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In mammalian brains, millions to billions of cells form complex interaction
networks to enable a wide range of functions. The enormous diversity and intricate
organization of cells have impeded our understanding of the molecular and
cellular basis of brain function. Recent advances in spatially resolved single-cell
transcriptomics have enabled systematic mapping of the spatial organization of
molecularly defined cell types in complex tissues', including several brain regions
(for example, refs. 1-11). However, acomprehensive cell atlas of the whole brainiis
still missing. Here we imaged a panel of more than 1,100 genes in approximately

10 million cells across the entire adult mouse brains using multiplexed error-robust
fluorescence in situ hybridization? and performed spatially resolved, single-cell
expression profiling at the whole-transcriptome scale by integrating multiplexed
error-robust fluorescence in situ hybridization and single-cell RNA sequencing data.
Using this approach, we generated acomprehensive cell atlas of more than 5,000
transcriptionally distinct cell clusters, belonging to more than 300 major cell types,
inthe whole mouse brain with high molecular and spatial resolution. Registration
of this atlas to the mouse brain common coordinate framework allowed systematic
quantifications of the cell-type composition and organization inindividual brain
regions. We further identified spatial modules characterized by distinct cell-type
compositions and spatial gradients featuring gradual changes of cells. Finally, this
high-resolution spatial map of cells, each with a transcriptome-wide expression
profile, allowed us to infer cell-type-specific interactions between hundreds of cell-
type pairs and predict molecular (ligand-receptor) basis and functional implications
ofthese cell-cellinteractions. These results provide rich insights into the molecular

and cellular architecture of the brain and a foundation for functional investigations of
neural circuits and their dysfunction in health and disease.

Mammalian brain functions are orchestrated by coordinated actions
and interactions of numerous different cell types. Single-cell RNA
sequencing (scRNA-seq) provides asystematic approach to classify cell
types through gene expression profiling of individual cells®™. Single-cell
epigenomic profiling further enables systematic characterizations
of gene-regulatory signatures of different cell types*. Numerous
molecularly distinct cell types have been identified in the brain using
these methods. For example, several hundred transcriptionally dis-
tinct cell populations have been identified across the entire mouse
brain through scRNA-seq of approximately 500,000-700,000 cells'*".
However, the limited sampling sizesin these studies have probably led
toanunderestimation of the cellular diversity of the brain. Moreover,
understanding the molecular and cellular mechanisms underlying
brain functions requires not only a comprehensive classification of

cells and their molecular signatures, but also a detailed characteriza-
tion of the spatial organization and interactions of molecular defined
celltypes. Forexample, the layered organization of the cerebral cortex
and the nucleus organization in the hypothalamus directly impact
their functions. At a finer scale, spatial relationship between cells is
amajor determinant of cell-cell interactions and communications
through juxtacrine and paracrine signalling. While synaptic commu-
nications can occur between neurons whose cell bodies are far apart,
interactions between neurons and non-neuronal cells, as well asinter-
actions among non-neuronal cells, often occur through direct soma
contact or paracrine signalling and hence require spatial proximity
between cells. In addition, interactions involving local interneurons
also tend to occur between spatially proximal neurons. Therefore, a
high-resolution, spatially resolved cell atlas of the whole brain would
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provide an invaluable resource for understanding how the brain
functions.

MERFISH imaging of the whole mouse brain

Recent advances in spatially resolved transcriptomics have enabled
gene-expression profiling and cell-type identification while maintain-
ing the spatialinformation of cellsinintact tissues"2. Here we used mul-
tiplexed error-robust fluorescence in situ hybridization (MERFISH)",
aspatially resolved single-cell transcriptomics method, to generate a
comprehensive, molecularly defined and spatially resolved cell atlas
ofthe entire adult mouse brain. We selected a panel of more than 1,100
genes (Supplementary Table 1) for MERFISH imaging. These genes were
selected based on awhole-brain scRNA-seqdataset describedinacom-
panionarticle in this BICCN package'®. Analysis of the scRNA-seq data
resulted in 5,322 cell clusters, which were grouped into 338 subclasses'®,
and our MERFISH gene panel was selected from marker genes differen-
tially expressed among these cell populations (Methods and Fig. 1a).

We imaged these genes in 245 total coronal and sagittal sections
spanning whole hemispheres of four adult mouse brains, including
serial coronal sections at 100-pmintervals (animal 1, female) or 200-pm
intervals (animal 2, male), and serial sagittal sections at 200-pm inter-
vals (animals 3 and 4, male) (Methods; Fig.1a).IndividualRNA molecules
were identified and assigned to cells segmented based on DAPI and
total RNA signals, providing the expression profiles of individual cells
(Methods). Our MERFISH data exhibited excellent reproducibility
between replicate animals (Extended Data Fig. 1a). The mean copy
number per cell forindividual genes obtained from MERFISH correlated
well with whole-brain bulk RNA-seq and scRNA-seq data (Extended
Data Fig. 1b,c). In total, we imaged and segmented approximately 10
million cells across the adult mouse brain, including all 11 major brain
regions: olfactory areas, isocortex (CTX), hippocampal formation,
cortical subplate, striatum, pallidum, thalamus, hypothalamus, mid-
brain, hindbrain and cerebellum. Among the approximately 10 million
cells, 9.3 million passed the cell volume and doublets quality controls
(Methods).

Cell classification and registration to the CCF

We integrated MERFISH data with scRNA-seq data using a canonical
correlation analysis-based method"” and classified the MERFISH cells
using k-nearest neighbour classification (Methods; Fig. 1a). These two
datasetsintegrated well with each other (Fig. 1b, left, and Extended Data
Fig.1d), and the cell-type labels were transferred from the scRNA-seq
cells to the MERFISH cells with high-confidence scores (Methods;
Extended Data Fig. 1e). We set a threshold on the confidence scores
for cell-type label transfer (0.8 for subclass label transfer and 0.5 for
cluster label transfer; see Methods). Among the MERFISH cells, 83%
and 74% passed the subclass and cluster confidence score thresholds,
respectively, and were used for subsequent analysis. We further vali-
dated the robustness of label transfer by classifying MERFISH cells using
analternative method based on transcriptional similarity of MERFISH
cells to the mean expression profiles of sScRNA-seq clusters. Results
from these two methods showed excellent agreement (Extended Data
Fig.1f). All338 subclasses and more than 99% (5,275) of the 5,322 clusters
identified by scRNA-seq were observed in the MERFISH data with the
setlabel-transfer confidence score thresholds. Integration of MERFISH
and scRNA-seq dataalso allowed us toimpute the transcriptome-wide
expression profile for the MERFISH cells (Methods), which showed
excellentagreement with direct MERFISH measurements and the Allen
Brain Atlas in situ hybridization data*® (Methods and Extended Data
Fig. 2). To enable systematic quantifications of the cell-type compo-
sition and organization in different brain regions, we registered the
cell atlas generated by MERFISH to the Allen Mouse Brain Common
Coordinate Framework version 3 (CCFv3)* using both the DAPlimages
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and the cell-type-based landmarks (Methods, Fig. 1a and Extended
Data Fig. 3). This CCF registration allowed us to place each individual
MERFISH-imaged cell, withits cell-type-identity label, into the 3D CCF
space (Fig. 1b (right), 1c, 1d and Extended Data Fig. 3b).

The spatialinformation measured by MERFISH was also used for the
annotations of the cell typesidentified by scRNA-seq, as describedin the
companion paper'. In brief, except for some previously well-annotated
celltypes, eachneuronal subclass name has three parts: the brainregion
where the subclass primarily resides, one or more marker genes, and the
major neurotransmitter used. Non-neuronal cell subclasses were anno-
tated based on marker genes and named based on previous knowledge
(microglia, astrocyte, among others) with spatial information being
specified in some cases. The cell clusters were named by the subclass
names followed by numerical indices in most cases.

Diversity and spatial organization of neurons

Registration of the MERFISH-derived cell atlas to the Allen CCF allowed
usto quantify the composition of cell typesinindividual brain regions
(Fig.1d). Overall, the whole mouse brain consisted of 46% neurons and
54% non-neuronal cells. This ratio varied substantially from region to
region, with the hindbrain and cerebellum showing the lowest and
highest neuronal-to-non-neuronal cell ratio, respectively (Fig. 2a).

Neurons exhibited an exceptionally high level of diversity, compris-
ing 315 subclasses and more than 5,000 clusters (see Supplementary
Table 2 for the neuronal cell-type composition in the 11 major brain
regions). Neuronal cell types also exhibited strong regional specificity
withmost neuronal subclasses being only enriched in one of the 11 major
regions and some spanning multiple, usually physically connected,
regions (Fig. 2b). Many of the subclass boundaries aligned well with
theregionboundariesin the CCF.For example, the intratelencephalic
(IT) subclasses showed a clean separation at the boundaries between
theisocortex and olfactory areas or hippocampal formation (Extended
Data Fig. 4a). In the thalamus, AV Col27al Glut and AD SerpinB7 Glut
perfectly fitin the anteroventral and anterodorsal nucleus, respec-
tively (Extended Data Fig. 4b). Some subclasses spanned multiple brain
regions. For example, inhibitory neuronal subclasses marked by Lamps,
Sncg, Vip, Sst or Pvalb were distributed across theisocortex, hippocam-
pal formation, olfactory areas and cortical subplate (Extended Data
Fig. 4c), consistent with previous findings??.

The 11 major regions contained different numbers of cell types
(Supplementary Table 2). In particular, the hindbrain, midbrain and
hypothalamus contained substantially greater number of neuronal
cell types than the other brainregions (Fig. 2b). We further quantified
the local complexity of neuronal cell-type composition, defined as
the number of distinct neuronal subclasses present in the 50 nearest
spatial neighbours of each cell. Of note, the local complexity was also
substantially higher in the midbrain, hindbrain and hypothalamus
(Extended DataFig.4d), indicating that these regions were not simply
composed of more subregions with distinct cell compositions, but
also complex local neighbourhood with higher cellular diversity. In
addition, some other brainregions also contain small subregions with
high local cell-type composition complexity (Extended Data Fig. 4d).

Spatially dependent neurotransmitter and
neuropeptide usage of neurons

On the basis of the expression of neurotransmitter transporters
and genes involved in neurotransmitter biosynthesis, we classified
matured neurons into eight partially overlapping groups: glutamater-
gic (expressing Sic17a7, Slc17a6 and/or Slc17a8), GABAergic (expressing
Slc32al), serotonergic (expressing Slc6a4), dopaminergic (express-
ing Slc6a3), cholinergic (expressing Slc18a3), glycinergic (expressing
Slc6as), noradrenergic (expressing Slc6a2) and histaminergic (express-
ing Hdc) neurons.
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Fig.1|Amolecularly defined and spatially resolved cell atlas of the whole
mouse brain. a, Workflow to construct awhole mouse brain cell atlas. A panel
of genes were chosen for MERFISH imaging based on the clustering results
fromscRNA-seq data. MERFISH images were decoded and segmented, and the
resulting single-cell gene expression profiles wereintegrated with scRNA-seq
datato classify MERFISH cells and impute transcriptome-wide expression
profiles. Finally, MERFISH images were registered to the Allen CCFv3 (ref. 21).

b, Uniform manifold approximation and projection (UMAP) of the integrated
scRNA-seq and MERFISH data with cells coloured by experimental modalities
(left) or by major brainregions inwhich theregistered cells reside (right).

The number of cellsin the MERFISH or scRNA-seq datasetin each subclass was
downsampledtothe corresponding numberinthe other dataset for visualization
purpose. The UMAP with all MERFISH and scRNA-seq cells displayed is shownin
Extended DataFig.1d. CB, cerebellum; CTX, isocortex; CTXsp, cortical subplate;
FT,fibre tract; HB, hindbrain; HPF, hippocampal formation; HY, hypothalamus;

Isocortex

UMAP2

UMAP1

MB, midbrain; OLF, olfactory area; PAL, pallidum; STR, striatum; TH, thalamus;
VS, ventricular system. c, UMAP of the integrated MERFISH and scRNA-seq data
(left). Spatial maps of the cell types in example coronal and sagittal sections are
alsoshown (right). Cells are coloured by their subclassidentities. The black
linesin the brain spatial maps here and insubsequent figures mark the major
brainregion boundaries defined in the CCF?*. Scale bar,1 mm. In this and
subsequent figures, all cellsare shownin the experimental coordinates and the
boundaries of brainregions were transformed to the experimental coordinates
based onour CCFregistration results (Methods). d, Spatial maps of example
coronal and sagittal sections in the 11 major brainregions aswell asin fibre
tracts and ventricular systems. Cells are coloured by their subclass identities
asinc.Theunderlying contour lines marking brainregionboundariesina,c
andd and the 3D brain contoursinaand d were generated using coordinates
fromthe Allen Mouse Brain CCFv3 (ref. 21).
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Fig.2|Cell-type compositions and spatial distributions of neurons.

a, Fractions of neurons and non-neuronal cellsin the 11 major brainregions.

b, Heatmap showing the enrichment score of each neuronal subclassinthe 11
major brainregions. The enrichmentscore is defined as the fold change of the
average cell density of asubclass withinabrain region compared with the average
density across the whole brain. ¢, Bar plots showing the fractions of neurons
using different neurotransmitters across the whole brain (left two panels) and
inindividual brainregions (right two panels). Choli, cholinergic neuron; dopa,
dopaminergic neuron; GABA, GABAergic neuron; glut, glutamatergic neuron;
glycine, glycinergic neuron; hist, histaminergic neuron; nora, noradrenergic
neuron; sero, serotonergic neuron. d, Spatial maps of the glutamatergic (left)
and GABAergic (right) neuronal subclasses in example coronal and sagittal
sections, with cells coloured by their subclass identities. e, Spatial maps of
glutamatergic neurons expressing Sicl7a7, Slc17a6, Slc17a7 + Slc17a6 and

Among these groups, glutamatergic and GABAergic neurons
accounted for approximately 63% and 36% of the total neuronal
populations, respectively, whereas serotonergic, dopaminergic,
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UMAP1

Slc17a8 (left), GABAergic neurons (middle) and neurons expressing various
modulatory neurotransmitters (right). f, UMAP and spatial distribution of the
immature neurons (IMNs) shownin the 3D CCF space, with cells coloured by
subclassidentities (left). UMAP and spatial distribution of the inhibitory IMNs
showninasagittal section, with cells coloured by cluster identities (middle).
Excitatory IMNs are shownin grey inthe UMAP. UMAP and spatial distribution
ofthe excitatory IMNs shownina coronal section, with cells coloured by cluster
identities (right). Inhibitory IMNs are showningrey in the UMAP. Scale bars,
1mm (d-f). DG, dentate gyrus; MOB, main olfactory bulb; PIR, piriform area;
SVZ, subventricular zone. The red boxes mark the two locations of the excitatory
IMNsin DG and PIR, respectively. The underlying contour lines marking brain
regionboundariesind-fand the 3D brain contoursin fwere generated using
coordinates from the Allen Mouse Brain CCFv3 (ref. 21).

cholinergic, glycinergic, noradrenergic and histaminergic neurons
(often co-expressing glutamate or GABA transporters) accounted for
only approximately 2% of the total neuronal population (Fig. 2c, left).



