to investigate how DA shapes the evolution of continuous 
behaviour during action learning to gain insights into the process of 
credit assignment.

Conventional operant conditioning paradigms5,15–19 have helped to 
extract principles of reinforcement. However, they usually require ani-
mals to interact with devices (for example, levers, nosepokes, joysticks) 
or perform a series of consummatory actions to obtain reward, all of 
this in specific locations in space. These aspects make it difficult to 
investigate how credit is assigned to a specific action or action sequence 
of the entire repertoire during continuous behaviour. We developed 
an approach to study credit assignment whereby we directly reinforce 
the execution of specific spontaneous movements by triggering DA 
neuron excitation and DA release after their execution, irrespective 
of where in space they are executed. The approach combines wireless 
inertial sensors, unsupervised clustering of continuous behaviour20,21 
and optogenetics22 in a closed-loop system linking specific action per-
formance to immediate phasic DA release (Fig. 1a–e and Methods). This 
paradigm reinforces actions without requiring an animal to approach 
or interact with a place, object or cue, or to perform consummatory 
behaviour.

Rapid closed-loop reinforcement of actions
To implement closed-loop reinforcement, we used a Cre-dependent 
strategy to express channelrhodopsin ChR2–YFP22 or control YFP 
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bilaterally in DA neurons of the ventral tegmental area (VTA)23,24 of 
DAT-Cre mice25 (Fig. 1a, Methods Extended Data Fig. 2a,b). We classified 
the entire behavioural repertoire of individual mice in a grey-walled 
open field (Fig. 1b–d). Self-paced behaviour was monitored using a 
wireless inertial sensor system (WEAR; Methods) that enables minimal 
movement restraints, high-resolution behaviour monitoring and fast 
data transmission to open-source hardware and software for online 
experimentation (Fig. 1b and Extended Data Fig. 1a). Affinity propaga-
tion clustering was applied to classify behaviour, as it is advantageous 

for identifying an unknown number of clusters20,21, is computationally 
efficient26 and easily outputs similarity between clusters (Methods and 
Supplementary Methods). We identified over 30 clusters of spontane-
ous behaviour per individual (34.3 ± 2.1 and 35.6 ± 2.5 actions per ChR2–
YFP and YFP mice, respectively (mean ± s.d.); 15 ChR2–YFP and 10 YFP 
mice), representing the entire behaviour repertoire of each individual 
in the open field. For each animal, we chose to reinforce two clusters, 
or actions (hereafter, actions A and B), that are highly mobile and tend 
to have opposing feature score distributions in the anterior–posterior 
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Fig. 1 | Learning of a single action from the naive state as mediated by 
closed-loop optogenetics. a, Animal implant schematic. b, Wireless inertial 
sensor. Scale bar, 0.5 cm. c, Sensor data processing. Acc., acceleration; a.u., 
arbitrary units. d, Open-field behavioural clustering and action reinforcement. 
e, Closed-loop schematic. f, DA release in the dorsal (DS) and ventral (VS) 
striatum. n = 70 sucrose rewards, n = 2 ChR2–YFP mice (biological replicates); 
n = 66 and n = 65 random stimulations, n = 2 ChR2–YFP and n = 2 YFP mice 
(biological replicates), respectively. Data are mean ± s.e.m. g, Action A exemplar 
locations in behavioural space. h–m, ChR2-dependent reinforcement of action A. 
n = 15 (ChR2–YFP; green) and n = 10 (YFP; grey) mice. Data are mean ± s.e.m.  
h, Frequency changes in action A. The light green and grey lines represent 
individual ChR2–YFP and YFP mice, respectively. Ext., extinction. i, Rapid 
increase in target action performance in response to closed-loop 
reinforcements. Statistical analysis was performed using repeated-measures 

two-way analysis of variance (ANOVA); significant time × group interactions are 
indicated (F35,805 = 3.12; P = 7.7 × 10−9). Data are mean ± s.e.m. j, Evolution of the 
pooled behaviour repertoire (n = 509 actions, ChR2–YFP mice) across learning. 
k, Early/late cross-sectional views of j (early: baseline normalized (norm.) 
frequency of >1 (green circles) and <1 (magenta triangles)). The blue dashed 
lines show single phase log decay fits. Inset: early/late fitted lines normalized 
to 1 at EMD = 0. l, Raw frequencies across learning and target similarity percentile 
groups. n values indicate the sample size (actions). Data are mean ± s.e.m. 
Two-way mixed-effects statistics are provided in the Supplementary Information. 
B, baseline; E, early; L, late; M, mid. m, The distribution of actions according  
to their dynamics within reinforced action A (left) or other actions (right). 
****P < 0.0001, *P < 0.05; NS, not significant. Statistical and sample details are 
provided in the Supplementary Information.



Nature | Vol 626 | 15 February 2024 | 585

postural and dorsal–ventral head/body turn features (Methods and 
Supplementary Video 1). The sampled action pairs are quite dissimilar 
as measured by Earth-mover’s distance (EMD)27, enabling us to assess 
the learning process for two distinct action types per animal. Varia-
tion in features across actions was allowed to extract generalizable 
principles common to action learning.

Although movement transitions are also accompanied by DA release 
in the substantia nigra pars compacta28,29 and this release can pattern 
behaviour30, VTA DA release after encountering unexcepted rewards is 
pronounced and strongly reinforces behaviours that lead to it23,24,31,32. 
We therefore targeted VTA DA neurons and stimulated them with a 
pattern (25 hz, 600 ms long train33) that would mimic DA release after 
encountering sucrose, rather than substantia nigra pars compacta 
DA neurons (Supplementary Methods). Target actions were different 
between animals and dispersed across a behavioural space (Fig. 1g and 
Extended Data Figs. 1 and 2). To evaluate whether stimulation param-
eters triggered DA release similar in magnitude to that triggered by a 
sucrose reward in food-restricted mice, we monitored DA release under 
both conditions with the GRAB rDA1m sensor34 in both the ventral and 
dorsal striatum (Fig. 1f). Sucrose presentation led to a sharp increase 
in DA release in both areas (Fig. 1f). Notably, random optogenetic 
stimulation of DA neurons in the VTA with the parameters described 
above resulted in a similar phasic increase in DA not only in the ventral 
striatum but also in the dorsal striatum, although there is a relatively 
higher DA release in the dorsal striatum (Fig. 1f). This is consistent with 
evidence of dorsal-striatum-projecting VTA neurons29,35. Thus, our 
optogenetic stimulation triggered DA release similar in decay and spa-
tial localization to that triggered by sucrose rewards in food-restricted 
mice (Fig. 1f), offering a suitable approach to examine how pairing 
DA release with the performance of specific actions leads to credit  
assignment.

Over a 3 day, 60–90 min per session protocol designed to probe both 
intra- and intersession changes in behaviour, closed-loop stimulation of 
VTA DA neurons after execution of a particular target action (action A) 
significantly increased target action frequency for ChR2–YFP, but not 
YFP mice (Fig. 1h and Extended Data Fig. 4a,b). The increased frequency 
of action A depends on optogenetic stimulation, as demonstrated by 
both extinction and reinstatement of stimulations (Fig. 1h and Extended 
Data Fig. 4c,d). During extinction, ChR2–YFP mice kept performing 
exploratory unrewarded bursts of action A, which could explain the 
rapid reinstatement (Extended Data Fig. 4e,f). Just a few pairings with 
DA leads to rapid reinforcement, as changes in multiple parameters, 
including decreased interval between triggers, increased action A fre-
quency and increased average behavioural similarity towards action 
A, become significant after 10–15 stimulations (Fig. 1i, Methods and 
Extended Data Fig. 5a,b).

We next examined the effect of closed-loop reinforcement on 
non-stimulated actions. We tracked the baseline-normalized fre-
quency of all actions while sorting them on the basis of similarity to 
the target action, using EMD21,27 (Fig. 1j). A lower EMD value indicates 
increased similarity. Notably, optogenetic stimulation substantially 
changed the entire behavioural repertoire performed in the open 
field. Early on, actions most similar to the target action tended to also 
increase in frequency (Fig. 1j–l and Extended Data Fig. 5c), whereas 
actions most dissimilar to the target action tended to decrease in 
frequency. Repeated pairing led to refinement of actions that were 
performed at a high frequency and, by late stages, action A became 
the predominant action being performed, with a sharp decrease in 
non-target-action frequencies as the similarity to the target action 
decreased (Fig. 1k,l). Such effects were not observed in the YFP control 
mice (Extended Data Fig. 5d–f). Thus, early reinforcement results in 
rapid reshaping of the entire behavioural repertoire, biasing animals 
towards actions similar to the target action, and continued pairing 
results in gradual refinement and assignment of credit to the specific  
target action.

Dynamic behavioural refinement with reinforcement
To better describe individual action dynamics during reinforcement, 
the trajectories of all action frequency changes throughout learning 
were categorized (Methods; 511 actions, n = 15 ChR2–YFP animals). 
Three meaningful types of trajectories were characterized by ‘sus-
tained increase’, ‘transient increase’ and ‘decreased’ dynamics (94% of 
all actions; Fig. 1m, Supplementary Methods and Extended Data Figs. 6  
and 7). The dynamics of action reinforcement were, yet again, related 
to the action’s similarity to the target action, regardless of whether the 
actions were sorted on the basis of their raw or percentile similarity 
scores (Extended Data Fig. 7b,c). Actions most similar to the target 
action were predominately sustained-increase types. Moderately simi-
lar actions mostly comprised of sustained-increase or transient-increase 
types. Highly dissimilar actions tend to be decreased types. Transiently 
increased dynamics of similar actions were not caused by stimulation 
of non-target actions, as misclassification of the target for stimulation 
was very rare (1.02 × 10−5 mismatches per actual triggers, 1 in 97,924 
triggers, 15 ChR2–YFP animals) and target distributions do not overlap 
with most other actions in the two-dimensional t-distributed stochas-
tic neighbour embedding (t-SNE) behavioural space (Extended Data 
Fig. 8a,b). Importantly, these transiently increased clusters show little 
to no overlap with target distribution36 and did not lead to DA triggers 
(Supplementary Notes and Extended Data Fig. 8c). Thus, target mis-
classification was not a major cause of transiently increased action 
dynamics. These results show that the dynamics of action reinforce-
ment are greatly related to the similarity to the target action, in that 
animals initially increase re-entrance of similar actions before homing 
in on the target action.

Learning new action-reward contingencies
We next examined whether animals could follow changes in contin-
gency between action and closed-loop DA stimulation. We therefore 
chose a different action, action B, which is clearly distinct from the 
action A for each animal (Fig. 2a, Methods and Extended Data Fig. 1c) 
and started delivering DA stimulation after action B. Chosen action 
A–B pairs were relatively dissimilar in the context of entire action 
similarity distributions (Fig. 2b). After reinforcement, previously 
trained ChR2–YFP mice, but not YFP mice, showed increased action 
B performance over time and the action A frequency was reduced to 
the baseline levels (Fig. 2c–e and Extended Data Fig. 9). Maintenance 
of action B performance depended on continual reinforcement 
(Extended Data Fig. 9f,g). Similar to action A, action B credit assign-
ment unfolds by initially biasing the entire repertoire towards perfor-
mance of actions similar to target B and away from dissimilar actions. 
This was again followed by gradual refinement for action B relative to 
similar actions over pairings (Fig. 2d,e and Extended Data Fig. 9h). We 
confirmed that action learning is contingent on action B happening 
before reinforcement by degrading the contingency between action B 
and DA, by giving random stimulations in the same average frequency 
but unpaired to action B; the contingency was reinstated after resum-
ing action B–stimulation pairings (Fig. 2f and Extended Data Fig. 9i). 
Although similar patterns of behavioural refinement were observed 
for actions A and B, differences in the initial responses were noted 
(Fig. 2g–j and Supplementary Notes). Still, animals can follow changes 
in the contingency between actions and DA release and assign credit 
to a new action through a similar process of behavioural repertoire  
refinement.

Temporal constraints of DA-dependent reinforcement
Reinforcement is thought to occur on behaviour that precedes a reward 
in time10,12,14,19, and temporal contiguity between action and reinforce-
ment has long been recognized37–39 and was observed above (Fig. 2f).  
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We therefore investigated whether, in addition to behavioural simi-
larity, the temporal relationship between action and stimulation 
influenced the dynamics of behavioural repertoire evolution during 
reinforcement and credit assignment.

The median inter-target action interval decreased with stimulation 
in ChR2–YFP mice (Fig. 3a,b and Methods). We therefore examined the 
distribution of the action dynamic types categorized above (Extended 
Data Fig. 7a) according to both (1) an action’s similarity to the target 
action and (2) the median time of that action’s performance leading to 
the target action during the baseline, before reinforcement (Fig. 3c–e).  
These two dependent variables were not significantly collinear  
(Methods). Multinomial logistic regression showed that action 

similarity and baseline temporal proximity to the target action together 
predict action dynamic type after reinforcement better than either 
factor alone (Fig. 3f,g, Methods, Supplementary Methods and Sup-
plementary Table 1). Thus, DA reshapes the behavioural repertoire 
by reinforcing both actions similar to the target action and actions 
that happen to be performed temporally close to the reinforcer, as 
suggested previously12.

