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Stringent test of QED with hydrogen-like tin

J. Morgner1 ✉, B. Tu1, C. M. König1, T. Sailer1, F. Heiße1, H. Bekker2, B. Sikora1, C. Lyu1, 
V. A. Yerokhin1, Z. Harman1, J. R. Crespo López-Urrutia1, C. H. Keitel1, S. Sturm1 & K. Blaum1

Inner-shell electrons naturally sense the electric field close to the nucleus, which can 
reach extreme values beyond 1015 V cm−1 for the innermost electrons1. Especially in 
few-electron, highly charged ions, the interaction with the electromagnetic fields can 
be accurately calculated within quantum electrodynamics (QED), rendering these 
ions good candidates to test the validity of QED in strong fields. Consequently, their 
Lamb shifts were intensively studied in the past several decades2,3. Another approach 
is the measurement of gyromagnetic factors (g factors) in highly charged ions4–7. 
However, so far, either experimental accuracy or small field strength in low-Z ions5,6 
limited the stringency of these QED tests. Here we report on our high-precision, 
high-field test of QED in hydrogen-like 118Sn49+. The highly charged ions were produced 
with the Heidelberg electron beam ion trap (EBIT)8 and injected into the ALPHATRAP 
Penning-trap setup9, in which the bound-electron g factor was measured with a 
precision of 0.5 parts per billion (ppb). For comparison, we present state-of-the-art 
theory calculations, which together test the underlying QED to about 0.012%, yielding 
a stringent test in the strong-field regime. With this measurement, we challenge the 
best tests by means of the Lamb shift and, with anticipated advances in the g-factor 
theory, surpass them by more than an order of magnitude.

In 1963, Richard Feynman called QED the greatest success in the physical 
sciences10. Describing the ubiquitous interactions of charges and the 
electromagnetic field with real and virtual photons, QED is the prime 
example of quantum field theories. Experimentally, QED has been 
tested with high stringency in low electromagnetic fields. Such tests 
are closely related to the determination of fundamental constants, 
such as, for example, the recent measurement of the g − 2 value, which 
allowed to extract the fine-structure constant α with a precision of 
1.1 × 10−10 (ref. 11). By contrast, only a few experimental tests have been 
carried out at high electromagnetic field strengths. Here bound-state 
QED can yield high accuracy in the prediction of atomic and molecular 
systems. Thus, testing QED calculations still has wide implications for 
many branches of science.

In the past, muonic atoms have been studied extensively, leading 
to a series of stringent tests of the vacuum polarization in strong 
electric fields12–14. However, Standard Model predictions of muonic 
fine-structure splittings are inconsistent with experimental data15–17. 
Also, recently, the muon (g − 2) value has been remeasured and shows 
a 4.2σ discrepancy18. As a consequence, this strongly motivates further 
tests of QED in strong electromagnetic fields.

Highly charged ions are an interesting candidate for such tests; 
because of the strong interaction between the (few) electrons and 
the nucleus, these systems also show enhanced sensitivity for poten-
tial new physics19. In these few-electron systems, the electric field 
experienced by the remaining electrons can exceed 1015 V cm−1 (ref. 1), 
hence the electronic wavefunction is perturbed strongly, resulting in 
modified properties that can be measured and compared with theo-
retical predictions. So far, bound-state QED in high-Z highly charged 
ions has been investigated most accurately by measurements of 

the Lamb shift20,21. At present, calculations of the Lamb shift use an 
‘all-order’ approach including all QED effects in one-loop and two-loop 
Feynman diagrams22. For testing bound-state QED using the mag-
netic moment or the g factor of the bound electron, the theoretical 
approach is similar. Owing to the further interaction with a magnetic 
field, its calculation requires the inclusion of extra terms. But differ-
ent to the Lamb shift, the calculation of the g-factor two-loop con-
tributions with an all-order approach has not yet been completed. 
Therefore these contributions are calculated using a series expansion 
in Zα, which is expected to have large uncertainty at high Z, owing to 
the strong scaling with Z. Here Z is the atomic number and α is the 
fine-structure constant. In low-Z systems, as the expansion coeffi-
cient Zα is small, high accuracy can be achieved in the prediction. 
Many systems with different charge states have been explored in 
the past6,7,23–25. Furthermore, the measurement of the hydrogen-like 
carbon g factor allowed to determine the electron mass to an 
unprecedented precision26. The so far heaviest measured g factor of 
hydrogen-like ions is 28Si13+, which allowed for a stringent test of QED in  
low-to-medium-Z ions6,27.

Here we report on our high-precision g-factor measurement in 
hydrogen-like 118Sn49+, reaching directly into the medium-to-high-Z 
range. To achieve this, we produce the hydrogen-like ions exter-
nally in the Heidelberg EBIT8, which can reach substantially higher 
charge states than the ion sources that were previously available for 
this type of measurement. From there, the ions are transported into 
the ALPHATRAP apparatus, in which we capture them to perform 
high-precision spectroscopy of the bound-electron g factor. We further 
compare the measured value with its state-of-the-art theory prediction, 
which tests bound-state QED in a mean electric field of 1.6 × 1015 V cm−1, 
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60 times stronger compared with the 28Si13+ measurement, the so far 
strongest field for a precise g-factor measurement.

For the presented measurement, an enriched sample of Sn-118 
was heated in an oven source for injection into the Heidelberg EBIT8.  
In the EBIT, a 200-mA electron beam focused by a 7-T magnetic field to a 
waist of a few tens of micrometres crosses the atomic beam in the centre 
electrode. With a kinetic energy of around 45 keV, well above the bind-
ing energy of the K-shell (≈35 keV (ref. 28)), electrons striking the tin 
atoms sequentially generate higher charge states until the charge-state 
distribution reaches a steady state. For the production and extraction 
of hydrogen-like 118Sn49+, a charge-breeding time of 60 s was used. After 
this, a fast pulse on the central electrode ejects the trapped highly 
charged ions. The ion bunch, with a kinetic energy of around 7 keV × Nq 
(Nq is the charge state), is transported through a room-temperature 
beamline, in which the required charge state is separated with a dipole 
magnet. A schematic view of the beamline is shown in Fig. 1a. Various 
ion-optical elements guide the ion cloud into the experimental setup. 
More details on the ion production can be found in Methods. Before 
entering the ALPHATRAP magnet, the ion bunch passes a pulsed drift 
tube, in which the kinetic energy is reduced to a few hundred eV × Nq, 
which is necessary to capture the ions in the trap. The cryogenic valve, 
shown in Fig. 1b, is opened briefly for the ion injection. This way, the 
inflow of gas from the room-temperature beamline is blocked, achiev-
ing an ultrahigh vacuum for long ion storage. For this measurement 
campaign, four hydrogen-like 118Sn49+ ions were loaded once. One of 
these was stored for three months, which allowed to precisely measure 
the magnetic moment of the bound electron.