Both glutamatergic and GABAergic neurons were widely distributed
acrossthewholebrainand were classified into diverse cell types with dis-
tinct spatial distributions (Fig. 2d,e). The glutamatergic-to-GABAergic
neuron ratio varied drastically across brain regions (Fig. 2c, middle).
The hippocampal formation, isocortex and thalamus had the highest
glutamatergic-to-GABAergic neuronratios, whereas the striatumand
pallidum had the lowest. Although the thalamus was mostly made of
glutamatergic neurons, the reticular nucleus of the thalamus was exclu-
sively GABAergic (Extended Data Fig. 4e). In the midbrain and hind-
brain, glutamatergic and GABAergic neurons were widely distributedin
apartiallyintermingled manner (Extended Data Fig. 4f). In the cerebel-
lum, glutamatergic and GABAergic neurons were separately enrichedin
thegranularand molecular layers, respectively (Extended DataFig. 4g).
A small fraction of neurons (approximately 1%) co-expressed both
glutamate and GABA neurotransmitter transporter genes (Slc17a6/7/8
and Sic32al, respectively) and these neurons were enriched in various
non-telencephalic areas suchasthe globus pallidus internal segment,
hypothalamic nuclei such as the anterior hypothalamic nucleus and
supramammillary nucleus, and some subregions in the midbrain and
hindbrain, as well asin the main olfactory bulb (Extended DataFig. 4h),
corroborating and expanding previous work*** %,

Among the glutamatergic neurons, Slci7a7 (also known as Vgluti),
Slc17a6 (Vglut2) and Slc17a8 (Vglut3) were differentially distributed in
different brain regions® (Fig. 2e, left). Slc17a7 dominated in the olfac-
tory areas, isocortex, hippocampal formation, cortical subplate and
cerebellar cortex, whereas Sic17a6 dominated in the hypothalamus,
midbrain and hindbrain. In some regions, Slc17a7 and Slc17a6 were
co-expressedinneurons, suchastheretrosplenial areas, pontine grey,
anterior olfactory nucleus and thalamus (Fig. 2e, left, and Extended
Data Fig. 4i). The less used SlcI7a6 was scattered across multiple
regions, enriched in regions such as layer 5 of the isocortex and the
bed nuclei of the stria terminalis, and was often co-expressed with
Slci7a7 and/or Slc17aé6 (Fig. 2e, left).

We also located the neurons that used other, modulatory neuro-
transmitters (Fig. 2c,e, right). Dopaminergic neurons were observed
inthe olfactory areas (located in the glomerular layer), hypothalamus
(enrichedinthearcuate hypothalamic nucleus) and midbrain (enriched
inthe ventral tegmental area and neighbouring areas)” (Extended Data
Fig.4j). Serotonergic neurons were enriched in theraphe nuclei (dorsal
nucleus raphe, nucleus raphe pontis and nucleus raphe magnus) in the
midbrain and hindbrain®® (Extended Data Fig. 4k). Histaminergic neu-
rons were observed in the ventral tuberomammillary nucleus, tuberal
nucleus and other neighbouring areas in the ventral hypothalamus®
(Extended DataFig. 41). Glycinergic neurons were widely distributed
across the hindbrain® (Extended Data Fig. 4m). Noradrenergic neu-
rons were localized to the locus coeruleus and neighbouring areas
in the hindbrain® (Extended Data Fig. 4n). Cholinergic neurons were
widely distributed in the striatum, ventral pallidum and multiple small
subregions such as the medial habenula in the thalamus, the arcuate
hypothalamic nucleus in the hypothalamus, the parabigeminal nucleus
inthe midbrain and the dorsal motor nucleus of the vagus nerveinthe
hindbrain® (Extended Data Fig. 40).

These modulatory transmitter transporter genes were often
co-expressed with glutamate or GABA transporters in individual
neurons. For example, dopaminergic neurons in the olfactory areas
co-expressed Slc32al, and co-expression with Slc32al or Slc17a6 were
both observedinthe midbrainand hypothalamus. Cholinergic neurons
in the striatum and pallidum co-expressed Slc32al and those in the
hindbrain also co-expressed Slc17a6. Glycinergic neurons and hista-
minergic neurons co-expressed Sic32al.

Our MERFISH data also showed spatially heterogeneous distributions
of many neuropeptide genes (Extended Data Fig. 5). To name just a
few examples: Adcyapl and Galwere enriched in multiple nucleiin the
hypothalamus; Penk was widely expressed in the striatum, midbrain
and cerebellum, and particularly enriched in the striatum; and Tac2was

enrichedin the bed nuclei of the stria terminalis and multiple nucleiin
the hypothalamus, striatum and thalamus.

We also observed two subclasses of immature neurons (IMNs): one
inhibitory and one excitatory (Fig. 2f, left). The inhibitory IMNs, com-
posed of 30 clusters, were distributed along the subventricular zone
(SVZ), extending to the olfactory bulb through the anterior commissure
(Fig. 2f, middle, and Extended Data Fig. 4p), consistent with previous
findings of adult neurogenesis in the SVZ and migration of the neu-
roblast to the olfactory bulb along the rostral migratory stream® ¥,
The excitatory IMNs, composed of seven clusters, were found in two
distinct locations: cluster 516 was primarily located in the piriform
area of the olfactory areas, whereas the other clusters were distrib-
uted along the dentate gyrus in the hippocampal formation (Fig. 2f,
right), consistent with previous findings of adult neurogenesis in the
hippocampal formation®*%,

Diversity and spatial organization of non-neuronal
cells

The non-neuronal cells comprised 23 subclasses and 117 clusters
(Fig.3aand Supplementary Table 2). We quantified the non-neuronal
cell-type composition and enrichment in the 11 major brain regions,
as well asin fibre tracts and ventricular systems where non-neuronal
cells dominate (Fig.3b,cand Supplementary Table 2). Across the whole
brain, non-neuronal cells were composed of 30% of oligodendrocytes,
6% of oligodendrocyte progenitor cells (OPCs), 28% of vascular cells
(endothelial cells, pericytes, vascular leptomeningeal cells (VLMCs),
smooth muscle cells (SMCs) and arachnoid barrier cells), 23% of astro-
cytes, 8% ofimmune cells (microglia, border-associated macrophages
(BAMs), lymphoid cells, dendritic cells and monocytes) and 5% other
cell types (olfactory ensheathing cells, Bergmann cells, ependymal
cells, choroid plexus cells, tanycytes and hypendymal cells) (Fig. 3b).

Of note, some non-neuronal cell types also exhibited strong regional
specificity, especially for astrocytes and cellsin the ventricular systems
(Fig. 3c). We observed a high diversity of astrocytes, including 36 cell
clusters. Among these, the two biggest clusters, Astro 5225 and Astro
5214, accounted for 48% and 33% of the total astrocyte population,
respectively. Astro 5225 was exclusively located in the telencephalon
and Astro 5214 in non-telencephalic regions (Fig. 3d), consistent with
previous observation'. Inaddition, Astro 5215and 5216 were located in
the thalamus and hindbrain, respectively; Astro 5231-5236 were located
inthe olfactory bulb; Astro 5207 was located in the cerebellum; Astro
5222 waslocated in the dentate gyrus; Astro 5208 was enriched in the
medulla close to the pia surface; and Astro 5228, 5229 and 5230 were
located along the SVZ, extending to the olfactory bulb, and were colo-
calized extensively with the inhibitory immature neurons (Fig. 3d). The
locations of Astro 5228-5230 were consistent with previous observa-
tions that the migratory steam of neuroblasts generated in the SVZ
are ensheathed by cells of astrocytic nature®>7*°, Although not all
enumerated here, essentially every Astro cluster showed unique spatial
distributions (Fig. 3d). The Astro-like Bergmann cells were located in
the cerebellum (Fig. 3d).

Oligodendrocytes were enriched in the fibre tracts and were highly
abundant throughout the brain stem, whereas OPCs were evenly dis-
tributed across the whole brain (Fig. 3e). At the cluster level, some oli-
godendrocytes and OPCs also showed regional specificity. For example,
Oligo 5277 was enriched in the cortex, whereas Oligo 5286 was enriched
inthe hindbrain (Fig. 3e).

We also observed region-specific distribution of the cells related
to the ventricular systems. In the third ventricle, tanycytes resided
in the ventral region, whereas ependymal cells occupied the dorsal
region (Fig. 3f), consistent with previous work**2, Hypendymal cells
were located in the subcommissural organ at the dorsal third ventri-
cle (Fig. 3f). The primary residents inside the ventricles were choroid
plexus cells and VLMCs (Fig. 3f). Most VLMC clusters were restricted to
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Fig.3|Cell-type compositions and spatial distributions of non-neuronal
cells.a, UMAP of non-neuronal cells coloured by subclass identities as shown in
thelegend. ABC, arachnoid barrier cell; astro, astrocyte; CHOR, choroid plexus
epithelial cell; DC, dendritic cell; endo, endothelial cell; hypen, hypendymal
cell; mono, monocytes; NT, non-telencephalic; OEC, olfactory ensheathing cell;
0OGC, oligodendrocyte; peri, pericytes; TE, telencephalic. Astro-OLF, Astro-TE,
Astro-NTand Astro-CB are the subclasses of astrocyteslocated in the olfactory
areas, telencephalicregions, non-telencephalicregions and cerebellum,
respectively. b, Bar plots showing the fractions of major non-neuronal cell types
inthe whole brain (top). Fractions of different vascular cell types, immune cell
typesand non-neuronal celltypesin the ‘other’ category with cell subclasses
coloured asshowninthelegend. c, Heatmap showing the enrichmentscores
ofallnon-neuronal subclasses in11 major brainregions, as wellasin fibre tracts
and ventricular systems. The enrichmentscoreis defined asin Fig. 2b. d, Spatial
distributions of the 31astrocyte clusters, which contained more than 50 cells
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(outofthe 36 astrocyte clustersintotal) and Bergmann cells, shownin asagittal
section (top left) and in the 3D CCF space (other panels), with cells coloured by
clusteridentities and cluster numericalindices. AQ, cerebralaqueduct; EPI,
epithalamus; LSX, lateral septal complex; MY, medulla; V4, fourth ventricle.

e, Spatial distributions of the OGCs and OPCs shownin asagittal section with
cellscoloured by subclassidentities (top). Two clusters are shown in the 3D CCF
space (bottom). f, Spatial maps of three ependymal and eight tanycyte clusters
inthe third ventricle (V3) inseven coronal sections, 100 pm apart from each
other alongtherostral-caudal direction (left). Spatial maps of CHORs,
ependymal cells, hypendymal cellsand VLMCs in the third ventricle and lateral
ventricle (VL) (right). Scale bars,1 mm (d,e) and 0.5 mm (f). CC, corpus callosum;
SCO, subcommissural organ. The underlying contour lines marking brain
regionboundariesin d-fand the 3D brain contoursind and e were generated
using coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Fig.4|Spatialmodules: molecularly defined brainregions.a, UMAP
visualization of spatial modules. For any given cell, alocal cell-type composition
vectoris calculated and used to cluster cells to determine the spatial modules
(Methods). Level1spatial modules are determined with the cell-type composition
determined at the subclass level; level 2 spatial modules are then determined
foreachlevel1spatial module with cell-type composition determined at both
thesubclassand the cluster levels and with only neurons considered. UMAP of
cellsinlocal cell-type composition space with cells coloured by theirlevel 1
spatialmoduleidentities (top). UMAP of cellsin one of the level 1 spatial modules
(SM_TH, located at the thalamus) with cells coloured by their level 2 spatial
moduleidentities (bottom). b, Spatial maps of cells, coloured by their level 1
spatial moduleidentities, shown in example sagittal and coronal sections. RSP,
retrosplenial area; RT, reticular nucleus of the thalamus. ¢, Spatial maps of cells
inone coronalsection coloured by level1spatial moduleidentities (left) and

by cell subclassidentities (right). The black lines mark the major brainregion
boundaries definedin the Allen CCF, and the CCF boundary between the
midbrain and hindbrainis highlighted inred. d, Spatial map of cells coloured

by level 2 spatial module identities in one coronal section. The black lines mark
major brainregion boundaries, and the thin grey lines mark the subregion
boundaries defined in the CCF. The boundary between the primary motor
cortex (MOp) and the primary somatosensory cortex (SSp) is indicated by the
blue arrow. Scalebars,1 mm (b-d). CP, caudoputamen. The underlying contour
lines marking brain regionboundariesin b-d were generated using coordinates
from the Allen Mouse Brain CCFv3 (ref. 21).

pia, except for two distinct types: VLMC 5301 was enriched inthe grey
matter,and VLMC 5302 was located in the choroid plexusin the lateral
and fourth ventricles (Fig. 3fand Extended Data Fig. 6a). ABCsresided
inthe subarachnoid space (Extended Data Fig. 6b). Other vascular cells
(endothelial cells, pericytes and SMCs), which outline blood vessels,
were broadly distributed (Extended Data Fig. 6¢). Likewise, immune
cells were also scattered across the brain (Extended Data Fig. 6d). As
expected, olfactory ensheathing cells were located at the periphery
of the olfactory bulb (Extended Data Fig. 6€).

