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Papers and patents are becoming less 
disruptive over time

Michael Park1, Erin Leahey2 & Russell J. Funk1 ✉

Theories of scientific and technological change view discovery and invention as 
endogenous processes1,2, wherein previous accumulated knowledge enables future 
progress by allowing researchers to, in Newton’s words, ‘stand on the shoulders of 
giants’3–7. Recent decades have witnessed exponential growth in the volume of new 
scientific and technological knowledge, thereby creating conditions that should be 
ripe for major advances8,9. Yet contrary to this view, studies suggest that progress is 
slowing in several major fields10,11. Here, we analyse these claims at scale across six 
decades, using data on 45 million papers and 3.9 million patents from six large-scale 
datasets, together with a new quantitative metric—the CD index12—that characterizes 
how papers and patents change networks of citations in science and technology.  
We find that papers and patents are increasingly less likely to break with the past in 
ways that push science and technology in new directions. This pattern holds universally 
across fields and is robust across multiple different citation- and text-based metrics1,13–17. 
Subsequently, we link this decline in disruptiveness to a narrowing in the use of previous 
knowledge, allowing us to reconcile the patterns we observe with the ‘shoulders of 
giants’ view. We find that the observed declines are unlikely to be driven by changes in 
the quality of published science, citation practices or field-specific factors. Overall, 
our results suggest that slowing rates of disruption may reflect a fundamental shift in 
the nature of science and technology.

Although the past century witnessed an unprecedented expan-
sion of scientific and technological knowledge, there are concerns 
that innovative activity is slowing18–20. Studies document declining 
research productivity in semiconductors, pharmaceuticals and other 
fields10,11. Papers, patents and even grant applications have become less 
novel relative to prior work and less likely to connect disparate areas 
of knowledge, both of which are precursors of innovation21,22. The gap 
between the year of discovery and the awarding of a Nobel Prize has also 
increased23,24, suggesting that today’s contributions do not measure 
up to the past. These trends have attracted increasing attention from 
policymakers, as they pose substantial threats to economic growth, 
human health and wellbeing, and national security, along with global 
efforts to combat grand challenges such as climate change25,26.

Numerous explanations for this slowdown have been proposed. 
Some point to a dearth of ‘low-hanging fruit’ as the readily available 
productivity-enhancing innovations have already been made19,27. Others 
emphasize the increasing burden of knowledge; scientists and inven-
tors require ever more training to reach the frontiers of their fields, 
leaving less time to push those frontiers forward18,28. Yet much remains 
unknown, not merely about the causes of slowing innovative activity, 
but also the depth and breadth of the phenomenon. The decline is 
difficult to reconcile with centuries of observation by philosophers of 
science, who characterize the growth of knowledge as an endogenous 
process, wherein previous knowledge enables future discovery, a view 
captured famously in Newton’s observation that if he had seen further, 
it was by ‘standing on the shoulders of giants’3. Moreover, to date, the 

evidence pointing to a slowdown is based on studies of particular fields, 
using disparate and domain-specific metrics10,11, making it difficult to 
know whether the changes are happening at similar rates across areas 
of science and technology. Little is also known about whether the pat-
terns seen in aggregate indicators mask differences in the degree to 
which individual works push the frontier.

We address these gaps in understanding by analysing 25 million 
papers (1945–2010) in the Web of Science (WoS) (Methods) and 3.9 mil-
lion patents (1976–2010) in the United States Patent and Trademark 
Office’s (USPTO) Patents View database (Methods). The WoS data 
include 390 million citations, 25 million paper titles and 13 million 
abstracts. The Patents View data include 35 million citations, 3.9 million 
patent titles and 3.9 million abstracts. Subsequently, we replicate our 
core findings on four additional datasets—JSTOR, the American Physical 
Society corpus, Microsoft Academic Graph and PubMed—encompass-
ing 20 million papers. Using these data, we join a new citation-based 
measure12 with textual analyses of titles and abstracts to understand 
whether papers and patents forge new directions over time and across 
fields.

Measurement of disruptiveness
To characterize the nature of innovation, we draw on foundational 
theories of scientific and technological change2,29,30, which distinguish 
between two types of breakthroughs. First, some contributions improve 
existing streams of knowledge, and therefore consolidate the status 
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quo. Kohn and Sham (1965)31, a Nobel-winning paper used established 
theorems to develop a method for calculating the structure of elec-
trons, which cemented the value of previous research. Second, some 
contributions disrupt existing knowledge, rendering it obsolete, and 
propelling science and technology in new directions. Watson and Crick 
(1953)32, also a Nobel winner, introduced a model of the structure of 
DNA that superseded previous approaches (for example, Pauling’s 
triple helix). Kohn and Sham and Watson and Crick were both impor-
tant, but their implications for scientific and technological change 
were different.

We quantify this distinction using a measure—the CD index12—that 
characterizes the consolidating or disruptive nature of science and 
technology (Fig. 1). The intuition is that if a paper or patent is disrup-
tive, the subsequent work that cites it is less likely to also cite its prede-
cessors; for future researchers, the ideas that went into its production 
are less relevant (for example, Pauling’s triple helix). If a paper or patent 
is consolidating, subsequent work that cites it is also more likely to 
cite its predecessors; for future researchers, the knowledge upon 
which the work builds is still (and perhaps more) relevant (for exam-
ple, the theorems Kohn and Sham used). The CD index ranges from −1  
(consolidating) to 1 (disruptive). We measure the CD index five years 
after the year of each paper’s publication (indicated by CD5, see 
Extended Data Fig. 1 for the distribution of CD5 among papers and  
patents and Extended Data Fig. 2 for analyses using alternative 
windows)33. For example, Watson and Crick and Kohn and Sham both 
received over a hundred citations within five years of being published. 
However, the Kohn and Sham paper has a CD5 of −0.22 (indicating 
consolidation), whereas the Watson and Crick paper has a CD5 of 
0.62 (indicating disruption). The CD index has been validated exten-
sively in previous research, including through correlation with expert  
assessments12,34.