The particles are trapped in our Penning-trap setup, which consists 
of a superconducting magnet with a B field of roughly 4 T for radial 
confinement. This is overlapped with an electrostatic field, which 
confines the ions in the axial direction. Once trapped, they are cooled 
by means of image currents to a temperature of 5.4(3) K. In the mag-
netic field, the Zeeman effect splits the energy levels of the electron 
spin. The energy difference is given as h times the Larmor frequency 
νL = (geB)/(4πme) ≈ 107.6 GHz, with h the Planck constant, g the g fac-
tor, e the electron charge and me the electron mass. Furthermore, 
the free-space cyclotron frequency νc = (qionB)/(2πmion) ≈ 25.7 MHz 
governs the motion of the stored ion, in which qion and mion are its 
charge and mass, respectively. Because both result from the mag-
netic field B, their relation allows access to the g factor of the bound  
electron29:
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The charge ratio Nq = qion/e is an integer number and the mass ratio 
is taken from other measurements30,31. This leaves the ratio Γ0 = νL/νc, 
which has to be experimentally determined to extract the g factor. In 
the presented measurement, the double-trap method is used  for its 
determination32. The ‘trap stack’ consists of two harmonic traps used 
for the measurement and an extra section for ion capture and storage 
(see Fig. 1c). In the precision trap, the three particle eigenmotions are 
determined. These are the modified cyclotron frequency ν+ ≈ 25 MHz, 
the axial frequency νz ≈ 650 kHz and the magnetron frequency 
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Fig. 1 | Experimental setup for production, trapping and detection of 
hydrogen-like 118Sn49+. a, The highly charged ions are produced in the Heidelberg 
EBIT. By means of a room-temperature beamline, the ions are transported into 
the ALPHATRAP magnet. b, The cryovalve allows to maintain an ultrahigh 
vacuum within the trap chamber. c, The ‘trap stack’ of the experimental setup. 
The ions are captured in the capture section by pulsing the applied voltage at the 
moment the ions are in the trap. Below is the precision trap, a seven-electrode 
trap in which the frequency ratio Γ0 = νL/νc is measured. An image-current 

detector is used to detect the particle motion in the trap. The voltage applied  
to the centre electrode is around −59 V. On the bottom of the trap stack,  
the analysis trap is located, which has a strong magnetic bottle, allowing the 
detection of the spin state of the bound electron. d, Fourier spectrum of the 
image-current detector with a 118Sn49+ particle in resonance. Fitting this ‘dip’ 
gives the axial frequency of the particle. e, Axial frequency change (about 
300 mHz) after flipping the electron spin by microwave irradiation at the 
Larmor frequency.



Nature  |  Vol 622  |  5 October 2023  |  55

ν− ≈ 8 kHz. These are in direct relation to the free-space cyclotron fre-
quency through the invariance theorem ν ν ν ν= + +zc

2
+
2 2

−
2 (ref. 29).

The axial frequency is measured non-destructively by detection of 
image currents, induced by the moving particle next to the surround-
ing electrodes. If the particle is in thermal equilibrium, the noise 
spectrum of the cryogenic detector shows a distinct ‘dip’ (see Fig. 1d). 
The radial modes are detected by sideband coupling with the axial 
frequency, which enables the use of a single detector to measure all 
three frequencies. To measure the spin orientation, a second trap—
called the analysis trap—is used. Its centre electrode is a ferromagnetic 
ring that produces a large quadratic coefficient of the magnetic field 
B(z) = B0 + B1z + B2z2 + …, with B2 ≈ 45 kT m−2. Described as the continuous 
Stern–Gerlach effect33, the electron spin interacts with this so-called 
magnetic bottle, resulting in a spin-dependent axial force. Spin-flips 
caused by irradiating microwaves in resonance with the Larmor  
frequency νL can be detected in the analysis trap as a sudden change of 
the axial frequency, as shown in Fig. 1e. This magnetic-field inhomo-
geneity is problematic for a precise Γ measurement only in this trap, 
hence two traps optimized for their respective use allows much higher  
precision.

A measurement cycle starts in the analysis trap by determining the 
spin state. Afterwards, the ion is adiabatically transported into the 
precision trap, in which the particle eigenmotions are measured. During  
the measurement of ν+, we irradiate a microwave at a random offset 
to the expected Larmor frequency. Then the ion is brought back into 
the analysis trap to examine whether the microwave injected in the 
precision trap has changed the spin orientation. By repeating this at 
different offsets around the expected νL, we obtain a spin-flip prob-
ability as a function of the frequency ratio νL/νc. More details are given 
in Methods and the measurement scheme is shown in Extended Data 
Fig. 1. To determine the resonance parameters and their uncertainties, 
a maximum-likelihood analysis is performed. Several resonances have 
been recorded. Most of these were performed with different settings 
and are used to check systematic effects, such as the relativistic correc-
tion. For the extraction of Γ0, only one is used, as it is the most precise 
with small motional radii and weak microwave power.

The scan consists of roughly 400 data points, of which 54 have been 
successful spin-flips. The binned data and the fit is shown in Fig. 2. 

It is not saturated, that is, the maximum is well below 50%. There-
fore, the resonance shape is mostly determined by magnetic-field 
jitter and not by power broadening. We use a Gaussian fit function 
to analyse the resonance. From this, Γstat is extracted with a value of 
Γstat = 4,189.05824237(16). The resulting ratio νL/νc is corrected for sys-
tematic effects, arising from different sources as shown in the error 
budget in Table 1. Further details are explained in Methods. The cor-
rected Γ0 amounts to:

Γ = 4,189.058241643(160) (93) . (2)0 stat sys

The parentheses represent the statistical and systematic uncertainty, 
respectively. Because the g factor is also dependent on the mass of the 
highly charged ion, we also performed a cyclotron-frequency-ratio 
measurement to confirm the atomic mass evaluation (AME) value30. 
This yields a result of m(118Sn49+) = 117.874869069(56) u, improving the 
value obtained from the AME (corrected for the missing electrons and 
their binding energies) by roughly a factor of ten.

We also calculate the electron-binding energies of neutral tin to 
extract the neutral-tin mass to similar accuracy. Details on the cal-
culation and the mass measurement can be found in Methods. Using 
equation (1), we infer the g factor to be:

g = 1.910562058962(73) (42) (910) . (3)exp stat sys ext

All uncertainties are 1σ confidence levels. The brackets are respec-
tively the statistical and the systematic uncertainty, followed by the 
uncertainty of the external parameters, dominated by the atomic mass 
of tin-118. Although the Γ0 uncertainty is 4.4 × 10−11, the remaining mass 
uncertainty of the 118Sn49+ ion limits the g factor to a relative uncertainty 
of 4.8 × 10−10.