Molecularly defined brain regions (spatial modules)

The comprehensive spatial distributions of the transcriptionally dis-
tinct cell populations allowed us to construct a map of molecularly
defined brain regions. To this end, we defined for each cell a local
cell-type composition vector and clustered the cells using these vec-
tors (Methods), resulting in ‘spatial modules’ that contained cells with
similar neighbourhood cell-type compositions. We identified 16 level
1spatial modules and 130 level 2 spatial modules (Fig. 4a, Extended
DataFig.7 and Supplementary Table 3).

Level 1spatial modules segmented the brain into areas that largely
coincided with the major brain regions defined in the CCF (Fig. 4b).
One notable discrepancy was the boundary between the midbrain and
the hindbrain (Fig. 4c). This discrepancy originated from the gradual
changes of cell-type compositions from the midbrain to the hindbrain,

making an unambiguous determination of the midbrain-hindbrain
boundary challenging. At level 2, many spatial modules were consist-
ent with the subregions defined in the CCF, but we observed more
discrepancies (Fig. 4d) due to multiple possible reasons. On the one
hand, our spatial module delineation was based on cell types defined
by transcriptome-wide expression profiles of individual cellsand hence
have a higher molecule resolution than the information used in brain
region delineation in the CCF. For example, our analysis segmented
the caudoputamen into a lateral and medial spatial module, whereas
such divisionis not shownin the CCF (Fig.4d).Infact, aspatial gradient
represents a more precise description of the molecular profile of this
region, as described in the next section. On the other hand, we also
noticed that some subregion boundaries defined by connectional or
functional information in the CCF were missing in the transcription-
ally defined spatial modules. For example, the isocortex is divided
into multiple subregions in the CCF, whereas such boundaries were
largely missing in the spatial module analyses except for the boundary
between the primary motor cortex and the primary somatosensory
cortexinlayer 4 (Fig. 4d).

Spatial gradients of molecularly defined cell types

Although clustering algorithms group cells into discrete spatial mod-
ules or cell types, the gene expression profiles of cells may exhibit a
gradual or continuous change in some cases. Indeed, the coexistence
of discrete and continuous cell-type heterogeneity has been previously
observed in multiple brain regions®***, with some continuous cellular
heterogeneity forming a gradient along a spatial direction®,

We thus examined all cell subclasses to identify the spatial gradients
of cells, in which the gene expression of cells changed gradually in
space. To this end, we quantified the discreteness of clusters within
each subclass and observed that most of the subclasses contained
continuously connected cell clusters (Methods and Extended Data
Fig. 8a). We further identified the cell subclasses that exhibited a
prominent spatial axis along which the gene expression profiles of
cells changed gradually, representing a spatial gradient, using the
pseudotime®*® or the first principal component (PC1) to quantify
gene expression changes. Moreover, to capture the gradients that
spanned multiple subclasses, we assessed whether the gradients
identified within subclasses extended into transcriptionally similar
subclasses.

We identified many spatial gradients in different brain regions. For
example, IT neurons formed acontinuous gradient across the whole iso-
cortex, where the gene expression changed gradually along the cortical
depth direction but withamore discernible separation for the layer 2/3
IT neurons (Fig. 5a), consistent with our previous results for the primary
motor cortex®. Inthe striatum, D1and D2 medium spiny neurons both
formed a spatial gradient along the dorsolateral-ventromedial axis
(Fig. 5b,c), consistent with previous observations®. In the lateral septal
complex, several GABAergic subclasses formed a gradient along the
dorsoventral axis (Fig. 5d). Spatial gradients were also observed in the
CAl,CA3anddentegyrusregions of the hippocampus (Extended Data
Fig.8b-d) andin theinferior colliculus of the midbrain (Extended Data
Fig.8e). We also observed spatial gradients among some non-neuronal
cells. For example, tanycytes formed a continuous gradient along the
dorsoventral axis of the third ventricle (Fig. 5e). Overall, spatial gradi-
ents of cells were widespread in many brain regions.

Wealsonoticed alarge-scale spatial gradient spanning the hypothala-
mus, midbrain and hindbrain regions. Here we visualized the gradient
in the gene expression uniform manifold approximation and projec-
tion (UMAP), where each neuronwas coloured by its spatial coordinates
(Fig. 5f). An overall rostral-caudal gradient of gene expression change
from the hypothalamus to the midbrain and then the hindbrain, aswell
as adorsal-ventral gradient from the midbrain to the hypothalamus
and hindbrain, were observed in the UMAP.
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Fig.5|Spatial gradients of molecularly defined cell types. a, Spatial
gradient of IT neuronsintheisocortex. Fromleft to right: spatial map of IT
neurons coloured by subclassidentities in a sagittal section; spatial maps of IT
neurons coloured by pseudotime in the same sagittal sectionand an additional
coronalsection; and a correlation plot of pseudotime versus cortical depth for
individual IT neurons, coloured by pseudotime values. The Pearson correlation
coefficientrisshown. C, caudal; R, rostral. b, Spatial gradient of the Dl medium
spiny neurons (STRD1) in the striatum. From left to right: aspatial map of STR
D1neurons coloured by subclass identitiesina coronal section; aspatial map
of STR D1 neurons coloured by the first principal component (PC1) in the same
coronalsection; and a correlation plot of PC1 value versus spatial coordinate
forindividual STR D1 neurons, coloured by PC1values. ACB, nucleus accumbens;

Cell-type-specific cell-cell interactions and
communications

The high-resolution spatial atlas of molecularly defined cell types
further allowed us to infer cell-type-specific cell-cell interactions or
communications arising from soma contact, paracrine signalling or
other short-range interactions. Here we considered cell types at the
subclass level and inferred cell-type-specific cell-cell interactions
in individual brain regions by querying whether the soma contact
or proximity frequency observed between a given cell-type pair was
higher than random chance, supplemented with expression variation
analysis of ligand-receptor pairs (Methods and Fig. 6a). We deter-
mined the random chance (null distribution of probability) by per-
forming local spatial-coordinate randomizations to disrupt the spatial
relationship between neighbouring cells while preserving the local
density of each cell type and hence brain structures®. We identified
several hundred pairs of cell subclasses showing statistically signifi-
cant interactions by our criteria (Fig. 6b,c, Extended Data Fig. 9 and
Supplementary Table 4). Most of our predicted interacting cell-type
pairs contained multiple ligand-receptor pairs that showed significant
upregulation in expression in the proximal cell pairs compared with
non-proximal cell pairs within the same cell-type pair (Supplementary
Table 5), providing insights into the molecular basis of these cell-cell
interactions.
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OT, olfactory tubercle. c-e, Same asbbut for spatial gradients of STR D2 neurons
inthestriatum (c), GABAergic neuronsin the LSX (d) and tanycytesin the third
ventricle (V3) (e). BST, bed nuclei of the stria terminalis; D, dorsal; V, ventral.
f,Large-scale gradient of neurons across the hypothalamus, midbrain and
hindbrain. The UMAPs were generated based on the gene expression profiles
of neurons, and individual cells are coloured by their spatial coordinates along
therostral-caudal (left), dorsal-ventral (middle) and medial (M)-lateral (L)
(right) axes. Theinsets show example brainslices with cells in the regions of
interest coloured by the relevant spatial coordinates. Scale bars,1 mm (a-d)
and 0.5 mm (e). The underlying contour lines marking brain region boundaries
ina-dandfwere generated using coordinates from the Allen Mouse Brain
CCFv3 (ref.21).

Our predicted cell-cell interactions included interactions among
non-neuronal cells, between non-neuronal cells and neurons, and
among neurons. Below, we describe examples in each of these three
categories. Asexamplesin the first category, we observed interactions
between vascular cells and immune cells. Both endothelial cells and
pericytes showed significant interactions with BAMs, macrophages
inthe brain (Fig. 6d,e). In both cases, ligand-receptor pairs from the
laminin signalling pathway showed significant upregulation in the
proximal cell pairs compared with non-proximal cell pairs (Fig. 6d,e).
Laminins at the endothelialbasement membrane can promote mono-
cyte differentiation to macrophages*. Thus, these cell-cellinteractions
might havearoleinregulating the pool of macrophagesinthebrain. We
alsoobserved significantinteractions between microgliaand these two
vascular cell types (Fig. 6f). Compared with endothelial cells, pericytes
exhibited a higher probability to interact with microglia, whereas an
opposite trend was observed for theirinteractions with BAMs (Fig. 6g).

We also observed significant interactions between neurons and
non-neuronal cells. For example, astrocytes and inhibitory IMNs
showed significant interactions in the olfactory bulb (Extended Data
Fig.10a). Neuroblasts migrating from the SVZ to the olfactory bulb
interact with cells of astrocytic nature along the rostral migratory
stream® %%, Whether our observed IMN-astrocyte interactionsin the
olfactory bulbis related to the interactions between neuroblasts and
astrocytes in the rostral migratory stream remains an open question.
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Fig. 6| Cell-cellinteractions and communications. a, Schematics of cell-
cellinteraction analysis (left) and ligand-receptor (LR) analysis (right).
R,oxima d€Notes the proximity distance threshold; two cells are considered in
contact or proximity if the distance between their centroid positionsis within
this distance threshold. R,,,qomization d€NOtes the randomization radius; we
shifted the spatiallocation of each cell to arandom position within R fromits
originallocation togenerate the null distribution. b, Cell-cellinteractions
across the whole brain. Eachline corresponds to a predicted interacting
cell-type pair. The grey linesindicate interactions between non-neuronal cells
and neurons oramong non-neuronal cells; thered lines indicate neuron-
neuroninteractions. ¢, Cell-cellinteractions in two brainregions. Eachline
corresponds toaninteracting cell-type pair, with the colour indicating fold
change in proximity frequency compared with random chance and thickness
indicating Pvalues corrected by the Benjamini-Hochberg procedure. CLA,
claustrum; CT, cortical-thalamic; EPd, endopiriform nucleus, dorsal part; ET,
extratelencephalic; IT, intratelencephalic; L2/3, layer 2/3; NN, non-neuronal;
NP, near-projecting.d, Interactions between endothelial cellsand BAMs.
Exampleimage of cells, with cells of the indicated cell types showninred and
blue and all other cells shownin grey (left). Proximal cell pairs are circled by a

dashed line. Observed counts (Obs) of the proximal cell pairs and the null
distributions (null) from randomization control are shownin the inset. Top
10ligand-receptor pathways upregulated in proximal cell pairs ascompared
to non-proximal cell pairs (middle). When multiple ligand-receptor pairsina
pathway are upregulated, the plotted fold-change value represents that of the
pairwith the highest upregulation fold change. Expression distributions of
theindicated gene in endothelial cells proximal (red) or non-proximal (grey)
to BAMs (right). Scale bar, 30 pm. Horizontal lines in the violin plots indicate
median. e, Same asd, but forinteractions between pericytes and BAMs.

f, Interactions between endothelial cells and microglia (left) and between
pericytes and microglia (right). g, Fold changes of observed proximal cell-pair
number relative to the null-distribution meanacross different brain regions.
Eachdatapointrepresentsabrainregion wheresignificantinteractions were
observed (Pvalues were calculated by two-sided Welch’s t-test; the centre
pointsindicate the median, the boxes denote the interquartile range and the
whiskersindicatel.5times theinterquartile range). Comparison between
endothelial-microgliaand pericyte-microgliainteractions (left), and
comparison between endothelial-BAM and pericyte-BAM interactions (right).
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We also observed significant interactions between astrocytes and
excitatory IMNsin the hippocampal formation (Extended Data Fig.10b).
Many additional astrocyte-neuron interactions were observed
across various brain regions (Fig. 6¢c and Extended Data Fig. 9). Many
astrocyte-neuron interactions may also be missed in our analysis
because astrocytes often interact with neurons through their pro-
cesses instead of cell bodies.

Although not designed to capture long-range synaptic communi-
cations between neurons, our analyses also predicted interactions
between some neuronal subclasses, for example, between Pvalb
chandelier GABA neurons and CA3 glutamatergic neurons in the hip-
pocampal formation (Extended Data Fig. 10c) and between IPN Otp
Crispl GABA neurons and DTN-LDT-IPN Otp Pax3 GABA neuronsinthe
midbrain (Extended Data Fig. 10d). The proximal pairs of chandelier
neurons and CA3 glutamatergic neurons showed pronounced upregu-
lation of ligand-receptor pairs in the WNT pathways (Extended Data
Fig.10c). WNT signalling is known to be important for hippocampal
functions®, as well as dysfunction in neurological disorders, such as
spatial memory impairment and anxiety-like behaviour®.. Chandelier
neurons and CA3 glutamatergic neurons have also beenimplicatedin
these neurological disorders®>**. Whether our observed interactions
between chandelier and CA3 glutamatergic neurons are involved in
these disorders awaits future investigations.

Given the importance of WNT signalling in brain development,
function and diseases, we performed a systematic quantification of
various WNT ligands in cell-cellinteractionsin different brain regions.
Interacting non-neuronal cells primarily showed upregulation of a
subset of WNT ligands, Wnt4, Wnt5a, Wnt5b, Wnt6 and Wnt9a, across
nearly all brain regions (Extended Data Fig. 10e, top). Conversely, the
usage of WNT signalling in neuron-neuron and neuron-non-neuronal
cellcommunications showed high regional specificity, as wellas WNT
ligand specificity (Extended DataFig.10e, middle and bottom). Overall,
among theligand-receptor pairs that we observed to be upregulated
ininteracting cells in the brain, WNT, laminin, collagen, semaphor-
ing and BMP-related pathways were among the most broadly used
(Extended Data Fig. 10f).