Declining disruptiveness
Across fields, we find that science and technology are becoming less 
disruptive. Figure 2 plots the average CD5 over time for papers (Fig. 2a) 
and patents (Fig. 2b). For papers, the decrease between 1945 and 2010 
ranges from 91.9% (where the average CD5 dropped from 0.52 in 1945 
to 0.04 in 2010 for ‘social sciences’) to 100% (where the average CD5 
decreased from 0.36 in 1945 to 0 in 2010 for ‘physical sciences’); for pat-
ents, the decrease between 1980 and 2010 ranges from 78.7% (where the 
average CD5 decreased from 0.30 in 1980 to 0.06 in 2010 for ‘computers 
and communications’) to 91.5% (where the average CD5 decreased from 
0.38 in 1980 to 0.03 in 2010 for ‘drugs and medical’). For both papers 
and patents, the rates of decline are greatest in the earlier parts of the 
time series, and for patents, they appear to begin stabilizing between 
the years 2000 and 2005. For papers, since about 1980, the rate of 
decline has been more modest in ‘life sciences and biomedicine’ and 
physical sciences, and most marked and persistent in social sciences 
and ‘technology’. Overall, however, relative to earlier eras, recent papers 
and patents do less to push science and technology in new directions. 
The general similarity in trends we observe across fields is noteworthy 
in light of ‘low-hanging fruit’ theories19,27, which would probably predict 
greater heterogeneity in the decline, as it seems unlikely fields would 
‘consume’ their low-hanging fruit at similar rates or times.

Linguistic change
The decline in disruptive science and technology is also observable 
using alternative indicators. Because they create departures from 
the status quo, disruptive papers and patents are likely to introduce 
new words (for example, words used to create a new paradigm might 
differ from those that are used to develop an existing paradigm)35,36. 
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(Axel, Wigler and Silverstein 1983): Patent on 
eukaryotic cotransformation, which proposed 
inserting foreign genes into cells that then 
produce associated proteins; foundational 
method in biotechnology.
CD5 = 0.62
(Watson and Crick 1953): Nobel-prize-
winning paper that proposed a new structure 
of DNA; debunked the existing model of 
DNA structure, Pauling’s 3D double helix.
CD5 = 0.16
(Page 1997): Patent for Google’s core 
algorithm to rank the importance of web 
pages. Presented a novel method 
that utilizes network theory to rank web 
pages based on links from other sites.

CD5 = –0.22
(Kohn and Sham 1965): Nobel-Prize-winning 
paper that developed the Kohn–Sham 
equation. The equation was an application 
of the existing Hohenberg–Kohn theorem. 
CD5 = –0.55 
(Baltimore 1970): Nobel-Prize-winning paper 
that showed that viruses with RNA 
genomes can be inserted into host cells;  
developed from existing �ndings on the 
transmission of genetic information between 
DNA and RNA. 
CD5 = –0.85 
(Hawbaker 2005): Monsanto’s patent on 
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resistant to glyphosate; integrates other 
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higher yield, immunity to many diseases, 
and resistance to shattering. 
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Fig. 1 | Overview of the measurement approach. This figure shows a schematic 
visualization of the CD index. a, CD index value of three Nobel Prize-winning 
papers31,32,58 and three notable patents59–61 in our sample, measured as of five 
years post-publication (indicated by CD5). b, Distribution of CD5 for papers 
from WoS (n = 24,659,076) between 1945 and 2010 and patents from Patents 
View (n = 3,912,353) between 1976 and 2010, where a single dot represents a  
paper or patent. The vertical (up–down) dimension of each ‘strip’ corresponds 
to values of the CD index (with axis values shown in orange on the left).  

The horizontal (left–right) dimension of each strip helps to minimize 
overlapping points. Darker areas on each strip plot indicate denser regions  
of the distribution (that is, more commonly observed CD5 values). Additional 
details on the distribution of the CD index are given in Extended Data Fig. 1.  
c, Three hypothetical citation networks, where the CD index is at the maximally 
disruptive value (CDt = 1), midpoint value (CDt = 0), and maximally consolidating 
value (CDt = −1). The panel also provides the equation for the CD index and an 
illustrative calculation.
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Therefore, if disruptiveness is declining, we would expect a decline 
in the diversity of words used in science and technology. To evaluate 
this, Fig. 3a,d documents the type-token ratio (that is, unique/total 
words) of paper and patent titles over time (Supplementary Informa-
tion section 1). We observe substantial declines, especially in the ear-
lier periods, before 1970 for papers and 1990 for patents. For paper 
titles (Fig. 3a), the decrease (1945–2010) ranges from 76.5% (social 
sciences) to 88% (technology); for patent titles (Fig. 3d), the decrease 
(1980–2010) ranges from 32.5% (chemical) to 81% (computers and 
communications). For paper abstracts (Extended Data Fig. 3a), the 
decrease (1992–2010) ranges from 23.1% (life sciences and biomedicine) 
to 38.9% (social sciences); for patent abstracts (Extended Data Fig. 3b), 
the decrease (1980–2010) ranges from 21.5% (mechanical) to 73.2% 
(computers and communications). In Fig. 3b,e, we demonstrate that 
these declines in word diversity are accompanied by similar declines in 
combinatorial novelty; over time, the particular words that scientists 
and inventors use in the titles of their papers and patents are increas-
ingly likely to have been used together in the titles of previous work. 
Consistent with these trends in language, we also observe declining nov-
elty in the combinations of previous work cited by papers and patents, 
based on a previously established measure of ‘atypical combinations’14 
(Extended Data Fig. 4).