The theoretical description of the free-electron g factor is well  
established31. The dominant correction owing to the binding  
Coulomb potential of the nucleus is described by the Dirac value34, 
g Zα− 2 = 4/3( 1 − ( ) − 1)D

2 . Apart from that, binding corrections of  
QED Feynman diagrams with closed loops need to be taken into 
account. The non-relativistic QED approach, which treats the inter
action between electron and nucleus perturbatively35, cannot be 
expected to give good results for Z = 50 because the expansion para
meter of this perturbation series, Zα, is too large. Non-perturbative 
calculations for one-loop diagrams are well established1,36, whereas 
the calculations for two-loop diagrams are only partially done37–39.

The theory of the bound-electron g factor has been previously  
tested in lighter ions, with 28Si13+ being the heaviest hydrogen-like ion 
for which the g factor has been measured6,27. In these previous measure-
ments, one-loop binding corrections, namely the self-energy, the 
magnetic-loop vacuum polarization and the Uehling part of the 

0

P
ro

b
ab

ili
ty

 (%
)

–1.0 1.0–0.5 0 0.5

10

20

30

40

FWHM:

 6 × 10–10

1

0

Γ/Γstat – 1 (ppb)

S
uc

ce
ss

fu
l s

p
in

-�
ip

Fig. 2 | Measured spin-flip resonance of the bound electron in 118Sn49+.  
The maximum-likelihood fit is shown as the orange line, together with its 
corresponding 1σ error band (grey). The scattered points are used to guide  
the eye and represent a binned set of the data with 68% confidence levels given  
by a binomial fit. 68% confidence levels for the resonance centre are shown  
as vertical grey lines. The square shadows above represent the successful 
spin-flips in the precision trap, whereas the ones below show the unsuccessful 
attempts. FWHM, full width at half maximum.

Table 1 | Error budget

Parameter Relative shift (ppt) Uncertainty (ppt)

Γ0 = νL/νc error budget:

ν− measurement – 3.8

Relativistic shift54 23.7 4.8

Image-charge shift55 150 7.5

νz line shape – 20

Statistical uncertainty – 38

g-factor error budget:

Total Γ0 uncertainty 44

Electron mass26,31 29
118Sn49+ mass (this work) 475

The error budgets of Γ0 and g are shown. Further contributions are smaller than 1 ppt, allowing 
to safely ignore them. More details can be found in the text and in Methods.
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electric-loop vacuum polarization corrections have been tested. In 
this measurement of 118Sn49+, for the first time in a g-factor measure-
ment, the Wichmann–Kroll part of the vacuum polarization correction 
is larger than the total theoretical and experimental uncertainties. 
Binding corrections to two-loop Feynman diagrams up to Zα(( ) )4O  
were tested in previous measurements of 28Si13+ (refs. 6,27). Two-loop 
binding corrections of Zα(( ) )5O , which were calculated only after the 
28Si13+ measurements40,41, turn out to be smaller than our estimated 
uncertainty owing to uncalculated higher-order binding corrections. 
In Fig. 3, different theoretical contributions to the bound-electron g 
factor of 118Sn49+ are presented and compared with the 28Si13+ g factor. 
An extensive table, summarizing the different contributions, is given 
in the Extended Data Table 3.

Overall, we find a theoretical 118Sn49+ g factor of

g = 1.910561821(299), (4)theo

in agreement with the experimental value, although with a much 
larger uncertainty, which is dominated by uncalculated higher-order 
binding corrections Zα(( ) )6O  to two-loop Feynman diagrams. Large- 
scale all-order calculations of these diagrams, which have the poten-
tial to greatly reduce the theoretical uncertainty, have been started 
in recent years38,39.

Figure 4 shows the experimental against the theoretical uncertainty 
for different tests of bound-state QED in systems with high electromag-
netic fields. So far, bound-state QED in heavy highly charged ions has 
been mostly tested by Lamb-shift measurements; the highest precisions 
were achieved in lithium-like systems20,42–44. With the tin measurement, 
the underlying bound-state QED is tested to about 0.20%. The total QED 
contribution, also including the zeroth order in the Zα expansion, is 
tested to about 0.012%. As the test is purely limited by the estimated 
uncertainty of the uncalculated higher-order two-loop terms, which is 
an order of magnitude larger than the uncertainty of effects from, for 
example, the finite nuclear size, the completion of continuing calcula-
tions can potentially improve the QED test markedly. Furthermore, an 
improved measurement of the atomic mass of the tin isotope could be 
achieved with higher precision by dedicated experiments (as shown in, 
for example, refs. 45,46), hence the experimental g-factor uncertainty 
can be reduced to that of Γ0.

In conclusion, the g-factor measurement of hydrogen-like 
118Sn49+ paves the way for more sensitive tests of theoretical con-
cepts and fundamental constants through Penning-trap-precision 
g-factor measurements of highly charged ions. It is a key step to the 
regime of strong fields previously uncharted for this kind of test. 
By combining the production capabilities of the Heidelberg EBIT 

with the high-precision Penning-trap setup ALPHATRAP, we dem-
onstrated the suitability for numerous future g-factor measure-
ments with heavy highly charged ions47,48. Furthermore, it marks 
the first steps towards hyperfine spectroscopy in a heavy highly 
charged ion with unprecedented precision, which could be per-
formed using a method similar to that demonstrated in the laser 
spectroscopy of 40Ar13+ (ref. 49). Also, it is possible to measure  
different charge states and use a weighted-difference method to  
cancel finite size effects. This, together with an improved theory, 
would allow more stringent QED tests or possibly a determination of 
the fine-structure constant α (refs. 47,50,51).
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Methods

Ion production
The ions produced in the EBIT are already rather slow (7 keV × Nq, with 
Nq as the charge state), which simplifies the capture of ions after ejec-
tion. In a pulsed drift tube, the kinetic energy is reduced to roughly 
500 eV × Nq, which is low enough that we can capture the ion bunch 
within the capture section of the trap. A detailed description about the 
ion capture can be found in ref. 9. For the injection from the Heidelberg 
EBIT, a lot of time was spent optimizing the production efficiency as well 
as the ion transport through the beamline. At present, the largest limit 
in the amount of ions that can be trapped in our experiment is the trans-
port efficiency. From the EBIT, several tens of thousand hydrogen-like 
Sn-118 are ejected. In a single shot, because of poor transport efficiency 
in the beamline, at most a handful of particles can be trapped in our 
setup. The particles get lost during transport through the beamline. The 
phase-space distribution in the EBIT is rather large owing to the high 
temperature in the plasma. This results in a large spread of the ejected 
ions, which makes it difficult to efficiently transport and trap the whole 
ion bunch. Most ions are lost at the pulsed drift tube, in which only a 
fraction of the bunch is decelerated. As this is a technical limitation, 
improvement in the transport efficiency would also be feasible in the 
future. But because we perform the measurement mostly on single 
particles, we only have to trap a few particles, assuming that the vacuum 
of the trap is good. In total, the required setup time is about two weeks, 
with a following measurement time of several months. For future meas-
urements in even heavier hydrogen-like systems, such as hydrogen-like 
lead, the electron-beam energy has to be increased further. As of now, 
the Heidelberg EBIT is limited to around 65 kV of acceleration voltage, 
making the ionization of higher binding energies impossible. When this 
is overcome, either by improving the Heidelberg EBIT or setting up an 
EBIT with enough electron-beam energy, the g-factor measurement is 
expected to be straightforward, as the measurement scheme for tin 
could also be used for hydrogen-like lead or uranium.