Inaddition toligands and receptors, we also identified other genes
that were upregulated in the predicted interacting cell pairs (Sup-
plementary Table 6), which suggest potential functional roles of
these cell-cell interactions. We illustrate this with examples in the
non-neuronal-non-neuronal, neuronal-non-neuronal and neuronal-
neuronal interaction categories. For example, some cytokines were
upregulated in vascular cells proximal to BAMs (for example, CytlI in
endothelial cells and Ccl19 in pericytes) (Fig. 6d,e). These cytokines
have been shown to be chemoattractants for macrophages®*. Our
observations suggest the possibility that vascular cells in the brain
may use these cytokines to recruit macrophages. As another example
inthefirst category, genesinvolvedin elastic fibre assembly, including
Eln, FbIn2 and FbinS, were significantly upregulated in endothelial cells
proximal to SMCs (Extended Data Fig. 10g), consistent with previous
findings that endothelial cells make elastic fibres that inhibit the growth
of SMCs*®. We further observed that Pil6 was significantly upregulated
inendothelial cells proximal to SMCs (Extended Data Fig.10g). Pil6 can
inhibit the growth of cardiomyocytes”. We thus hypothesize that Pi16
expressed by endothelial cells may be agrowthinhibitor of SMCsin the
brain. As an example in the second category — interactions between
neurons and non-neuronal cells — we observed that Sfrp1,a WNT signal-
ling modulator, was upregulated in astrocytes proximal to inhibitory
IMNs in the olfactory bulb (Extended Data Fig. 10a). Sfrp1 expressed
in OPCs caninhibit the proliferation of neural stem cells®. Our results
suggest the possibility that astrocytes may use Sfrplto modulate WNT
signalling and regulate adult neurogenesis. Finally, as an example in
the neuronal-neuronal interaction category, we observed that the
glutamate receptor GRIN2A was upregulated in parvalbumin-positive
chandelier neurons proximal to CA3 glutamatergic neurons (Extended
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DataFig.10c), suggesting the possibility that communications between
these neurons may affect the synaptic properties of chandelier neurons.

Discussion

Inthis work, we generated acomprehensive atlas of molecularly defined
cell types across the whole mouse brain with high molecular and spa-
tial resolution. By imaging approximately 10 million cells with MER-
FISH and integrating the MERFISH data with awhole-brain scRNA-seq
dataset, we determined the spatial organization of more than 5,000
transcriptionally distinct cell clusters, which were groupedinto 338 cell
subclasses, and imputed a transcriptome-wide expression profile for
eachimaged cell. We further registered this atlas to the Allen Mouse
Brain CCF, providing areference cell atlas that can be broadly used by
the scientificcommunity. This CCF registration allowed us to determine
the composition, spatial organization and potential interactions of
transcriptionally distinct cell types in each individual brain region.

Our results highlight an extraordinary molecular diversity and spatial
heterogeneity of neurons. We observed more than 5,000 transcription-
ally distinct neuronal cell clusters belonging to 315 subclasses. At the
subclasslevel, individual cell types exhibited strong enrichment, if not
located exclusively, within one of the 11 major brain regions. At afiner
scale, most transcriptionally distinct neuronal clusters withinindividual
subclasses also adopted different spatial distributions fromeach other.
Telencephalic regions (the olfactory areas, isocortex, hippocampal
formation, cortical subplate, striatum and pallidum) showed lower
cellular diversity than that observed in the hypothalamus, midbrain
and hindbrain, which contained asubstantially larger number of tran-
scriptionally distinct cell populations in each region. Moreover, cells
in these latter regions exhibited complex spatial organization with
transcriptionally distinct cell types often assumingirregularly shaped,
partially overlapping spatial distributions, whereas spatial organiza-
tion of cells showed a higher level of regularity in the telencephalic
regions, such as the layer-specific distribution of cortical neurons. The
comprehensive mapping of spatial distributions of the transcription-
ally distinct neuronal cell types allowed us to partition the brain into
molecularly defined brain regions, which we termed spatial modules.
We also observed many spatial gradientsin the brain where the cell-type
composition and molecular profiles of cells change gradually in space.

Our data also provide a systematic molecular and spatial charac-
terization of the non-neuronal cells. Non-neuronal cells accounted
for about half of the cells in the adult mouse brain, and this fraction
varied substantially from region to region. We observed a high diver-
sity of non-neuronal cells, comprising 117 transcriptionally distinct
clusters belonging to 23 subclasses. Of note, many non-neuronal cell
types also exhibited a highly level of regional specificity. This spatial
heterogeneity was particularly pronounced for astrocytes, with each
astrocyte cluster adopting a unique spatial distribution. Although
such regional-specific molecular profiles of astrocytes likely have a
developmental origin, itis possible that the interactions of astrocytes
withdistinct types of neurons in different brain regions also contribute
tothe molecular diversity of astrocytes. Aninteresting question arises
astowhether the different molecular properties of astrocytic subtypes
have animportant role in their function to support and modulate the
activity of diverse neuronal cell types.

Our high-resolution cell atlas further enabled abrain-wide investiga-
tion of cell-type-specific cell-cell interactions or communications. We
predicted interactions or communications between several hundred
pairs of cell types at the subclass level. Our analysis of ligand-recep-
tor pairs, as well as other genes, upregulated in proximal cell pairs
within each of these cell-type pairs further suggest potential molecular
basis and functional roles of these cell-cell interactions. Although
the combination of spatial and molecular information in MERFISH
data offers unique advantages in predicting cell-cell interactions or
communications, a few factors could still cause false positives and



negativesinour analyses. On the false-positive side, although we used
local spatial randomizations of cells to generate null distributions to
reduce the confounding effect of colocalization of cell typesinabrain
structure without interactions, and we further imposed the require-
ment of ligand-receptor upregulation in proximal cell pairs in cell-
cellinteraction calling, it is impossible to completely eliminate such
a confounding effect, especially when colocalization occurs within a
small brainstructure.Inaddition, our requirement of ligand-receptor
upregulation in a proximal cell pair, as compared with non-proximal
cell pairs, for cell-cell interaction calling could also cause false nega-
tives, because ligand-receptor pairs mediating interactions between
two cell types may be expressed at a constant level regardless of cell-
cell proximity. One could adjust the parameters and requirements
in our analysis to generate a more stringent or a more inclusive list
of cell-cell interaction hypotheses. Regardless of the parameter
choice, additional experiments are needed to validate these cell-cell
interaction hypotheses.

Overall, our data provide amolecularly defined and spatially resolved
cell atlas of the entire adult mouse brain, featuring complex organiza-
tions of thousands of distinct cell populations. This reference cell atlas
provides afoundation for future functional studies of these distinct cell
populations. Both the molecular signatures and the spatial information
in the atlas provide handles for functional interrogation of specific
neuronal cell types through transgenic targeting tools and optoge-
netic manipulations. In addition, the predicted interactions between
non-neuronal cells and neuronal cells and among non-neuronal cells,
as well as the associated upregulation of ligand-receptor pairs and
other genes, provide hypotheses and entry points for testing the func-
tional roles of the diverse non-neuronal cell types. Furthermore, the
combination of transcriptomicimaging with neuronal activity imaging
under various behaviour paradigms*>**¢° can reveal the functional
roles of neurons. We envision that future studies combining spatially
resolved transcriptomic analysis with measurements of various other
properties, such as epigenomic profiles, morphology, connectivity and
function of cells, as well as with systematic gene perturbation methods,
will help to connect our understanding of the molecular and cellular
architecture of the brain with its function and dysfunction in health
and diseases.
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Methods

Animals

Adult C57BL/6NCrl (strain code: 027, Charles River Laboratories) male
and female mice 56-62 days of age were used in this study. Animals
were purchased at an age that was 1 week younger (49-55 days) than
the target age for euthanasia and were housed at Harvard University
Animal Facility for 1 week to acclimate before being killed. Mice were
maintainedonal2 h-12 hlight-dark cycle (14:00 to 2:00 dark period)
withatatemperature of22 +1°C,ahumidity of 30-70%, with ad libitum
access to food and water. All animals used in this study were killed
between 14:00 and 18:00 of the day. Animal care and experiments
were carried out in accordance with US National Institutes of Health
guidelines and were approved by the Harvard University Institutional
Animal Care and Use Committee.

Bulk RNA-seq of the whole mouse brain

Estimates of the average RNA expression levels of individual genes in
the mouse brain were derived from the bulk RNA-seq data of the whole
mouse brain. RNA was extracted and isolated using the RNAqueous
Micro total RNA isolation kit (AM1931, Thermo Fisher) following the
manufacturer’sinstructions from three different whole mouse brains
56-62 days of age. RNA quality was assessed using Agilent TapeStation
and samples with an RNA integrity score of more than 8 were kept for
sequencing. RNA-seqlibraries were constructed using the KapamRNA
HyperPrep kits and were sequenced using the Illumina NextSeq500
platform performed by the Bauer Center Sequencing Core at Harvard
University.

Single-cell RNA-seq data of the whole mouse brain

Single-cell RNA-seq data were generated by the Allen Institute (see
companionmanuscript by Yao etal.’®in this BICCN package). These data
areavailable at the Neuroscience Multi-omics Archive under identifier:
https://assets.nemoarchive.org/dat-qg7nlbO0.

Gene selection for MERFISH

To discriminate transcriptionally distinct cell populations with MER-
FISH, we designed the gene panels based on differentially expressed
geneanalysis using the scRNA-seq data. Genes differentially expressed
between pairs of transcriptionally distinct cell clusters from the
scRNA-seqdatawere selected based on the following criteria: the genes
had twofold change or more in expression between the two clusters
with P< 0.01; they were expressed in atleast 50% cells in the foreground
cluster, with more than 3.3-fold enrichment, in terms of the fraction
of cells expressing the gene, relative to the background cluster. The
top 50 genes that satisfied the criteria and ranked by Pvalues in each
direction for every cell cluster pair were pooled together as the dif-
ferentially expressed gene candidates for the final marker gene set.
We then trimmed this differentially expressed gene pool to remove
the genes that were too abundant or too short and thus were poten-
tially challenging for MERFISH imaging experiments. Specifically, we
excluded the genes that canaccommodate fewer than 40 hybridization
probes (MERFISH-encoding probes) and thus were approximately less
than 500 ntinlength (neighbouring target regions for encoding-probe
binding are allowed to overlap, as described below), or were expressed
at an average of 3,000 counts inits highest expressing cell cluster as
determined by the scRNA-seq data.

We further trimmed down the list of differentially expressed genes
determined above based on the significance of these genes in neu-
roscience studies and their effectiveness in distinguishing different
cell clusters. This selection process began with 123 subclass markers
defined based on scRNA-seq clustering results. We then continued to
add differentially expressed genes that fell into the categories of tran-
scription factors, neuropeptides, G protein-coupled receptors, inter-
leukins and secreted proteins, including 229 genes in total. Following

this, we used a greedy search algorithm to iteratively add genes that
had the most potent discriminative power in distinguishing pairs of
cell clustersthat were not adequately separated by the already chosen
genes. This greedy search was concluded once there were at least three
differentially expressed genes included for each pair of clusters in
eachdirection, whichintotaladded up to approximately 1,100 genes.
Finally, we added some manually picked genes of interest, such as afew
circadianclock genes, previously known non-neuronal cell-type marker
genes, neurotransmitter-related genes and neuropeptide genes,among
others, to form the final gene panels.

Two gene panels were used in the MERFISH experiments. The first
panel contained 1,124 genes and was used forimaging most of the slices
inanimal 2, which was the animal that we imaged first. The second gene
panel contained 1,147 genes and was used for imaging the remainder of
slices of animal 2 and forimaging all other animals (animals 1,3 and 4).
These two gene panels are very similar to each other. Compared with
thefirst gene panel, we added 25 manually picked genesin the second
panel, including additional cell-type markers for non-neuronal cells,
additional neurotransmitter-related genes and neuropeptide genes,
and we also removed two genes (Nrgn and Mag) from the first gene
panel. The two gene panels have 98% of the genes (1,122 genes) in com-
mon, and only the1,122 common genes from both panels were used to
integrate the MERFISH data with scRNA-seq data for cell-type classifica-
tion. Historically, animal 2 wasimaged first, and we made the changes
in the gene panel after imaging the majority of tissue slices from this
animal. As the 1,122 common genes were sufficient for cell-type clas-
sification (it allowed ustointegrate MERFISH and scRNA-seq dataand
transfer cell-type labels of all 338 subclasses and approximately 99% of
the 5,322 cell clusters from the scRNA-seq data to MERFISH data with
high confidence), we decided to keep all data from the first imaged
animal and used the1,122 common genes that were present in the data
fromall animals for the cell-type classification purpose. The 25 genes
that we have added to the second gene panel were mostly good marker
genes for specific cell types and have been previously studied. There-
fore, although not being used for cell-type classification, these 25 genes
can provide usefulinformation for peopleinterested in these genes or
the specific cell types that these genes mark.

In addition to the MERFISH gene panel, we also imaged four other
genes (Sst, Vip, Aup and Pmch) that can accommodate fewer than 40
hybridization probes or were expressed at an average of more than
3,000 counts in its highest expressing cell cluster. These genes were
imaged intwo sequential rounds of two-colour FISHimaging, following
the MERFISH run thatimaged the1,124-gene or1,147-gene panel. These
geneswereincluded because they were classified as subclass markers
based on the scRNA-seq data. These sequential genes were also not
usedintheintegration of the MERFISH dataand the scRNA-seq data for
cell-type classification. In the experiments with the 1,124-gene panel,
we further included Fos in one extra sequential FISH imaging round,
whereas Fos was included in the 1,147-gene panel.

Design and construction of MERFISH-encoding probes
Encoding probes for the MERFISH gene panels were designed as
previously described*. We first assigned to each of the 1,124 genes
in the first gene panel a unique binary barcode drawn from a 32-bit,
Hamming-Distance-4, Hamming-Weight-4 codebook. This codebook
also included 116 extra barcodes as ‘blank’ barcodes, which were not
assigned to any genes, to provide a measure of the false-positive rate
in MERFISH measurement. For the second 1,147-gene panel, the addi-
tional 25 genes were each randomly assigned a barcode from the 116
blank barcodes.

Each MERFISH-encoding probe contained one 30-nt target sequence
that could specifically bind to a target gene and two 20-nt readout
sequences. We designed a total of 32 readout sequences, each cor-
responding to 1 bit of the 32-bit MERFISH code. The collection of
encoding probes designed to bind to each gene contained the four
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readout sequences corresponding to the 4 bits that read ‘1" in the
barcode of that gene. Each encoding probe contained two of the four
20-nt readout sequences that encode the specific barcode assigned
to the gene. To design the target sequences in the encoding probes,
we identified all possible 30-nt targeting regions within each target
gene as previously described®.. In brief, for each gene, we selected
30-nt target regions that had a GC fraction between 40% and 60%,
amelting temperature within the range of 66-76 °C, and no homol-
ogy longer than 15 nt to rRNAs or tRNAs. From the set of all possible
30-nt target regions for each gene, we selected 64 target regions
randomly to construct encoding probes. For the transcripts that
were not long enough to accommodate 64 non-overlapping target
regions, we allowed these 30-nt targeting regions to overlap by as
much as 20 nucleotides to increase the number of probes. We also
allowed the minimum number of probes to be included to reduce to
40, thetargetregionsto have a GC fraction between 30% and 70%, and
amelting temperature within the range of 61-81 °C. Among the 1,147
genes, 7 genes had between 40 and 64 probes and the remaining genes
had 64 probes.