The decline in disruptive activity is also apparent in the specific 
words used by scientists and inventors. If disruptiveness is declining, 
we reasoned that verbs alluding to the creation, discovery or percep-
tion of new things should be used less frequently over time, whereas 
verbs alluding to the improvement, application or assessment of exist-
ing things may be used more often35,36. Figure 3 shows the most com-
mon verbs in paper (Fig. 3c) and patent titles (Fig. 3f) in the first and 
last decade of each sample (Supplementary Information section 2). 
Although precisely and quantitatively characterizing words as ‘con-
solidating’ or ‘disruptive’ is challenging in the absence of context, the 
figure highlights a clear and qualitative shift in language. In the earlier 
decades, verbs evoking creation (for example, ‘produce’, ‘form’, ‘pre-
pare’ and ‘make’), discovery (for example, ‘determine’ and ‘report’) 
and perception (for example, ‘measure’) are prevalent in both paper 
and patent titles. In the later decades, however, these verbs are almost 
completely displaced by those tending to be more evocative of the 
improvement (for example, ‘improve’, ‘enhance’ and ‘increase’), appli-
cation (for example, ‘use’ and ‘include’) or assessment (for example, 

‘associate’, ‘mediate’ and ‘relate’) of existing scientific and technologi-
cal knowledge and artefacts. Taken together, these patterns suggest a 
substantive shift in science and technology over time, with discovery 
and invention becoming less disruptive in nature, consistent with our 
results using the CD index.

Conservation of highly disruptive work
The aggregate trends we document mask considerable heterogeneity 
in the disruptiveness of individual papers and patents and remarkable 
stability in the absolute number of highly disruptive works (Methods 
and Fig. 4). Specifically, despite large increases in scientific productiv-
ity, the number of papers and patents with CD5 values in the far right tail 
of the distribution remains nearly constant over time. This ‘conserva-
tion’ of the absolute number of highly disruptive papers and patents 
holds despite considerable churn in the underlying fields responsible 
for producing those works (Extended Data Fig. 5, inset). These results 
suggest that the persistence of major breakthroughs—for example, 
measurement of gravity waves and COVID-19 vaccines—is not incon-
sistent with slowing innovative activity. In short, declining aggregate 
disruptiveness does not preclude individual highly disruptive works.

Alternative explanations
What is driving the decline in disruptiveness? Earlier, we suggested our 
results are not consistent with explanations that link slowing innova-
tive activity to diminishing ‘low-hanging fruit’. Extended Data Fig. 5 
shows that the decline in disruptiveness is unlikely to be due to other 
field-specific factors by decomposing variation in CD5 attributable to 
field, author and year effects (Methods).

Declining rates of disruptive activity are unlikely to be caused by the 
diminishing quality of science and technology22,37. If they were, then 
the patterns seen in Fig. 2 should be less visible in high-quality work. 
However, when we restrict our sample to articles published in premier 
publication venues such as Nature, Proceedings of the National Academy 
of Sciences and Science or to Nobel-winning discoveries38 (Fig. 5), the 
downward trend persists.

Furthermore, the trend is not driven by characteristics of the WoS and 
UPSTO data or our particular derivation of the CD index; we observe 
similar declines in disruptiveness when we compute CD5 on papers 
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Fig. 2 | Decline of disruptive science and technology. a,b, Decline in CD5 over 
time, separately for papers (a, n = 24,659,076) and patents (b, n = 3,912,353).  
For papers, lines correspond to WoS research areas; from 1945 to 2010 the 
magnitude of decline ranges from 91.9% (social sciences) to 100% (physical 
sciences). For patents, lines correspond to National Bureau of Economic 
Research (NBER) technology categories; from 1980 to 2010 the magnitude  

of decline ranges from 93.5% (computers and communications) to 96.4%  
(drugs and medical). Shaded bands correspond to 95% confidence intervals.  
As we elaborate in the Methods, this pattern of decline is robust to adjustment 
for confounding from changes in publication, citation and authorship practices 
over time.
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Fig. 3 | Decline of disruptive science and technology is visible in the 
changing language of papers and patents. a,d, Figures showing a decline in 
the diversity of language used in science and technology based on the unique/
total words of paper titles from 1945 to 2010 (a, n = 24,659,076) and of patent 
titles from 1980 to 2010 (d, n = 3,912,353). b,e, Figures showing a decline in the 
novelty of language used in science and technology based on the number of 
new word pairs/total word pairs introduced each year in WoS paper titles from 

1945 to 2010 (b) and in Patents View patent titles from 1980 to 2010 (refs.1,17) (e). 
For papers in both a and b, lines correspond to WoS research areas (n = 264 WoS 
research area × year observations). For patents in both d and e, lines correspond 
to NBER technology categories (n = 229 NBER technology category × year 
observations). c,f, Figures showing the frequency of the most commonly used 
verbs in paper titles for the first (red) and last (blue) decades of the observation 
period in paper (c, n = 24,659,076) and patent (f, n = 3,912,353) titles.
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and orange lines. This pattern helps to account for simultaneous observations  
of both aggregate evidence of slowing innovative activity and seemingly major 

breakthroughs in many fields of science and technology. The inset plots show  
the composition of the most disruptive papers and patents (defined as those  
with CD5 values >0.25) by field over time. The observed stability in the absolute 
number of highly disruptive papers and patents holds despite considerable 
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category; ‘drugs’ denotes the drugs and medical technology category; and 
‘computers’ denotes the computers and communications technology category.
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in JSTOR, the American Physical Society corpus, Microsoft Academic 
Graph and PubMed (Methods), the results of which are shown in 
Extended Data Fig. 6. We further show that the decline is not an arte-
fact of the CD index by reporting similar patterns using alternative 
derivations13,15 (Methods and Extended Data Fig. 7).