To more rigorously test whether DA reinforcement acts in a retro-
spective or prospective manner, we refined our analysis by examin-
ing first-order action transitions leading into and out of stimulation 
(Fig. 3h–j and Methods). Action transitions enriched within specific 1.2 s 
sliding windows were analysed to distinguish more clearly behaviour 
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Fig. 2 | Transitioning from a learned action to reinforcing a new action.  
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to action B (n = 13 of 15 ChR2–YFP). n = 10 (YFP). n values indicate animals 
(biological replicates). a, Action A and B exemplar locations in behavioural 
space. b, Action similarity comparisons (A versus B: n = 13 (ChR2–YFP) and 
n = 10 (YFP); all versus A: n = 514 (ChR2–YFP) and n = 356 (YFP); or all versus B: 
n = 443 (ChR2–YFP) and n = 356 (YFP)). Data are median ± interquartile range.  
c, Reinforcement for action A and B in ChR2–YFP mice. Data are mean ± s.e.m.  
d, Evolution of the pooled action repertoire (n = 427 ChR2–YFP actions) 
reinforced for action B. e, Early/late cross-sectional views of d. The blue dashed 
lines indicate the fitted decay curve. Inset: normalized early/late fitted curves. 
f, Contingency degradation of action B. The random laser trigger frequency 

(bottom) is based on the initial action B performance before contingency 
degradation. Data are mean ± s.e.m. g–j, Action A (blue) induced by 
reinforcement for action B in experienced ChR2–YFP (g,i) and YFP (h,j) mice. 
g,h, Moving-mean frequencies over reinforcement for action A or B. The 
dashed vertical lines mark the first reinforcement. Data are mean ± s.e.m. 
(coloured fill). Bin 1 and bin 2 are time bins for i and j. i,j, Frequency measures 
within the time bins noted in g and h. Statistical analysis using repeated-measures 
two-way ANOVA reveals a significant difference across time and action A/B 
frequencies (ChR2–YFP: reinforce A, F1,24 = 34.4, P = 4.8 × 10−6; reinforce B, 
P = 1.2 × 10−8); two-sided Šidák’s post hoc multiple comparisons test was 
applied. ****P < 0.0001, **P < 0.01, *P < 0.05; NS, not significant. Statistical and 
sample details are provided in the Supplementary Information.
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that occurred leading up to, during and after DA stimulation (Methods). 
We identified baseline-occurring action transitions enriched within 
specific sliding windows centred around the target action and tracked 
their average frequencies per window over the course of closed-loop 
reinforcement. Action transitions that were enriched in windows up to 

1.2 s before stimulation onset, as well as during stimulation, were rein-
forced early on (Fig. 3i). However, action transitions that were enriched 
in windows after stimulation were not reinforced, suggesting an asym-
metric process. Indeed, action transitions enriched in windows leading 
into stimulation were also preferentially reinforced over those enriched 
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indicated (mixed-effects model: action A: F3,69 = 72.26, P = 3.0 × 10−21; action B: 
F3,62 = 33.78, P = 4.6 × 10−13). For b, post hoc two-tailed Tukey’s test was applied 
for multiple-comparison analysis of the data shown in a. c–e, The distribution 
of action dynamic types (n = 464 (non-target actions), 15 (target actions) and 15 
(ChR2–YFP mice)) according to target similarity and median time to target (c), 
target similarity (d) and median time to target (e). For d and e, the violin plots 
show the median and quartiles. Statistical analysis was performed using 
two-tailed permutation tests; Bonferroni-adjusted P values are shown.  
f,g, Multinomial logistic regression of all factor combinations in real data  
(200 independent models) versus shuffled data (10,000 independent models, 
50 independently shuffled datasets). Baseline, 200 independent models. f, The 
two-factor model fits data better than one-factor models. Groups differ across 
combinations (repeated-measures two-way ANOVA; F2,30,594 = 1,082, P = 0.0 × 100). 
Two-tailed post hoc Dunnett multiple-comparisons test was applied. Data are 
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transitions. j, Quantification of i. Data are mean ± s.e.m. Significant differences 
across time and retrospective/forward reinforcement directions are indicated 
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*P < 0.05; NS, not significant. Statistical and sample details are provided in the 
Supplementary Information.



588 | Nature | Vol 626 | 15 February 2024

Article

in windows after stimulation (Fig. 3j). Thus, DA stimulation promotes 
the reinforcement of behaviours occurring during stimulation and a 
few seconds before stimulation.

Credit assignment for action sequences
In the real world, when animals are spontaneously shifting between 
actions in their repertoire, outcomes are often not the result of a single 
action but, rather, are the result of a sequence of actions performed at 
variable time intervals, and with other actions interleaved. We therefore 
investigated the dynamics of reinforcement when the release of DA 
was contingent on performance of a sequence of two target actions, 
target actions 1 (T1) and 2 (T2), whereby variations in the time interval 

between the two target actions, as well as interleaving actions were 
allowed. We applied closed-loop optogenetics to examine whether 
naive animals can learn a T1→T2 reinforcement rule, whereby the delays 
between T1 and T2 are governed by the spontaneous behaviour of the 
animals and are not experimentally controlled (n = 15 (ChR2–YFP) and 
n = 10 (YFP) mice; Fig. 4a and Extended Data Figs. 2b, 3a,d,e and 10–14). 
Various T1–T2 pairs were sampled, with a focus on sequences sharing 
general commonalities in movement order across animals (Methods 
and Extended Data Fig. 1d,f,g). Overall, the mice learned to increas-
ingly perform these sequences to obtain DA stimulation. Some animals 
showed a ChR2-dependent increase in reinforcement within 5 sessions, 
but others experienced a lag in learning (Fig. 4b). We hypothesized 
that this relates to the initial time distance between T2 trigger and 
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Fig. 4 | The relationship between pre-reinforcement inter-action intervals 
and learning of a two-action sequence. a, Experiment schematic. b, ChR2- 
dependent increase in T1→T2 triggers (no laser during open field/baseline).  
c, Open-field inter-action intervals of the T1/T2 pairs chosen. The same colour 
codes are used for ChR2-YFP mice in d–e and g–l. d, Individual learning curves 
labelled according to the colours in c. For c, d and h, a log2-scale x axis was used. 
e, Frequency changes over conditions. Statistical analysis was performed  
using repeated-measures one-way ANOVA (F1.911,24.85 = 51.02, P = 2.2 × 10−7).  
f,g, Extinction of T1→T2 sequence (ChR2–YFP). f, Data are mean (black line) ± 
s.e.m. (orange shading), and individuals (grey lines). g, Frequency changes over 
extinction conditions. Statistical analysis was performed using repeated- 
measures one-way ANOVA (F1.073,12.87 = 52.96, P = 9.8 × 10−6). h,i, ChR2-dependent 
decrease in T1→T2 intervals in ChR2–YFP (h) and YFP (i) mice. Statistical analysis 
was performed using repeated-measures one-way ANOVA (F1.377,17.90 = 35.95, 

P = 1.5 × 10−5) (i). The log2-scale y axis was used to help to visualize interval 
changes in animals starting with lower initial values. j, T2:T1 frequency ratios 
(ChR2–YFP). k, Target refinement shown by median target-action-normalized 
frequencies of related actions. Statistical analysis was performed using 
repeated-measures one-way ANOVA (T1: F1.237,16.08 = 43.38; T2: F1.171,15.22 = 48.74; 
both: P = 4.4 × 10−6). l, A sigmoidal relationship between the open-field T1→T2 
interval and the number of sessions to the criterion frequency. The log10-scale y 
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with post hoc Šidák test. For b and d–l, plots of individual mice are shown.  
****P < 0.0001, **P < 0.01, *P < 0.05; NS, not significant.
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the closest distal T1 (T1→T2 interval). Indeed, animals reinforced for 
action pairs with initially long interval values tended to learn slower 
(Fig. 4c,d). To capture a timepoint at which individuals reach similar 
rising phase in their respective learning curves, a criterion frequency 
was set (Methods). In total, 14 out of 15 trained mice eventually reached 
the criterion (Fig. 4e and Extended Data Fig. 10). Sequence perfor-
mance depended on continuing DA pairings (Fig. 4f,g). Learning was 
also revealed by decreases in the median T1→T2 time intervals (Fig. 4h,i) 
and convergence of the T1-to-T2 frequency ratio towards 1 (Fig. 4j). To 
quantify the specific credit assignment of T1 and T2, we used a refine-
ment index that compares the median frequency of actions that are 
uniquely similar to T1 with those that are uniquely similar to T2, with 
the frequencies normalized to either that of T1 or T2 (Methods). This 
index is based on the observation that actions that are most similar to 
the target action decrease in relative performance over time (Fig. 1k 
(inset)). Values of less than 1 indicate greater refinement. By the end of 
learning, T1 and T2 became credited as the reward-producing actions 
relative to their similar counterparts (Fig. 4k). YFP controls did not 
show learning trends (Fig. 4d,e,h,i). Thus, closed-loop reinforcement 
promoted the learning of a two-action sequence rule in freely moving 
mice starting from a naive state.

Importantly, the initial median T1→T2 interval of action pairs was 
inversely related to the eventual number of sessions required for 
each ChR2–YFP animal to reach criterion frequency (Fig. 4l). A sig-
moidal curve was fit to the data, indicating that initial intervals that 
were longer than the sigmoidal midpoint were associated with slower 
learning (Fig. 4l). ChR2–YFP animals were divided according to the 
half-maximum point of the sigmoidal curve into 'fast learners’ and ‘slow 
learners’. Fast learners quickly reached the criterion frequency and low 
T1→T2 time intervals, whereas slow learners were delayed in reaching 
the criterion frequency and low T1→T2 intervals. Slow learners tended 
to suddenly increase sequence frequency in sessions that showed a 
decrease in the median T1→T2 interval to below 2–4 s (Fig. 4d,h). By 
contrast, there was no stable sigmoidal relationship between T1–T2 
action similarities and the number of sessions to the criterion fre-
quency (Extended Data Fig. 11b). Furthermore, there was no relation-
ship between the baseline frequency or initial inter-trigger intervals 
and the number of sessions to the criterion frequency (Extended Data 
Fig. 11c,d). Importantly, the observed patterns held when we analysed 
learning by matching the number of reinforcements (Extended Data 
Fig. 11e–g), indicating that they were not caused by fast learners having 
more stimulations/reinforcers. Lastly, we evaluated whether differen-
tial conditionability40–43 accounts for sequence learning differences 
(Extended Data Fig. 12). Target actions that showed less condition-
ability in single-action reinforcement did not differ in initial baseline 
frequencies but tended to have more action types transitioning into 
and out of them at the baseline (Extended Data Fig. 12d–f). Thus, dif-
ferential conditionality among target actions relates to greater vari-
ation in the behavioural environment surrounding the target action. 
However, the same parameters do not account for variation in the 
learning rate across animals in the action sequence reinforcement 
experiment (Extended Data Fig. 12g–l). These results support the 
idea that the initial median time distances between distal action T1 
and proximal action T2 (which produced DA stimulation) modulated 
how fast animals learned to effectively perform the reinforced action  
sequence.

If DA retrospectively reinforces actions performed earlier in time, 
the action most proximal to reinforcement, T2, should experience 
earlier refinement relative to the distal action, T1. We again used the 
median target-normalized frequencies of actions uniquely related to 
T1 or T2 as refinement indices (Methods). T2 clearly refines towards 
its most refined level earlier than T1, at least in some of the animals 
(Fig. 5a). We calculated differential refinement between the two actions 
by subtracting the area under the T1 refinement curve from that of 
T2. Positive values indicate differential refinement favouring T2, and 

vice versa. The open-field median T1→T2 interval was linearly related 
to the differential refinement between T1 and T2 (Fig. 5b). This trend 
holds even when accounting for within-session refinement (Methods 
and Extended Data Fig. 13a). Thus, for longer T1→T2 median intervals, 
T2 spends more sessions being relatively more refined than T1, and 
this pattern cannot be explained by other potential covariates: (1) ini-
tial intervals between the proximal action and the next initiation of 
sequence (T2→T1); and (2) similarity between T1 and T2 (Fig. 5b (right) 
and Extended Data Fig. 13b).

The increased differential refinement favouring the proximal T2 
could reflect increased refinement of T2 or reflect reduced refinement 
of distal T1 without refinement for T2. To distinguish between these 
interpretations, we analysed changes in T1–T2 refinement curves rela-
tive to the ‘starting points’ at which the refinement indices of T1 and 
T2 are most similar or are biased towards T1 rather than T2 (Methods). 
Slow learners initially showed differential refinement favouring T2 
from these starting points and, after reaching a maximum differential 
refinement favouring T2 (called the turning point), refinement begins 
to turn towards favouring T1 (Fig. 5c). By the turning points, the median 
intervals of T1→T2, but not T2→T1, events decreased significantly rela-
tive to the initial values (Fig. 5d and Extended Data Fig. 13c). Thus, the 
median T1→T2 interval decrease occurred before a decrease in the inter-
val to perform the next sequence (T2→T1) (Fig. 5e). Using these learning 
landmarks, we investigated more rigorously how animals homed in on 
T1 versus T2 over time (Fig. 5f,g). Animals initially refined the action 
proximal to stimulation (T2), whereas T1 refinement occurred later, 
after the turning point (Fig. 5f,g). By contrast, fast learners show rela-
tively little differential refinement over learning (Fig. 5c and Extended 
Data Fig. 14b,c). Finer temporal analyses revealed that T1 was increas-
ingly likely within the seconds preceding T2 reinforcement events by 
the turning point (Fig. 5h,i and Methods), even though T1 refinement 
was not yet apparent (Fig. 5f). After the turning point, T1 refinement 
and increased sequence performance coincide with T1 becoming 
significantly more probable within seconds after T2 reinforcement 
events (Fig. 5h,i), indicating increased sequence reinitiation. These 
results demonstrate how animals can assign credit to sequences of 
temporally distant target actions that lead to reinforcement, following 
retrospective dynamics predicted by single-action credit assignment. 
Specifically, actions that are most proximal to reinforcement are refined 
early on and the actions that are more distal to reinforcement become 
refined later, when they probabilistically start to occur within a few 
seconds of DA release.

