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Triassic stem caecilian supports 
dissorophoid origin of living amphibians

Ben T. Kligman1,2 ✉, Bryan M. Gee3 ✉, Adam D. Marsh1 ✉, Sterling J. Nesbitt2 ✉, 
Matthew E. Smith1 ✉, William G. Parker1 ✉ & Michelle R. Stocker2 ✉

Living amphibians (Lissamphibia) include frogs and salamanders (Batrachia) and  
the limbless worm-like caecilians (Gymnophiona). The estimated Palaeozoic era 
gymnophionan–batrachian molecular divergence1 suggests a major gap in the record 
of crown lissamphibians prior to their earliest fossil occurrences in the Triassic 
period2–6. Recent studies find a monophyletic Batrachia within dissorophoid 
temnospondyls7–10, but the absence of pre-Jurassic period caecilian fossils11,12 has 
made their relationships to batrachians and affinities to Palaeozoic tetrapods 
controversial1,8,13,14. Here we report the geologically oldest stem caecilian—a crown 
lissamphibian from the Late Triassic epoch of Arizona, USA—extending the caecilian 
record by around 35 million years. These fossils illuminate the tempo and mode of 
early caecilian morphological and functional evolution, demonstrating a delayed 
acquisition of musculoskeletal features associated with fossoriality in living 
caecilians, including the dual jaw closure mechanism15,16, reduced orbits17 and the 
tentacular organ18. The provenance of these fossils suggests a Pangaean equatorial 
origin for caecilians, implying that living caecilian biogeography reflects conserved 
aspects of caecilian function and physiology19, in combination with vicariance 
patterns driven by plate tectonics20. These fossils reveal a combination of features 
that is unique to caecilians alongside features that are shared with batrachian and 
dissorophoid temnospondyls, providing new and compelling evidence supporting a 
single origin of living amphibians within dissorophoid temnospondyls.

Of the nine tetrapod lineages surviving from the Triassic to the present 
day21, caecilians have the most depauperate fossil record, with only 11 
total occurrences22; of these, only Rubricacaecilia monbaroni23 and 
Eocaecilia micropodia11,12 represent unambiguous stem caecilians. 
The estimated Permo–Carboniferous origin of caecilians leaves a gap 
exceeding 70 million years between putative Palaeozoic relatives and 
Eocaecilia1. The absence of a pre-Jurassic caecilian record provides lit-
tle evidence informing the pattern of morphological transformations 
leading to the specialized caecilian body plan, the timing and pattern 
of caecilian origins and diversification, the functional and ecological 
origins of extant caecilians, and caecilian palaeobiogeography. Further-
more, this gap has resulted in longstanding disagreement regarding 
the relationships of living amphibian groups to each other and to other 
tetrapods with multiple mutually exclusive hypotheses proposed8,14. 
With the discovery of Gerobatrachus hottoni7, an early Permian dis-
sorophoid bearing a combination of batrachian and amphibamiform 
features, the monophyly of Batrachia nested within amphibamiform 
dissorophoids reached near-consensus opinion8, demonstrating the 
crucial nature of new fossil evidence to questions of lissamphibian 
origins. Despite the improved understanding of batrachian origins, the 
origins of Lissamphibia remain contentious, now hinging on the rela-
tionships of caecilians to batrachians and Palaeozoic tetrapods1,8,13,14. 

Therefore, consensus on lissamphibian origins can be resolved only 
with the addition of new caecilian fossils filling the morphological gap 
between Eocaecilia and Palaeozoic tetrapods.

Here we approach such consensus by reporting the discovery of a 
new stem caecilian from a multitaxic microvertebrate and macrover-
tebrate bonebed in the Upper Triassic Chinle Formation of Petrified 
Forest National Park (PEFO), Arizona, USA (Extended Data Figs. 1 and 2).  
This material represents the most abundant caecilian-bearing fos-
sil locality known, with at least 76 individuals consisting of isolated 
three-dimensional skeletal elements that we infer to belong to the 
same taxon, including elements from the upper and lower jaws, and 
postcrania (Supplementary Information, section 1).

Systematic palaeontology

Lissamphibia Haeckel, 1866
Gymnophionomorpha Marjanović and Laurin, 2008

Funcusvermis gilmorei gen. et sp. nov.

Etymology. Funcus, Latinized form of the English word funky (funk 
is an upbeat, rhythmic form of dance music); vermis, worm (Latin); 
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in honour of the 1972 song Funky Worm from the album Pleasure by 
the Ohio Players. The species name honours N. Gilmore, collections 
manager at the Academy of Natural Sciences of Drexel University in 
Philadelphia, PA, USA.
Holotype. PEFO 43891, right pseudodentary (Fig. 1 and Extended Data 
Figs. 3 and 4), accessioned at Petrified Forest National Park, Arizona, 
USA.
Paratypes. PEFO 44432, PEFO 45800 and PEFO 46284 (all right pseu-
dodentaries; Fig. 1 and Extended Data Figs. 3 and 4). Additional para-
types are listed in Supplementary Information, section 1.
Referred material. PEFO 46481, left maxillopalatine (Fig. 1 and 
Extended Data Fig. 4); PEFO 46480, left pseudoangular (Fig. 1 and 
Extended Data Fig. 3); PEFO 45810 (postatlantal vertebra), PEFO 43811 