Declines in disruptiveness are also not attributable to changing 
publication, citation or authorship practices (Methods). First, using 
approaches from the bibliometrics literature39–43, we computed several 
normalized versions of the CD index that adjusted for the increasing 
tendency for papers and patents to cite previous work44,45. Results using 
these alternative indicators (Extended Data Fig. 8a,d) were similar to 
those we reported in Fig. 2. Second, using regression, we estimated 
models of CD5 as a function of indicator variables for each paper or 
patent’s publication year, along with specific controls for field × year 
level—number of new papers/patents, mean number of papers/patents  
cited, mean number of authors or inventors per paper—and paper or 
patent-level—number of papers or patents cited—factors. Predictions 
from these models indicated a decline in disruptive papers and patents 
(Extended Data Fig. 8b,e and Supplementary Table 1) that was con-
sistent with our main results. Finally, using Monte Carlo simulations,  

we randomly rewired the observed citation networks while preserving 
key characteristics of scientists’ and inventors’ citation behaviour, 
including the number of citations made and received by individual 
papers and patents and the age gap between citing and cited works. 
We find that observed CD5 values are lower than those from the simu-
lated networks (Extended Data Fig. 8c,f), and the gap is widening: over 
time, papers and patents are increasingly less disruptive than would be 
expected by chance. Taken together, these additional analyses indicate 
that the decline in CD5 is unlikely to be driven by changing publication, 
citation or authorship practices.

Growth of knowledge and disruptiveness
We also considered how declining disruptiveness relates to the growth 
of knowledge (Extended Data Fig. 9). On the one hand, scientists and 
inventors face an increasing knowledge burden, which may inhibit 
discoveries and inventions that disrupt the status quo. On the other 
hand, as previously noted, philosophers of science suggest that exist-
ing knowledge fosters discovery and invention3,6,7. Using regression 
models, we evaluated the relationship between the stock of papers 
and patents (a proxy for knowledge) within fields and their CD5 (Sup-
plementary Information section 3 and Supplementary Table 2).  
We find a positive effect of the growth of knowledge on disruptive-
ness for papers, consistent with previous work20; however, we find a 
negative effect for patents.

Given these conflicting results, we considered the possibility that 
the availability of knowledge may differ from its use. In particular, the 
growth in publishing and patenting may lead scientists and inventors 
to focus on narrower slices of previous work18,46, thereby limiting the 
‘effective’ stock of knowledge. Using three proxies, we document a 
decline in the use of previous knowledge among scientists and inventors 
(Fig. 6). First, we see a decline in the diversity of work cited (Fig. 6a,d), 
indicating that contemporary science and technology are engaging 
with narrower slices of existing knowledge. Moreover, this decline in 
diversity is accompanied by an increase in the share of citations to the 
1% most highly cited papers and patents (Fig. 6a (i),d(i)), which are also 
decreasing in semantic diversity (Fig. 6a (ii),d (ii)). Over time, scientists 
and inventors are increasingly citing the same previous work, and that 
previous work is becoming more topically similar. Second, we see an 
increase in self-citation (Fig. 6b,e), a common proxy for the continua-
tion of one’s pre-existing research stream47–49, which is consistent with 
scientists and inventors relying more on highly familiar knowledge. 
Third, the mean age of work cited, a common measure for the use of 
dated knowledge50–52, is increasing (Fig. 6c,f), suggesting that scientists 
and inventors may be struggling to keep up with the pace of knowledge 
expansion and instead relying on older, familiar work. All three indica-
tors point to a consistent story: a narrower scope of existing knowledge 
is informing contemporary discovery and invention.

Results from a subsequent series of regression models suggest that 
use of less diverse work, more of one’s own work and older work are all 
negatively associated with disruption (Methods, Extended Data Table 1 
and Supplementary Table 3), a pattern that holds even after accounting 
for the average age and number of previous works produced by team 
members. When the range of work used by scientists and inventors 
narrows, disruptive activity declines.

Discussion
In summary, we report a marked decline in disruptive science and 
technology over time. Our analyses show that this trend is unlikely to 
be driven by changes in citation practices or the quality of published 
work. Rather, the decline represents a substantive shift in science and 
technology, one that reinforces concerns about slowing innovative 
activity. We attribute this trend in part to scientists’ and inventors’ reli-
ance on a narrower set of existing knowledge. Even though philosophers 
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Fig. 5 | CD index of high-quality science over time. This figure shows changes 
in CD5 over time for papers published in Nature, Proceedings of the National 
Academy of Sciences (PNAS) and Science (inset plot, n = 223,745) and Nobel Prize- 
winning papers (main plot, n = 635), with several notable examples31,32,58,62–66 
highlighted. Colours indicate the three different journals in the inset plot; 
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historical completeness, we plot CD index scores for all Nobel papers back to 
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begin in the post-1945 era, when the WoS data are generally more reliable. The 
figure indicates that changes in the quality of published science over time is 
unlikely to be responsible for the decline in disruption.
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of science may be correct that the growth of knowledge is an endog-
enous process—wherein accumulated understanding promotes future 
discovery and invention—engagement with a broad range of extant 
knowledge is necessary for that process to play out, a requirement 
that appears more difficult with time. Relying on narrower slices of 
knowledge benefits individual careers53, but not scientific progress 
more generally.

Moreover, even though the prevalence of disruptive works has 
declined, we find that the sheer number has remained stable. On the 
one hand, this result may suggest that there is a fixed ‘carrying capac-
ity’ for highly disruptive science and technology, in which case, policy 
interventions aimed at increasing such work may prove challenging. On 
the other hand, our observation of considerable churn in the underly-
ing fields responsible for producing disruptive science and technol-
ogy suggests the potential importance of factors such as the shifting 
interests of funders and scientists and the ‘ripeness’ of scientific and 
technologicalknowledge for breakthroughs, in which case the produc-
tion of disruptive work may be responsive to policy levers. In either 
case, the stability we observe in the sheer number of disruptive papers 

and patents suggests that science and technology do not appear to 
have reached the end of the ‘endless frontier’. Room remains for the 
regular rerouting that disruptive works contribute to scientific and 
technological progress.