Discussion
Our results show that DA promotes credit assignment to specific actions 
and action sequences from a naive state through a dynamic process 
whereby the entire behavioural repertoire is restructured and refined. 
During initial reinforcements, there is a rapid increase in the frequency 
of not only the target action, but also of actions in the repertoire that 
are similar to the target action. However, dissimilar actions decrease in 
frequency. This rapid restructuring of the entire behavioural repertoire 
based on similarity to the target action facilitates the credit-assignment 
process. There is also an increase in actions that occur within a precise 
time window of a few seconds before and during, but not after, VTA DA 
neuron stimulation. With repeated reinforcement, gradual refinement 
unfolds to home in on the action that produces DA release. In the case 
of action sequences, both target actions in the sequence gradually 
become credited relative to their most similar actions. However, there 
is an interaction between the dynamics of refinement of the differ-
ent target actions in the sequence and the temporal proximity to DA 
release. When sequences naturally varying in temporal separations 
between the two targets were reinforced, sequences with a natu-
rally short temporal distance between the two targets tend to refine 
together. However, credit assignment for sequences with naturally long 
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Fig. 5 | The behavioural process underlying the learning of a two-action 
sequence. a, T1/T2 refinements in two ChR2–YFP individuals. b, The linear 
relationship between the initial T1→T2 interval and differential T1–T2 
refinement (F test, non-zero slope significance: T1→T2, P = 0.0004; T2→T1, 
P = 0.7063). c, Progression of differential T1–T2 refinement from the starting 
point in individual learners. d, The T1→T2 interval significantly decreased by 
the turning point in slow learners. Repeated-measures two-way ANOVA was 
used to analyse the time-specific difference (slow learners, F2.184,26.20 = 54.21, 
P = 5.3 × 10−10; fast learners, F1.700,20.40 = 92.12, P = 6.3 × 10−9). Post hoc two-tailed 
Tukey’s multiple-comparison test was applied. e, The odds ratio of T1→T2/
T2→T1 interval changes in slow learners. Statistical analysis was performed 
using two-tailed paired Wilcoxon tests (P = 0.0312). f, Preferential refinement 
of T2 relative to T1 by the turning point in slow learners. Raw scaled refinement 
indices are shown. A repeated-measures mixed-effects model was used to 
analyse the significant main effects (time: F2.184,26.20 = 54.21, P < 0.0001). Post 
hoc two-sided Šidák multiple-comparison test was applied. g, Starting-point- 
subtracted scaled refinement indices. Left, fast learners. Statistical analysis 

was performed using a Welch’s two-tailed t-test. Right, slow learners. A repeated- 
measures mixed-effects model was used to analyse the difference between 
time and group (F3,36 = 4.276, P = 0.011). Post hoc two-tailed Šidák multiple- 
comparison test was applied. h, Ranking, among all actions, of the probability 
that the first T1 occurs within specified time bins before (left) and after (right) 
T2 triggers across learning. i, Quantification of pooled time bins from h. freq. 
sess., frequency session. Repeated-measures two-way ANOVA was used to 
analyse learning stage versus rank change. First occurrence of T1 before and 
after T2 trigger groups differ across learning stage and total T1 probability  
rank change (proximal bins (0.3–1.8 s): F3,36 = 3.126, P = 0.0376; distal bins  
(2.1 to 3.6 s): F3,36 = 7.701, P < 0.001). Post-hoc two-tailed Šidák multiple- 
comparison tests were applied for all learning stage values compared with 
starting-point values. j, Models for learning T1→T2 sequences differing in initial 
time separations. Time is not drawn to scale. Data are mean ± s.e.m. n = 14 
ChR2–YFP (7 slow (a–i) and 7 fast (c,d,g) learners) mice (biological replicates). 
****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05; NS, not significant. For f–i, 
statistical and sample details are provided in the Supplementary Information.
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temporal distances between the two targets is accomplished by earlier 
refinement for the actions that are most temporally proximal to rein-
forcement, followed by later refinement for the more temporally distal  
actions.

Previous synaptic and cellular studies12,14 proposed that DA rein-
forcement may act retrospectively to reinforce behaviour. Using the 
closed-loop system, we rigorously tested this prediction. As retrospec-
tive reinforcement of behaviour is not confined to the target action 
alone, it facilitates credit assignment to a stimulation-producing 
action, even when reinforcement is delayed; stimulation-producing 
action pairs that tend to be performed close together in time were 
learned much faster than pairs that tended to be performed far apart 
in time. Notably, animals eventually learned to assign credit to dis-
tal stimulation-producing actions even in the latter scenario. This 
is characterized by a gradual process whereby, early on, the median 
time interval between distal and proximal target actions decreased 
and the repertoire proximal to reinforcement was preferentially 
refined. As the distal target became significantly more likely to occur 
within a distance at a timescale of seconds before reinforcement, 
retrospective reinforcement of the correct stimulation-producing 
sequences became increasingly likely, resulting in whole behav-
ioural refinement for the distal target as well, therefore increasing 
sequence performance (Fig. 5j). This study has caveats that should 
be mentioned. The behavioural repertoire of the mouse in the open 
field is limited compared with more complex, naturalistic condi-
tions. Furthermore, although our stimulation parameters produced 
similar DA release to that triggered by unsignalled sucrose con-
sumption, these are not identical conditions. Thus, the complexity 
of behavioural repertoire, and the frequency, duration and exact 
placement of DA activation42 could affect the exact window and rate 
of refinement/reinforcement. However, the revealed principles of 
reinforcement and refinement during credit assignment should be  
generalizable.

Retrospective reinforcement of behaviour4,19 is thought to 
be mediated by DA modulation of an eligibility trace left by 
action-potential-triggered synaptic plasticity10. Studies of DA action 
at the striatal synaptic level12,14 indicate that retrospective reinforce-
ment may occur on the order of a few seconds, but the behavioural 
consequences have remained unclear until now. Our behavioural 
findings agree with cellular studies that behaviour occurring within a 
few seconds leading into DA stimulation are reinforced. Furthermore, 
our findings reveal an interaction between refinement process and 
temporal proximity to DA release—refinement becomes more pro-
nounced if target actions occur within a few seconds before stimula-
tion. The cut-off of retrospective reinforcement and refinement by 
phasic DA activities could explain the increase in sessions required 
to reach the criterion frequency among animals that were reinforced 
for action pairs with initially longer median time separations. Similar 
actions have more similar and overlapping striatal neural ensemble 
activities21. The arrival of DA after the activation of action-specific 
ensembles may reinforce not only a specific action, but also similar 
actions. As striatal ensembles specific to actions are activated and a 
trial of eligibility traces is left temporally, DA arrival could mediate 
retrospective reinforcement of a spatially graded repertoire of actions 
within a few seconds, resulting in the observed behavioural learning 
patterns. Future studies would clarify how synaptic plasticity and cel-
lular ensemble activities integrate to produce a dynamic refinement 
process, resulting in the behavioural principles for credit assignment  
revealed here.
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Methods

Animals
All of the experiments were approved by the Portuguese DGAV and 
Champalimaud Centre for the Unknown Ethical Committee and per-
formed in accordance with European guidelines. They were also per-
formed according to National Institutes of Health (NIH) guidelines 
and approved by the Institutional Animal Care and Use Committee 
of Columbia University. DAT-Cre male mice (Mus musculus; aged 
3–5 months) in the C57/BL6J background ( JAX, 006660)25 were used. 
Animals were heterozygous for the transgene and generated from a 
cross between heterozygote DAT-Cre male mice with C57/BL6J female 
mice. The mice were housed under standard light cycles (08:00–20:00 
light, 20:00–08:00 dark).

Sample sizes, randomization and blinding
For sample size, we applied a power of 0.8, significance of P < 0.05 
and standard variation of 20% of the mean. We determined sample 
sizes of 4–8 mice per group for different mean-based tests (matched 
pairs, two groups). No formal method of randomization was used; lit-
termates were equally divided among the groups being compared. The 
experimenter was not blinded to the experimental groups. Optogenetic 
manipulations were performed automatically by a computer algorithm 
and not manually by the experimenter.

Recombinant adeno-associated viral vectors, stereotaxic 
injections and implants
A total of 750 nl of rAAV.EF1a.DIO.hChR2(H134R).eYFP or rAAV.
EF1a.DIO.eYFP (3–4 × 1012 viral genomes per ml, AAV5, Univer-
sity of North Carolina Vector Core; 1–2 × 1013 viral genomes per ml, 
AAV1, Addgene, 27056-AAV1 and 20298-AAV1) were injected into 
each hemisphere of the VTA of 3–4-month-old DAT-Cre mice. For 
viral injections, the coordinates were as follows: AP, +3.52 mm; ML, 
±0.35 mm; DV, 4.3 mm. Injections were made at 0.2 Hz pulses. Each 
pulse injects 4.6 nl volume. Injected needles were kept in place in the 
injection site for around 15 min before withdrawal. For each mouse, a 
dual-optic fibre cannula (200/240 μm diameter, 6 mm length, 0.7 mm 
centre-to-centre FLT, 0.22 NA; Doric, DFC_200/240-0.22_6mm_DF0.7_
FLT) was placed 200 μm above the injection site and fixed to the skull. 
Next, a four-position receptacle connector (Harwin, M52-5000445) 
was fixed anteriorly to the dual-optic fibre cannula, with its poste-
rior edge set at +0.6 mm. Skull implants were then fixed with dental 
cement. A four-position connector (Harwin, M52-040023V0445) 
with pins removed from one end was used to cap the receptacle  
connector.

For photometry experiments, 3–5-month-old DAT-Cre male mice 
were used. The conditions used for VTA injections and implants were as 
described above. Moreover, 1 μl and 500 nl of AAV9-hSyn-GRAB-rDA1m 
(2 × 1013 viral genomes per ml; Addgene, 140556-AAV9) were injected 
into the dorsal striatum (AP, –0.5 mm; ML  +2.1 mm (right), DV, 2.3 mm 
(from the brain surface)) and ventral striatum (AP, –1.15 mm; ML, 
+1.65 mm (right); DV, 4.2, from bregma)), respectively. For photom-
etry fibre implants, mono fibreoptic cannula were used (400/430 μm 
diameter, 4 mm length (dorsal striatum) and 6 mm length (ventral 
striatum), 0.37 NA, 1.25 diameter ferrule, flat; Doric, MFC_400/430-
0.37_6mm_MF1.25_FLT (ventral striatum) and MFC_400/430-0.37_4mm_
MF1.25_FLT (dorsal striatum)). Implants were inserted at a 22° angle. 
For the dorsal striatum implantation, the cannula entered the skull 
at AP –0.5 mm and ML +3.03 mm at a 22° angle. The angled implant 
penetrated the brain from its surface for 1.92 mm. For ventral striatum 
implantation, the cannula entered the skull at AP –2.85 mm at a 22° 
angle, ML +1.65 mm. The angled implant penetrated the brain from 
its surface for 4.25 mm. Stereotaxic injections and implants informa-
tion deposited on protocols.io (https://doi.org/10.17504/protocols.
io.8epv5xdw4g1b/v1).

WEAR motion sensor system
The WEAR motion sensor family was developed by the Champalimaud 
Hardware platform and Costa laboratory as a wired or wireless solu-
tion to obtain self-centred nine-axis motion data based on three-axis 
accelerometer, gyroscope, and magnetometer (https://www.cf-hw.org/
harp/wear). The wired version is a very small and extremely lightweight 
device (200 mg) that can sample motion data at up to 500 Hz and, at the 
same time, provide current up to 500 mA that can be used to power LEDs 
for optogenetic experiments or stimulating electrodes. The wireless 
version is small and lightweight (~1.8 g) and can sample motion data 
up to 200 Hz while having the ability to provide up to 50 mA that can 
be used to power LEDs for optogenetic experiments or stimulating 
electrodes. The battery of the wireless WEAR enables recordings of 
up to 4 h at 200 Hz sampling rate and even longer at lower sampling 
rates. These devices communicate with the computers through a base 
station based on the HARP design developed by the Champalimaud 
Hardware Platform, which can be accessed through a software GUI to 
easily change sensor parameters to best fit the experimental needs. 
The base stations have several important hardware features such as 
two digital inputs and outputs, an analogue input, two outputs for 
camera triggering and a clock sync input and output that provides 
hardware-based synchronization. The sensor can be started or stopped 
by software or pin. The WEAR motion sensor family and base station are 
all open source (repository at https://bitbucket.org/fchampalimaud/
workspace/projects/HP). Moreover, the WEAR devices are compat-
ible with the Bonsai visual reactive programming software (https://
bonsai-rx.org/), also open source, and enable the integration and syn-
chronization of the streams of data being collected using the WEAR 
sensor with other data sources such as cameras.