Measurement scheme
After capture, the next step is to perform the high-precision measure-
ment and corresponding systematic checks. As this normally takes a 
few weeks, the vacuum in our trap has to be extremely good. This is 
ensured by the cryogenic valve as shown in Fig. 1, which blocks the 
inflow of gas from the room-temperature beamline9. The valve and the 
cryogenic environment keep the vacuum below 10−16 mbar, allowing 
ion storage of many weeks.

In the presented Γ0 measurement, a method similar to ref. 26 was 
used. The measurement sequence is shown in Extended Data Fig. 1. 
First, the initial spin state is investigated in the analysis trap. After adi-
abatic transport to the precision trap and a waiting time of two minutes 
to allow the voltages to settle, the modified cyclotron frequency is 
determined by sideband coupling. This is done by measuring and fit-
ting of the noise spectrum that the detection circuit coupled to the 
ion produces56. Afterwards, the axial frequency is measured with the 
detection circuit as well; a spectrum is shown in Fig. 1d. This is followed 
by a ‘pulse and amplify’ (PnA) measurement sequence57. In PnA, we 
determine the accumulated phase of the modified cyclotron motion 
after a fixed evolution time. By initial excitation of the mode to a cer-
tain radius, a free evolution time for undisturbed phase accumulation 
followed by readout of the accumulated phase, we can track the phase 
of the particle over time, allowing to extract the frequency with high 
precision. In this measurement, the set of evolution times consists 
of five reference phase measurements with 0.2-s evolution time, two 
unwrapping phases and two 5.2-s evolution times, which are used for 
the determination of the magnetic field. In the reference phases, the 
magnetic-field jitter is negligible on the phase stability, as this is not 
yet dominating. For the long phases, the magnetic-field stability is the 
dominating jitter/drift source. The two unwrapping phases 0.5 s and 

2.2 s are measured to allow a consistent phase unwrapping to the final 
5.2-s measurement time. All except the two 5.2-s measurements are 
performed in a random order. The 5.2-s measurement is done twice at 
the end of the cycle. The first is used to precisely determine the mag-
netic field, which is used to calculate the expected Larmor frequency 
for the microwave injection. During the second 5.2-s measurement, a 
microwave with a random frequency offset to the expected Γ is irradi-
ated. With this, we measure the magnetic field one more time, while 
trying to perform a spin-flip with the microwave. For the final deter-
mination of the cyclotron frequency, we only use the five reference 
phases and the last 5.2-s phase during the microwave excitation. All 
others are used for unwrapping and to test certain systematics. After 
the PnA cycle, the axial frequency is measured a second time. The two 
axial-frequency measurements are used to identify systematic shifts in 
the measurement, although mostly the second is used for the calcula-
tion of the free-space cyclotron frequency, as it is immediately after the 
microwave injection. Afterwards, the ion is brought back to the analysis 
trap, in which we test if the precision trap microwave injection ‘flipped’ 
the spin. The measurement scheme is shown in Extended Data Fig. 1.

Resonance analysis
The resulting resonance was analysed with a maximum-likelihood fit. Of 
the 387 spin-flip tries in the precision trap, 54 have been successful. The 
precision trap is at a position at which the second-order magnetic-field 
inhomogeneity is smaller than 10 mT m−2; the influence on the field 
inhomogeneity can be safely neglected as the resulting error is less than 
1 part per trillion (ppt)58. Odd-order inhomogeneity effects led by the 
first-order B1 ≈ 2.64(3) mT m−1 (ref. 9) are even further suppressed, as the 
odd orders are cancelled in a harmonic trap. The remaining influences 
in the line shape are given by magnetic-field jitter and by the power of 
the microwave injection.

Because the microwave injection time (5 s) is longer than the time 
the spin stays coherent to the (weak) drive, the spin-flip probability 
can be at most 50%. If high microwave powers are used, the chance to 
drive a spin-flip increases accordingly and broadens the resonance.  
A microwave-power-dominated resonance would follow a Lorentzian  
line shape. On the other hand, if the power is small enough, the 
magnetic-field jitter dominates, the spin-flip probability drops below 
50% and the line shape changes from a Lorentzian to a Gaussian dis-
tribution. For the described resonance, a Gaussian function is used:

P A(Γ) = e ,
(5)

σ
−

(Γ−Γ )

2

stat
2

2

with A being the amplitude, Γ the irradiated Larmor frequency divided 
by the measured cyclotron frequency, Γstat the centre of the resonance 
and σ the standard deviation of the normally distributed data. Using a 
maximum-likelihood fitting method, which uses the unbinned dataset 
of Γ ratios, we extract the parameters of the resonance. It has an ampli-
tude of A = 29(4)% and a full width at half maximum of 5.6(3) × 10−10. 
Owing to the low statistics, a Lorentzian fit results in a rather similar 
likelihood, but because the resonance width is consistent with the 
expected jitter based on the PnA phase stability, this is unlikely to be 
the case. Further, the Lorentzian fit would give a smaller uncertainty on 
the resonance centre. Using the Gaussian shape is thus the conservative 
approach in the extraction of Γstat and its uncertainty. In Extended Data 
Fig. 2, the likelihood surfaces of the maximum-likelihood fit are shown. 
They show the maximum-likelihood planes in the three-dimensional 
parameter space spanned by the free parameters Γstat, σ and A.

Systematic effects
Of all the systematic effects, three dominate the uncertainty/correction. 
The largest shift is the image-charge shift. It is calculated according to 
ref. 55 and amounts to a relative shift of 1.50(8) × 10−10. Here the error 
is 5% of the total value, following ref. 55.



The systematic effect with the largest uncertainty on Γ0 arises from 
the axial frequency fit. The axial resonator causes a frequency pushing 
depending on the relative frequency difference of the particle and the 
resonator. This is accounted for in the fit function, but because the 
frequency of the resonator cannot be measured more accurately than 
a couple of hertz, the resulting uncertainty in the line shape of the axial 
dip cannot be neglected. With a resonator-frequency uncertainty of 
around 2 Hz, the fitted axial frequency changes by about 20 mHz. This 
translates to a 2.0 × 10−11 relative uncertainty on Γ0.