Our study is not without limitations. Notably, even though research 
to date supports the validity of the CD index12,34, it is a relatively new 
indicator of innovative activity and will benefit from future work on 
its behaviour and properties, especially across data sources and con-
texts. Studies that systematically examine the effect of different citation 
practices54,55, which vary across fields, would be particularly informative.

Overall, our results deepen understanding of the evolution of knowl-
edge and may guide career planning and science policy. To promote 
disruptive science and technology, scholars may be encouraged to read 
widely and given time to keep up with the rapidly expanding knowl-
edge frontier. Universities may forgo the focus on quantity, and more 
strongly reward research quality56, and perhaps more fully subsidize 
year-long sabbaticals. Federal agencies may invest in the riskier and 
longer-term individual awards that support careers and not simply spe-
cific projects57, giving scholars the gift of time needed to step outside 
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Fig. 6 | Papers and patents are using narrower portions of existing 
knowledge. a–f, Changes in the level of diversity of existing scientific and 
technological knowledge use among papers (a, n = 264 WoS research area × year 
observations; b and c, n = 24,659,076 papers) and patents (d, 229 NBER 
technology category × year observations; e and f, n = 3,912,353 patents) based 
on following measures: diversity of work cited (a and d), mean number of 
self-citations (b and e) and mean age of cited work (c and f). Shaded bands 
(b,c,e and f) correspond to 95% confidence intervals. The inset plots of a and  
d show changes in the share of citations to the top 1% most highly cited papers 
(a(i) and d(i)) and in the semantic diversity of the top 1% most cited over time 
(a(ii) and d(ii)). Values of both measures are computed within field and year, 

and are subsequently averaged across fields for plotting. Semantic diversity is 
based on paper and patent titles; values correspond to the ratio of the standard 
deviation to the mean pairwise cosine similarity (that is, the coefficient of 
variation) among the titles of the 1% most cited papers and patents by field and 
year. To enable semantic comparisons, titles were vectorized using pretrained 
word embeddings. For papers, lines are shown for each WoS research area; for 
patents, lines are shown for each NBER technology category. In subsequent 
regression analyses using these measures, we find that using less diverse work, 
more of one’s own work and older work is associated with less disruptive papers 
and patents (Methods and Extended Data Table 1).
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the fray, inoculate themselves from the publish or perish culture, and 
produce truly consequential work. Understanding the decline in dis-
ruptive science and technology more fully permits a much-needed 
rethinking of strategies for organizing the production of science and 
technology in the future.
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Methods

WoS data
We limit our focus to research papers published between 1945 and 2010. 
Although the WoS data begin in the year 1900, the scale and social organ-
ization of science shifted markedly in the post-war era, thereby making 
comparisons with the present difficult and potentially misleading67–69. 
We end our analyses of papers in 2010 because some of our measures 
require several subsequent years of data following paper publication. 
The WoS data archive 65 million documents published in 28,968 journals 
between 1900 and 2017 and 735 million citations among them. In addi-
tion, the WoS data include the titles and the full text of abstracts for 65 
and 29 million records, respectively, published between 1913 and 2017. 
After eliminating non-research documents (for example, book reviews 
and commentaries) and subsetting the data to the 1945–2010 window, 
the analytical sample consists of n = 24,659,076 papers.

Patents View data
We limit our focus to patents granted from 1976, which is the earliest 
year for which machine-readable records are available in the Patents 
View data. As we did with papers, we end our analyses in 2010 because 
some measures require data from subsequent years for calculation. 
The Patents View data are the most exhaustive source of historical 
data on inventions, with information on 6.5 million patents granted 
between 1976 and 2017 and their corresponding 92 million citations. 
The Patents View data include the titles and abstracts for 6.5 million 
patents granted between 1976 and 2017. Following previous work12,  
we focused our attention on utility patents, which cover the vast major-
ity (91% in our data) of patented inventions. After eliminating non-utility 
patents and subsetting the data to the 1976–2010 window, the analytical 
sample consists of n = 3,912,353 patents.

Highly disruptive papers and patents
Observations (and claims) of slowing progress in science and technol-
ogy are increasingly common, supported not only by the evidence we 
report, but also by previous research from diverse methodological and 
disciplinary perspectives10,11,18–24. Yet as noted in the main text, there 
is a tension between observations of slowing progress from aggre-
gate data on the one hand, and continuing reports of seemingly major 
breakthroughs in many fields of science and technology—spanning 
everything from the measurement of gravity waves to the sequencing 
of the human genome—on the other. In an effort to reconcile this ten-
sion, we considered the possibility that whereas overall, discovery and 
invention may be less disruptive over time, the high-level view taken in 
previous work may mask considerable heterogeneity. Put differently, 
aggregate evidence of slowing progress does not preclude the possibil-
ity that some subset of discoveries and inventions is highly disruptive.

To evaluate this possibility, we plot the number of disruptive papers 
(Fig. 4a) and patents (Fig. 4b) over time, where disruptive papers and 
patents are defined as those with CD5 values >0. Within each panel, we 
plot four lines, corresponding to four evenly spaced intervals—(0, 0.25], 
(0.25, 0.5], (0.5, 0.75], (0.75, 1.00]—over the positive values of CD5. The 
first two intervals therefore correspond to papers and patents that 
are relatively weakly disruptive, whereas the latter two correspond to 
those that are more strongly so (for example, where we may expect to 
see major breakthroughs such as some of those mentioned above). 
Despite major increases in the numbers of papers and patents pub-
lished each year, we see little change in the number of highly disrup-
tive papers and patents, as evidenced by the relatively flat red, green 
and orange lines. Notably, this ‘conservation’ of disruptive work holds 
even despite fluctuations over time in the composition of the scientific 
and technological fields responsible for producing the most disrup-
tive work (Fig. 4, inset plots). Overall, these results help to account for 
simultaneous observations of both major breakthroughs in many fields 
of science and technology and aggregate evidence of slowing progress.