Taking these specs and features together, the WEAR device enables 
researchers to acquire high-resolution motion data wirelessly and for 
long periods of time without being computationally very demanding. 
The nine-dimensional motion data acquired through WEAR are simple 
to process, easy to connect to analysis software, enabling the fast online 
behaviour classification that was fundamental for the experiments 
described in this Article.

Open-field experiment
One-month after surgery, mice were habituated to head-mounted 
equipment over 2 days. On day 1, an actual or mock wireless inertial 
sensor (~2.5 cm height × 1 cm length × 0.5 cm width, with ~2.5–3.0 cm 
antennae, around 1.8 g weight) glued to the four-position connector 
(Harwin, M52-040023V0445) was attached to the implanted recep-
tacle connector on the skull cap. Individual mice roamed freely in 
the home cage for 1 h. On day 2, an actual wireless inertial sensor and 
mono fibreoptic patchcord (200/220 μm diameter, 0.22 NA; Doric 
DFP_200/220/900-0.22_2m_DF0.7-2FC) was attached to the skull cap 
through a mating sleeve. Patchcords were attached to a 1x2 fibre-optic 
rotary joint (intensity division, 0.22 NA; Doric, FRJ_1x2i_FC-2FC) and 
mice roamed freely in the home cage for 1 h. On the open-field record-
ing day, the sensor/patchcord habituated mice were anaesthetized 
by isoflurane, attached to equipment, processed for the calibration 
protocol described below and individually placed into an open-field 
box inside a sound-insulated chamber. The open-field box is made of 
410 × 400 mm grey opaque acrylic walls and a 410 × 400 mm white 
matte acrylic base. Individual mice were allowed to behave freely inside 
the box for 75 min. The wireless inertial sensor (~1.8 g in weight, WEAR 
wireless sensor v.1.1; Champalimaud Scientific Hardware Platform) 
conveys motion information sampled at 200 hz (set on WEAR v.1.3.2 
software; Champalimaud Scientific Hardware Platform) to a receiver 
base-station (Harp basestation v.1.1 or v.1.2, Assembly v.0, Harp v.1.4, 
firmware v.1.5; Champalimaud Scientific Hardware Platform), which 
conveys the information to the experimental computer running a Bon-
sai script (Bonsai44 editor v.2.3.1; RRID: SCR_017218) to capture and 
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record motion data and video information. Video was captured using a 
camera (Flea3 FL3-U3-I3Y3M(17450451), Point Grey Research) coupled 
to a 1/2′′ format lens (NMV-6WA, Navitar). Open field with head-mount 
protocol deposited on protocols.io (https://doi.org/10.17504/proto-
cols.io.q26g7pnk9gwz/v1).

Calibration
To ensure sensor stability within the sessions, several approaches were 
used. First, a coated mating sleeve was attached to the dual-optic fibre 
cannula that sits immediately posterior to the sensor. The sleeve was 
thickened with black tape to a desired outer diameter such that it stabi-
lized the sensor in the anterior–posterior direction. Second, the metal 
pins in the four-position connector glued to the sensor were thickened 
with solder to stabilize their fit inside the receptacle connector in the 
skull cap. This protects against displacement in all directions. Third, 
stretchable black tape was wound around the base of the attached 
sensor and sleeve-covered cannula, further protecting against shifts 
in sensor positioning.

To control for possible variation in sensor positioning across ses-
sions, a calibration approach was developed. A wireless inertial sensor 
was attached to individual isoflurane-anaesthetized mice and the sen-
sor was secured using the above-described strategies. Next, individual 
mice were placed into a custom-made calibration rig. The essential 
element of the rig is a vertical stainless-steel pole suspended above a 
stably secured table. In the set-up used, the vertical pole was fixed to the 
horizontal edge of a vertically reversed L-shaped, stainless-steel post 
assembly mounted onto a breadboard (Thorlabs). The space between 
the lower end of the vertical pole and the table is enough for an indi-
vidual mouse to slide underneath. The lower end of the vertical pole 
is fixed to a custom-made connector that resembles the connecting 
end of the fibreoptic patchcord. To perform calibration, individual 
isoflurane-anaesthetized mice was securely attached to the vertical 
pole through a mating sleeve bridging the connection to the mouse’s 
cannula implant. Next, replicate readings of the immobilized inertial 
sensor were made on Bonsai. Next, mice were attached to the experi-
mental patchcord and allowed to recover in home cage for 20 min or 
until individual mice were clearly recovered and behaviourally active. 
Individual mice were then placed in open-field box for experimentation.

Calibration involves rotating all accelerometer and gyroscope read-
ings from the inertial sensor by a rotation matrix such that the final 
gravitational field vector of the stationary sensor, when mounted onto 
the mouse and fixed to the calibration rig, is in a universal frame of 
reference whereby there is zero vertical tilt. In other words, the only 
non-zero acceleration is on the universal z-axis (pointing down). To 
accomplish this, the accelerometer pitch and roll orientation angles of 
the fixed stationary accelerometer were determined and then applied 
to calculate the rotation matrix. The rotation matrix is multiplied by the 
sensor accelerometer and gyroscope readings to remove the stationary 
vertical tilt from the sensor. To account for possible drift in gyroscope 
baseline over time, a daily reading of stationary gyroscope baseline was 
made with a mock cement skull cap attached to the sensor just before 
the start of each experimental day. The baseline gyroscope readings 
were subtracted from all gyroscope values before the rotation matrix 
is applied to sensor data.

Action selection
After the open-field run in the grey-walled box, off-line behavioural 
clustering was performed on calibrated sensor data. To identify the 
natural action repertoire of individual mice, we quantified behaviour 
using acceleration and gyroscope time-series features in a similar man-
ner to that described previously21. For the ground-truth analysis, we 
used: (1) gravitational acceleration along the anterior–posterior axis 
for the discrimination of postural changes, GAap. (2) Raw sensor accel-
eration along the dorsal–ventral axis to quantify movement momen-
tum, ACCdv. (3) Dorsal–ventral axis of the gyroscope to extract head 

head–body rotational information, GYRdv. (4) Total body acceleration 
to differentiate the resting state from movement.

Total body acceleration (TotBA) was defined as:

TotBA = sqrt(BAap + BAml + BAdv ),2 2 2

where BAap, BAml and BAdv represent the body acceleration of the 
anterior–posterior, medial–lateral and dorsal–ventral axis, respec-
tively. We calculated each individual BA component by median-filtering 
the raw acceleration signals followed by a fourth-order Butterworth 
high-pass (0.5 Hz) filter. For the gravitational acceleration axis, the BA 
components were subtracted from the median filtered raw signal axis.

All four time-series features were binned into non-overlapping 
300 ms long window segments45. The values of each bin and per feature 
were then discretized, using fixed thresholds, producing a summary dis-
tribution of each segment. For GAap and ACCdv, we used ten equal size 
threshold values, plus two added bins between the limits and infinity 
to capture an approximated distribution of values within each window 
bin. For GYRdv, we used five thresholds (0, ±50, ±100) to discriminate 
left and right turns. For TotBA, a single threshold was used to separate 
moving from resting. The threshold was kept constant for all of the 
experiments and was set to the average value separating the bimodal 
distribution of log[TotBA] (natural logarithm of the TotBA feature). 
For each 300 ms window segment, we get four resulting histograms, 
one for each feature. The feature histograms were individually normal-
ized to obtain probability distributions and were used to calculate the 
pairwise similarities between segments.

We used earth mover’s (EM) as a measure of similarity27:

S = − (dEM/4)2

where dEM is the sum of the normalized EM distances for the four fea-
tures (GAap, ACCdv, GYRdv and TotBA) defined above. The bin nor-
malizations constrain S values within the range [−1,0], specifically, 
−1 and 0 define the maximum dissimilarity and identity between the 
two probability distributions, respectively. Finally, to produce a con-
tinuous unbiased classification of behavioural states, the similarity 
measures were clustered using affinity propagation20, with the prefer-
ence parameter set to the minimal value of the similarity matrix; this 
particular value was used for its stable number of behavioural clusters 
within its range.

Using the behavioural clusters identified by affinity propagation 
clustering of the grey open-field behaviour as a ground truth for the 
true identity of each 300 ms histogram, we were able to simulate and 
evaluate the precision with which the EMD metric21,27 could be applied 
for cluster-matching online. A notable difference for the EMD metric 
used here is the use of the four features mentioned above rather than 
the three features used previously21, as well as the multiplication of 
the similarity score by −1 such that the range of possible scores from 
maximal identity to dissimilarity is 0 to 1, respectively. Although the 
EMD cluster-matching outcome correlates strongly with affinity propa-
gation clustering, some false positive and false negatives may occur. 
Several filters were set to optimize cluster selection for reinforcement: 
(1) we selected for clusters that show low false-positive rate (<5.5%) and 
below the 60th percentile false-positive rate among all clusters per 
animal. (2) We selected against clusters with high false-negative rates 
(>90th percentile of clusters per animal). (3) We selected against clus-
ters that tend to be performed serially within a short time interval. We 
calculated the probability that a target cluster or its top 5 most similar 
clusters (determined by EMD score) would reappear 3–18 s after the 
first occurrence of the target cluster. Clusters that tend to be repeated 
either by itself or have a high probability of having similar clusters 
appear within this 15 s window (>90th percentile for median and range 
of probabilities of cluster appearing in window) were removed from 
the selection pool. (4) We filtered against clusters of which matching 
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by EMD would be more sensitive to anterior–posterior shifts of the 
inertial sensor (although we already protected against this possibility 
with the safeguards described above) (>90th percentile for percentage 
deviation from original cluster matching after shifts of accelerometer 
reading in the anterior or posterior direction). For each cluster, the 
percentage deviation is calculated first by summing the total absolute 
cluster-matching changes from the original cluster-matching data in 
the anterior and posterior shifted datasets. Next, the sum of deviation 
in the two altered datasets is divided by two and then divided by the 
total of cluster calls from the original dataset, and multiplied by 100 to 
get the percentage deviation from the original cluster-matching result. 
(5) We selected for clusters that show fully accelerating movement 
(cluster exemplar value of 1 (maximum value) in the body accelera-
tion feature bin of histogram). We did not choose the exact same type 
of actions across animals to improve generalizability of discovered 
learning principles. However, action types comprise a mix of complex 
behaviour visually similar to those described previously21. To choose 
dissimilar clusters per animal, an algorithm was written filtering clus-
ters of each animal’s repertoire based on the feature histogram values 
of each cluster’s representative, or exemplar. Thresholds were set along 
the GAap and GYRdv features to divide cluster exemplars based on 
the distribution of values within these feature histograms. For each 
repertoire, all histogram values from all cluster exemplars are pooled 
to create a pooled histogram. The range of bins with non-zero values 
for each feature are identified. The algorithm then filters cluster exem-
plars in the repertoire for non-zero values in the high, medium, low or 
high + low value bins. For example, action A identification occurs by 
selecting for a cluster exemplar with median counts falling in the high 
GAap and GYRdy value bins. Action B would then be selected by filter-
ing for an exemplar with median counts falling in the low GAap and 
GYRdy value bins. This process was alternated from animal to animal, 
such that the selection criterion for action A and B would continually 
be reversed (for example, animal 1’s action A (high GAap/GYRdy val-
ues) and action B (low GAap/GYRdy values)→animal 2’s action A (low 
GAap/GYRdy values) and action B (high GAap/GYRdy values)→animal 
3’s action A (low GAap/GYRdy values) and action B (high GAap/GYRdy 
values)→…). This results in action pairs that are highly dissimilar within 
animals and actions A and B that are broadly distributed across the 
action space. Dissimilar behaviours differ in complex ways, but visu-
ally can be roughly described as varying in some example dimensions 
such as vertical versus horizontal posture, heads down versus heads 
up and left versus right turns. EMD similarity scores comparing action 
A to action B almost always, except for 1 ChR2–YFP animal, fall at the 
more dissimilar end of a distribution of scores created by comparing 
action A to all actions in each animal. Hereafter, clusters are referred 
to as actions.

Closed-loop optogenetics
For closed-loop optogenetics, a computer running a Bonsai script 
captured and recorded wireless sensor motion data and video informa-
tion as described above in grey-walled open-field experiment. Here, 
data are also streamed to a custom MATLAB code that analyses action 
composition changes over the course of action reinforcement; we 
used the EMD metric21 to label individual 300 ms motion histograms 
with an action ID. For each arriving 300 ms segment, we calculate the 
EMD distance between each cluster exemplar (or representative) of 
the ground-truth cluster library from the grey open-field behaviour 
recording. The motion features histogram is assigned to the action 
for which comparison with the exemplar gave the lowest EMD score 
(most similar to the target action) among all comparisons. Decision 
making for stimulation has a time gap with a range of 35 to 55 ms 
between action performance and sent decision for stimulation. To 
trigger optogenetics, a multi-pulse width modulation (PWM) gen-
erator (Harp Multi-PWM Generator hardware v.1.1, Assembly v.1, Harp 
v.1.4, Firmware v.1.1; Harp Multi-PWM Generator software v.2.1.0; 

Champalimaud Scientific Platform) converts each decision to trig-
ger laser into electrical signals for 15 light pulses of 10 ms pulse dura-
tion at 25 Hz, with each train of pulses occurring over 600 ms and at 
25% duty cycle. The multi-PWM signal is passed through a 12 V, 7.2 W 
amplifier (Champalimaud Scientific Platform) and a fixed-frequency 
driver (Opto-electronic, MODA110-D4-30, 2001.320220) to control 
the activities of a 473 nm, blue low-noise laser (Shanghai Dream Lasers 
Technology, SDL-473-200T), which was sent through an acousto-optic 
modulator (Opto-electronic, MTS110-A3-V1S (1001/330433)). The laser 
component that is modulated is then reflected by a mirror and funnelled 
to a mono fibreoptic patchcord, which is then coupled to a commutator. 
The output laser is then passed through a dual-optic fibre patchcord 
and connected to the implant cannula. Power adjustment out of the 
tip of patchcord was made so that ~5 mW was emitted from each end 
of the dual-optic fibre cannula. To ensure common time stamps from 
different channels, a clock synchronization device (Harp Clock Sync 
v.1.0; Champalimaud Scientific Platform) was performed between the 
base station and multi-PWM device.