The relativistic correction owing to the mass increase on a cyclotron 
radius of 12.8(13) μm is 2.4(5) × 10−11 (ref. 59). Here we assume an error 
of 10% on the cyclotron radius during PnA. This was also confirmed 
by measuring a resonance with 161 cycles, resulting in 18 spin-flips at 
a much higher cyclotron radius (102(10) μm). Owing to the stronger 
mass increase, this is shifted by roughly 1.6 ppb and is in agreement 
with the expected shift (see Extended Data Fig. 3). This resonance also 
tests for hypothetical systematic effects from the unwrapping, as—in 
this dataset—the longest PnA evolution time is set to 10.2 s, nearly twice 
as long as in the main resonance.

Owing to the exceptionally harmonic trapping field in our precision 
trap and a good magnetic homogeneity, the residual shift of the result 
from higher-order coefficients in the electromagnetic potential can be 
limited to less than 1 ppt.

Another uncertainty arises from the less frequent/less precise meas-
urement of the magnetron frequency. This is only measured every 
several tens of cycles, as its influence on the free-space cyclotron fre-
quency is small. Conservatively, we assume a maximum error of 0.3 Hz, 
which results in a relative uncertainty of 3.8 × 10−12. An extensive table 
of the different systematic effects is given in the Extended Data Table 1.

Mass measurement
To exclude the AME value of the neutral 118Sn isotope as an error source 
to the g factor, we performed a direct mass measurement. We trapped a 
hydrogen-like 118Sn49+ ion along with a hydrogen-like 12C5+ ion. Both have 
a relatively similar q/m value, which results in suppressed systematic 
effects in the measurement. The axial frequencies are separated by 
roughly 820 Hz for the same electric potential in the precision trap. To 
determine the mass, we measure the cyclotron frequency ratio (CFR), 
which allows to extract the mass ratio without precise knowledge of 
the magnetic field:
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To determine the mass, we used two measurement methods with 
partially different systematic effects to cross-check the result. A sketch 
of the measurement schemes in shown in Extended Data Fig. 4. In both 
methods, we measure the ions in an interleaved manner, transporting 
each particle subsequently into the precision trap, while storing the 
other in a neighbouring section. In the main method, we use the PnA 
scheme to determine the modified cyclotron frequency without any 
line-shape uncertainty. Atypically, we perform this measurement with 
one particle on resonance and the other 820 Hz apart. That way, we can 
apply the same voltages to the electrodes and effects resulting from a 
shifted potential/ion position are avoided. For this, we put the carbon 
ion in resonance; as a result of lower charge, this couples less to the 
detector system. It would be virtually impossible to detect its image  
currents when detuned by that amount. But because of the stronger 
coupling in hydrogen-like tin, this is still detectable even 820 Hz 
detuned, allowing to measure the motional frequencies.

In the second method, we change the electrostatic potential to tune 
each axial frequency into resonance with the detector. We use sideband 
coupling, also known as a ‘double-dip’ measurement, to measure the 
modified cyclotron frequencies of each particle. To move each particle 
on resonance, the axial potential is changed by roughly 150 mV out of 

the initial V ≈ −59 V. As possible patch potentials on the electrodes are 
not necessarily symmetric, the trap centre might shift slightly owing 
to the different voltages. Combined with a magnetic-field gradient 
B1 = 2.64(3) mT m−1, the measured frequency ratio could be systemati-
cally shifted because of this possible misalignment.

Another possible systematic shift arises from the different line 
shapes of the ions on the detector. The dip width of hydrogen-like 
tin and hydrogen-like carbon differs by about a factor of ten. Thus, 
effects owing to an erroneous input parameter to the fitting model of 
the ‘double dip’ could result in a systematic effect, as each ion would 
be affected differently. In the PnA method, the modified cyclotron fre-
quency is determined independent of the detector line shape, therefore 
removing the connected systematic uncertainties. Owing to the better 
understanding of the systematic effects in the PnA method, we use the 
‘double-dip’ measurement solely as a cross-check of the measured 
mass. When considering all systematic effects and uncertainties, this 
agrees with the PnA measurement.

Note that, here, only five frequency ratios have been collected in the 
phase-sensitive measurement. Therefore, we conservatively use the 
standard deviation as our statistical uncertainty and not the standard 
deviation of the mean.

Correcting the measurement for relativistic effects and the image- 
charge shift, we get a final value for the mass ratio:

m
m
( Sn )

( C )
= 9.8251510645(39) (27) . (7)

118 49+

12 5+ stat sys

The two brackets represent the statistical and systematic uncertain-
ties, respectively. The mass of the 12C5+ ion can be expressed in relation 
to the neutral carbon atom as unit of mass after accounting for the 
missing electrons and binding energies. This gives a mass value for the 
12C5+ ion of 11.99725768029217(43)(8) u (refs. 28,31). The brackets are  
the uncertainty of the binding energies and the electron-mass uncer-
tainty, respectively. As the total uncertainty is less than 0.01 ppt, 
its influence on the resulting hydrogen-like tin mass can be safely 
neglected. From this, we can infer a value for the atomic mass of the 
hydrogen-like tin-118 ion:

m( Sn ) = 117.874869069(47) (32) u. (8)118 49+
stat sys

The first bracket is the statistical uncertainty and the second bracket 
is the systematic uncertainty, which is dominated by the relativistic 
effect.

Binding energies and neutral mass
The AME2020 value for the mass of neutral 118Sn is 117.90160663(54) u,  
which has an uncertainty of 466 eV/c2 (u = 9.3149410242(28) ×  
108 eV/c2). With the measured mass of 118Sn49+, we can improve the accu-
racy of the mass of the neutral atom through

m m m E c( Sn) = ( Sn ) + 49 − ∆ / . (9)118 118 49+
e

2

Here me = 0.000548579909070(16) u is the electron rest mass31. ΔE is 
the energy required to ionize the 49 electrons from a neutral Sn atom 
and is theoretically calculated to be 132,746(5) eV. The final result is 
m(118Sn) = 117.901606974(56)(5) u, which is a factor of 9.5 more accurate 
than the previous best value.

The value ΔE is derived from the electron-binding-energy difference 
between neutral Sn and hydrogen-like Sn49+. As the electron-binding 
energy of Sn49+ is known to be 35,192.501(11) eV (ref. 22), we only need to 
calculate the electron-binding energy of neutral tin. This is performed 
with an ab initio, fully relativistic, multiconfiguration Dirac–Hartree–
Fock (MCDHF) together with a relativistic configuration interaction 
(RCI) method60–62 implemented in the GRASP2018 code62. However, 
because the binding energy of the four outermost electrons of Sn has 
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been experimentally determined to be 93.22(4) eV (ref. 28), the bind-
ing energy of the ground state of Pd-like Sn4+ ([Kr]4d10 1S0) is calculated 
instead. We note that the ionization potential for the fifth electron is 
also known experimentally. However, the ground state of Sn5+ is an 
open-shell configuration with a total angular momentum of 5/2. Thus, 
it requires a much larger basis set and amount of computational power 
to achieve the same accuracy as for the closed-shell ion Sn4+.