(right femur) (Extended Data Fig. 3). Additional referred specimens are 
listed in Supplementary Information, section 1.
Type locality and horizon. PFV 456, Thunderstorm Ridge, PEFO, Ari-
zona, USA (Extended Data Fig. 2), within the upper Blue Mesa Member, 
Chinle Formation (Late Triassic: Norian); 223.036 ± 0.059 Ma (ref. 24 to 
218.08 ± 0.037 Ma (ref. 25), or ~221 Ma (ref. 26); Adamanian estimated 
holochron27).
Diagnosis. A gymnophionomorph diagnosed by the following unique 
combination of features found in the holotype and paratype and 
referred specimens (asterisk denotes autapomorphies): symphyseal 
foramen* and notch subdividing the mandibular symphysis into medial 
and lateral processes*; at least 50 and at least 22 tooth pedicels in the 
dentary and adsymphyseal tooth rows, respectively. Further diagnosed 
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Fig. 1 | Digital renderings of holotype, paratype, and referred specimens of 
F. gilmorei. a–c, Composite reconstruction of craniomandibular elements in 
lateral (a), medial (b) and dorsal (c) views. d,e, Holotype right pseudodentary 
(PEFO 43891) in medial and ventral views. f, Paratype right pseudodentary 
(PEFO 46284) in medial view. g–i, Referred left maxillopalatine (PEFO 46481) in 
medial (g), ventral (h) and dorsal (i) views. j,k, Referred left pseudoangular 
(PEFO 46480) in medial and lateral views. l–o, Paratype right pseudodentary 
(PEFO 45800) in medial (l; expanded view in m) and dorsal (n; expanded view in 
o) views. abcnV, alveolar branch cranial nerve V; adtr, adsymphyseal tooth row; 
af, adductor fossa; att, attachment tissue; bp, basal pore; cnV, cranial nerve V 

insertions; cp, coronoid process; dpaf, dorsal pseudoangular facet; dpdf, 
dorsal pseudodentary facet; dtr, dentary tooth row; dz, dividing zone; ebcnV, 
external branch cranial nerve V; fr, facial ramus; hp, hamate process; imf, 
intramandibular foramen; jas, jaw articulation surface; lcm, lateral choanal 
margin; lecnV, lateral exit cranial nerve V; mtr, maxillary tooth row; om, orbital 
margin; pap, posterior pseudoangular process; pc, pulp cavity; pd, pedicel; 
pgp, preglenoid process; ptr, palatal tooth row; rtl, replacement tooth locus; sf, 
symphyseal foramen; sp, symphyseal prongs; vpaf, ventral pseudoangular 
facet; vpdf, ventral pseudodentary facet. Arrows indicate anterior direction.
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by features found in referred specimens: co-ossified maxilla and pala-
tine (compound maxillopalatine); palatal dentition of maxillopalatine 
terminated anteriorly by the lateral choanal margin*; maxillopala-
tine without osteological correlate of the tentacular organ*; absence 
of internal and retroarticular processes of the pseudoangular*; jaw 
articulation surface of pseudoangular formed by a subcircular flat 
pad; pseudoangular bearing a dorsally exposed adductor chamber 
occupying more than 30% of pseudoangular length*; three cranial nerve 
V insertions in pseudoangular*; femur present. Differential diagnosis 
in Supplementary Information, section 2.

Phylogenetic relationships
We tested the relationships of Funcusvermis gilmorei in a modified 
dataset6 of 63 terminal taxa including stem tetrapods, stem and crown 
amniotes, and temnospondyl amphibians including stereospondyls 
and lissamphibians (Methods). Using both maximum parsimony and 
Bayesian inference optimality criteria (Methods), our phylogenetic 
analyses robustly support Funcusvermis as the earliest-diverging 
gymnophionomorph, sister taxon to the clade including Eocaecilia, 
Rubricacaecilia and Gymnophiona. All analyses unambiguously 
recovered a monophyletic Lissamphibia nested within amphibami-
form dissorophoids, with Gerobatrachus and Doleserpeton annectens 
as successive outgroups to Lissamphibia (Fig. 3 and Extended Data 
Figs. 5–7). Our parsimony analysis recovered Lissamphibia consisting 
of a polytomous trichotomy of Gymnophionomorpha, Batrachia and 
Albanerpetontidae (Extended Data Fig. 5), whereas our Bayesian analy-
sis recovered Lissamphibia consisting of a sister group relationship 
between Batrachia and a clade comprised of a sister group relationship 
between Gymnophionomorpha and Albanerpetontidae (Extended 
Data Fig. 7). The varying position of albanerpetontids in these and 
other recent analyses28 highlights the ghost lineage from 150 million 
years ago (Ma) preceding their earliest occurrences in the Middle Juras-
sic epoch29 as an outstanding gap obscuring conclusive resolution of 
relationships amongst major lissamphibian lineages. These results 

suggest that the caecilian-like anatomy in Chinlestegophis jenkinsi  
(a Late Triassic diminutive burrowing stereospondyl also found in the 
Chinle Formation14) is convergent with that of gymnophionomorphs 
such as Eocaecilia because of adaptations facilitating fossoriality (fur-
ther discussed in Supplementary Information, section 3 and Extended 
Data Figs. 8–10).

Origins of the lissamphibian jaw apparatus
Funcusvermis indicates that many features of the lissamphibian man-
dibular ramus appeared initially in amphibamiform dissorophoids 
and were later lost or modified in batrachians, albanerpetontids and 
gymnophionomorphs (Fig. 3). All dentition in Funcusvermis (Fig. 1) is 
pedicellate—the oldest known example of this distinctive tooth form 
in crown Lissamphibia—reinforcing hypotheses that pedicellate teeth 
are derived in amphibamiform dissorophoids10, conserved in gym-
nophionomorphs and batrachians30, and lost in albanerpetontids29.  
The rod-like pseudodentary of Funcusvermis resembles that of Eocae-
cilia12 and the dentary of Doleserpeton9 in the presence of tightly packed 
homodont tooth pedicels in parallel labial (dentary) and lingual (adsym-
physeal) rows. The symphyseal foramen, of similar form and position to 
those of albanerpetontids31, suggests that the Meckel’s cartilage never 
ossified at the mandibular symphysis, probably a conservation of the 
ancestral condition of temnospondyls32, and differing from the ossified 
condition of this element that forms a closed mandibular symphysis 
in batrachians and other gymnophionomorphs. As in Doleserpeton9, a 
vertical notch bisects the mandibular symphysis between the anterior 
termini of the dentary and adsymphyseal tooth rows forming medial 
and lateral processes in Funcusvermis (Fig. 1 and Extended Data Fig. 3); 
these are similar to the more pronounced symphyseal prongs of alba-
nerpetontids (for example, in refs. 28,29,31), indicating that this feature 
may be ancestral to Lissamphibia and later lost in Batrachia and the 
common ancestor of Eocaecilia and Gymnophiona.