Single-action sequence reinforcement
Mice were placed into a white open-field box for closed-loop rein-
forcement protocol. A white open-field was used instead of the earlier 
grey open field to minimize habituation effects, which would lead to 
reduced initial spontaneous behaviour during closed-loop protocol. 
Individual mice were subjected to a single session of the protocol each 
day, with sessions following each other on consecutive days. The white 
open-field box is made of 410 × 400 mm white matte acrylic walls and 
a 410 × 400 mm white matte acrylic base. To acquire the baseline 
behaviour, individual mice were allowed to behave freely inside the 
box for 30 min on the first action A reinforcement session. Closed-loop 
reinforcement by blue laser stimulation of VTA DA neurons was made 
available for 60 min. A total of 90 min of closed-loop reinforcement 
was made available for individual mice during sessions 2 and 3. For 
session 4, an extinction protocol was performed comprising 20 min 
maintenance of reinforced behaviour with laser availability, followed by 
60 min of extinction of reinforced behaviour without laser availability, 
followed by 20 min reacquisition of reinforced behaviour with laser 
availability. To select for action B, a repeat of the protocol described 
above for action A was performed starting on the day after the extinc-
tion protocol for action A. After completing the reinforcement and 
extinction protocols for action B, a contingency degradation proto-
col was performed comprising 20 min maintenance of action B with 
laser availability, followed by 60 min of contingency degradation of 
reinforced behaviour by triggering the laser randomly, followed by 
40 min reacquisition of reinforced behaviour with laser availability 
for action B performance. Protocol deposited on protocols.io (https://
doi.org/10.17504/protocols.io.4r3l221k4l1y/v1).

Photometry experiment
One month after surgery, the mice were habituated to head-mounted 
equipment for 2 days. On day 1, habituation was made to wireless 
inertial sensor as described above. On day 2, a multifibre bundled 
patch cord (3 fibre bundle, 400/440 μm diameter for a maximum of 
inner diameter at 900 μm, 0.37 NA, 3.5 m long, 1.25 mm fibre tip diam-
eter, low-autofluorescence; Doric, BBP(3)_400/440/900-0.37_3.5m_
FCM-3xMF1.25_LAF) was attached to individual mice in addition to 
the wireless sensor and optogenetic patchcord. Individual mice were 
allowed to habituate to the equipment for 1 h in their home cage. 
On day of photometry recording, mice were subjected to 30 frames 
per second photometry recording (FP3002, Neurophotometrics), 
with a 75–150 μW 560 nm LED illuminating rDA1m, and equivalent 
closed-loop optogenetic parameters described above were used. To 
test for DA release in the context of the closed-loop optogenetic set-up, 
an average of 30 hits of blue light was delivered randomly within the 
span of 30 min. To evaluate DA release in the context of food reward, 
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mice were placed on the food-deprivation protocol and kept within 
85% of their original weight. Mice were placed into an operant cham-
ber with a nosepoke linked to a lick detector (PyControl). Each lick 
detection triggers dispensing 2 μl 10% sucrose. As the animals tend 
to accidentally trigger the lick detector at the beginning of sessions, 
between 40 and 50 sucrose dispensing events were gathered per animal 
and rDA1m activities associated with the last 35 rewards of the session 
were used for analysis. Acquisition deposited on protocols.io (https://
doi.org/10.17504/protocols.io.bp2l6xz5dlqe/v1).

Two-action sequence reinforcement
Two action sequence reinforcement occurs as follows: after sensor/
patchcord habituation and grey open-field behaviour recording, offline 
behavioural clustering and action filtering were performed as described 
for single action reinforcement. For each animal, the median time inter-
vals between all possible pairs of actions during open-field sessions 
were calculated as described above. Across animals, T1/T2 pairs with 
median T1→T2 interval values varying between 2 and 10 s were selected. 
To control for variation due to order of movement orientations, vari-
ous combinations of target action T1 with low GAap/directional GYRdy 
values to target T2 having high GAap value/opposite directional GYRdy 
values were chosen for reinforcement.

On the first reinforcement session, a 30 min baseline was taken when 
laser stimulation was not available for reinforcement. The laser became 
available for reinforcement in all of the subsequent sessions until the 
extinction experiment. During the reinforcement periods, when the 
closed-loop system detects performance of the proximal action (T1) 
of interest, the algorithm enters a state in which the laser is triggered 
on performance of the distal action (T2), regardless of the amount of 
time that has elapsed between the latest T1 and T2. On session 1, 60 min 
of laser availability was given, while, in all of the subsequent reinforce-
ment sessions, 90 min of laser availability was given.

Histology and immunohistochemistry
After behavioural sessions were completed, mice were deeply anaes-
thetized with isoflurane and perfused transcardially in PBS and then 
4% PFA/PBS. Dissected brains with skulls attached were perfused in 
4% PFA in PBS at 4 °C overnight. The next day, the brains were rinsed 
three times in PBS. Next, brain regions including VTA and implants 
were sectioned by a vibratome into 50 or 100 μm slices. The slices were 
then analysed using immunohistochemistry (https://doi.org/10.17504/
protocols.io.eq2lyjbdelx9/v1) using the reagents listed below. Stand-
ard immunohistochemistry protocols were applied to stain for the 
following reagent: rabbit anti-GFP 488 conjugate (1:1,000; Molecular 
Probes, A21311); mouse anti-TH (1:5,000; Immunostar, Th 22941) with 
goat anti-mouse IgG (H + L); highly cross-adsorbed secondary anti-
bodies Alexa Fluor647 (1:1,000; Thermo Fisher Scientific, A-21236), 
DAPI (1:1,000 of 20 mg ml−1 stock; Sigma-Aldrich, D9542).

Imaging
The Zeiss Axio Imager M2 microscope was used to acquire brain 
section pictures. ×10 tiled images were taken through the relevant 
fluorescence channels. The M2 is equipped with a fast Colibri.7 LED 
illumination for excitation of fluorophores. Images were captured 
using a high-sensitivity monochromatic sCMOS camera (Hama-
matsu Orca Flash 4.0 v2). The objective used for the images is a ZEISS 
Plan-ApoChromat ×10/0.45, which allows us to resolve up to 577 nm 
when using a wavelength of observation of 520 nm and it is fully cor-
rected for chromatic and spherical aberrations. Implant locations were 
determined using standard mouse atlas46.

Single-action reinforcement analyses
For target-action frequency analysis, we analysed frequencies within 
25 min windows at four timepoints: baseline (before first reinforcement 
trigger), early (after first reinforcement trigger in session 1 (action A)  

or 5 (action B)), mid (after 2 min mark in session 2 (action A) or 6  
(action B)), late (after 2 min mark in session 3 (action A) or 7 (action B)).  
For 3D action repertoire plots, baseline-normalized frequencies were 
plotted and actions of which the time series include NaN or infin-
ity values were discarded from the plot (plotted actions: 509 out of 
514 actions, 15 ChR2YFP animals (action A); 427 out of 443 actions,  
13 ChR2YFP animals (action B); 355 out of 356 actions, 10 YFP animals 
(action A); 341 out of 356 actions, 10 YFP animals (action B)).

Three parameters were assessed for rapid behavioural adaptation 
after cumulative closed-loop reinforcements: latency between target 
A triggered reinforcements, target A frequency and average behav-
ioural similarity to target A. Latency refers to the time interval between 
consecutive triggers. To calculate the latency parameter, the average 
latency between ten consecutive target A triggered reinforcements 
after a specified number of cumulative reinforcements was taken and 
then normalized to the average latency taken over the final ten baseline 
target A instances that in simulations would have triggered reinforce-
ment. To calculate the frequency parameter, the frequency of target 
A triggered reinforcements over the course of 1 min after a specified 
number of cumulated reinforcements was taken and then normalized 
to frequency of the final ten baseline target A instances that in simula-
tions would have triggered reinforcement. To calculate the behavioural 
similarity parameter, the average behavioural similarity (EMD score) 
to target A between ten consecutive target A triggered reinforcement 
events after a specified number of cumulated reinforcements was 
taken and then normalized to the corresponding value taken over the 
final ten baseline target A instances that in simulations would have 
triggered reinforcement.

rDA1m fibre photometry analyses
To evaluate DA release in the context of food reward, the delta F/F0 
signal was plotted for the rDA1m signal aligned to lick detection/reward 
trigger (Fig. 1f). The baseline F0 value was taken as the median rDA1m 
raw fluorescence signal of the ten timepoints (333.33 ms) preceding the 
trigger event. To test whether DA release is triggered in the context of 
the closed-loop system, the activity of the rDA1m sensor was quanti-
fied. Delta F/F0 was calculated by subtracting baseline value from each 
fluorescent rDA1m value of a smoothened time series (smooth function, 
default moving average filter, MATLAB), and then dividing the outcome 
by the baseline value. To account for control ChR2-independent effects, 
the average delta F/F0 trace of ChR2–YFP animals was subtracted from 
the corresponding average trace of YFP animals, giving the differential 
delta F/F0 used for the plots. The s.d. of ChR2–YFP minus YFP curves 
were obtained by taking the square root of the sum of squared variances 
of ChR2–YFP and YFP delta F/F0 curves.

Categorizing behavioural actions by temporal dynamics
To categorize behavioural actions by temporal dynamics (Fig. 1m and 
Extended Data Fig. 6), the moving mean of action counts was used as an 
input. Various window sizes were examined; 2.5 min windows moving 
at 300 ms steps were found to be suitable for analyses. The baseline 
frequency (f0) was the average of 5 min of moving mean data preceding 
the first reinforcement event. The early frequency rate (f1) was the aver-
age of 30 min moving means immediately after the first reinforcement 
event. The mid- and late frequency rates were taken from day 2 (f2) and 
day 3 (f3), respectively. f2 and f3 rates were calculated from the beginning 
30 min period after moving windows had accumulated enough bins 
(2.5 min) after the start of the session. Significant positive modulation 
above baseline was judged if, in 500 consecutive moving windows 
(2.5 min period) in the early/mid or late stages, the frequency rate of all 
bins was greater than the 99th percentile bin of the baseline frequency. 
Significant negative modulation below the baseline was judged if, in 500 
consecutive moving windows (2.5 min period) in the early/mid or late 
stages, the frequency rate of all of the bins was less than or equal to the 
5th percentile bin of the baseline frequency. Actions that showed both 
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significantly positive and negative modulation at the early/mid or late 
stages when compared to the baseline were delegated to the positive 
modulation group. For figure plotting, time-course median frequencies 
of action dynamic types were downsampled tenfold (Extended Data 
Fig. 7a). To examine the distribution of action dynamic type frequen-
cies in terms of target similarity, a binning by raw EMD score (0.5 score 
binwidth) was used because this allowed for clear visualization of the 
relationship between target similarity and frequency (Extended Data 
Fig. 7b). Alternatively, percentile binning of the EMD score was also 
used and gave similar trends (Extended Data Fig. 7c).

Criterion for action dynamic types
Action dynamics were grouped as follows: (1) increasing actions showed 
a significant increase in f0 to f1/2 and f1 to f2/3 comparisons and showed 
either a significant increase or unchanged frequency in f1/2 to f3 com-
parisons. (2) Sustained actions showed a significant increase in f0 to 
f1/2 comparisons, and an unchanged frequency in f1 to f2/3 and f1/2 to f3 
comparisons. (3) Transient actions showed a significant increase in f0 
to f1/2 comparisons, and a significant decrease in f1/2 to f3 comparisons. 
(4) Decreasing actions showed a significant decrease in f0 to f1/2 and f0 
to f3 comparisons. (5) Other actions were all of the remaining actions 
that did not fall into the above groups. In Extended Data Fig. 7a, only 
dynamic subtypes with more than ten members are shown.

t-SNE and hypervolume analyses
Data from 5 min portions of baseline (session 1 pre-reinforcement 
portion), early (session 1 reinforcement portion), mid (session 2) and 
late (session 3) were pooled to calculate the pairwise EMD similarities 
between all individual action instances, creating a similarity matrix. An 
individual action instance’s similarity distance against all other actions 
in the dataset specify the action’s position in behavioural space. The 
first 50 principal components of this dataset were embedded into a 2D 
behavioural space with t-SNE. Hypervolume analysis was performed 
using the dynamic range boxes method36, and implemented using the 
dynRB package in R (RRID: SCR_001905). To account for more informa-
tion in n-dimensional space, the first 250 principal components of the 
similarity matrix (4,000 total action instances randomly subsampled in 
equal numbers from each baseline/reinforcement portion) were used 
to calculate hypervolume overlaps. The port parameter (the proportion 
of a particular action cluster’s hypervolume overlapping with that of 
the target cluster hypervolume) was evaluated. To evaluate changes 
to transiently increased dynamic type percentage per animal after 
accounting for overlapping hypervolumes, all action clusters of which 
the hypervolumes had non-zero overlap with the target hypervolume 
were removed to recalculate the percentages of each dynamics type 
per animal. Data are presented in Extended Data Fig. 8.