In addition, we concatenated two PCR primers to each encoding
probesequence, the first comprising the T7 promoter, and the second
beingarandom20-mer designed to have noregion of homology greater
than 15 nt with any of the encoding probe sequences designed above,
as previously described®.

With the template encoding probe sequences designed above,
we constructed the MERFISH probe set as previously described*. The
template molecules were synthesized as a complex oligo pool (Twist
Biosciences) and amplified as previously described®.

Encoding probes for the four genes imaged using two rounds of
sequential two-colour FISH were produced in the same manner, except
that 48 targeting sequences were selected for each geneif possible, and
onesingle unique readout sequence was concatenated with targeting
sequences for each gene. The four readout sequences used here, one
for each gene, were different from the 32 readout sequences used for
the genes imaged in the MERFISH run. These probes were purchased
from Integrated DNA Technologies (IDT).

The amplified encoding probes for the MERFISH run and encod-
ing probes for the sequential two-colour FISH rounds were mixed for
tissue staining.

Design and construction of MERFISH readout probes

We used two readout probe schemes for the 32-bit MERFISH imaging

plus the two sequential rounds of FISH imaging:

(1) Directreadout strategy with dye-conjugated readout probes com-
plementary to the readout sequences, as described previously®:
36 readout probes were designed, each complementary to one of
the 36 readout sequences. Each readout probes were conjugated
to one of the two dye molecules (Alexa750 or Cy5) via a disulfide
linkage. These readout probes were synthesized and purified by
Bio-synthesis, stored in Tris-EDTA buffer, pH 8 (Thermo Fisher) at
aconcentration of 1 pM at -20 °C.

(2) Two-step readout strategy with oligonucleotide adaptors, as
described previously®* first, 36 adaptor probes were designed,
each consisting of asequence complementary to one of the 36 read-
out sequences, concatenated by two additional common readout
sequences, each for one colour channel. These adaptor probes
were purchased from IDT, resuspended in Tris-EDTA buffer, pH 8
(Thermo Fisher) to a concentration of 1 mM and stored at —20 °C.
Second, two dye-conjugated readout probes were designed, each
complementary to one common readout sequence for a colour
channel, and each were conjugated to one of the two dye mol-
ecules (Alexa750, Cy5 or Alexa647) via a disulfide linkage. These
readout probes were synthesized and purified by IDT, stored in
Tris-EDTA buffer, pH 8 (Thermo Fisher) ataconcentration of 100 uM
at-20°C.

Tissue preparation for MERFISH

Mice 56-62 days of age were euthanized with CO,, and their brains
were quickly harvested and frozen immediately in optimal cutting
temperature compound (Tissue-Tek O.C.T.; 25608-930, VWR), and
stored at —80 °C until sectioning. Frozen brains were sectioned at—18 °C
onacryostat (LeicaCM3050S). A continuous set of 10-um-thick slices
were collected for imaging. For animal 1, 10-pum-thick serial coronal
sections were collected from the anterior edge to the posterior edge
of the brain and every tenth section was kept; for animal 2, the brains
were sectioned similarly as for animal 1, but every twentieth coronal
sectionwas kept; for animal 3,10-um-thick serial sagittal sections were
collected from the midline to the lateral edge of the brain and every
twentieth section was kept; and for animal 4, the brains were sectioned
similarly as for animal 3, but only the sections corresponding to the
approximately same medial-lateral positions as the ones that showed
brokenregions foranimal 3 wereimaged. Each coverslip contained 2-4
coronalslices or 1-2 sagittal slices. In total, 150 slices were successfully
imaged for animal1, 67 slices were successfully imaged for animal 2,25
slices were successfullyimaged for animal 3, and 3 slices wereimaged
for animal 4. The coverslips were prepared as previously described*.

Tissue slices were fixed by treating with 4% paraformaldehyde in 1x
PBS for 15 min and were washed three times with 1x PBS and stored in
70% ethanol at 4 °C for at least 18 h to permeabilize cell membranes.
Thetissueslices from the same animal were sectioned at the same time
and werestored in 70%ethanol at 4 °C for no longer than 2 months until
all the tissue sections from the same animal were imaged.

The tissue slices were then stained with the MERFISH-encoding
probes. In brief, the samples were removed from the 70% ethanol and
washed with 2x saline sodium citrate (2x SSC) for three times. Then,
we equilibrated the samples with encoding-probe wash buffer (30%
formamide in2x SSC) for 5 minat room temperature. The wash buffer
was then aspirated from the coverslip, and the coverslip was inverted
onto a50-pl droplet of probe mixture on a parafilm-coated petri dish.
The probe mixture comprised approximately 0.5 nM of each encoding
probe for the MERFISH imaging, approximately 5 nM of each encoding
probe for the two sequential rounds of two-colour FISH imaging, and
1M ofapolyA-anchor probe (IDT) in2x SSC with30% v/v formamide,
0.1% wt/v yeast tRNA (approximately, Life Technologies) and 10% v/v
dextransulfate (D8906, Sigma). We then incubated the sample at 37 °C
for36-48 h.The polyA-anchor probe (/5Acryd/ TTGAGTGGATGGAGT
GTAATT+TT+TT+TT+TT+TT+TT+TT+TT+TT+T, where T+
islocked nucleic acid, and /5Acryd/ is 5" acrydite modification) was
hybridized to the polyA sequence on the polyadenylated mRNAs and
allowed these RNAs to be anchored to a polyacrylamide gel as described
below. After hybridization, the samples were washed inencoding-probe
wash buffer for 30 min at 47 °Cfor a total of two times to remove excess
encoding probes and polyA-anchor probes. All tissue samples were
cleared to remove fluorescence background as previously described**>,
Inbrief, the samples were embedded in a thin polyacrylamide gel and
were then treated with a digestion buffer of 2% v/v sodium dodecyl
sulfate (SDS; AM9823, Thermo Fisher), 0.5% v/v Triton X-100 (X100,
Sigma) and 1% v/v proteinase K (P8107S, New England Biolabs) in
2xSSCfor36-48 hat 37 °C. After digestion, the coverslips were washed
in2xSSCfor 30 min for atotal of four washes and thenstored at4 °Cin
2x SSCsupplemented with1:100 Murine RNase inhibitor (M0314S, New
England Biolabs) for no longer than 2 weeks before imaging.

MERFISH imaging

We used home-built imaging platforms for MERFISH imaging in
this study, as previously described®*. A commercial flow chamber
(FCS2, Bioptechs) with a 0.75-mm-thick flow gasket (DIE F18524;
1907-100, Bioptechs) was used, and imaging buffer comprising 5 mM
3,4-dihydroxybenzoicacid (P5630, Sigma), 50 pM trolox quinone, 1:500
recombinant protocatechuate 3,4-dioxygenase (rPCO; OYC Americas),



1:500 Murine RNase inhibitor and 5 mM NaOH (to adjust pH t0 8.0) in

2x SSC was used for all experiments. For sagittal slices, whole-tissue

slices wereimaged; for coronalslices, we imaged one hemisphere plus
anarrow region near the midline in the other hemisphere. Twoimaging
schemes were used for the two different readout strategies:

(1) For the direct readout strategy, we first stained the sample with
areadout hybridization mixture containing the readout probes
associated with the first round of imaging, as well as a probe comple-
mentary to the polyA-anchor probe and conjugated via a disulfide
bond to the dye Alexa488 at a concentration of 3 nM for imaging
total polyadenylated mRNA. The readout hybridization mixture
was composed of the readout-probe wash buffer containing 2x SSC,
10% v/v ethylene carbonate (E26258, Sigma) and 0.1% v/v Triton
X-100, supplemented with 3 nM each of the appropriate readout
probes. The sample wasincubated in this mixture for 15 minatroom
temperature and then washed in the readout-probe wash buffer
supplemented with 1 pg mi™ DAPI for 10 min to stain nuclei within
the sample. The sample was then washed briefly in 2x SSC and was
ready for imaging. After the first round of imaging, the dyes were
removed by flowing 2.5 ml of cleavage buffer comprising 2x SSC
and 50 mM of Tris (2-carboxyethyl) phosphine (646547, Sigma) with
15 minincubation in the flow chamber to cleave the dyes linked to
the readout probes through disulfide bond. The sample was then
washed by flowing 1.5 ml 2x SSC. To perform the second round of
imaging, we flowed 3.5 ml of the readout-probe mixture containing
the appropriate readout probes across the chamber and incubated
the sample in this mixture for 15 min. Then, the sample was washed
by 1.5 mlof readout-probe wash buffer and 1.5 ml of imaging buffer
was introduced into the chamber.

(2) For the two-step adaptor readout strategy, we first stained the
sample with an adaptor probe hybridization mixture containing
the adaptor probes associated with the first round of imaging. The
readout hybridization mixture was composed of the readout-probe
wash buffer containing 2x SSC and 30% v/v formamide (AM9342,
Ambion), supplemented with100 nM each of the appropriate adap-
tor probes. The sample was incubated in this mixture for 15 min at
room temperature, washed in the readout-probe wash buffer and
stained with a readout hybridization mixture containing 10 nM
each of the two readout probes, as well as the polyA-anchor probe
(Alexa488) at a concentration of 3 nM in the readout-probe wash
buffer (2xSSCand 30% v/v formamide). The sample wasincubated
in this mixture for 15 min at room temperature, washed again and
thenwashed in 2x SSC supplemented with 1 ug mI™ DAPIfor 10 min
to stain nuclei. Last, the sample was washed briefly in 2x SSC and
was ready for imaging. After the first round of imaging, the dyes
were removed by flowing 2.5 ml of cleavage buffer comprising
2xSSC,30% formamide and 50 mM Tris (2-carboxyethyl) phosphine,
supplemented with unlabelled commonreadout probesat100 nM
eachtoblock unoccupied readout sequences on the adaptor probes
to prevent crosstalk between rounds of hybridizations. The sample
wasincubatedinthis cleavage buffer for 15 minin the flow chamber,
thenwashed by flowing 1.5 ml of readout-probe wash buffer. To per-
formthe second round of imaging, we flowed 3.5 ml of the adaptor
probe mixture containing the appropriate adaptor probes across
the chamber and incubated the sample in this mixture for 15 min,
washed by 1.5 ml of readout-probe wash buffer, and flowed 3.5 ml of
thereadout-probe mixture containing the common readout probes
across the chamber and incubated the sample in this mixture for
another 15 min. Then, the sample was washed again by 1.5 ml of
readout-probe wash buffer and then 1.5 ml of imaging buffer was
introduced into the chamber.

In the first round of imaging, we collected images in the 750-nm,
650-nm, 560-nm, 488-nm and 405-nm channels to image the first
two readout probes (conjugated to Alexa750 and Cy5/Alexa647,

respectively), the orange fiducial beads, the total polyA-mRNA
signal by the polyA-anchor readout probe (Alexa488) and the nucleus
signal by DAPI (405-nm channel). The latter two channels were used
for cell segmentation as described below. For the second and all fol-
lowing imaging rounds, we collected images in the 750-nm, 650-nm
and 560-nm channels for the two readout probes and fiducial beads.
During each imaging round, for the fiducial beads, we took a single
image at one z position for each field of view (FOV) on the surface of
the coverslip using the 560-nmillumination channel as a spatial refer-
ence to correct for slight drift of the stage position over the course of
imaging rounds. Forimaging readout probes in the MERFISH rounds,
we imaged multiple z positionsin each FOV: for animal 2, we collected
three or six 1.5-pm-thick zstacks; for all other animals, we collected five
1.5-um-thick zstacks. We repeated the hybridization, wash, imaging and
cleavage for all rounds to complete the 16 rounds of imaging for 32-bit
MERFISH experiments. We then performed two additional rounds of
two-colour FISHimaging to image the four additional genes, and these
images were only acquired from one z plane per FOV. All buffers and
readout probe mixtures were loaded with ahome-built, automated
fluidics system composed of three, 12-port valves (EZ1213-820-4, IDEX)
and a peristaltic pump (MP3, Gilson).

MERFISH image analysis and cell segmentation

AlIMERFISH image analysis was performed using MERIin (available at
https://github.com/ZhuangLab/MERIin)®, as previously described®*.
First, we identified the locations of the fiducial beads in each FOV in
each round of imaging and used these locations to determine the
x-y drift in the stage position relative to the first round of imaging
and to align images for each FOV across all imaging rounds. We then
high-pass filtered the MERFISH image stacks for each FOV to remove
background, deconvolved them using ten rounds of Lucy-Richardson
deconvolution to tighten RNA spots, and low-pass filtered them to
account for small movements in the centroid of RNAs between imag-
ing rounds. Individual RNA moleculesimaged by MERFISH were iden-
tified by our previously published pixel-based decoding algorithm
using MERIin. After assigning barcodes to each pixel independently,
we aggregated adjacent pixels that were assigned with the same bar-
codes into putative RNA molecules, and then filtered the list of puta-
tive RNA molecules to enrich for correctly identified transcripts as
previously described for a gross barcode misidentification rate at 5%
using MERIin.

We performed cell segmentation using the DAPI and total
polyA-mRNA signals and adeep learning-based cell segmentation algo-
rithm (Cellpose 2.0)%**”. We selected approximately 100 FOVs from the
whole MERFISH dataset as the training images. To ensure the training
set included images with different cellular densities and cytoarchi-
tectural features, we included images from all different major brain
regions for the training set generation. To train the human-in-the-loop
Cellpose model, we used the DAPl and polyA images of these FOVs and
first applied the ‘cyto2’ model in Cellpose with a diameter parameter
of 100 pixels to segment the cells, followed by manually correcting
cells that were mis-segmented and adding the cells that were missed
by the automated cyto2 method. These human-curated images of
approximately 100 FOVs were saved to form the training set and used
to train the Cellpose model, and the trained model was used in the
cell segmentation of all MERFISH data. Cells were segmented for each
individual zplane, the centroid positions of the cells were determined
in each z plane, and the centroids within distance of 2 pm in the xy
directionacross different z planes were considered to be the same cell
and were connected.