In Funcusvermis, the presence of 22 or more teeth in the adsymphyseal 
tooth row is similar to the more than 20 teeth reported in Eocaecilia12, 
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Fig. 2 | Spatiotemporal history of Lissamphibia and Gymnophionomorpha. 
a, Biogeographic history of Gymnophionomorpha and Triassic batrachians; 
yellow indicates living caecilian distribution. b, Time-calibrated topology of 
lissamphibian relationships showing major divergences (topology derived 
from refs. 6,23,38). Estimated molecular divergence dates for major divergences 
are shown as blue circles (Gymnophionomopha–Batrachia divergence  
without Gerobatrachus calibration; Supplementary Table 4), pink circles 

(Gymnophionomopha–Batrachia divergence with Gerobatrachus calibration; 
Supplementary Table 5), yellow circles (Salientia–Caudata divergence; 
Supplementary Table 6) and green circles (Rhinatrematidae–Stegokrotaphia 
divergence; Supplementary Table 7); coloured vertical bars show the average 
for each set of divergence estimates. Numbered white and orange circles 
correspond to occurrences in Supplementary Tables 2 and 3, respectively.  
Crosses indicate extinct taxa.
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suggesting a transformation of the condition exhibited in Doleserpeton 
(5–7 teeth9) through distal expansion via addition of new teeth. In living 
caecilians, the lingual tooth row forms embryonically on a distinct anlage 
that later ossifies to the medial surface of the dentary forming the medial 
part of the mandibular symphysis and the lingual tooth row of adult 
caecilians33. Recent identifications of a dorsally facing tooth-bearing 
adsymphyseal (equivalent to the parasymphyseal (plate)) medial to 
(and separate from) the dentary at the mandibular symphysis in early 
branching tetrapods34,35, juvenile temnospondyls36 and dissorophoid 
temnospondyls37 suggests that in taxa that appear to bear a lingual tooth 
row at the mandibular symphysis of the ‘dentary’ (for example, Doleser-
peton, Funcusvermis and other gymnophionomorphs), the ‘dentary’ is 
actually composed of a tooth-bearing adsymphyseal (forming the lingual 
tooth row) co-ossified lingually to the dentary, and not a coronoid as 
previously thought14,33 (Fig. 3 and Extended Data Fig. 8; see Supplemen-
tary Information, section 2 for discussion of adsymphyseal homology).

The pseudoangular of Funcusvermis is highly similar to the postden-
tary morphology of dissorophoids exemplified by the amphibamid 
Doleserpeton9 (Fig. 3 and Extended Data Fig. 3); as in Doleserpeton, 
batrachians, and albanerpetontids, Funcusvermis lacks retroarticu-
lar and internal processes, suggesting their initial acquisition in the 
common ancestor of Eocaecilia and Gymnophiona. The absence of 
the retroarticular process and presence of a dorsally facing adductor 
fossa (insertion site of the m. adductor mandibulae complex (mAM)) 
occupying more than 30% of pseudoangular length (Supplementary 
Table 1) in the pseudoangular of Funcusvermis (Fig. 1) illuminate a 
major transformation from the ancestral lissamphibian condition to 
the unique musculoskeletal architecture of living gymnophionans. Jaw 
closure driven primarily by the mAM is ancestral for tetrapods, and is 
retained in batrachians, albanerpetontids and Funcusvermis, differing 
from the condition of all other gymnophionomorphs, which exhibit 
the distinctive caecilian dual jaw closure mechanism15 (DJCM). The 
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Doleserpeton annectens9, Eocaecilia micropodia12 (Illustration adapted from 
ref. 12, with the permission of Museum of Comparative Zoology, Harvard 
University), Epicrionops petersi12, Funcusvermis gilmorei, Rana, Salamandra 
and Y. peretti28, excepting Greererpeton burkemorani35 (dorsal only) and Cacops 
aspidephorus37 (medial only). All scale bars are 2 mm except for G. burkemorani 
(2 cm) and C. aspidephorus (2 cm). Brackets on the branches indicate stem 
groups, whereas circles indicate node groups. Crosses indicate extinct taxa.
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DJCM is driven primarily by the hyobranchial muscle m. interhyoidus 
posterior (mIHP), and secondarily by the mAM; the mIHP inserts onto 
the ventral side of the retroarticular process and extends posteroven-
trally, acting as a first-order lever causing the anterior component of 
the lower jaw to pivot upwards with respect to the quadrate during 
jaw closure15. Acquisition of DJCM is hypothesized to be an adapta-
tion for fossoriality: the mIHP contribution to bite force allows for 
reduction of the mAM and therefore compaction of the skull roof15,16, 
a suite of transformations shown to be acquired by the common 
ancestor of Eocaecilia and Gymnophiona. Although the skull roof of 
Funcusvermis is unknown, absence of the DJCM and our phylogenetic 
results suggest that it probably retained the plesiomorphic condi-
tion of cheek emargination (gymnokrotaphy, as in Gerobatrachus, 
batrachians, albanerpetontids and presumably the common ances-
tor of Lissamphibia) to accommodate the mAM, rather than a closed 
skull roof with large interpterygoid vacuities13 (stegokrotaphy, as in  
dissorophoids).