Relative contribution of field, year and author or inventor 
effects
Our results show a steady decline in the disruptiveness of science and 
technology over time. Moreover, the patterns we observe are generally 
similar across broad fields of study, which suggests that the factors 
driving the decline are not unique to specific domains of science and 
technology. The decline could be driven by other factors, such as the 
conditions of science and technology at a point in time or the particular 
individuals who produce science and technology. For example, exog-
enous factors such as economic conditions may encourage research 
or invention practices that are less disruptive. Similarly, scientists and 
inventors of different generations may have different approaches, 
which may result in greater or lesser tendencies for producing disrup-
tive work. We therefore sought to understand the relative contribution 
of field, year and author (or inventor) factors to the decline of disruptive 
science and technology.

To do so, we decomposed the relative contribution of field, year 
and author fixed effects to the predictive power of regression models 
of the CD index. The unit of observation in these regressions is the 
author (or inventor) × year. We enter field fixed effects using granular 
subfield indicators (that is, 150 WoS subject areas for papers, 138 NBER 
subcategories for patents). For simplicity, we did not include additional 
covariates beyond the fixed effects in our models. Field fixed effects 
capture all field-specific factors that do not vary by author or year 
(for example, the basic subject matter); year fixed effects capture all 
year-specific factors that do not vary by field or author (for example, the 
state of communication technology); author (or inventor) fixed effects 
capture all author-specific factors that do not vary by field or year 
(for example, the year of PhD awarding). After specifying our model, 
we determine the relative contribution of field, year and author fixed 
effects to the overall model adjusted R2 using Shapley–Owen decom-
position. Specifically, given our n = 3 groups of fixed effects (field, year 
and author) we evaluate the relative contribution of each set of fixed 
effects by estimating the adjusted R2 separately for the 2n models using 
subsets of the predictors. The relative contribution of each set of fixed 
effects is then computed using the Shapley value from game theory70.

Results of this analysis are shown in Extended Data Fig. 5, for both 
papers (top bar) and patents (bottom bar). Total bar size corresponds 
to the value of the adjusted R2 for the fully specified model (that is, with 
all three groups of fixed effects). Consistent with our observations from 
plots of the CD index over time, we observe that for both papers and 
patents, field-specific factors make the lowest relative contribution to 
the adjusted R2 (0.02 and 0.01 for papers and patents, respectively). 
Author fixed effects, by contrast, appear to contribute much more 
to the predictive power of the model, for both papers (0.20) and pat-
ents (0.17). Researchers and inventors who entered the field in more 
recent years may face a higher burden of knowledge and thus resort 
to building on narrower slices of existing work (for example, because 
of more specialized doctoral training), which would generally lead to 
less disruptive science and technology being produced in later years, 
consistent with our findings. The pattern is more complex for year 
fixed effects; although year-specific factors that do not vary by field or 
author hold more explanatory power than field for both papers (0.02) 
and patents (0.16), they appear to be substantially more important 
for the latter than the former. Taken together, these findings suggest 
that relatively stable factors that vary across individual scientists and 
inventors may be particularly important for understanding changes in 
disruptiveness over time. The results also confirm that domain-specific 
factors across fields of science and technology play a very small role in 
explaining the decline in disruptiveness of papers and patents.

Alternative samples
We also considered whether the patterns we document may be artefacts 
of our choice of data sources. Although we observe consistent trends 
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in both the WoS and Patents View data, and both databases are widely 
used by the Science of Science community, our results may conceivably 
be driven by factors such as changes in coverage (for example, journals 
added or excluded from WoS over time) or even data errors rather 
than fundamental changes in science and technology. To evaluate this 
possibility, we therefore calculated CD5 for papers in four additional 
databases—JSTOR, the American Physical Society corpus, Microsoft 
Academic Graph and PubMed. We included all records from 1930 to 
2010 from PubMed (16,774,282 papers), JSTOR (1,703,353 papers) 
and American Physical Society (478,373 papers). The JSTOR data were 
obtained via a special request from ITHAKA, the data maintainer (http://
www.ithaka.org), as were the American Physical Society data (https://
journals.aps.org/datasets). We downloaded the Microsoft Academic 
Graph data from CADRE at Indiana University (https://cadre.iu.edu/). 
The PubMed data were downloaded from the National Library of Medi-
cine FTP server (ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline). Owing 
to the exceptionally large scale of Microsoft Academic Graph and the 
associated computational burden, we randomly extracted 1 million 
papers. As shown in Extended Data Fig. 6, the downward trend in dis-
ruptiveness is evident across all samples.

Alternative bibliometric measures
Several recent papers have introduced alternative specifications of 
the CD index12. We evaluated whether the declines in disruptiveness 
we observe are corroborated using two alternative variations. One 
criticism of the CD index has been that the number of papers that cite 
only the focal paper’s references dominates the measure13. Bornmann 
et al.13 proposes DIl

nok as a variant that is less susceptible to this issue. 
Another potential weakness of the CD index is that it could be very 
sensitive to small changes in the forward citation patterns of papers 
that make no backward citations15. Leydesdorff et al.15 suggests DI* as 
an alternate indicator of disruption that addresses this issue. Therefore, 
we calculated DIl

nok where l = 5 and DI* for 100,000 randomly drawn 
papers and patents each from our analytic sample. Results are pre-
sented in Extended Data Fig. 7a (papers) and b (patents). The blue lines 
indicate disruption based on Bornmann et al.13 and the orange lines 
indicate disruption based on Leydesdorff et al.15. Across science and 
technology, the two alternative measures both show declines in disrup-
tion over time, similar to the patterns observed with the CD index. 
Taken together, these results suggest that the declines in disruption 
we document are not an artefact of our particular operationalization.