Extinction analyses
10 min portions from different time windows along the extinction 
protocols (session 4 for action A and session 8 for action B) were chosen 
(Extended Data Figs. 4c (action A) and 9g (action B)). Early maintenance 
(M1) starts from the first instance of target action performance in the 
session. Late maintenance (M2) is the portion preceding the first perfor-
mance of the target action after extinction. Early extinction (E1) begins 
at the first instance of target action performance after extinction. Late 
extinction (E3) is the portion preceding the first performance of the 
target action after reacquisition. Mid extinction (E2) begins at the mid-
point between the starts of E1 and E3. Early reacquisition (R1) starts at the 
first performance of the target action after the reacquisition condition. 
Late reacquisition (R2) is the final portion of the extinction protocol.

Action burstiness analysis
To evaluate action burstiness, or dispersion, we used Fano factor 
(variance/mean) as a measure (Extended Data Fig. 4f). A survey of 
moving-mean frequencies of reinforced actions across animals suggest 

that actions are more dispersed during the extinction phase, but the 
timescale with which this may occur is variable. To identify a suitable 
timescale to detect dispersion across reinforced actions, we screened a 
range of window sizes (600 ms to 5 min windows in 600 ms steps) with 
which to calculate moving-window frequencies, and then calculate the 
Fano factor in varying time segments. We chose a moving window of 15 s 
(50 × 300 ms action units) to construct moving-mean frequencies. This 
window size consistently gave a decreased Fano factor in baseline versus 
maintenance session across animals, a result that would be expected 
as reinforcement led to stable target action performance.

Single-action reinforcement, inter-target and inter-action 
interval analyses
To quantity inter-target action intervals (Fig. 3a,b), the median amount 
of time that transpired between the start of successive target actions 
over the course of a time window was calculated. The time periods 
analysed were: (1) baseline from the start of day 1 (sessions 1 and 5 for 
action A and B, respectively) until the first reinforcement event. (2–4) 
Days 1 to 3 reinforcement. For reinforcement periods, behaviour from 
the start of the first reinforcement event of that session until the end of 
session was analysed. We considered the possibility that including the 
time interval between consecutive repeating of target actions (result-
ing in an inter-target action interval of 300 ms) would greatly affect the 
result. To test this, we removed values collected from consecutively 
repeating target actions. However, this did not affect result interpreta-
tions. Thus, we included intervals from consecutively repeating target 
actions in the presented analyses. For single-action reinforcement, the 
median amount of time between the closest occurring action of interest 
and target action was calculated for both pre-target and post-target 
intervals.

Multinomial logistic regression predicting action dynamic 
types
To test whether intrinsic and baseline action properties are predic-
tive of classifiable action dynamics during single-action reinforce-
ment from a naive state, two factors were considered. The factors are 
EMD similarity of action to target and median time interval of closest 
action of interest preceding target appearance at the baseline condition  
(Fig. 3c–g).

To perform multinomial logistic regression, data from both depend-
ent variables were normalized to z scores. Transformed data were tested 
for collinearity by examining scatter plots, Pearson’s correlation coef-
ficients, variance inflation factors (VIFs) and condition indices. The two 
variables showed some correlation, but the coefficient value was not 
above typical thresholds47,48 and direct collinearity diagnostics did not 
show significant collinearity (Pearson’s correlation: 0.61 < 0.8 (ref. 47), 
VIFs: 1.6 < 5–10 (ref. 49), condition indices: 2.0 < 10–30 (ref. 50). Multi-
nomial logistic regression was performed using the MATLAB functions 
mnrfit and mnrval. The mnrfit function uses the iteratively weighted 
least-squares algorithm to find the maximum likelihood estimate of the 
coefficients in a multinomial logit model. In such a model, the relative 
risk of being in one action dynamic type category versus the reference 
group (decreased dynamics type) is expressed as a linear combination 
of predictor variables, each with its own β-coefficient. The mnrval 
function predicts the category probabilities. Non-target A actions 
from all animals from reinforcement of action A were included except 
those for which reinforcement dynamics were previously classified as 
‘other’ types (n = 30 actions from a total of 514 actions, 15 ChR2–YFP 
animals). Model accuracies were assessed using a 20-repeat, 10-fold 
cross-validation approach for a total of 200 unique models for real 
data, and 10,000 unique models from 50 shuffled datasets.

To evaluate multinomial logistic regression, the deviance meas-
ure was used to judge model fitting (Fig. 3f). The deviance of the fit 
is a goodness-of-fit statistic that is calculated as twice the difference 
between the maximum achievable log likelihood (in a saturated model 
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in which data fit perfectly) and the corresponding likelihood in the 
fitted model (the actual model of interest).

Model performances were judged by area under precision-recall 
curve as this criterion is suitable for imbalanced categories in the data51 
(Fig. 3g). A model containing both dependent variables was found to 
outperform that of any single variable in data fitting, even after consid-
eration for penalties for an extra factor (Akaike information criterion; 
2 multiplied by 2 independent variables (2k = 4) as penalty added to 
deviance of two-factor model52,53. Furthermore, the two-factor model 
outperformed both one-factor models in predicting true positives of 
decreased type, while performing just as well as the similarity factor 
model in predicting true positives of sustain increased and transient 
types (Supplementary Table 1). The two-factor model outperformed 
the time preceding target factor model in predicting all types (see the 
‘Fig. 3f(III)’ tab in Supplementary Table 1). The lack of significant col-
linearity between dependent variables was supported by the stability of 
two relevant parameters, β-coefficient directions and significant P val-
ues, across 200 cross-validation models and single- and double-factor 
regression conditions (tables are provided in the Supplementary Infor-
mation).

DA retrospective window analysis
To test whether reinforcement was selecting for behaviour before, 
during or after stimulation, we originally tracked how initial base-
line distributions of single actions surrounding stimulation relate to 
single-action frequencies after reinforcement. However, we were not 
able to tell whether single-action frequency changes after reinforce-
ment were associated with each action’s baseline distribution before 
or after stimulation (the distribution was highly symmetric due to lack 
of contextualization).

To improve contextualization, we analysed first-order transitions. 
This provided enough context for us to distinguish between behaviour 
occurring before, during or after stimulation. Thus, we were able to 
identify action transitions specifically associated with specific tem-
poral positions relative to stimulation, track these action transitions 
as reinforcement commences, and attribute their frequency changes 
to their temporal positioning surrounding stimulation.

To analyse whether DA reinforces actions proximal to the target 
action, rates of action transitions occurring close to the reinforced 
action were examined during the baseline and over the course of 
closed-loop reinforcement (Fig. 3h–j). First, 600 ms action transition 
events (for example, X→Y) occurring from 2.4 s before to 2.4 s after 
each theoretical target-triggered laser stimulation (600 ms in length) 
during the baseline condition were examined. Next, all of the possible 
transitions occurring within specific 600 ms sliding windows within 
the defined time range were counted for each animal. Next, the relative 
performance of each action transition type in a specific sliding window 
against all of the sliding windows was calculated by dividing a particular 
action transition type’s count within a specific sliding window by the 
total number of the same action transition type across sliding windows. 
This gives probabilities across sliding windows. Next, action transition 
probability within a sliding 1.2 s window (Fig. 3h (within); containing 
a total of three action transitions) relative to surrounding temporal 
environment (Fig. 3h (outside); 3.6 s) was derived by subtracting the 
probability of a particular action transitions type occurring inside an 
outside region from the probability of the same type occurring in the 
within region of interest. This will be called the differential probability. 
Next, action transition types that showed greater or equal to a threshold 
of 0.001 differential probability within sliding 1.2 s windows of interest 
over the corresponding surrounding outside windows were filtered 
and kept for the next step. This marks the selection for enriched action 
transitions. Next, for each sliding 1.2 s window, transition count data 
from above were analysed to select for action transition types that 
occurred between 2 to 6 times during the 30 min baseline period (0.067 
to 0.2 action transitions per minute). The count range was chosen to 

filter out single events while selecting for action transitions with low 
initial frequencies over the baseline period and analysis time range. As 
the range of probabilities of specific action transition types could vary 
greatly between different sliding 1.2 s windows, filtering as described 
above also balances the distribution of action transition probabilities 
among all action transition types analysed across sliding 1.2 s windows. 
The above process results in a list of action transition types enriched 
for each sliding 1.2 s window, and baseline-normalized frequencies 
of these action transition types after reinforcement in subsequent 
sessions were calculated. Note that baseline-normalized frequencies 
were calculated from all occurrences of specific action transition types, 
regardless of their time distance in relationship to target occurrence. 
Baseline-normalized frequencies of individual action transition types 
were averaged within animals and the means between animals were 
averaged to produce animal-balanced results (Fig. 3i,j). Identical data 
trends and conclusions could be reached even if baseline-normalized 
frequencies of all action transitions were used for analyses.

Two-action sequence experiment analyses
Two-action sequence frequency was quantified in terms of laser 
triggers per minute (Fig. 4b,d–g). To assess learning across animals, 
the baseline frequency was subtracted from frequencies of all rein-
forcement sessions (Fig. 4b,d). A criterion baseline-subtracted fre-
quency of 3.2 triggers per minute was set after considering the range 
of baseline-subtracted frequencies observed in the open-field and 
reinforcement sessions for all animals. The criterion is set such that it 
is >20% above the highest baseline-subtracted frequency value seen in 
the open-field condition. The criterion point consistently falls above 
the open-field frequencies of all animals and marks the rising phase of 
all reinforcement frequency curves.

T1→T2 intervals were quantified as the time distance between the 
end of the latest distal action (T1) and the end of the proximal action 
(T2) that triggers the laser. T2→T1 intervals were quantified as the time 
distance between the end of T2 that triggers laser and the end of the 
next closest T1. To produce equivalent measures in open-field and 
baseline conditions, laser trigger events were simulated by scanning 
across the data as if reinforcement was available.

Significance testing was performed on 14 out of 15 ChR2–YFP animals 
that reached the criterion frequency (ChR2–YFP criterion) (Fig. 4e). The 
lone animal that did not reach the criterion frequency was removed 
because the T1→T2 median interval was still very high after session 10. 
This animal was subsequently subjected to single-action reinforcement 
protocol to assess its ability to learn T1 and subsequently T2 (Extended 
Data Fig. 10a,b). Next, the animal was again subjected to the T1→T2 
reinforcement protocol (Extended Data Fig. 10c). These results indicate 
that this animal was capable of action learning for both T1 and T2 sepa-
rately, and for T1→T2 sequence after learning of each individual action.

Reinforcement sessions for the 14 ChR2–YFP animals that reached 
beyond the criterion frequency continued until the T1→T2 interval 
had been decreased to below at least a median of 2 s (Fig. 4h). As YFP 
animals do not decrease the T1→T2 median interval over sessions, we 
stopped reinforcement at session 20.

Two-action sequence extinction
In total, 14 out of 15 ChR2–YFP mice that passed the criterion sequence 
frequency were subjected to the following extinction protocol. The 
remaining animal was subjected to an earlier extinction protocol spaced 
over two sessions and had a longer stretch of extinction time (Extended 
Data Fig. 10). This animal showed a loss of sequence performance over 
the extinction period but became largely inactive by the reacquisition 
period, slowing reacquisition within the allocated time window. This 
led to shortening of the extinction protocol to 40 min of extinction 
and having all conditions within a single session as described here. 
The extinction session begins with a 25 min maintenance period for 
two-action sequence reinforcement, followed by a 40 min extinction 



period during which the laser was inactive, followed by a 25 min reac-
quisition period whereby reinforcement was made available again 
(Fig. 4f,g). To quantify performance for plotting, the frequency was 
calculated over 5 min bins and then normalized to the last 5 min bin 
of the maintenance condition (Fig. 4f). For significant testing, raw 
frequencies were analysed at the last 5 min of maintenance, extinction 
and reacquisition conditions (Fig. 4g).

Two-action sequence refinement
To measure refinement for T1 and T2 in the two-action sequence 
(Figs. 4k and 5), actions that were uniquely related to one but not 
the other were identified. Actions performed by each animal in their 
open-field repertoires were ranked by their EMD similarity scores to T1 
or T2. The top-12 actions (within action repertoires ranging between 30 
and 40 actions) most similar to either T1 or T2 were identified. Actions 
common to both T1 and T2 in these lists were removed, leaving actions 
uniquely similar to T1 or T2. We required at least three non-target 
actions to be uniquely related to each of T1 and T2. One of the animals 
did not meet this requirement, because less than three actions were 
uniquely similar to each of T1 and T2 when considering the top-twelve 
actions related to T1 or T2. For this animal, we relaxed the stringency 
by considering actions that uniquely belong as the top-nine actions 
most similar to either T1 or T2. We took the median target-normalized 
frequency of these uniquely similar actions to T1 or T2 as the refine-
ment index. A refinement index of above or around 1 indicates little 
to no refinement of uniquely related actions to target. A refinement 
index of below 1 indicates refinement relative to target; the lower the 
score, the more refinement. Refinement curves were smoothened 
using the Savitzky–Golay filter to improve visualization of trends 
(Fig. 5a). To better compare the progress of refinement between T1- 
and T2-related actions, refinement indices were scaled such that the 
minimum value among all sessions for individual animals would be 
zero and the target-normalized median frequency of 1 would remain 
at a scaled value of 1 (Fig. 5a,f).