Within the MCDHF scheme, the many-electron atomic-state function 
is constructed as a linear combination of configuration state functions 
(CSFs) with common total angular momentum ( J), magnetic (M) and 
parity (P) quantum numbers: ∣ ∣∑PJM c γ PJMΓ � = �k k k . The CSFs |γkPJM⟩ 
are given as jj-coupled Slater determinants of one-electron orbitals 
and γk summarizes all the parameters needed to fully define the CSF, 
that is, the orbital occupation and coupling of single-electron angular 
momenta. Γ collectively denotes all the γk included in the representa-
tion of the atomic-state function. The mixing coefficients ck and the 
radial orbital wavefunctions are obtained by solving the MCDHF equa-
tions self-consistently60,61, including the Dirac–Coulomb Hamiltonian. 
After that, the RCI method is used to calculate the contributions from 
mass shift, transverse photon interactions and QED effects.

We start with a Dirac–Hartree–Fock (DHF) calculation, in which 
only the ground-state configuration is considered. This gives a bind-
ing energy of 167,973.14 eV, with a −4.42-eV correction from the finite 
nuclear size effect. Further calculation with RCI adds contributions 
of −0.57 eV from mass shift, −120.34 eV from frequency-independent 
transverse photon interactions (or Breit interactions), 1.16 eV from 
frequency-dependent transverse photon interactions and −79.08 eV 
from QED terms. To derive the electron correlation energy, the size 
of the CSF basis set is gradually expanded through single and double 
(SD) excitation of electrons from the ground-state configuration to 
high-lying virtual orbitals. This allows us to monitor the convergence 
of the correlation energy by adding and optimizing virtual orbitals 
layer by layer up to n = 10 (n is the principal quantum number), with 
all orbital angular momenta ranging from 0 to n − 1 being included.

Six terms may lead the error bar: the uncertainty in the nuclear 
parameters, the finite basis set, the uncounted higher-order electron 
correlations, the insufficient basis functions, the inaccurate estima-
tions for QED corrections and the uncalculated QED effect to the mass 
shift. The uncertainty in the nuclear radius gives a 0.06-eV uncertainty 
to the corrections in the finite nuclear size effect. To exclude the error 
caused by the finite basis set, we extrapolate our calculated value to 
n = ∞. This results in a SD correlation energy of 67.26(23) eV for the 
ground state of Sn4+. As this analysis is performed under the RCI calcu-
lation, the contribution from Breit interactions is fully accounted for. 
The frequency-dependent transverse photon interaction cannot be 
included in the multiconfiguration calculations of GRASP2018, thus its 
uncertainty will be accounted for later together with other untreated 
minor effects when deriving the systematic errors. The relativistic 
mass-shift operator implemented in the GRASP2018 code is accurate 
to the order of (me/M)(αZ)4mec2 (M is the mass of the nucleus). There-
fore, it bears an uncertainty of 0.02 eV for the mass-shift correction.

In the GRASP2018 code, the QED corrections are estimated by means 
of a screened-hydrogenic approximation62. This correction is domi-
nated by inner-shell electrons. With an absolute value of 79.08 eV for 
Sn4+, one already has a QED correction of 76.64 eV for Be-like Sn46+. 
Fortunately, the QED effect for a nearby element, Be-like Xe50+, has been 
known to a sub-eV accuracy through ab initio QED calculations63,64. This 
allows us to infer the accuracy of our QED calculations: with a calculated 
value of 99.03 eV for Xe50+, it is 0.85 eV larger than its ab initio result. 
Assuming the same relative deviation, we derive a QED correction of 
78.40(68) eV for Sn4+. However, for such an ion, the many-electron 
QED effects are difficult to evaluate accurately. In the following, we 
will effectively include these contributions into the systematic errors.

The systematic errors caused by the uncalculated effects can be 
estimated from the ionization potentials of the outermost electrons 

of Sn. For example, the ionization potential of the 5s electron in Sn3+ 
([Kr]4d105s 2S1/2) is determined to be 40.74(4) eV by experiment28. With 
the calculated binding energy of Sn3+ under a similar SD excitation 
scheme, we derive an ionization potential of 40.07 eV, which is 0.67 eV 
smaller than the experimental value. This deviation mainly originated 
from the high-order correlation effects, many-electron QED effects, 
insufficient basis functions and frequency-dependent transverse pho-
ton interactions. Nevertheless, this deviation becomes smaller for 
highly charged ions45. Therefore, one could conservatively assume that 
the corrections to the ionization potentials decrease linearly to 0.10 eV 
for Cu-like Sn21+ (because we have found that the deviation is already 
below 0.10 eV for the ionization potential of Cu-like Kr6+). For the ioni-
zation potentials of ions throughout Sn21+ to Sn48+, we conservatively 
assume that they all have a correction of 0.10 eV. In total, the contribu-
tion from all unaccounted for terms is in the range 0–9.73 eV. To cover 
this whole range, we can add a correction of 4.86 eV to the total binding 
energy of Sn4+ and simultaneously assume a systematic error of 4.86 eV.

Finally, we arrive at a total binding energy of 167,847(5) eV for the 
ground state of Sn4+. The different contributions and their uncertainties 
are summarized in Extended Data Table 2. This gives a binding-energy 
difference of 132,748(5) eV between neutral Sn and hydrogen-like Sn49+. 
Combining the measured mass for Sn49+, we obtain

m( Sn) = 117.901606974(56) (5) u (10)118
exp theo

for the neutral tin-118 atom. The first bracket is the measurement 
uncertainty and the second is the uncertainty of the electron-binding 
energies.

Theory of the bound-electron g factor
The leading g-factor contribution was first calculated in ref. 34. It is 
based on the approximation of an infinitely small and infinitely heavy 
nucleus. Therefore, corrections owing to the finite nuclear size and 
mass need to be taken into account. Furthermore, QED corrections 
contribute to the total g factor, just as in the case of the free electron. 
However, QED corrections in the case of the bound electron differ from 
the free-electron case. In Fig. 4, we highlight especially QED binding cor-
rections, that is, the difference between QED corrections for bound and 
free electrons. In the following, we discuss all relevant contributions.

Free-electron contributions. Contributions to the free-electron g 
factor were taken from ref. 31, namely, the one-loop to five-loop QED 
contributions. Hadronic as well as electroweak contributions as given 
in ref. 31 are too small to be relevant in this work.