We assigned unique IDs for each segmented cell and assigned indi-
vidual RNAs to segmentation boundaries of the cellsbased on whether
they fellwithin those boundaries to obtain the cell x gene matrix, thatis,
the copy number of RNAs for each gene in each cell. The total number
of segmented cells was about 10 million.
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For the two sequential rounds of two-colour FISH imaging, we quanti-
fied the signal from these images by summing the fluorescence intensity
of all pixels that fell within the segmentation boundaries of the cells
associated with the imaged z plane and normalized the signal by the
areas of the cellsin the z plane.

Preprocessing of MERFISH data

With the cell x gene matrix obtained as described above, we preproc-
essed the matrix by several steps: (1) the segmentation approach that
we used generated asmall fraction of putative cells with very small total
volumes due to spurious segmentation artefacts, as well as some cells
that overlapped in the z dimension and were not properly separated.
Thus, we removed the cells that had a volume of less than 50 pm? or
more than 1,500 pm? for the 3-z plane measurements, the cells that
had a volume of less than 80 pum? or more than 2,500 pm? for the 5-z
plane measurements, and cells that had a volume of less than100 um?
ormore than 3,000 pm?for the 6-zplane measurements. (2) Toremove
the differencesin RNA counts due to different somavolumes captured
in the images, we normalized the RNA counts per cell by the imaged
volume of each cell. (3) We normalized the mean total RNA counts
per cell to a same mean value (250 in this case) for each experiment.
(4) We removed the cells that had total RNA counts in the top and
bottom1% quantile. (5) We removed potential doublets using Scrublet®®
aspreviously described. The cells withadoublet score higher than 0.25
were removed as doublets, which accounted for approximately 4% of
the total cellnumber. After these preprocessing steps, approximately
9.3 million cells were kept for subsequent analysis.

Integration of MERFISH data with scRNA-seq data

We grouped MERFISH data from all four animals for integration with
scRNA-seq data. Hence, only the overlapping 1,122 genes between the
two MERFISH gene panels used for all four animals were included in
the cell x gene matrix for integration of MERFISH and scRNA-seq data
and subsequent analyses.

We used the SeuratIntegration class from the ALLCools Python pack-
age"® to integrate the MERFISH dataset and the scRNA-seq dataset.
Theintegration works by co-embedding the two datasetsinacommon
space and finding pairs of cells from the two datasets that are close
to each other in the co-embedded space. The identified close pairs
are termed anchors, which were used for transferring cell-type labels
and imputing gene expressions from the scRNA-seq dataset to the
MERFISH dataset. We performed co-embedding of the two datasets by
acanonical correlation analysis (CCA)-based integration algorithm™,
To integrate more than 10 million cells from the two datasets while
achieving a fine resolution for more than 5,000 transcriptionally dis-
tinct cell clusters identified in the scRNA-seq data, we performed two
rounds of integration.

First, we divided the cells from both datasets into 50 integration
partitions. We used the scRNA-seq dataset to define the partitions.
Each integration partition was a group of subclasses that were close
in the transcription space. We subset the genes in the scRNA-seq
dataset to the genes measured by MERFISH. Then, we preprocessed
the dataset using the Scanpy pipeline’®: normalized the total count
of each cell to 1,000, loglp transformed the counts and scaled the
transformed counts to Zscores. We reduced the dimensionality to
100 principal component analysis (PCA) dimensions and calculated
the 15 nearest neighbours of each cellinthe PCA space. From the near-
estneighbour graph, we calculated a connectivity graph of subclasses
where each node was a subclass and the weight of each edge was the
number of edges in the nearest neighbour graph that connected cells
from the two subclasses. Then, we used the direct k-way cuts method
from the METIS graph partitioning library” to divide the 338 sub-
classes into 50 integration partitions. This method aimed to evenly
distribute cells into partitions while minimizing the sum weight of
cut edges.

In the first round of integration, we transferred the integration-
partition labels from the cells in the scRNA-seq dataset to the cells in
the MERFISH dataset. We subset the genes in the sScCRNA-seq dataset
tothe genes measured by MERFISH. Then, we independently preproc-
essed the scRNA-seq and MERFISH datasets by the Scanpy pipeline”:
normalized the total count of each cellto 1,000, loglp transformed the
counts and scaled the transformed counts to Zscores. We combined
the two datasets and performed PCA to reduce the dimensionality to
100. We ran CCA to co-embed the scRNA-seq cells and MERFISH cells
into a100-dimensional space. To co-embed the large number of cells
from the two datasets, the CCA was first performed on randomly down-
sampled scRNA-seq and MERFISH datasets, each containing 100,000
cells. Then, the CCA coordinates of the full datasets were calculated
by alinear transformation from the gene expression space to the CCA
space. We found the five nearest neighbours across the two datasetsin
the CCA space. We defined all pairs of cells from the two datasets that
were mutual nearest neighbours asintegration anchors. Then, we used
thelabel_transfer function fromthe Seuratintegration class to transfer
the integration-partition labels from the scRNA-seq dataset to the
MERFISH dataset. For each MERFISH cell, the label_transfer function
calculated the probability of assigning the MERFISH cell to every inte-
gration partition based onthe 100 nearest-neighbour anchor cells from
the scRNA-seq datasetinthe PCA space. We set the integration-partition
label of a MERFISH cell to be the one with the highest probability (that
is, the integration partition that had the highest fraction of cells in
the 100 nearest-neighbour anchor cells) and defined this probability
asthe confidence score of the transferred partition label.

In the second round of integration, we transferred subclass and
cluster labels from the scRNA-seq dataset to the MERFISH dataset.
We performed this round of integration for each integration partition
separately. We subset the genes in the scRNA-seq dataset to the genes
measured by MERFISH, normalized the total count of each cellto 1,000
andloglp transformed the counts. We used the genes that were highly
variable in each integration partition. To this end, we calculated the
dispersions of all the selected genes using the highly_variable_genes
function from the Scanpy package™. Only genes with log dispersions
greater than zero were kept for integration. Using the same method for
the first round of integration, we transferred the subclass and cluster
labels from the scRNA-seq dataset to the MERFISH dataset and calcu-
lated the confidence scores for label transfer. Because a cell-type label is
transferred correctly to acell only when boththeintegration-partition
label and the cell-type label within the integration partition were trans-
ferred correctly, we adjusted the confidence scores of the subclass and
cluster label transfer by multiplying them with the integration-partition
label-transfer confidence scores. Among the 9.3 million cells that were
integrated with the scRNA-seq data, we further removed the cells that
substantially passed the midline in the coronal slices and those that
passed the posterior edge of the CCF in the sagittal slices, as well as
six fractured tissue slices (see ‘'MERFISH image registration to the CCF’
for details on CCF registration); 8.4 millions cells remained after this
filtering step. The cell-by-gene matrices of the remaining 8.4 millions
cells can be downloaded from both the Allen Brain Cell Atlas and the
CELLXGENE database, and are displayed on the CELLXGENE database
(see ‘Data availability’ section). In addition, we further filtered the
cells by the label transfer confidence scores, and the 5.8 million cells
that passed the thresholds for the subclass and cluster label trans-
fer confidence scores are included in the cell metadata file that can
be downloaded from and are displayed on the Allen Brain Cell Atlas
(see ‘Data availability’ section).

Imputation of transcriptome-wide gene expressions of individual
cellsin MERFISH images

Onthebasis of the integration of MERFISH and scRNA-seq data, we also
imputed the transcriptome-wide gene expression for each cell in the
MERFISH images using the method previously described®. In short,



theimputed expression profile of a MERFISH cell was calculated as the
weighted average of the expression profiles of its 30 nearest-neighbour
anchor cells in the scRNA-seq dataset in the co-embeded PCA space.
The weights were based on the distance between the scRNA-seq cells
to the MERFISH cell and were calculated by the find_nearest_anchor
function from the Seuratintegration class using default parameters.

We evaluated the validity of the imputation results by comparing
them with the gene expression measured by MERFISH and with the
previously measured spatial expression patterns in Allen Brain Atlas
in situ hybridization data® for the genes included in the MERFISH
gene panel, and with the Allen Brain Atlas in situ hybridization data
only for the genes not included in the MERFISH gene panel. We per-
formed two correlation analysis for comparing imputation results
with the MERFISH measurement results. First, we calculated the mean
expression level in every cluster from the imputation results and the
MERFISH measurement results for each gene. We then quantified the
Pearson correlation coefficient between the imputed cluster means
and MERFISH-measured cluster means across all clusters for each gene.
Second, we calculated the mean expression levels of every imaged FOVs
from the imputation results and the MERFISH-measurement results
foreach gene, and then quantified the Pearson correlation coefficient
between the imputed FOV means and MERFISH-measured FOV means
across allimaged FOVs for each gene. The first comparison evaluated
how well the relative expression levels of genes in different clusters were
recapitulated by theimputation and the second comparison evaluated
how well the spatial variation in gene expression was recapitulated by
the imputation.

For the genes not included in the MERFISH, we visually compared
the spatial patterns of gene expression determined by imputation
with those determined in Allen Brain Atlas in situ hybridization data.

MERFISH image registration to the CCF

Registration of MERFISH data to the Allen Mouse Brain CCFv3 was
performed in a two-step process involving the reconstruction of 2D
MERFISH tissue slices to a3D volumetric image through alignment of
DAPIsignalsinthe MERFISH images to the Nissl templateimagesin the
Allen Reference Atlas, followed by a 3D refinement using landmarks
based on cell types with known localizations in the CCF. For the initial
reconstruction, we used the DAPI channel in the MERFISH images of
individual brain slices and the Nissl template images in the Allen Refer-
ence Atlas, whichis aligned to the Allen CCF. For each MERFISH sample
from the same animal, brainslices were ordered and rotated to match
coronal or sagittal orientation of the CCF. Coronal slices were cropped
approximately 200 pm past the midline, whereas sagittal slices were
cropped at the posterior end of the cerebellum. In each animal, key
slices containing recognizable landmarks were used to identify cor-
responding CCF planes, and all remaining CCF planes were determined
bylinearinterpolation. Toaid the registration process, featuresin the
DAPIlimage were enhanced by highlighting pixels containing cell types
thatlocalized to known brainregions (for example, VLMCs at the brain
surface, ependymal cellsin the ventricles, granular cellsin the dentate
gyrus, among others). The corresponding features in the Nissl image
were also highlighted using the CCF annotations and/or morphological
operations. Finally, each DAPI-Nisslimage pair was registered with an
affine and then B-spline transformation using the program Elastix’.
Eachtransformation was then applied to the cell positions to find their
initial position in the CCF space.

Inthe second alignment step to refine the CCF registration, an addi-
tional 3D-3D registration was performed using additional selected
cell types from the MERFISH data that are known to be localized to
certain brain regions in the CCF. In total, 36 suitable cell types were
identified along with their corresponding brain region annotations
inthe CCF, as well as two level 1space modules (SM_CTX and SM_RSP)
that delineated the cells in the isocortex. These selected cell types
(or spatial modules) were each randomly assigned an intensity label,

and a3D volumetric image was generated using their initial positions
in the CCF space from the first reconstruction step. A second target
3Dimage was generated but using only the CCF annotations; for each
selected cell type, the corresponding brain region annotations in
the CCF were assigned the intensity label for that cell type or spatial
module, and all other annotated regions were removed. As before, for
certain cell types, morphological operations on certain annotations
were used to denote the midline, tissue surface or hollow ventricles.
Finally, these two 3D images were registered using a B-spline transfor-
mation and the cell positions were refined.

After the MERFISH datawere registered to the CCF,each MERFISH cell
was assigned a 3D coordinate (ccfx, ccfy and ccfz), indicating its spatial
locationinthe CCF space, where ccfxindicatesthe coordinatevaluealong
therostral-caudal direction, ccfy indicates the coordinate value along
the dorsal-ventral direction and ccfz indicates the coordinate value
alongthelateral-medial direction. Each MERFISH cell was also assigned
abrainregionannotation ID as defined in the CCF, indicating its brain
region identity.

For visualization in individual figures, we presented the MERFISH-
imaged cells in the experimental coordinates, but reverse transformed
the brain region boundaries defined in the CCF into the experimental
coordinates by reversing the above-described MERFISH image-to-CCF
transformation.

Asacautionary note, although our CCF registration of the MERFISH-
derived cell atlas allows characterization of cell-type composition and
organization in different brain regions, alignment errors could exist
in CCF registration due to the differences between individual mouse
brains and the average template represented by the Allen CCFv3, as
wellas the deformation of tissue sections that were not completely cor-
rected for duringimage alignment. Improvement in CCF-registration
accuracyisanactiveresearch topicand the CCF referenceitselfis also
actively evolving. Thus, our current CCF registration provides astarting
point, and future method development in this area will help improve
the accuracy of CCF registration.

Neurotransmitter identities of the neurons

We assigned neurotransmitter identity to the neurons based on
their expression of canonical neurotransmitter transporter genes.
Specifically, Sic17a7, Slc17a6 and Slc17a8 were used for identifying
glutamatergic neurons, Slc32al for GABAergic neurons, Slc6a4 for
serotonergic neurons, Slc6a3 for dopaminergic neurons, Slci8a3
for cholinergic neurons, Slcéas for glycinergic neurons and Slc6a2
for noradrenergic neurons. In addition, Hdc, which is involved in his-
tamine synthesis, was used to mark the histaminergic neurons. For all
ofthese genes, we used an expression threshold of RNA counts per cell
n>2,determined by MERFISH, to assign neurotransmitter identity to
individual neurons.

Spatial module analysis
We did two rounds of spatial module analysis to delineate molecularly
defined brain regions based on local cell-type composition.