The obtuse angle of the orbital margin in the Funcusvermis maxil-
lopalatine (Fig. 1) may suggest the presence of large orbits as in dis-
sorophoids, batrachians and albanerpetontids (differing from the 
reduced orbits of other gymnophionomorphs); however, the incom-
plete orbital margin in the single maxillopalatine specimen (PEFO 
46481) prohibits conclusive assessment of this feature. The orbital 
margin of Funcusvermis lacks a tentacular fossa or aperture (osteo-
logical correlates for the chemosensory tentacle organ18), suggesting 
its absence in early gymnophionomorphs and later derivation by the 
common ancestor of Eocaecilia and Gymnophiona12. The presence of 
a co-ossified maxilla and palatine (maxillopalatine) in Funcusvermis 
is shared with gymnophionans and differs from that of amphibami-
forms, albanerpetontids and batrachians, evidence of maxillopala-
tine consolidation early in gymnophionomorph evolution; however, 
these bones are possibly separate in Eocaecilia12 and Rubricacaecilia23.  
Ventrally, the maxillopalatine of Funcusvermis bears parallel maxil-
lary and palatal rows of tightly packed pedicellate teeth of similar size 
to those in the pseudodentary, seemingly intermediate between the 
condition of these dentitions in Doleserpeton and Eocaecilia, sharing 
an anterior truncation of the palatal tooth row by the internal nares 
with the former, and mesiodistal distal extension (through addition of 
new teeth) of the palatal row with the latter. A comprehensive compara-
tive description of the Funcusvermis skull and postcranial elements is 
included in Supplementary Information, section 2.

Evolution of caecilian fossoriality
Given our phylogenetic results, the ecological habits of Funcusvermis 
may be transitional between terrestrial amphibamid dissorophoids 
and fossorial gymnophionans. The compound bones in the compact 
skull of fossorial gymnophionans are thought to withstand the forces 
associated with head-first burrowing17, and at least some are present in 
Funcusvermis (for example, maxillopalatine). Small pits covering the lat-
eral surfaces of the pseudodentary and maxillopalatine in Funcusvermis 
are also found in Eocaecilia12, Rubricacaecilia23 and gymnophionans38. 
External structure and internal microanatomy of these pits revealed by 
osteohistological sectioning of a Funcusvermis pseudodentary (PEFO 
44432) show a marked resemblance to those of studied living caecil-
ians (Extended Data Fig. 4), in which these pits act as anchor sites for 
collagen networks forming a tight skin-to-bone attachment and house 
glands that produce a lubricating mucus secretion, functions thought 
to aid in subterranean burrowing39. The dorsally flattened neural arch of 
the Funcusvermis postatlantal pleurocentrum (PEFO 45810; Extended 
Data Fig. 3) resembles those of Rubricacaecilia23, suggesting the acquisi-
tion of a tubular trunk, a feature crucial for underground locomotion 
in living caecilians40. These morphologies in Funcusvermis illustrate 
acquisition (by at least the Late Triassic) of some features that now 
facilitate fossoriality in living caecilians, later followed by acquisition 

of the DJCM and tentacular organ in Eocaecilia, and finally loss of the 
appendicular skeleton in gymnophionans.

Biogeography of early caecilians
The spatiotemporal occurrence of Funcusvermis empirically establishes 
lissamphibian geographic origins on the Pangaean supercontinent 
before its fragmentation20, and the similar palaeogeography of Eocae-
cilia12 to Funcusvermis suggests the non-gymnophionan gymnophiono-
morph origin may lie in the early Mesozoic era of equatorial central 
Pangaea. The occurrence of Rubricacaecilia in the Early Cretaceous 
epoch of equatorial Gondwana may further support this hypothesis, 
suggesting non-gymnophionan gymnophionomorph distribution 
across both Laurasian and Gondwanan components of Pangaea in the 
early Mesozoic prior to its breakup23. The equatorial provenance of Fun-
cusvermis adds to an exclusively equatorial pattern of gymnophiono-
morph distribution: all fossil occurrences fall between a minimum of 
approximately 16° N and 27° S (Fig. 2 and Supplementary Table 2), and 
living caecilians are restricted to equatorial latitudes19 between 27° N 
and 34° S. The tropical distribution of extant gymnophionans is notably 
disjunct from non-gymnophionan gymnophionomorph fossil occur-
rences in present-day western North America and Morocco (Fig. 2). Drift 
of the North American and African plates during the Mesozoic41 may 
explain the extirpation of gymnophionomorphs from these areas later 
in the Phanerozoic as these previously humid palaeotropical regions 
moved north into the arid subtropics. Concurrently, the northern drift 
of Gondwana into the palaeotropics may have expanded suitable terres-
trial habitats, consistent with molecular evidence of an early Mesozoic 
Gondwanan origin of gymnophionans20.

The earliest batrachians hail from the Triassic of southern2, equato-
rial4,5 and northern3,6 Pangaea (Supplementary Table 3), indicating 
extensive latitudinal dispersal by at least the Middle Triassic epoch; this 
pattern is further reflected in the subsequent batrachian fossil record 
and their extant distribution. Unlike in extant batrachians, evaporative 
water loss is found to be a critical physiological constraint in living 
caecilians, limiting their distribution to humid environments near the 
equator19. The contrasting spatiotemporal histories of batrachians 
and gymnophionomorphs suggest a divergence of physiological con-
straints linked to humidity prior to the Triassic; conserved physiological 
traits in these groups may explain subsequent patterns of dispersal 
reflected in present-day lissamphibian biogeography.