The relationship between T1→T2 interval and sessions to 
criterion frequency
To describe the trend in a T1→T2 interval versus sessions to criterion 
frequency scatter plot, nonlinear sigmoidal fit was tested against a 
fourth-order polynomial fit (Fig. 4l). A linear fit was also tested. Sig-
moidal fitting gave the best result. The same fitting was tested for T2 → 
T1 interval versus sessions to criterion frequency, but the fit was poor, 
and the midpoint was unstable. For the T1→T2 sigmoidal curve, the 
half-maximum was 2.59 sessions to criterion frequency and the mid-
point was 4.69 s of open-field median interval. The half-maximum value 
was used to divide ChR2–YFP mice into slow (above half-maximum) 
and fast (below half-maximum) learners. Identical grouping of fast 
and slow learners could be obtained by taking the median value across 
animals as the separation point.

To test whether reinforced action pairs differ in initial inter-trigger 
intervals (Extended Data Fig. 11d), we simulated and calculated the 
natural median interval occurring between T1→T2 performances (called 
the median inter-trigger (simulated) interval) and examined whether 
variation in this parameter at the baseline predicts the learning out-
come (sessions to criterion frequency). To test whether the initial T1→T2 
median interval influences learning after matching for reinforcement 
numbers over learning (Extended Data Fig. 11e–g), learning was exam-
ined by calculating the average number of sequence performances 
per unit time, with the time range covering spans of 200 reinforce-
ments. To further account for differing initial and eventual sequence 
frequency over time, we smoothed all individual learning curves with 
a Savitzky–Golay filter and then scaled the curves to the frequency 
in the initial 200 reinforcement bin (value = 0) and to the maximal 
frequency (value = 1). To ensure that a similar conclusion regarding 
the relationship between initial T1→T2 intervals and learning could be 

derived, we plotted initial T1→T2 median intervals against the number 
of reinforcements cumulated after reaching the criterion frequency 
(25% of maximal scaled frequency) and tested for the ability to fit a 
sigmoidal curve as in Fig. 4l.

Differential refinement analyses
The difference in area between T1 and T2 scaled refinement curves 
over sessions was used to assess the relative refinement status between 
T1 and T2 over sequence learning (Fig. 5b). The difference in areas 
was summed up using the trapezoid method across sessions until 
the session when both T1 and T2 has or had reached minimal scaled 
refinement. Next, the relationship between the open-field median 
interval and average difference in area under T1–T2 refinement curves 
per session was tested. A per-session metric was used to control for 
variations in total sessions across animals. Linear regression proved to 
be most suitable for fitting (goodness of fit: R2 = 0.66). The fit for the 
T1→T2 linear line was y = 0.1893x − 0.7050. The slope was significantly 
non-zero (P = 0.0004). The same fitting was tested for T2→T1 interval 
versus difference in area under T1–T2 refinement curves per session 
(y = 0.00736x + 0.1356), but the fit was poor, and the goodness of fit 
was low (goodness of fit: R2 = 0.07). The slope was not significantly 
non-zero (P = 0.7063).

It is possible that, for fast learners, the differential refinement 
favouring proximal action (T2) is seen only briefly in very early parts 
of learning (for example, intrasession blocks within sessions 1 and 2). 
To account for this, we probed intrasession refinement dynamics for 
fast learners by dividing each session into three 30 min blocks and 
repeated the refinement analyses in Fig. 5b (Extended Data Fig. 13a). 
We performed the analysis only up to the session of criterion frequency 
(usually one of the early sessions for fast learners) to avoid diluting out 
the effect from later sessions when differential refinement tends to even 
out as animals learn the sequence. We further visualized differential 
refinement dynamics for fast learners similarly to Fig. 5c.

The intrasession analysis showed that fast learners underwent 
diverse differential refinement dynamics. Some fast learners show 
differential refinement within the session for the proximal action (T2), 
whereas others show the opposite (favouring T1 early on). Some did not 
show clear preference for either. Importantly, these higher-resolution 
results were consistent with the analyses done based on whole-session 
data (Fig. 5b). A similar linear relationship between open-field T1→T2 
median interval and differential refinement (change in area under the 
T1–T2 refinement curves (per time block)) was observed (R2 is 0.65 
and non-zero slope is significant at P < 0.001 for the within-session 
data plot).

Starting-point identification for evaluating progression of 
differential T1/T2 refinement
To more precisely examine whether proximal action (T2) refinement 
precedes that of distal action (T1) in slow learners, it was important to 
consider refinement progression of T1 relative to T2. To rule out any bias 
towards proximal refinement because of initial bias towards proximal 
T2 refinement, a specific session was chosen as a starting point for the 
analysis for each animal (Fig. 5c). This starting point was defined by an 
early session in which T1 and T2 were relatively similar in refinement 
levels or when the distal action T1 was more refined than proximal T2. 
To identify these starting points, a scan was made retrospective from 
the session for which the T1→T2 time interval is close to final value (less 
than or equal to a median of 3 s). Using this approach, we identified 
earlier sessions in which distal T1 refinement was equal to or greater 
than proximal T2 (T2 − T1 refinement curve area less than or equal to 
0). The latest such session was set as the starting point for analysis. If 
at no point early in learning did an animal have a session in which the 
proximal (T1) action was most refined relative to the distal (T2) action, 
an early session of closest T1 and T2 refinement was used as the starting 
point. The initial T2 − T1 refinement curve area difference calculated 
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from the starting point to next session was subtracted from all T2 − T1 
area differences calculated in subsequent sessions. This value is called 
the starting-point-subtracted refinement difference (Fig. 5c). This 
made it possible to clearly track the change in relative refinement of 
distal (T1) versus proximal (T2) actions over time (values above zero 
indicate T2 > T1 refinement, and values below zero indicate T1 > T2 
refinement). To identify the turning points for each animal, sessions 
carrying the local maximum value of the starting-point-subtracted 
refinement difference were identified for each animal. To calculate 
the starting-point-subtracted refinement, scaled refinement values 
from sessions of interest were subtracted from that of the starting 
point session defined above (Fig. 5g).

Odds-ratio analysis
For odds-ratio calculation (Fig. 5e), the total relative change in T1→T2 
and T2→T1 median intervals values were analysed for two different 
phases of learning: (1) the sessions from open-field to turning point 
session (open-field→turning point), and (2) the sessions from turn-
ing point session to the session reaching criterion frequency (turn-
ing point→session reaching criterion frequency). The total change 
in median intervals from open-field to session of criterion frequency 
was summed up for each interval type, using the change in values 
from open-field→turning point and turning point→session reaching 
criterion frequency. Next, the proportion of the total interval change 
stemming from the open-field condition→turning point period, and 
from turning point→session reaching criterion frequency period, was 
calculated. Next, the proportion of open-field→turning point interval 
change was divided by the proportion of turning point→session reach-
ing criterion frequency period interval change for T1→T2 and T2→T1 
interval types, respectively. This gives the odds ratio.

T1 probability rank changes across time bins from the T2 trigger
For every actual or simulated trigger for T1→T2 performance, the first 
occurrences of every action before or after T2 triggers were counted 
at specific 300 ms time bins for up to 6 s before and after the T2 trig-
ger (Fig. 5h). This was done for the specific conditions of the baseline, 
starting point, turning point, session passing criterion frequency and 
last session. The probability of an action occurring in a specific 300 ms 
time bin was calculated for all actions in the repertoire, and the values 
were used to determine probability rank in terms of percentiles (100 
percentile is most probable action relative to all actions at a specific 
300 ms time bin). To assess the total T1 probability rank change within 
0.3–1.8 s or 2.1–3.6 s time bins, the area under the curve was determined 
and values were normalized by subtraction from each animal’s cor-
responding baseline values.

Statistical analysis
Standard statistical analyses were performed using Prism (v.7, v.9, v.10; 
GraphPad Software; RRID: SCR_002798) and permutation/bootstrap 
analyses were performed in MATLAB (MathWorks; RRID: SCR_001622). 
To determine appropriate tests for comparisons, datasets were assessed 
for normality using Anderson–Darling, D’Agostino–Pearson, Shapiro–
Wilk and/or Kolmogorov–Smirnov tests whenever applicable. Datasets 
were also visualized for normality using QQ plots and assessed for equal 
variance by examining the residual plot (residuals versus predicted Y).  
Parametric or nonparametric tests were chosen on the basis of the 
combination of these analyses. Data were transformed logarithmi-
cally (with or without addition of a constant before transformation) 
whenever it was appropriate to promote normality and equal variance. 
Unless specified, sphericity was not assumed, and Geisser–Greenhouse 
correction was applied in all ANOVA tests. The appropriate post hoc 
multiple-comparison tests were applied to compare between the means 
of specific conditions wherever applicable. Significance was set at 
α = 0.05. For bootstrap analysis, significance was determined by ask-
ing whether the original target action mean Fano factor was greater 

or less than the 95% confidence interval of the bootstrap distribution. 
Permutation tests were applied in the comparisons between regression 
models owing to the large sample size discrepancy between groups. 
Bonferroni P adjustment was used to account for multiple comparisons 
in this case. When GraphPad Prism does not output exact P values, 
Excel (v.16.78.3; Microsoft) was used with the ANOVA-specific FDIST(F, 
DFN, DFD) where DFN is the numerator degrees of freedom and DFD 
is the denominator degrees of freedom. Detailed descriptions of the 
statistical procedures are provided in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Source data are available from the corresponding author on reason-
able request, and are available at Zenodo (https://doi.org/10.5281/
zenodo.10146089). Source data are provided with this paper.

Code availability
MATLAB (MathWorks) codes used for data analysis are available from 
the corresponding author.
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Extended Data Fig. 1 | Behavioural monitoring hardware, action clustering 
and selected actions for reinforcement. a, Schematic showing the WEAR 
basestation and communications with either wired (not used in this study) or 
wireless inertial sensors. b, Detailed schematic showing processing of inertial 
sensor data for behavioural clustering and 2-D behavioural repertoire 
visualization. c, Heat map showing motion feature score distributions of 

exemplar Action A (left) and Action B (right) reinforced for each animal. d, Heat 
map showing motion feature score distributions of exemplar Action T1 (left) 
and Action T2 (right) reinforced for each animal. e-g, t-SNE plots showing 2-D 
behavioural space showing all action exemplars pooled from all animals 
(yellow circles) overlaid with actions targeted in single action reinforcement 
YFP (e), two action ChR2-YFP (f) and YFP (g) animals.
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Extended Data Fig. 2 | Behavioural spaces of individual ChR2-YFP animals 
used in this study. a-b, t-SNE plots showing distribution of all action exemplars 
in individual ChR2-YFP animals across the 2-D behavioural space (yellow circles, 
pooled from all animals) in single action (a) and action sequence (b) learning.  

b, The plots of action sequence learners are ordered according to their initial 
open field median T1→T2 intervals. Leftmost graph: Open field inter-action 
intervals of T1/T2 pairs chosen. Same colour codes in right t-SNE graphs. n = 15 
ChR2-YFP animals (biological replicates) in each experiment.