Robustness to changes in publication, citation and authorship 
practices
We also considered whether our results may be attributable to changes 
in publication, citation or authorship practices, rather than by sub-
stantive shifts in discovery and invention. Perhaps most critically, as 
noted in the main text, there has been a marked expansion in publish-
ing and patenting over the period of our study. This expansion has 
naturally increased the amount of previous work that is relevant to 
current science and technology and therefore at risk of being cited, 
a pattern reflected in the marked increase in the average number of 
citations made by papers and patents (that is, papers and patents are 
citing more previous work than in previous eras)44,45. Recall that the 
CD index quantifies the degree to which future work cites a focal work 
together with its predecessors (that is, the references in the bibliography 
of the focal work). Greater citation of a focal work independently of its 
predecessors is taken to be evidence of a social process of disruption. 
As papers and patents cite more previous work, however, the prob-
ability of a focal work being cited independently of its predecessors 
may decline mechanically; the more citations a focal work makes, the 
more likely future work is to cite it together with one of its predeces-
sors, even by chance. Consequently, increases in the number of papers 
and patents available for citing and in the average number of citations 
made by scientists and inventors may contribute to the declining values 

of the CD index. In short, given the marked changes in science and 
technology over our long study window, the CD index of papers and 
patents published in earlier periods may not be directly comparable 
to those of more recent vintage, which could in turn render our conclu-
sions about the decline in disruptive science and technology suspect.  
We addressed these concerns using three distinctive but complemen-
tary approaches—normalization, regression adjustment and simulation.

Verification using normalization. First, following common practice 
in bibliometric research39–43, we developed two normalized versions 
of the CD index, with the goal of facilitating comparisons across time. 
Among the various components of the CD index, we focused our  
attention on the count of papers or patents that only cite the focal 
work’s references (Nk), as this term would seem most likely to scale with 
the increases in publishing and patenting and in the average number of 
citations made by papers and patents to previous work13. Larger values 
of Nk lead to smaller values of the CD index. Consequently, marked 
increases in Nk over time, particularly relative to other components 
of the measure, may lead to a downward bias, thereby inhibiting our 
ability to accurately compare disruptive science and technology in 
later years with earlier periods.

Our two normalized versions of the CD index aim to address this 
potential bias by attenuating the effect of increases in Nk. In the first 
version, which we call ‘Paper normalized’, we subtract from Nk the num-
ber of citations made by the focal paper or patent to previous work 
(Nb). The intuition behind this adjustment is that when a focal paper 
or patent cites more previous work, Nk is likely to be larger because 
there are more opportunities for future work to cite the focal paper or 
patent’s predecessors. This increase in Nk would result in lower values 
of the CD index, although not necessarily as a result of the focal paper 
or patent being less disruptive. In the second version, which we call 
‘field × year normalized’, we subtract Nk by the average number of back-
ward citations made by papers or patents in the focal paper or patent’s 
WoS research area or NBER technology category, respectively, during 
its year of publication (we label this quantity Nb

mean). The intuition 
behind this adjustment is that in fields and time periods in which there 
is a greater tendency for scientists and inventors to cite previous work, 
Nk is also likely to be larger, thereby leading to lower values of the CD 
index, although again not necessarily as a result of the focal paper or 
patent being less disruptive. In cases in which either Nb or Nb

mean exceed 
the value of Nk, we set Nk to 0 (that is, Nk is never negative in the normal-
ized measures). Both adaptations of the CD index are inspired by estab-
lished approaches in the scientometrics literature, and may be 
understood as a form of ‘citing side normalization’ (that is, normaliza-
tion by correcting for the effect of differences in lengths of references 
lists)40.

In Extended Data Fig. 8, we plot the average values of both normalized 
versions of the CD index over time, separately for papers (Extended 
Data Fig. 8a) and patents (Extended Data Fig. 8d). Consistent with our 
findings reported in the main text, we continue to observe a decline 
in the CD index over time, suggesting that the patterns we observe in 
disruptive science and technology are unlikely to be driven by changes 
in citation practices.

Verification using regression adjustment. Second, we adjusted 
for potential confounding using a regression-based approach. This  
approach complements the bibliometric normalizations just described 
by allowing us to account for a broader array of changes in publica-
tion, citation and authorship practices in general (the latter of which 
is not directly accounted for in either the normalization approach or 
the simulation approach described next), and increases the amount 
of previous work that is relevant to current science and technol-
ogy in particular. In Supplementary Table 1, we report the results of  
regression models predicting CD5 for papers (Models 1–4) and patents 
(Models 5–8), with indicator variables included for each year of our 
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study window (the reference categories are 1945 and 1980 for papers 
and patents, respectively). Models 1 and 4 are the baseline models, and 
include no other adjustments beyond the year indicators. In Models 2 
and 5, we add subfield fixed effects (WoS subject areas for papers and 
NBER technology subcategories for patents). Finally, in Models 3–4 and 
7–8, we add control variables for several field × year level—number of 
new papers orpatents, mean number of papers or patents cited, mean 
number of authors or inventors per paper—and paper- or patent-level—
number of papers or patents cited—characteristics, thereby enabling 
more robust comparisons in patterns of disruptive science and tech-
nology over the long time period spanned by our study. For the paper 
models, we also include a paper-level control for the number of unlinked 
references (that is, the number of citations to works that are not indexed 
in WoS). We find that the inclusion of these controls improves model 
fit, as indicated by statistically significant Wald tests presented below 
the relevant models.