Timing of lissamphibian origins
Prior to the results of this study, the chronology of lissamphibian ori-
gins remained unresolved owing to the reliance of molecular clock 
estimates on different node minima derived from competing phyloge-
netic hypotheses that include extinct taxa1. Funcusvermis lends novel 
and strong support for a monophyletic origin of living amphibians 
within dissorophoid temnospondyls30,42 (the ‘classic’ temnospondyl 
hypothesis), and thus the molecular clock estimates of caecilian–batra-
chian divergence using the temnospondyl hypothesis. Additionally, the 
recovery of Gerobatrachus as the sister taxon to Lissamphibia in our 
analysis suggests that taxon may not be a stem batrachian7,8 and should 
be used with caution as a minimum age calibration for Lissamphibia. 
Molecular clock estimates using the temnospondyl hypothesis topol-
ogy unconstrained by Gerobatrachus as the minimum age calibration 
of Lissamphibia may result in the most accurate estimates of the caecil-
ian–batrachian divergence, and studies following these criteria show 
divergence time estimates ranging from the Late Devonian (367.0 Ma) to 
Middle Pennsylvanian (314.8 Ma) epochs, with a mean in the Middle Mis-
sissippian (333.5 Ma) and a median in the Late Mississippian (325.6 Ma) 
epoch (Fig. 2b and Supplementary Table 4). Our results refocus the 
timeframe of lissamphibian origins to the Mississippian subperiod, 
older than previous estimates of a Pennsylvanian-Permian divergence 
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based on calibrations using Gerobatrachus or Amphibamus grandiceps1 
and those considering Gymnophionomorpha as the sister group to the 
stereospondyl Chinlestegophis1,14 (Fig. 2 and Supplementary Table 5).
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Article
Methods

New phylogenetic definition

Gymnophionomorpha Marjanović and Laurin 2008

Remarks. Gymnophionomorpha is defined here as the total group 
consisting of Caecilia tentaculata and all taxa that share a more recent 
common ancestor with it than with Salamandra salamandra Linnaeus, 
1758, Rana temporaria Linnaeus, 1758, and Albanerpeton inexpectatum, 
Estes and Hoffstetter 1976. This newly proposed stem-based definition 
of Gymnophionomorpha is modified after that originally proposed43.

Assignment of elements
Although all specimens assigned to Funcusvermis were found as iso-
lated, dissociated elements, their assignment to a single gymnophiono-
morph taxon is supported by: (1) specimens bearing a suite of features 
present exclusively in gymnophionomorphs to the exclusion of all 
other tetrapods (Supplementary Information, section 2); (2) skeletal 
elements represented by multiple specimens (77 pseudodentaries 
and 8 pseudoangulars) where all are identical in morphology, vary-
ing only in size (Supplementary Information, sections 1 and 2); (3) the 
pseudodentary and pseudoangular bear complementary facets where 
they would overlap when in articulation (Extended Data Fig. 3).

Geological framework
The blue-coloured strata of the upper Blue Mesa Member of the Chinle 
Formation were deposited in a northwest-flowing fluviolacustrine 
system on the western margin of central Pangaea at a palaeolatitude of 
5° to 15° N in a humid monsoonal climate26. Detrital zircon U-Pb radio-
metric ages provide robust geochronologic constraints on the Chinle 
Formation, bracketing deposition of the upper Blue Mesa Member24,25 
to ~223–218 Ma (Extended Data Fig. 2). The gymnophionomorph fossils 
described herein were collected from the Thunderstorm Ridge locality 
(PFV 456) near the Puerco River in PEFO, Arizona, USA (Extended Data 
Fig. 2). The fossiliferous unit is a 15-cm-thick, poorly sorted siltstone 
horizon, bearing a dense concentration of carbonate nodules, angular 
intraformational clasts, micro- and macrovertebrate bones and copro-
lites. PFV 456 has yielded a diverse assemblage of vertebrates including 
chondrichthyans, actinopterygians, dipnoans, coelacanths, meto-
posaurids, salentians5, drepanosauromorphs44, lepidosauromorphs, 
archosauromorphs45, pseudosuchian archosaurs46, dinosauromorphs47 
and cynodonts48. The lack of abrasion and polishing and the exceptional 
three-dimensional preservation of extremely delicate microvertebrate 
bones indicates initial deposition in a low-energy setting, followed 
by brief reworking and redeposition in a channel avulsion event that 
incorporated angular intraformational clasts and carbonate nodules 
into the fossiliferous layer. This sedimentological evidence in combi-
nation with the presence of abundant spinicaudatan exoskeletons, 
unionid bivalve steinkerns and obligate-aquatic, amphibious and fully 
terrestrial vertebrates indicates initial deposition in a marginal lacus-
trine palaeoenvironment occupied by a diverse vertebrate community.

Collection and preparation methods
The hypodigm and all referred specimens were collected by screen-
washing fossiliferous matrix from PFV 456 (9 out of 11 fossil gym-
nophionomorph occurrences were recovered using screenwashing; 
Supplementary Table 2). Blocks of matrix weighing approximately 
1.8–3.2 kg were individually disaggregated in water and subsequently 
washed through a series of wire mesh screens with a minimum screen 
opening of 0.5 mm (no. 35 mesh). Dividing the fossiliferous concen-
trate from each block into smaller fractions in this way accelerated 
the process of picking. The resulting concentrate fractions were 
picked using a dissecting microscope resulting in the identification 
and separation of all Funcusvermis specimens. Importantly, through 

processing individual blocks of matrix, Funcusvermis elements that 
fragmented into multiple parts during the screenwashing process 
could be re-associated after microscopic sorting. Elements found as 
multiple broken pieces were subsequently reassembled by adhering 
matching fractured surfaces using cyanoacrylate, typically a low vis-
cosity PaleoBOND or Loctite brand. To facilitate rapidly and precisely 
adhering these miniscule fragments together we created a mechanism 
that combines aspects of a jeweler’s block ball vice, and a hobbyist tool, 
sometimes called a third hand or helping hand. It combines a socket 
made of wood or closed cell polyethylene foam and a hemispherical 
wooden ball to create a pivot that can turn or tilt in all directions. This 
is topped with a small rectangle of wood with a small concave arch cut 
into it to provide a workspace. Insect pins are slid through channels in 
the wood filled with soft microcrystalline wax, which allows the pins 
freedom of movement, but the resistance needed to precisely position 
the fossil fragments. The fragments are temporarily adhered to the pin 
tips with more microcrystalline wax. Adhesive was applied to the joint 
between fragments as a microdroplet suspended on a single filament 
such as a cotton fibre and drawn into the joint via capillary action leav-
ing a minimum of excess residue. Reassembly took place under a variety 
of Leica and Wild binocular microscopes, primarily MZ6, MZ12 and M8 
models, varying in power from a maximum of ×40–×80 magnification.