For the first round of spatial module analysis, we defined a local
cell-type-composition vector for each cell to characterizeits neighbour-
hood composition of cell types at the subclass level. We began by find-
ing the 50 spatially nearest neighbours for each cell using scikit-learn”,
Because vascular and immune cells are usually randomly distributed
across most brainregions, we excluded them from the spatial module
analysis. Then, we assigned aweight to each neighbour celljof acellias:

Weight, .= exp(- (D, /D)%)

Where D, is the spatial distance between cell iand cellj, and D}O) isthe
distance scaling factor. Because different brain regions have different
cell densities, we let D{”’ be adjustable based on the local cell density
and defined D as two times the distance between cell i and its fifth
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nearest spatial neighbour. Then, we defined the local cell-type-
composition vector of acell fromits neighbour cell types and weights.
Each element of a local cell-type-composition vector corresponds to
acelltype, and the value is the sum of the weights of the spatial neigh-
bours that belong to this cell type.

We generated the first level of spatial modules by clustering cells
based ontheirlocal cell-type-composition vectors at the subclass level.
We normalized the local cell-type-composition vectors by their L2
norms and ran the Leiden clustering method to cluster the cells. We
manually curated the clusters by merging the clusters that did not
form clear spatial boundaries and annotated the clusters based on the
major brainregions that they corresponded to. This round of analysis
gave level 1spatial modules.

Wethen generated the level 2 spatial modules for eachlevel1spatial
module separately. Because the spatial heterogeneity of cell types
withinindividual major brain regions are mainly due to neurons, we only
considered neurons for the second round of spatial module analysis.
We calculated the local cell-type-composition vectors using the same
method described for the first round of spatial module analysis with two
modifications. The first modification was that we considered both sub-
classes and clusters to define the local cell-type-composition vectors
—the subclass-based vector was concatenated with the cluster-based
vector to form the overall vector. The second modification was that
we used a shorter distance scaling factor D, for the higher spatial
resolution in this round. We defined D'®; as the distance between cell i
anditsfifth nearest spatial neighbour. Then, we used the same method
described for the first round of spatial module analysis to cluster cells
based on their local cell-type-composition vectors to generate level 2
spatial modules.

Spatial gradient analysis
All cells with subclass label-transfer confidence scores greater than
0.8 were used in the spatial gradient analysis. To define the degree
of how discrete or how well separated individual clusters were within
each subclass, for each cell, we calculated its ‘neighbourhood purity’
defined by the fraction of cells that had the same cell-cluster label as
the centre cellamongits 50 nearest neighbours inthe gene expression
space. The discreteness of a cell cluster was defined by the mean value
of the neighbourhood purities of all cells within the cluster. We then
determined the median cluster discreteness of asubclass asameasure
of how discrete individual clusters were within the subclass.
Tovisualize the spatial gradient of the subclasses or groups of tran-
scriptionally similar subclasses, PCA was used to reduce dimensionality
ofthe normalized expression dataand to calculate a‘pseudotime’ value
for each cell as previously described®. Next, spatial gradients were
visualized by representing gene expression profiles of the cells using
either PC1 or the pseudotime value of individual cells on the spatial
maps. In addition, correlation of the PC1 or pseudotime values and
the spatial coordinate of the cells were plotted. For the IT neurons in
the isocortex, cortical depth was used as the spatial coordinate and
was calculated for individual neurons as previously described?® for
coronalslicesin the region between Bregma approximately -0.8 and
approximately +1.7 where the layer 6b CTX cells formed a clear thin
layer at the bottomborder of theisocortex. For the D1and D2 medium
spiny neurons, locations along the dorsolateral-ventromedial axis
were used as spatial coordinate values and were calculated using the
ccfy (dorsal-ventral) and ccfz (medial-lateral) locations of individual
cells. For lateral septal complex neurons and tanycytes, locations along
the dorsal-lateral axis (ccfy) were used as spatial coordinate values.

Cell-cell interaction analysis

We performed cell-cellinteractionanalysis at the subclass level. All cells
with a subclass label-transfer confidence score greater than 0.8 were
used in this analysis. We divided cells into major brain regions based
on their CCF coordinates. Owing to the high complexity of cell-type

compositions of the hypothalamus, midbrain and hindbrain, we further
divided these regions each into two regions: the hypothalamus was
divided into the anterior and posterior hypothalamus; the midbrain
was dividedinto the anterior and posterior midbrain; and the hindbrain
wasdividedinto the pons and the medulla. For the hypothalamus and
midbrain, the region was divided based on the cell locations along the
rostral-caudal axis (ccfx), specifically, the mean value of the minimum
and maximum ccfx value for all the cells within the region was used to
divide the region into the anterior and posterior parts. We only con-
sidered the subclasses that were either enriched or had a sufficient
abundance in each brain region for the cell-cell interaction analysis.
For neuronal subclasses, we used the enrichment score as described in
the caption for Fig.2b. For the anterior hypothalamus, posterior hypo-
thalamus, anterior midbrain, posterior midbrain, pons and medulla,
we used an enrichmentscore threshold of 6 to stringently select cellsin
theseregions. For the other brainregions, we set the enrichment score
thresholdto 2. For astrocytes, we used an enrichment score threshold
of1forallbrainregions. For the remaining subclasses of non-neuronal
cells, we considered them in a brain region if the total cell number of
that subclass was greater than 50 in this region.

For each subclass pair within eachregion, we determined the number
of cell pairs (one from each subclass) that were in contact or proxim-
ity and compared the number of contact or proximal cell pairs with a
null distribution generated by randomly shifting spatial positions of
the cells locally™. Two cells were considered in contact or proximity
ifthe distance between the cell centroid positions was within adistance
threshold (Ry,;oxima)- We first defined R ,;oxima to be 15 um, which is com-
parable to the somassize of the cells in the mouse brain. To generate
the null distribution by randomly shifting spatial positions of the cells
locally, for each round of randomization, we shifted the spatial loca-
tion of each cell to a random position within 100 um from its original
location. We performed 1,000 rounds of randomization. After each
round, we calculated the number of cell pairs that werein contact orin
proximity between every pair of subclasses. For each pair of subclasses,
we fitted the distribution of the number of contact/proximal cell pairs
generated by 1,000 randomizations to a normal distribution to gen-
erate the null distribution. We then compared the observed contact/
proximal cell pair number with the null distribution to determine the
enrichment fold change and the P value of the enrichment. Then, we
used the Benjamini-Hochberg multiple-hypothesis testing correction
methodto adjust the Pvalues. We used the adjusted Pvalue threshold
of 0.05 and the number of observed proximal pair threshold of 50 to
select the pair of subclasses that showed significant probability to be
in contact or in proximity and called these subclass pairs as interact-
ing cell-type pairs.

As the stringent distance threshold, R,,oxima = 15 pm, may eliminate
some cell-type pairs that communicate through paracrine signalling, we
alsorelaxed this distance threshold to agreater value (R, oxima = 30 pm),
but for cell-type pairsidentified with this relaxed distance threshold, we
further required that at least one ligand-receptor pair was upregulated
in the proximal cell pairs compared with non-proximal cell pairs (see
below) to call these cell types as interacting cell-type pairs.

Ligand-receptor analysis and analysis of other genes
upregulating ininteracting cell pairs

We performed the ligand-receptor analysis at the subclass level. All
cells with a subclass label-transfer confidence score greater than 0.8
were used in this analysis. We used the CellChat database™ to define
theligand-receptor pairs. For aligand-receptor pair k, we defined the
ligand-receptor expression score for a pair of cells i and; as:

Sk,ijz log(l+ “p.qu.i.p *Rk.j,q)

Where L, ;,is the expression level of the p-th component of the ligand
of theligand-receptor pair kinthe celli; R, ; ,is the expression level of



the g-th component of the receptor of the ligand-receptor pair kin the
cellj. The expression levels used here were theimputed gene expression
resultsas described inthe section ‘Imputation of transcriptome-wide
gene expressions of individual cells in MERFISH images’.

We performed ligand-receptor pair analysis for the cell-type pairs
that showed statistically significant proximity compared with the null
distributionas described inthe previous section ‘Cell-cell interaction
analysis’, using Ry,,oxma = 30 pm. For a pair of cell types and a ligand-
receptor pair, we calculated the distributions of ligand-receptor
expressionscores for all proximal cell pairs, that s, cell pairs withasoma
centroid distance smaller than R ,,o,ima, from this cell-type pair (one
cell from each cell type). Then, we randomly selected the same num-
ber of cell pairs from this cell-type pair with asoma centroid distance
greater than R,,.ima- We calculated the distributions of ligand-receptor
expression scores for the non-proximal cell pairs. We used one-sided
Welch'’s t-test to test whether the mean ligand-receptor expression
scores were significantly higher in proximal cell pairs than the scores
inthe non-proximal cell pairs. Then, we used the Benjamini-Hochberg
multiple-hypothesis testing correction method to adjust the Pvalues.
We selected significant ligand-receptor pairs that satisfied the fol-
lowing three criteria: the mean of ligand-receptor expression score
was at least twofold higher in the proximal cell pairs than those in the
non-proximal cell pairs; the adjusted P value was less than 0.01; and
theligand-receptor expression scores were greater than zeroin atleast
40% of the proximal cell pairs. Using this approach, we determined the
ligand-receptor pairs that were statistically significantly upregulated
in the proximal cell pairs compared with the non-proximal cell pairs
in each cell-type pair that showed statistically significant proximity
using Rpyoximal = 30 pm.

We then used asimilar approach to determine other genes that were
upregulated in the proximal cell pairs compared with non-proximal
cell pairsin each cell-type pair. We first determined the highly variable
genes for each cell type. Only highly variable genes were considered
for this gene upregulation analysis. For each cell type A that showed
significant proximity with another cell type B as compared with the
nulldistribution, we divided the type A cells into two groups based on
whether they were within R,,.ima Of any type B cells. For each gene, we
calculated the expression distributionsin the two groupsrespectively
andused one-sided Welch’s t-test to test whether the mean expression
was significantly higherin the first group than thatin the second group.
We used the Benjamini-Hochberg multiple-hypothesis testing correc-
tion method to adjust the P values. We selected significantly upregu-
lated genes using the following criteria: the mean expression level
was at least twofold higher in the proximal cell pairs than those in the
non-proximal cell pairs, and the adjusted Pvalues were less than 0.01.

Statistics and reproducibility
Four replicate mice, one female and three males, were imaged under
each condition. From the four replicate mice imaged for the identifi-
cation and spatial mapping of cell types, a total of approximately 10
million cells wereimaged and segmented, which generated asufficient
number of single-cell profiles and gave sufficient statistics for the effect
sizes of interest. No statistical methods were used to predetermine
sample size. The mice were randomly chosen. For each mouse, the
imaging experiments were definitive, and no randomization was neces-
sary for this study, hence the experiments were not randomized. The
investigators were not blinded during experiments and outcome assess-
mentbecause allimages were taken under the same condition, and the
results were quantitative, which did not require subjective judgement.
The samplesizesfor theviolin plotsin Fig. 6g (fromleft toright) are
14,13, 14 and 9 brain regions. The Pvalues in Fig. 6¢, Extended Data
Fig. 9 and Supplementary Table 4 were calculated by a one-sided
permutation-based test described in the cell-cell interaction analysis
section of the Methods. The displayed P values were adjusted by the
Benjamini-Hochberg multiple-hypothesis testing correction.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Rawand processed MERFISH data, as well as the MERFISH codebook and
probes used inthis work, can be accessed via the Brain Image Library™.
Processed MERFISH data are also accessible and explorableinaninter-
active manner through two platforms: (1) the Allen Brain Cell Atlas
(https://knowledge.brain-map.org/data/5C0201J)SVEO4WY6DMVC/
explore; https://alleninstitute.github.io/abc_atlas_access/descriptions/
Zhuang-ABCA-1.html; https://alleninstitute.github.io/abc_atlas_access/
descriptions/Zhuang-ABCA-2.html; https://alleninstitute.github.io/
abc_atlas_access/descriptions/Zhuang-ABCA-3.html; https://allenin-
stitute.github.io/abc_atlas_access/descriptions/Zhuang-ABCA-4.html)
and (2) the CELLXGENE database (https://cellxgene.cziscience.com/
collections/Occa8620-8dee-45d0-aef5-23f032a5¢cf09). The scRNA-seq
datasets (FASTQ files) obtained by the Allen Institute are available at
NeMO (https://assets.nemoarchive.org/dat-qg7n1b0). The processed
scRNA-seq dataalong with the transcriptomic cell-type taxonomy were
visualized at the Allen Brain Cell Atlas (mouse whole-brain cell-type
atlas, https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas).
Instruction for access of the processed scRNA-seq data is available
at https://github.com/AllenInstitute/abc_atlas_access/blob/main/
descriptions/WMB-10X.md. The CellChat database™ is available at
http://www.cellchat.org/. Source data are provided with this paper.
Bulk RNA-seqdata of the whole mouse brain are available at NCBI GEO
datarepository (GSE246919).