Nuclear corrections. The finite size (FS) correction to the g factor as 
given in Extended Data Table 3 was calculated for the two-parameter 
Fermi distribution using formulas and tabulated parameters from 
ref. 65. The first uncertainty corresponds to the nuclear root mean 
square charge radius as given in ref. 66. Note that the uncertainty cor-
responding to the number of digits specified for relevant parameters 
in ref. 65 is much smaller than the radius uncertainty, 7 × 10−10 ≪ 2 × 10−8. 
The second uncertainty of the FS correction from the table is a combi-
nation of the uncertainty owing to the nuclear polarization, deforma-
tion and susceptibility, together with a conservative estimate of the 
nuclear model dependence. The model dependence is the leading 
uncertainty and expresses the difference of the FS corrections for the 
two-parameter Fermi and the homogeneously charged sphere model, 
again following ref. 65. A direct calculation of the FS correction for the 
sphere model using semianalytic wavefunctions was consistent with 
the result from ref. 65.

Calculating the FS correction analytically using formulas from 
refs. 67,68, we find a disagreement with numerical results correspond-
ing to three times the nuclear radius uncertainty for both the sphere and 
Fermi models. This suggests that further, higher-order contributions 



need to be determined for the analytic approach to be accurate at high 
Z, such as Z = 50.

Finally, we also calculated the FS correction using the GRASP code62. 
In the absence of results for 118Sn49+ in refs. 69,70, the nuclear polariza-
tion correction was estimated as zero following ref. 65, with an uncer-
tainty estimated as 50% of the nuclear model uncertainty of the FS 
correction. Our estimates for the extra uncertainty owing to nuclear 
deformation71 and nuclear susceptibility72 corrections are negligible.

For recoil calculations, we used the mass value presented in this 
paper. The leading recoil term of the first order in the mass ratio was 
calculated to all orders in Zα using formulas and tabulated parameters 
in ref. 73. Recoil corrections of higher order in m

M
 were calculated to  

the leading order in Zα but exactly in the mass ratio74–76. We find the 
result up to ( )m

M

2
 






O  (refs. 77,78) to deviate by less than 1 × 10−14 from  

the all-order result.
Radiative recoil corrections were calculated using formulas from 

refs. 1,74,76–78. So far, recoil corrections to the g factor have been 
derived only for the model of a point-like nucleus.

One-loop QED. Binding corrections at the one-loop level have been cal-
culated to all orders in Zα. For the one-loop self-energy correction, we 
used the result from ref. 36, which is based on the model of a point-like 
nucleus. We calculated the Uehling part of the electric-loop vacuum  
polarization diagram for the model of a point-like nucleus both numeri-
cally, using the Uehling potential from ref. 79 and the bound-electron 
wavefunction perturbed by a constant external magnetic field as 
derived in ref. 80, as well as analytically using formulas from ref. 81, 
with both results in excellent agreement. Values for the Wichmann–
Kroll electric-loop vacuum polarization correction as well as the 
magnetic-loop vacuum polarization correction were taken from ref. 1 
and were calculated for extended nuclei in that work.

Combined QED-FS corrections. Bound-electron QED corrections, 
when carried out for the model of an extended nucleus, give slightly 
different results compared with point-nucleus calculations. Therefore, 
for an accurate theoretical description of the bound-electron g fac-
tor, we have to take into account the correction to QED contributions  
owing to the finite nuclear size (QED-FS corrections). As mentioned 
in the previous section, the Wichmann–Kroll part of the electric-loop 
vacuum polarization as well as the magnetic-loop vacuum polarization 
corrections already include the QED-FS corrections. We calculated the 
FS corrections to the one-loop self-energy correction and the Uehling 
contribution to the electric-loop vacuum polarization correction for 
the two-parameter Fermi distribution of the nuclear charge using for-
mulas, and tabulated parameters for Z = 50, as given in ref. 65. An older 
calculation of the FS correction to the one-loop self-energy contribu-
tion based on the spherical shell model of the nucleus from ref. 36 
differs by 2.1 × 10−9 from the result for the Fermi distribution. Using 
semianalytic wavefunctions for the homogeneous sphere model of 
the nucleus, we calculated the FS correction to the Uehling part of the 
electric-loop vacuum polarization correction82. Our result differs by 
5 × 10−10 from the result for the Fermi distribution. We therefore assign 
(nuclear model) uncertainties of 2.1 × 10−9 to the one-loop self-energy 
FS correction, as well as 5 × 10−10 to the FS correction to the Uehling part 
of the electric-loop vacuum polarization correction.

Two-loop and higher QED diagrams. We calculated binding correc-
tions to two-to-five-loop QED diagrams of order (Zα)2 following ref. 83. 
See also refs. 74,77,78 for earlier derivations of these binding correc-
tions. (Results given in the lines ‘2-loop QED, (Zα)2’ and ‘≥3-loop QED, 
binding’ in Extended Data Table 3.)

Two-loop binding corrections of order (Zα)4 were derived in 
refs. 40,84. All-order calculations in Zα were carried out in ref. 37 for 
a subset of two-loop diagrams, namely those diagrams with at least 
one vacuum polarization loop. However, magnetic-loop vacuum 

polarization diagrams were not considered in that work. In ref. 37, 
results are given explicitly for the contribution of orders (Zα)5 and 
higher. We give this result in the line ‘(Zα)5+ S(VP)E, SEVP, VPVP’. For the 
remaining two-loop Feynman diagrams, QED corrections of order (Zα)5 
were calculated in ref. 40. In ref. 40, a relative uncertainty of 13% is men-
tioned, owing to uncalculated Feynman diagrams contributing to order 
(Zα)5. This corresponds to our uncertainty in the line (Zα)5 in Extended 
Data Table 3. The uncertainty in the line ‘(Zα)5+ S(VP)E, SEVP, VPVP’ 
corresponds to higher-order corrections of order (Zα)6+ of two-loop 
Feynman diagrams with one vacuum polarization magnetic loop, by 
interpolating between tabulated results from ref. 39 for nearby Z.

The uncertainties owing to uncalculated Feynman diagrams with 
two self-energy loops of order (Zα)6+ were estimated using the methods 
from refs. 40,84, with the larger of the two estimates chosen as the 
uncertainty for these contributions in Extended Data Table 3. Further-
more, uncalculated binding corrections of Zα(( ) )4+O  to Feynman dia-
grams with three and more loops were estimated by adapting the 
method in ref. 84 (uncertainty in the line ‘≥3-loop QED, binding’).