To reveal the details of the pseudodentary dentition of Funcusvermis, 
matrix covering the dentition and other anatomy of PEFO 45800 was 
prepared through the following process. Melted cyclododecane (CDD) 
was poured into a shallow ceramic watch glass and allowed to harden. 
A small trench the size of the specimen was excavated, and the speci-
men was placed in the trench in the desired orientation. A Ukrainian 
kistky (a wax pen), was used to melt the CDD around the specimen 
and allowed it to adhere to and support the specimen. Then matrix 
was removed using a 1/32 inch (0.79375 mm) carbide-needle in a pin 
vice primarily under high magnification under a Leica MZ12 and MZ6 
microscope. The point of the needle was ground to a superfine conical 
point at about 10°–15° parallel to the shaft and flattened briefly along 
one side to provide an edge to remove adhesives. Some of the softer 
clay particles were removed with a porcupine quill. When needed, the 
specimen was consolidated with a very dilute solution of polyvinyl 
butyral (Butvar B-76) in acetone; the solution was mixed by eye, apply-
ing a bit to another vertebrate bone fragment and looking for sheen 
upon drying. Any excess Butvar film was removed by abrasion with the 
porcupine quill. The specimen was rotated in the CDD by trenching 
around the specimen until it was loose, shifting it, and then remelting 
the resulting CDD powder with the kistky. After all matrix was removed, 
the specimen was trenched out a final time and set aside in the fume 
hood to allow the CDD to sublimate.

Digital photography methods
Photographs of PEFO 45800 in Fig. 1 were acquired using a Leica MZ67 
stereomicroscope and a Sony NEX-5T digital camera. Image stacking 
was conducted in Adobe Photoshop CC (https://www.adobe.com/
products/photoshop.html).

Micro-computed tomographic scan methods
PEFO 44432, PEFO 45800, PEFO 45910, PEFO 46284, PEFO 46480 
and PEFO 46481 were CT scanned with a Skyscan 1172 Microfocus 
X-radiographic Scanner at the Virginia Tech Institute for Critical Tech-
nology and Applied Science (ICTAS). PEFO 43891 was scanned with a 
Nikon XTH 225 ST High-Resolution X-ray Computed Tomography Scan-
ner in the Shared Materials Instrumentation Facility at Duke University. 
Micro-computed scan parameters (resolution, source voltage, source 
current and scanning equipment type) for each scanned specimen 
included in Supplementary Table 8. Surface volume files (3D meshes) 
of specimens figured in Fig. 1 and Extended Data Figs. 3 and 4 are avail-
able for download under project 000382289 at Morphosource.org 
(https://www.morphosource.org/projects/000382289?locale=en).

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
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3D segmentation methods
Scan datasets were processed using Dragonfly 2020.2 (http://www.
theobjects.com/dragonfly) to produce 3D virtual reconstructions. 
PEFO 43891, PEFO 46284, and PEFO 46481 were segmented in Dragonfly 
2020.2 to digitally remove matrix covering parts of the specimens.

Images of 3D surface meshes were produced using Meshlab 2021.07 
(https://www.meshlab.net/).

Digital reconstruction methods
A composite reconstruction of a partial skull of Funcusvermis (Fig. 1) 
was produced using Meshmixer 3.5 (https://meshmixer.com). Digital 
3D surface meshes representing the anterior (PEFO 43891; light pink in 
Fig. 1a–c) and posterior (PEFO 46284; dark pink in Fig. 1a–c) portions 
of a pseudodentary were scaled to the same dorsoventral height, and 
both specimens were overlapped to form a composite reconstruc-
tion of a complete pseudodentary. The pseudoangular (PEFO 46480) 
and maxillopalatine (PEFO 46481) were scaled to match the size of the 
reconstructed pseudodentary, and anatomically positioned relative 
to the pseudodentary to approximate their position in an articulated 
three-dimensional skull. A surface volume file (3D mesh) of the com-
posite skull reconstruction is available for download under project 
000382289 on Morphosource.org (https://www.morphosource.org/
projects/000382289?locale=en).

Osteohistology methods
PEFO 44432 (right pseudodentary) was embedded in clear epoxy 
(Castolite AP), cut into 1 mm sections, and then ground to a ~100 µm 
thickness in the Virginia Tech Fossil Preparation Lab. Images of the 
histologically sectioned pseudodentary slide used in Extended Data 
Fig. 4 were acquired using a Sony NEX-5T digital camera mounted on a 
Nikon OPTIPHOT-POL Polarizing microscope. Fracturing of the speci-
men occurred during osteohistological preparation, causing fracture 
planes apparent in histological imaging (Extended Data Fig. 4).

Phylogenetic methods
See ‘Code availability’ to access and download phylogenetic matrix 
and analysis scripts.

Taxon sampling
Recent analyses recovered gymnophionomorphs at variable posi-
tions within Tetrapoda dependent on character and taxon sampling, 
including: (1) as ‘microsaur’ ‘lepospondyls’49 (note that taxa formerly 
included in ‘Lepospondyli’ are now understood as polyphyletic50); 
(2) as stereospondyl temnospondyls forming the sister group to C. 
jenkinsi14; (3) as ‘microsaurian’ or aïstopod ‘lepospondyls’51; and [4] 
as amphibamiform dissorophoid temnospondyls forming the sister 
group to batrachians6,13. The matrix of Schoch et al. (2020), recently 
used to hypothesize the phylogenetic position of the stem salamander 
Triassurus sixtelae and the origin of lissamphibians, was selected to test 
the phylogenetic relationships of F. gilmorei given its comprehensive 
sampling of taxa proposed to be sister groups to Gymnophionomorpha 
including stem and crown amniotes, stereospondyl and dissorophoid 
temnospondyl amphibians, batrachians, gymnophionomorphs and 
albanerpetontids. F. gilmorei was coded into the modified Schoch et al. 
(2020) matrix, for a total of 63 sampled terminal taxa. See Supplemen-
tary Information, section 4 for discussion of taxon sampling.