Code availability

Code for the MERFISH image analysis is available at https://github.com/
ZhuangLab/MERIin and on Zenodo®. Additional code for data analysis
is available at https://github.com/ZhuangLab/whole_mouse_brain_
MERFISH_atlas_scripts_2023 and on Zenodo”. Code for the MERFISH
image acquisition is available at https://github.com/ZhuangLab and
onZenodo”.
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Extended DataFig.1|Correlationandintegration of MERFISHdataand
RNA-seqdata. a, Correlation plot of the average copy number per cell of
individual genes measured by MERFISH from two replicate animals. The black
solidlineindicates equality. The Pearson correlation coefficientis r =0.990.

b, Correlation plot of the average copy number per cell of individual genes
determined by MERFISH versus the expression levels determined by bulk
RNA-seq of whole mouse brain. The Pearson correlation coefficientisr=0.822.
¢, Correlation plot of the average copy number per cell of individual genes
determined by MERFISH versus those determined by scRNA-seq of whole
mouse brain. The Pearson correlation coefficientisr = 0.752.d, UMAP of the
integrated MERFISH and scRNA-seq data with all MERFISH and scRNA-seq cells
displayed. Cells are coloured by experimental modalities. e, Distributions of
confidence scores of subclass label transfer (top) and cluster label transfer

Subclasses by mapping method Confidence score threshold
(bottom) forindividual MERFISH cells. f, Left: Correspondence between the
subclass classification of MERFISH cells determined by integration of MERFISH
and scRNA-seq data (Integration method) and by identifying the scRNA-seq
cluster with most similar transcriptional profile to the MERFISH cells (Mapping
method). Confusion matrix shows the fraction of cells from any given subclass
determined by the Integration method that was assigned to individual
subclasses determined by the mapping method. Insets: Correspondence plots
between the cluster classification of MERFISH cells determined by the two
methods for an example subclass: MV-SPIV Zic4 Neurod2 Glut. Right: Fraction
of cells showing classification agreement between the twomethodsasa
function of the confidence score threshold at subclass level (top) and cluster
level (bottom) used in the Integration method. Red dashed lines indicate the
confidencescore threshold used in this work.
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Extended DataFig. 3 | CCF registration of MERFISH images. a, Workflow of
CCFregistration of the MERFISH images. MERFISH images were registered to
the Allen Mouse Brain CCFv3* using atwo-step procedure. First, DAPlimages
taken during MERFISH imaging were aligned to the Nissl templateimagesin
the Allen Reference Atlas (ARA, adapted from https://mouse.brain-map.org/
static/atlas), which allowed an initial, coarse alignment of the MERFISH images
tothe Allen CCF.Second, cell-type with knownlocationsin the CCF were

selected aslandmarks (e.g., layer-specific cortical neurons, neuronsin the
dentegyrus, etc.) and used to refine the CCF alignment (see Methods for
details). The 3D brainimages were generated using Brainrender’®. b, Spatial
maps of cellsinthe same coronal and sagittal sections as shownin Fig.1c, but
with cells coloured by their cluster identities. The underlying contour lines
marking the brainregion boundaries were generated using coordinates from
the Allen Mouse Brain CCFv3 (ref. 21). Scalebar:1 mm.
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Extended DataFig. 4 |Spatial distributions of different neuronal cell types
and neurotransmitter usage. a, Spatial distributions of different IT subclasses
showing the separationbetweenIT neuronsintheisocortex (CTX) and those
inthe olfactory areas (OLF, left) and in the hippocampal formation (HPF, right).
Red arrows mark the boundaries between CTX and OLF and between CTX and
HPF definedin the CCF. Cells are coloured by subclass identities. b, Spatial
distributions of the two subclasses, AD Serpinb7 Glut and AV Col27a1 Glut, in the
anterodorsal (AD) and anteroventral (AV) nucleus of the thalamus, respectively.
¢, Spatial distributions of five inhibitory neuronal subclasses, marked by Lamps,
Puvalb, Sst, Vip, and Sncg, across CTX, HPF, OLF and cortical subplate (CTXsp).

d, Spatial heatmap of local neuronal-composition complexity. The local
neuronal-composition complexity of any given cellis defined as the number

of different neuronal cell types (at the subclass level) presentin the 50 nearest-
neighbour neurons surrounding that cell. PAL, Pallidum; PALv, Pallidum, ventral
region; SAMY, Striatum-like amygdalar nuclei; SC, Superior colliculus. e, Spatial
distributions of glutamatergic and GABAergic neurons in the thalamus, showing
GABAergic neuronsinthereticular nucleus (RT) and glutamatergic neuronsin
therest of the thalamus. f, Spatial distributions of glutamatergic and GABAergic
neurons, including the glycinergic neurons, in the midbrain and hindbrain.

g, Spatial distributions of glutamatergic and GABAergic neurons, including the
glycinergic neurons, in the cerebellum. h, Spatial distributions of neurons
co-expressing Vglut (Slc17a6, Slc17a7 or Slc17a8) and Vgat (Slc31al). AHN,
Anterior hypothalamic nucleus; GPi, Globus pallidus, internal segment; SUM,

Supramammillary nucleus. i, Spatial distributions of neurons expressing
Vglutl (Slc17a7, green) and Vglut2 (Slc17a6, orange). Neurons that co-express
Vglutland Vglut2 are showninyellow. AOB, Accessory olfactory bulb; AON,
Anterior olfactory nucleus; MH, Medial habenula; LD, Lateral dorsal nucleus
of thalamus; VPM, Ventral posteromedial nucleus of the thalamus; PG:
Pontine gray. j-o0, Spatial distributions of dopaminergic (j), serotonergic (k),
histaminergic (I), glycinergic (m), noradrenergic (n) and cholinergic (o)
neurons. PVi, Periventricular hypothalamic nucleus, intermediate part; ARH,
Arcuate hypothalamic nucleus; VTA, Ventral tegmental area; SNr, Substantia
nigra, reticular part; SNc, Substantia nigra, compact part; LDT, Laterodorsal
tegmental nucleus; DMH, Dorsomedial nucleus of the hypothalamus; VMH,
Ventromedial hypothalamic nucleus; TU, Tuberomammillary nucleus; PMy,
Ventral premammillary nucleus; TMv, Tuberomammillary nucleus, ventral
part; MV, Medial vestibular nucleus; GRN, Gigantocellular reticular nucleus;
RPA, Nucleus raphe pallidus; DCO, Dorsal cochlear nucleus; NTS, Nucleus of
thesolitary tract; SPVI, Spinal nucleus of the trigeminal, interpolar part; PCG,
Pontine centralgray; LC, Locus ceruleus; MS, Medial septal nucleus; NDB,
Diagonalband nucleus; PBG, Parabigeminal nucleus; PPN, Pedunculopontine
nucleus; DMX, Dorsal motor nucleus of the vagus nerve; XII, Hypoglossal nucleu.
p, Spatial distribution of the inhibitory immature neurons (IMNs) coloured by
clusteridentities asin Fig.2fmiddle panel. Scale barsina-p:1mm. The underlying
contour lines marking brainregionboundariesina-p were generated using
coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Extended DataFig. 6 | Spatial distributions of additional non-neuronal
celltypes. a, Left: Spatial distributions of VLMCs shown in an example coronal
section. Right: Spatial distributions showninthe 3D CCF space for VLMC cluster
5301 (top), whichis enriched in the grey matter, and cluster 5302 (bottom),
whichislocatedinthe choroid plexusin the lateraland fourth ventricles.

b, Spatial distributions of arachnoid barrier cells (ABCs) showninanexample
coronalsection. ¢, Spatial distributions of endothelial cells (left), pericytes
(middle) and smooth muscle cells (SMCs, right), each shown inan example
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coronal section. d, Spatial distributions ofimmune cells shownin an example
coronalsectionincluding microglia (left) and in the same section but without
showing microglia (right). e, Spatial distributions of olfactory ensheathing
cells (OEC) shownin an example coronal section. Cells are coloured by cluster
identitiesinall panels.Scale barsina-e:1 mm. The underlying contour lines
markingbrainregionboundariesina-eand the3D brain contoursinawere
generated using coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Extended DataFig. 8| Quantification of cluster discreteness of cell
subclasses and additional examples of spatial gradients of molecularly
defined cell types. a, Left: To quantify the cluster discreteness inasubclass,
aneighbourhood purity quantity for each cellinaclusteris determined as the
fraction of the cellsinits neighbourhood (in the gene-expression space) that
belongto this cluster. The mean neighbourhood purity quantity across all cells
inaclusterisdefined as the discreteness of the cluster, which gives ameasure
of how well separated this clusteris from the other clustersin the gene-
expression space. The median discreteness of clustersis then determined for
each subclass. Right: Distribution of the median cluster discreteness of
individual subclasses across all subclasses. The UMAPs of an example subclass
with high cluster discreteness (OB Eomes Ms4al5 Glut) and an example subclass
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with low cluster discreteness (AHN Onecut3 Gaba) are shown. b-d, Spatial
gradients of CA1-Pros Glut neurons (b), CA3 Glut neurons (c) and DG Glut
neurons (d) in the hippocampal formation. From left to right: Spatial map of
cells coloured by clusteridentitiesin a coronal section; Spatial map of cells
coloured by the first principal component (PC1) in the same section; Spatial
distribution of cells colored by PC1shownin the 3D CCF space. e, Spatial
gradient of the Tfap2d Maf Glut neuronsin the inferior colliculus (IC) of the
midbrain. Cells are shownin one coronal section and are coloured by cluster
identities (left) and PC1(right). Scale barsin b-e:1 mm. The underlying contour
lines marking brainregionboundariesinb-e and the 3D brain contoursinb-d
were generated using coordinates from the Allen Mouse Brain CCFv3 (ref. 21).
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Extended DataFig.10|Additional examples and characterizations of
predicted cell-cellinteractions or communications. a, Interactions between
olfactoryastrocytes (Astro-OLF) and inhibitory immature neurons (MOB-STR-
CTXinhIMN). Left: Example image of cells inasmallarea, with cells belonging
totheindicated celltypesshowninred and blue and all other cellsshownin grey,
asdescribedinFig. 6d. Middle: Top 10 upregulated ligand-receptor pathways,
asdescribedinFig. 6d. Right: Expressiondistributions of theindicated genein
Astro-OLF proximal (red) or non-proximal (grey) to MOB-STR-CTX inh IMN, as
describedinFig.6d.b-d,Sameasa, butforinteractions between astrocytes
(Astro-TE) and excitatory immature neurons (DG-PIR Ex IMN) (b), between
Pvalb chandelier Gaba neurons and CA3 Glut neurons (c), and between IPN Otp
Crispl Gabaneurons and DTN-LDT-IPN Otp Pax3 Gaba neurons (d). In (b) and
(d), violin plots of example genes upregulated in proximal cell pairs as compared
to non-proximal cell pairsare not shown. e, Total numbers of unique cell

types (subclasses) observedintheinteracting cell-type pairs that showed

upregulation oftheligand-receptor pairsinvolving the indicated Wntligands
ineach of the major brainregions. Top: For interactions among non-neuronal
cells; Middle: For interactions between neurons and non-neuronal cells;
Bottom: Forinteractions among neurons. f, The total number of unique cell-
types (subclasses) involved in the predicted interacting cell-type pairs that
showed upregulation of ligand-receptor pairsin theindicated pathway across
thewholebrain. Foreach category of cell-cell interactions (interactions among
non-neuronal cells (top), interactions between neurons and non-neuronal

cells (middle), and interactions among neurons (Bottom)), the top 30 ligand-
receptor pathways with the highest number of cell typesinvolved are shown.
g, Interactions between endothelial cells and SMC cells. Top: Example image of
cellsinasmallarea, asdescribed in Fig. 6d. Bottom: Expression distributions of
theindicated genes in endothelial cells when they are proximal or non-proximal
toSMC.Scalebarsina,b,e:30 pm.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code

Policy information about availability of computer code

Data collection  MERFISH imaging data was collected using custom Python code to control the microscope. This code is available at https://github.com/
ZhuangLab and on Zenodo.

Data analysis The MERFISH data was analyzed using custom Python code. Code for MERFISH image analysis is available at https://github.com/ZhuanglLab/
MERIin and on Zenodo. Additional code for data analysis is available at https://github.com/ZhuanglLab/
whole_mouse_brain_MERFISH_atlas_scripts_2023 and on Zenodo.

Other packages used in data analyses include: Cellpose (version 2.0); Scanpy (version 1.9.1); Scrublet (version 0.2); ALLCools (version 0.2.19);
metis (version 0.2a5); scikit-learn (version 1.1.1); Elastix (version 5.1.0); Brainrender (version 2.0.0.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data availability statement is included in the manuscript, which states:

Raw and processed MERFISH data, as well as the MERFISH codebook and probes used in this work, can be accessed via the Brain Image Library (BIL): https://
doi.org/10.35077/act-bag . Processed MERFISH data are also accessible and explorable in an interactive manner through two platforms: 1. Allen Brain Cell (ABC)
Atlas (https://knowledge.brain-map.org/data/5C0201JSVEO4WYEDMVC/explore; https://allen-brain-cell-atlas.s3.us-west-2.amazonaws.com/index.html); 2.
CELLXGENE database (https://cellxgene.cziscience.com/collections/Occa8620-8dee-45d0-aef5-23f032a5cf09).

The scRNA-seq datasets (FASTQ files) obtained by Allen Institute are available at NeMO under identifier https://assets.nemoarchive.org/dat-qg7n1b0. The
processed scRNA-seq data along with the transcriptomic cell type taxonomy is visualized at ABC Atlas — mouse whole brain cell type atlas, https://portal.brain-
map.org/atlases-and-data/bkp/abc-atlas. Instruction for access of the processed scRNA-seq data is available at https://github.com/Alleninstitute/abc_atlas_access/
blob/main/descriptions/WMB-10X.md.

CellChat database is available at (http://www.cellchat.org/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable

Population characteristics Not applicable
Recruitment Not applicable
Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Four replicate mice, one female and three males, were imaged under each condition. From the four replicate mice imaged for the
identification and spatial mapping of cell types, a total of approximately 10 million cells were imaged and segmented, which generated a
sufficient number of single-cell profiles and gave sufficient statistics for the effect sizes of interest. No statistical methods were used to
predetermine sample size and sample size were determined empirically.

Data exclusions  We did not exclude any data from consideration. All images were included in the primary analysis.

Replication Reported results were replicated from four animals under each condition.

Randomization  Four animals, one female and three males, were randomly chosen for the identification and spatial mapping of cell types. For each mouse, the
imaging experiments were definitive, and no randomization was necessary for this study, hence the experiments were not randomized.
Animals were not allocated into experimental groups.

Blinding The investigators were not blinded during experiments and outcome assessment. Blinding during data collection was not needed because all

images were taken under same condition. Blinding during analysis was not necessary because the results were quantitative and did not
require subjective judgment. Blinding is not typically used in the field.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Adult C57BL/6NCrl (Strain code: 027, Charles River Laboratories) male and female mice aged 56-62 days were used in this study.
Animals were purchased from the Charles River Laboratories at an age one week younger (49-55 days) than the target age for
sacrifice and housed at Harvard University Animal Facility for 1 week to acclimate before sacrifice. Mice were maintained on a 12
hour:12 hour light/dark cycle (2pm-2am dark period) with at a temperature of 22 + 1°C, a humidity of 30-70%, with ad libitum access
to food and water. All the animals used in this study were sacrificed between 2-6pm of the day.

Wild animals The study did not involve wild animals.
Reporting on sex Four animals were used in this study, including one female mice and three male mice. No sex-specific results are reported.
Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight Harvard University Institutional Animal Care and Use Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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