As can be seen from Extended Data Table 3, the total uncertainty 
of the theoretical g-factor value is dominated by uncalculated higher 
order in Zα two-loop QED contributions. Calculations to improve the 
accuracy of two-loop corrections are underway38,39. To improve the 
theoretical accuracy, an all-order (in Zα) calculation of the two-loop 
QED correction is required. Such calculations are underway38,39. The 
most difficult part of the calculation is the two-loop self-energy, which 
is split into several parts according to the degree of their ultraviolet 
divergence, which are known as the loop-after-loop (LAL) correction 
and the F, M and P terms85.

The F term is the part with overlapping ultraviolet divergences. It can 
be represented by Feynman diagrams with only free-electron propaga-
tors inside the self-energy loops and is evaluated in momentum space, 
thus avoiding any partial-wave expansion.

The M term is the ultraviolet finite part of the two-loop self-energy 
correction with Coulomb Dirac propagators inside the self-energy 
loops. Because the Coulomb Dirac propagator is best known in 
coordinate space, M-term calculations need to be carried out using 
a coordinate representation. Typically, M-term contributions are a 
double infinite sum of partial waves over angular momentum quantum 
numbers, which requires a very large number of partial waves to be 
calculated in practice. The calculation of every partial wave requires 
a multidimensional integration to be carried out numerically.

The P term is the part of the two-loop self-energy correction that 
contains Coulomb Dirac propagators in one part of the Feynman  
diagrams, as well as an ultraviolet divergent subdiagram. This 
requires P-term contributions to be calculated in a mixed coordinate– 
momentum representation, which involves the numerical Fourier 
transforms of the Coulomb Dirac propagators over one of the radial 
arguments. Details can be found in our earlier work38.

Results for the so-called LAL and F-term contributions to two-loop 
self-energy corrections have been obtained, with the uncertainty of the 
LAL correction given in ref. 38 for Z = 50 being 6.5 × 10−9 and the uncer-
tainty of the F-term being orders of magnitude better. The calculation 
of the remaining parts of the two-loop self-energy correction, that is, 
the M and P terms, is continuing. A notable improvement of the total 
theoretical uncertainty compared with the value given in Extended 
Data Table 3 can be anticipated once these calculations are complete.

Muonic and hadronic vacuum polarization. The result for the muonic  
vacuum polarization correction given in Extended Data Table  3  
corresponds to the Uehling part of the electric-loop contribution, 
calculated for the model of a point-like nucleus. Comparing results 
for point-like nuclei with results for extended nuclei from ref. 86, we 
find good agreement between both for low Z. For Z = 70, the result for 
the extended nucleus is only about 50% of the point-nucleus result. 
For even higher Z, the extended nucleus result is much smaller than 
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50% of the point-nucleus result. For Z = 50, we therefore expect the 
muonic vacuum polarization correction for an extended nucleus to be 
larger than 50% of the point-nucleus result and assign a 50% uncertainty  
to the muonic vacuum polarization correction. We also calculated 
the Uehling part of the muonic vacuum polarization correction  
for the sphere model of the nucleus82. Our result of −2.0 × 10−9 is, within 
the specified uncertainty, in agreement with the point-nucleus result 
from Extended Data Table 3.

The hadronic vacuum polarization correction (‘Hadronic Uehling’) 
was estimated following refs. 86,87 as 0.671 and 0.664 times the muonic 
vacuum polarization correction, with both estimates being identical 
to all digits given. We assigned the same uncertainty to the hadronic 
vacuum polarization correction that was used for the muonic vacuum 
polarization correction.

Data availability
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from the corresponding author on reasonable request.

Code availability
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Extended Data Fig. 1 | Γ measurement scheme. The ratio Γ = νL/νc is measured 
with the scheme shown. ν+ is measured most precisely through the PnA method. 
ν− is measured only every couple of cycles, as only moderate precision is required 
for a precise νc measurement. In the PnA method, different evolution times are 

used. The first few are randomized, whereas the last two are always with 5.2-s 
evolution times. The first precisely determines the current νc, which is used to 
guess the νc for the microwave injection with higher accuracy.
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Extended Data Fig. 2 | Likelihood surfaces. The likelihood planes through the optimal parameter set (black circles) are shown. In the Γ0 dimension, the surfaces 
show a circular shape, indicating little to no correlation with the other parameters. Overall, the fit converged correctly to the global maximum-likelihood position.



Extended Data Fig. 3 | Relativistic shift. Two resonances with different cyclotron radii have been measured. One with a cyclotron radius of 12.8(13) μm and the 
other with a cyclotron radius of 102(10) μm. Both resonances are in agreement with the total relativistic shift for a given radius (red line).
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Extended Data Fig. 4 | CFR measurement scheme. Two different measurement 
schemes have been used for the mass determination. In the PnA scheme, each 
ratio has their own axial frequency measurement. The ν+ sideband detection is 
used in the PnA cycles to avoid wrong phase unwrapping. Apart from this, it is not 

used in the CFR evaluation. The sideband CFR method consists of interleaved 
‘double-dip’ measurements, with axial dips in between. As the ions are switched 
every cycle, each axial dip measurement is used for both neighbouring ν+ 
measurements.



Extended Data Table 1 | Experimental results

The fit parameters for the resonance are given, as well as the dominating systematic effects and the dominating uncertainties for the resulting g factor.
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Extended Data Table 2 | Binding energy

Different contributions to the binding energy of Sn4+: DHF0, the DHF energy assuming a point-like nuclear charge; FNS, finite nuclear size effect; Breit, the frequency-independent transverse  
photon interaction; ωTP, the frequency-dependent transverse photon interaction calculated with DHF wavefunctions; MS, the mass shift; QED, the QED estimation based on screened-hydrogenic 
approximation; SDc, the correlations energy arising from single and double electron exchanges; HO, the systematic effect summarizing all other uncounted terms. The values of the DHF0, Breit and 
ωTP terms are dependent on basis. Such a basis dependency is lifted after taking into account all correlation effects. Thus, their uncertainties are effectively accounted for in the uncertainties of  
the SDc and HO terms. All values are shown in units of eV with two decimal digits. However, in the main text, the total binding energy is rounded up to an integer value, that is, 167,847(5) eV.



Extended Data Table 3 | Theoretical g factor

Contributions to the bound-electron ge factor in 118Sn49+. (See refs. 88–99). ‘TW’ refers to results calculated in this work.
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Extended Data Table 4 | Bound-state QED tests

Values for the data points in Fig. 4. (See refs. 100–103). *In this measurement, the pion mass is extracted from the experiment–theory comparison. To account for that in the QED test, the  
theoretical uncertainty is adjusted to the previous literature value of the charged pion mass. †Similarly, this measurement is used to determine the electron mass such that a test of QED can  
only be as accurate as the accuracy of an independent electron-mass measurement. Recently, the electron mass has been confirmed with similar accuracy in HD+ spectroscopy104, allowing to 
(basically) use the full experimental precision for a test of QED. ‡Calculated similar to the 118Sn49+ theory g factor as described in Methods.
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