Character sampling and scoring
Modifications to the Schoch et al. (2020) matrix are detailed in Sup-
plementary Information, section 4 and include addition of new charac-
ters, modification of preexisting characters, exclusion of preexisting 
characters, and recodings of preexisting character states. Funcusver-
mis was coded for 29 characters in total based on currently known 
skeletal material (Supplementary Table 9). The final matrix includes 

355 morphological characters (Full character list in Supplementary 
Information, section 8; see ‘Code availability’ to access and download 
phylogenetic matrix and analysis scripts).

Maximum parsimony and Bayesian analysis
All characters were equally weighted and unordered in both analyses 
following previous versions6,14. The character–taxon matrix was first 
analysed in the phylogenetic analysis software package TNT 1.5 (ref. 52) 
using New Technology Search options with the following parameters: 
ratchet (1,000 iterations), sectoral search (1,000 rounds), tree fusing 
(100 rounds), and random additional sequence (1,000 replicates).  
A total of 71 most parsimonious trees of 1,468 steps each were recovered 
(consistency index = 0.287; retention index = 0.675). A strict consen-
sus tree calculated from the most parsimonious trees is presented in 
Extended Data Fig. 5. Bootstrap support values were obtained using 
TNT 1.5, and a strict consensus topology of trees produced via 1,000 
bootstrap replicates resampled with replacement is presented in 
Extended Data Fig. 6. A Bayesian inference analysis of the character–
taxon matrix was conducted in the phylogenetic software package 
MrBayes v.3.2.6 (ref. 53) with the Mkv54 model and gamma rate variation 
and the following parameters: four runs (six Markov chain Monte Carlo 
chains each), sampled every 1,000 generations, for 10 million genera-
tions with a relative burn-in of 0.25. Convergence of independent runs 
was assessed using Tracer v.1.76.1 (http://beast.bio.ed.ac.uk/Tracer). 
A consensus cladogram with mapped posterior probability values is 
presented in Extended Data Fig. 7.

Nomenclatural acts
The Life Science Identifiers (LSID) for the new genus and species are 
registered with Zoobank (http://zoobank.org) under the identifiers 
urn:lsid:zoobank.org:pub:A2A6C7AD-2077-413B-9004-2E841270A289.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The holotype, paratypes and referred specimens of F. gilmorei are 
catalogued and available for study to qualified researchers at PEFO. 
Computed tomographic scan data, including surface volume files 
(3D meshes) and raw CT data of Funcusvermis specimens mentioned 
in the main text and extended data figures (including the holotype, 
paratypes and referred specimens), as well as a surface volume file of 
the composite skull reconstruction of Funcusvermis are available for 
download under project 000382289 on Morphosource.org (https://
www.morphosource.org/projects/000382289?locale=en).

Code availability
Code for TNT and MrBayes scripts used in the phylogenetic analy-
ses conducted herein are available in Supplementary Information, 
section 8; the matrix is available for download under project 4166 on 
Morphobank.org (http://morphobank.org/permalink/?P4166).
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Extended Data Fig. 1 | Life reconstruction of Funcusvermis gilmorei (lower) and Acaenasuchus geoffreyi (upper) in a paleoenvironmental reconstruction of 
PFV 456. Illustration by Andrey Atuchin.
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Extended Data Fig. 3 | Anatomy of Funcusvermis gilmorei based on 
reconstructed 3D surface meshes from segmented micro-computed 
tomographic scan data. a–c, Referred left pseudoangular (PEFO 46480) in 
ventral, lateral, and posterior views. e–i, Holotype right pseudodentary (PEFO 
43891) in medial, anteromedial, anterior, ventral, dorsal, and anterolateral 
views. j–l, Paratype right pseudodentary (PEFO 46284) in medial, dorsal, and 
lateral views. m–o, Paratype right pseudodentary (PEFO 45800) in dorsal, 
medial, and lateral views. p, Paratype right pseudodentary (PEFO 46284) and 
referred left pseudoangular (PEFO 46480) with yellow arrows showing 
matching facet surfaces and neurovascular canals. q–u, Referred postatlantal 
vertebra (PEFO 45810) in dorsal, ventral, right lateral, anterior, and posterior 
views. v–y, Referred right femur (PEFO 43811) in dorsal, ventrolateral, lateral, 
and proximal views. abcnV, alveolar branch cranial nerve V; adtr, adsymphyseal 
tooth row; aeecnV, anterior exit external branch of cranial nerve V; c, centrum; 

cnVII, cranial nerve VII insertion; dp, diapophysis; dpaf, dorsal pseudoangular 
facet; dpdf, dorsal pseudodentary facet; dtr, dentary tooth row; ebcnV, 
external branch cranial nerve V; fh, femoral head; lasdg, labial subdental 
groove; ld, lateral depression; lecnV, lateral exit cranial nerve V; lisdg, lingual 
subdental groove; mf, medial fossa; mkv; midventral keel; ms, mandibular 
symphysis; mt, medial trochanter; na, neural arch; nc, neural canal; p, pit; 
paaspd, pseudoangular attachment surface of the pseudodentary; pap, 
posterior pseudoangular process; pdaspa, pseudodentary attachment surface 
of the pseudoangular; peecnV, posterior exit external branch cranial nerve V; 
poz, postzygapophysis; prez, prezygapophysis; ptadtr, posterior terminus 
adsymphyseal tooth row; ptdtr, posterior terminus dentary tooth row; sf, 
symphyseal foramen; sp, symphyseal prongs; vpaf, ventral pseudoangular 
facet; vpdf, ventral pseudodentary facet. Arrows point in anterior direction. 
Scale bars equal 1 mm.
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Extended Data Fig. 4 | Cross sectional views of Funcusvermis gilmorei 
dentigerous elements from micro-computed tomographic scan data and 
osteohistological sectioning. a–d, Coronal cross sections of referred left 
maxillopalatine (PEFO 46481). e–k, Coronal cross sections of holotype right 
pseudodentary (PEFO 43891). l–n, Coronal cross sections of paratype right 
pseudodentary (PEFO 46284). o–p, Microanatomy from osteohistological 
section of paratype right pseudodentary (PEFO 44432) in coronal view.  
r, Referred left maxillopalatine (PEFO 46481) in lateral view. Paratype right 
pseudodentary (PEFO 44432) in lateral (s) and medial (t) views. abcnV, alveolar 