Extended Data Fig. 3 | Implant locations for all animals used in this study.  
a, Sagittal view of mouse brain with labelling of anterior (blue) and posterior 
(magenta) brain regions surrounding injection/implant coordinates (vertical 
black line). b-c, Actual dual cannula implant locations of individual ChR2-YFP 
(n = 15; green) (b) and YFP (n = 10; orange) (c) animals used for single action 

reinforcement experiments. (n: animals - biological replicates) d-e, Actual dual 
cannula implant locations of individual ChR2-YFP (n = 15; green) (d) and YFP 
(n = 6; orange) (e) animals used for two action sequence reinforcement 
experiments. Individual dual implant locations are marked by open circles 
joined by horizontal lines.
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Extended Data Fig. 4 | Reinforcement of action A in ChR2-YFP and YFP 
animals. a-d, n = 15 ChR2-YFP, 10 YFP animals (biologically independent).  
Plots in (b-d) show mean/S.E.M. a, Protocol for Action A reinforcement.  
b-c. Repeated measures two-way ANOVA reveal significant difference across 
time and ChR2-YFP/YFP groups in reinforcement sessions (F(3,69) = 82.61, 
p < 0.0001) and extinction session (F2,46 = 18.66, P < 0.0001). Tukey’s post hoc 
comparisons. d, Detailed extinction of action A reinforcement showing mean 
(black) and individual curves (light grey lines). Plot shows means/S.E.M. 
Asterisks: **** p < 0.0001. *** p < 0.001. ** p < 0.01. * p < 0.05. n.s. – not 

significant. e, Bursty target action behaviour upon extinction. Plots show 
moving mean frequencies of action A (target action) and a dissimilar action of 
an ChR2-YFP animal over baseline and extinction conditions. The dissimilar 
action is later reinforced for and is referred to as action B in subsequent 
protocols. f, Normalized Fano factor over extinction conditions (action A). 
Plots were mean/95% confidence intervals. n = 15 ChR2-YFP, 9 YFP animals.  
* - Mean of ChR2-YFP animals outside bootstrapped 95% confidence intervals; 
2-tailed comparison. See Supplementary Information for statistical/sample 
details.
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Extended Data Fig. 5 | Reinforcement of Action A in ChR2-YFP and YFP 
animals. a-f, n = 15 ChR2-YFP, 10 YFP animals (biological replicates). Plots in 
(a-c, f) show mean/S.E.M. a-b, Rapid behavioural adjustments to close-loop 
reinforcements. Repeated-Measures 2way ANOVA, posthoc 2-sided Sidak’s 
multiple comparisons test: Significant Time x Group Interactions (F(35, 805) = 
3.019, p < 0.0001 (a); F(35, 805) = 3.086, p < 0.0001 (b)). c, Expanded graph 
from Fig. 1 showing quantification of raw frequency changes across learning 
stage and target similarity percentile groups. Additional table below graph 

indicate 2-tailed, Tukey multiple comparisons results. n – sample size (actions). 
d, Evolution of pooled action repertoire (n = 355 actions from 10 YFP animals) 
across action learning from a naïve state. A black parallelogram was set at 
baseline normalized frequency = 1 to help visualization. e, Cross-sectional view 
of action repertoire frequencies at Early and Late stages. f, Same as (c) but for 
YFP animals. Asterisks: **** p < 0.0001. *** p < 0.001. ** p < 0.01. * p < 0.05. n.s. – 
not significant. See Supplementary Information for statistical/sample details.
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Extended Data Fig. 6 | Classification of action dynamic types upon Action  
A reinforcement. a, Schematic of reinforcement protocol and definition of 
learning stages. f0, f1, f2 and f3 represent the moving mean frequencies from 
Baseline, Early, Mid and Late stages, respectively. b, Distribution of all actions 
according to criterion. 4 criteria were used. First, actions were divided by their 
final modulation status (Late Selection? f0 vs. f3). The next division is based on 
whether they were significantly modulated in early stages (Early/Mid Selection? 

f0 vs. f1/2). The third division is based on comparing initial modulation status 
in Early stage with later stages (Increasing? f1 vs. f2/3). The final division is 
based on whether actions in early stages decrease significantly by the Late 
stage (Transient? f1/2 vs. f3). Distribution across all possible combination of 
these comparison outcomes is plotted in terms of Percent of All Actions on  
the x-axis. n = 511 actions (496 other actions (blue bars), 15 target Actions A  
(red bars)), 15 ChR2-YFP animals (biological replicates).



Extended Data Fig. 7 | Classified Action Dynamic types and analyses.  
a-d, n = 15 ChR2-YFP, 10 YFP animals (biological replicates). Plots in (d) show 
mean/S.D. a, Three defined types of action dynamics. Plots were median 
moving average frequency of subtypes (lines) and 25th-75th percentile ranges 
(colour filled). Significant modulation: +, increased. −, decreased. 0, unchanged. 
b, Distribution of action dynamic types shift according to their percentile 
similarity to target. Histograms show percent clusters per bin vs. target action 
similarity. c, Distribution of action dynamics types shift according to action 

similarity to target. d, Initially decreased actions tend to retain its decreasing 
or decreased status throughout learning. Plot shows mean/s.t.d. (Kruskal- 
Wallis test, medians vary significantly, p < 0.0001. Kruskal-Wallis Statistic 
237.8. 2-tailed Dunn’s post hoc tests: Initially increased (n = 178 actions) vs. 
decreased (n = 307 actions) – p < 0.0001. Initially increased vs. unchanged 
(n = 26 actions) – p = 0.0004. Initially decreased vs. unchanged – p < 0.0001). 
Asterisks: **** p < 0.0001. *** p < 0.001. ** p < 0.01. * p < 0.05. n.s. not significant. 
See Supplementary Information for details.
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Extended Data Fig. 8 | t-SNE and hypervolume analysis supplementing  
Fig. 1. a-b, t-SNE representing the evolution of actions over learning to perform 
Target A. Shown is the behavioural evolution of a representative ChR2-YFP 
animal. Actions clusters are colour labelled according to Earth Mover’s 
Distance (EMD) similarity to target action in (a) and according to action 
dynamics type in (b) (34 action clusters in total). Dots represent single action 

instances. Black dots (a) and black dots with green outlines (b) represent single 
instances of Target A. c, Percentage of classified action dynamic types based 
on all action clusters (left set of bars) or action clusters whose hypervolume did 
not overlap with target hypervolume (right set of bars). Bar graphs indicate 
mean +/− S.E.M. n = 15 ChR2-YFP animals (biological replicates).
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Extended Data Fig. 9 | Closed-loop reinforcement of Action B in ChR2-YFP 
and YFP animals. a-l, n = 13 ChR2-YFP (Action B), 15 ChR2-YFP (Action A), 10 
YFP (Action B) animals (biological replicates). All bar and line plots (b-d, f-i, l) 
show mean/S.E.M. a, Protocol for Action B reinforcement, extinction and 
contingency degradation. b, ChR2-dependent increase in Action B.  
c, Quantification of (b). ChR2-YFP and YFP groups differed across time and 
groups (Two-way ANOVA. F(3,63) = 38.67, p < 0.0001). Tukey’s post hoc 
comparisons. d, Actual stimulation frequency for single action learning. 
Significant increases across time per group (1-way ANOVA. Action A: F(1.34, 
18.8) = 112, p < 0.0001. Action B: F(1.18, 14.2) = 46.5, p < 0.0001). Two-sided 
Dunnett multiple comparisons test. e, Percent target detection resulting in 
trigger. Tukey plot (median/25th-75th percentile box/min-max fences).  
f, Extinction and re-acquisition of Action B showing mean (black) individual 
curves (light grey lines). g, Quantification of (f). ChR2-YFP and YFP groups 
differed across time and groups (Two-way ANOVA. F(2,42) = 32.23, p < 0.0001). 

ChR2-YFP and YFP animals decreased Action B frequency by the end of 
extinction, but only ChR2-YFP animals significantly increased Action B 
frequency by the end of re-acquisition period. 2-sided Tukey’s post hoc 
multiple comparisons test. h, Quantification of raw frequency changes across 
learning stage and target similarity percentile groups in ChR2-YFP animals. The 
p value results of two-way mixed effect model analysis is shown in the table.  
i, Quantification of contingency degradation results. Actin B and Laser Trigger 
frequencies differ across time and groups (Two-way ANOVA. F(2,48) = 26.19, 
p < 0.0001). 2-sided Tukey’s post hoc multiple comparisons test. j, Evolution of 
pooled action repertoire (n = 341 actions from 10 YFP animals) across action 
learning from a naïve state. A black parallelogram was set at baseline normalized 
frequency = 1 to help visualization. k, Cross-sectional view of action repertoire 
frequencies at Early and Late stages. l, Same as (h) but for YFP animals. See 
Supplementary Information for statistical/sample details.
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Extended Data Fig. 10 | Two-action learning analyses supplementing Fig. 4. 
a-c, Individual ChR2-YFP animal that failed to reach criterion frequency by 
session 10 and had the largest T1→T2 median interval of all animals at session 10 
was tested for the ability to be reinforced for single actions T1 (a) and T2 (b) in 
order. Upon verifying that the individual could learn T1 and T2 separately  

in a ChR2-YFP manner (a, b), the animal was subjected again to T1→T2 
reinforcement (c). c, Increased T1→T2 performance (top) coincided with 
decreased T1→T2 median interval (bottom) below the sigmoidal midpoint 
(orange dashed lines) fitted in Fig. 4l.



Extended Data Fig. 11 | Two-action learning analyses supplementing Fig. 4. 
a, Open field inter-action intervals of T1/T2 pairs chosen. Same colour codes in 
(b-d, g). b-d, Top panels: Action similarities between T1 and T2 (b) baseline T1 → 
T2 frequencies (simulated triggers per minute) (c) and median baseline inter- 
simulated trigger intervals (d) do not account for variation in sessions to 
criterion frequency. (F-tests: F(1, 12) = 0.04(b), 1.35(c), 1.91(d): p = 0.85(b), 
p = 0.27(c), p = 0.19(d). Grey dashed line – model fit (sigmoidal in (b) and linear 
in (c,d). Bottom panels: No significant difference between groups in any 
independent variables shown in the top panels (p = 0.73 (b), p = 0.11 (c),  
p = 0.24 (d)). Mean +/− s.t.d. 2-tailed, unpaired t-test assuming equal variance.  
e, Individual learning curves scaled to initial session frequency (value of 0) and 

maximum frequency (value of 1). f, Slow learners still show significantly slower 
learning after matching for number of reinforcements. Plot shows Mean/S.E.M. 
Significant interaction between cumulative reinforcement bins and groups 
(2-way ANOVA. F(10, 120) = 5.35) p < 0.0001). 2-tailed Sidak’s multiple 
comparisons (left to right comparisons on graph: p = 0.0004, 0.002, 0.0005, 
0.016, 0.016, 0.03, 0.24, 0.72, 0.86,1). g, Sigmoidal relationship between open 
field T1→T2 interval and cumulated reinforcements upon criterion scaled 
frequency. n = 14 ChR2-YFP mice (biological replicates) (b-g). Asterisks:  
*** p < 0.001. ** p < 0.01. * p < 0.05. n.s. not significant. See Supplementary 
Information for statistical/sample details.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Two-action learning analyses supplementing Fig. 4. 
a-c, Emergence of distinct type of learning curves specifically amongst action 
sequence learners. a, Learning curves of single action learners. Normalized 
frequency indicates that frequencies were normalized to the highest frequency 
achieved in a session for each ChR2-YFP animal. b, Open field inter-action 
intervals of T1/T2 pairs chosen in action sequence learning. Same colour  
codes in (c, g-m). c, Overlaying learning curves of single action learners (grey, 
dashed lines) with action sequence learners (colour coded as in (b)). d-f, Linear 
relationships assessed in single action learners. d, No significant linear 
relationship between baseline action frequency and reinforced frequencies in 
Session 1 (top) and 3 (bottom). e-f, The number of action (clusters) transitioning 
into (e) and out of (f) target at baseline is negatively related to the fold change 
in frequency from baseline to last session. F-test (F(1, 13) = 83.31(e), 17.88(f); 

p = 5*10−7 (e), 1.0*10−3 (f). g-l, Action-to-Target (g, i) and Target-to-Action (h,j) 
and differential T2-T1 (k,l) transitioning parameters are not related to sessions 
to criterion frequency parameter. F-test: F(1, 12) = 1.11(g), 0.0053(h), 0.037(i), 
0.014( j), 1.49(k), 0.048(l); p = 0.31(g), 0.94(h), 0.51(i), 0.69( j), 0.24(k), 0.83(l). 
Some data points overlap. m, No significant linear relationship between 
implant location and sessions to criterion. F-test: F(1, 12) = 0.11, p = 0.75). Some 
data points overlap (g-m). n, Lack of sequence reinforcement in single action 
reinforcement. Learning curves differ across time and group (2-way ANOVA – 
F(2, 54) = 143.3, p < 0.0001). Plot indicates mean +/− SEM. n = 15 and 14 ChR2-
YFP animals (biological replicates) in single action reinforcement and action 
sequence reinforcement (past criterion frequency) experiments, respectively. 
n.s. – not significant.
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Extended Data Fig. 13 | Two-action learning analyses supplementing Fig. 5. 
a, Linear relationship between initial T1→T2 interval and differential T1-T2 
refinement, despite accounting for within-session changes and excluding data 
upon reaching rising phase of learning. Non-zero slope significance: p < 0.001. 
b, Action similarities between T1 and T2 do not account for variation in 
differential T1-T2 refinement. n = 14 ChR2-YFP mice (biological replicates). 
Black dashed line - linear fit. Grey dashed line - sigmoidal fit. c, Full plots of 

T1→T2 and T2→T1 median interval changes across learning stages. Repeated- 
measures 2-way ANOVA. time-specific difference (Slow Learners – F(2.184, 
26.20) = 54.21, p = 5.3*10−10; Fast Learners – F(1.700, 20.40) = 92.12, p = 6.3*10−9). 
Post-hoc 2-tailed Tukey’s multiple comparisons tests. **** p < 0.0001.  
*** p < 0.001. ** p < 0.01. * p < 0.05. n.s. – not significant. See Supplementary 
Information for statistical/sample details.



Extended Data Fig. 14 | Refinement of T2 and T1 in ChR2-YFP animals.  
a, Patterns of scaled refinement index changes in Single Action Learners, 
extracted from normalized curves from Figs. 1k and 2e at EMD value of 0.103 
(equivalent to 17th percentile - similar to the median EMD of target-related 
actions in sequence learning refinement analyses. b-c, Fast Learners (n = 7 mice 
(biological replicates)) refine T1 and T2 at similar rate. Repeated measures, mixed 

effects model. No significant difference between time and scaled refinement 
indices (raw: F(7, 80) = 0.4776, p = 0.85 (b); Baseline-subtracted: F(6, 68) = 
0.3351, p = 0.92 (c)). Post-hoc Šidák test (c). * p < 0.05. n.s. – not significant.  
All summary plot elements indicate mean +/− S.E.M. See Supplementary 
Information for statistical/sample details.
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