branch cranial nerve V; dpdf, dorsal pseudodentary facet; ebcnV, external 
branch cranial nerve V; frac, fractures; fr, facial ramus; ig, interdental groove; 
laam, labial alveolar margin; lapw, labial pedicel wall; lasdg, labial subdental 
groove; liam, lingal alveolar margin; lipw, lingual pedicel wall; lisdg, lingual 
subdental groove; oc, osteocyte lacunae; om, orbital margin; p, pit; pc, pulp 
cavity; peecnV, posterior exit external branch cranial nerve V; sf, symphyseal 
foramen; vpdf, ventral pseudodentary facet. Red lines indicate locations of 
cross sections. Yellow outlines denote margins of canals connected to external 
pits. Scale bars equal 1 mm unless otherwise noted.
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three coronoids (See Supplementary Information 3 for further discussion of this 
feature). b–k, Comparative silhouettes of lower jaws in lingual (b–g), and dorsal 
(h–m), views. b, The dvinosaur Dvinosaurus primus56. c, The trematosaur 

Almasaurus habbazi57. d, The rhinesuchid Rastosuchus hammeri58. e, The 
brachyopid Vanastega plurimidens59. f, The stereospondyl Chinlestegophis 
jenkinsi14. g, The plagiosaurid Gerrothorax pulcherrimus60 (Illustration adapted 
from ref. 60 under CC BY 3.0 license). h, The capitosaur Mastodonsaurus giganteus61. 
i, The brachyopid Hadrokkosaurus bradyi62. j, The trematosaur Benthosuchus 
sushkini63. k, Chinlestegophis jenkinsi14. Arrows indicate anterior direction.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Phylogenetic distribution and comparative 
morphology of a lateral exposure of the palatine (LEP) and the loss of the 
lacrimal in Temnospondyli. a, Phylogenetic topology (derived from refs. 14,55) 
with variable presence of the lacrimal and the LEP (See Supplementary 
Information 3 for further discussion of this feature). Comparative silhouettes 
of skulls in dorsal b–h and lateral i–k views; the prefrontal is coloured yellow 
here as it is the main element to positionally compensate for an absent lacrimal. 
b, The dvinosaur Thabanchuia oomie64 (Illustration reproduced with permission 
from Cambridge University Press from ref. 64). c, The amphibamid Doleserpeton 
annectens9 (Illustration adapted from ref. 9 under copyright © Society of 
Vertebrate Paleontology, www.vertpaleo.org, reprinted by permission of 
Informa UK Limited, trading as Taylor & Francis Group, www.tandfonline.com 
on behalf of Society of Vertebrate Paleontology, www.vertpaleo.org. d, The 
‘dendrerpetid’ Dendrerpeton helogenes65, which represents the plesiomorphic 
condition (Illustration adapted from ref. 65. under copyright © Society of 

Vertebrate Paleontology, www.vertpaleo.org, reprinted by permission of 
Informa UK Limited, trading as Taylor & Francis Group, www.tandfonline.com 
on behalf of Society of Vertebrate Paleontology, www.vertpaleo.org). e, The 
trematosaur Wantzosaurus elongatus66. f, The dvinosaur Acroplous vorax67 
(Illustration adapted from ref. 67 under copyright © Society of Vertebrate 
Paleontology, www.vertpaleo.org, reprinted by permission of Informa UK 
Limited, trading as Taylor & Francis Group, www.tandfonline.com on behalf of 
Society of Vertebrate Paleontology, www.vertpaleo.org). g, the rhytidosteid 
Laidleria gracilis68 (Illustration adapted from ref. 68. by permission of the 
Zoological Journal of the Linnean Society). h, Chinlestegophis jenkinsi14.  
i, Acroplous vorax67 in lateral view. j, Rileymillerus cosgriffi69 in lateral view.  
k, Chinlestegophis jenkinsi14 in lateral view. The prefrontal is also coloured 
yellow here as it is the main element to positionally compensate for an absent 
lacrimal. Silhouettes are not to scale.
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Extended Data Fig. 10 | Phylogenetic distribution and comparative 
morphology of a broad cultriform process and a posteriorly situated 
occiput in Temnospondyli. a, Phylogenetic topology (derived from refs. 14,55) 
with presence of a broad cultriform process and a posteriorly situated occiput 
(See Supplementary Information 3 for further discussion of this feature).  
b–j, Comparative silhouettes of skulls in lateral i–k, and ventral b–h, views.  
b, The dvinosaur Dvinosaurus primus56. c, The ‘dendrerpetid’ Balanerepeton 
woodi70,71 (Illustration adapted from ref. 70. with permission from Cambridge 

University Press), which represents the plesiomorphic condition. d, The 
plagiosaurid Plagiosuchus pustuliferus72 (Illustration adapted from ref. 72. by 
permission of the Zoological Journal of the Linnean Society). e, The brachyopid 
Batrachosuchus browni73. f, The metoposaurid Metoposaurus krasiejowensis74. 
g, Chinlestegophis jenkinsi14. h, Batrachosuchus browni73. i, The dvinosaur 
Thabanchuia oomie64 (Illustration reproduced with permission from Cambridge 
University Press from ref. 64). j, Chinlestegophis jenkinsi14. Silhouettes are  
not to scale.
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