Across all eight models shown in Supplementary Table 1, we find that 
the coefficients on the year indicators are statistically significant and 
negative, and growing in magnitude over time, which is consistent with 
the patterns we reported based on unadjusted CD5 values index in the 
main text (Fig. 2). In Extended Data Fig. 8, we visualize the results of 
our regression-based approach by plotting the predicted CD5 values 
separately for each of the year indicators included in Models 4 (papers) 
and 8 (patents). To enable comparisons with raw CD5 values shown in 
the main text, we present the separate predictions made for each year 
as a line graph. As shown in the figure, we continue to observe declining 
values of the CD index across papers and patents, even when accounting 
for changes in publication, citation and authorship practices.

Verification using simulation. Third, following related work in the 
Science of Science14,71–73, we considered whether our results may be an 
artefact of changing patterns in publishing and citation practices by 
using a simulation approach. In essence, the CD index measures disrup-
tion by characterizing the network of citations around a focal paper or 
patent. However, many complex networks, even those resulting from 
random processes, exhibit structures that yield non-trivial values on 
common network measures (for example, clustering)74–76. During the 
period spanned by our study, the citation networks of science and 
technology experienced significant change, with marked increases in 
both the numbers of nodes (that is, papers or patents) and edges (that 
is, citations). Thus, rather than reflecting a meaningful social process, 
the observed declines in disruption may result from these structural 
changes in the underlying citation networks.

To evaluate this possibility, we followed standard techniques from 
network science75,77 and conducted an analysis in which we recomputed 
the CD index on randomly rewired citation networks. If the patterns 
we observe in the CD index are the result of structural changes in the 
citation networks of science and technology (for example, growth in 
the number of nodes or edges) rather than a meaningful social process, 
then these patterns should also be visible in comparable random net-
works that experience similar structural changes. Therefore, finding 
that the patterns we see in the CD index differ for the observed and 
random citation networks would serve as evidence that the decline in 
disruption is not an artefact of the data.

We began by creating copies of the underlying citation network on 
which the values of the CD index used in all analyses reported in the main 
text were based, separately for papers and patents. For each citation 
network (one for papers, one for patents), we then rewired citations 
using a degree-preserving randomization algorithm. In each iteration of 
the algorithm, two edges (for example, A–B and C–D) are selected from 
the underlying citation network, after which the algorithm attempts to 
swap the two endpoints of the edges (for example, A–B becomes A–D, 
and C–D becomes C–B). If the degree centrality of A, B, C and D remains 
the same after the swap, the swap is retained; otherwise, the algorithm 
discards the swap and moves on to the next iteration. When evaluating 

degree centrality, we consider ‘in-degree’ (that is, citations from other 
papers or patents to the focal paper or patent) and ‘out-degree’ (that 
is, citations from the focal paper or patent to other papers or patents) 
separately. Furthermore, we also required that the age distribution 
of citing and cited papers or patents was identical in the original and 
rewired networks. Specifically, swaps were only retained when the 
publication year of the original and candidate citations was the same. 
In light of these design choices, our rewiring algorithm should be seen 
as fairly conservative, as it preserves substantial structure from the 
original network. There is no scholarly consensus on the number of 
swaps necessary to ensure the original and rewired networks are suf-
ficiently different from one another; the rule we adopt here is 100 × m, 
where m is the number of edges in the network being rewired.

Following previous work14, we created ten rewired copies of the 
observed citation networks for both papers and patents. After creat-
ing these rewired citation networks, we then recomputed CD5. Owing 
to the large scale of the WoS data, we base our analyses on a random 
subsample of ten million papers; CD5 was computed on the rewired 
network for all patents. For each paper and patent, we then compute 
a z score that compares the observed CD5 value to those of the same 
paper or patent in the ten rewired citation networks. Positive z scores 
indicate that the observed CD5 value is greater (that is, more disruptive) 
than would be expected by chance; negative z scores indicate that the 
observed values are lesser (that is, more consolidating).

The results of these analyses are shown in Extended Data Fig. 8, sepa-
rately for papers (Extended Data Fig. 8c) and patents (Extended Data 
Fig. 8f). Lines correspond to the average z score among papers or pat-
ents published in the focal year. The plots reveal a pattern of change in 
the CD index over and beyond that ‘baked in’ to the changing structure 
of the network. We find that on average, papers and patents tend to 
be less disruptive than would be expected by chance, and moreover, 
the gap between the observed CD index values and those from the 
randomly rewired networks is increasing over time, which is consistent 
with our findings of a decline in disruptive science and technology.

Taken together, the results of the foregoing analyses suggest that 
although there have been marked changes in science and technology 
over the course of our long study window, particularly with respect to 
publication, citation and authorship practices, the decline in disrup-
tive science and technology that we document using the CD index is 
unlikely to be an artefact of these changes, and instead represents a 
substantive shift in the nature of discovery and invention.

Regression analysis
We evaluate the relationship between disruptiveness and the use of pre-
vious knowledge using regression models, predicting CD5 for individual 
papers and patents, based on three indicators of previous knowledge 
use—the diversity of work cited, mean number of self-citations and 
mean age of work cited. Our measure of the diversity of work cited is 
measured at the field × year level; all other variables included in the 
regressions are defined at the level of the paper or patent. To account 
for potential confounding factors, our models included year and field 
fixed effects. Year fixed effects account for time variant factors that 
affect all observations (papers or patents) equally (for example, global 
economic trends). Field fixed effects account for field-specific factors 
that do not change over time (for example, some fields may intrinsi-
cally value disruptive work over consolidating ones). In contrast to our 
descriptive plots, for our regression models, we adjust for field effects 
using the more granular 150 WoS ‘extended subjects’ (for example, 
‘biochemistry and molecular biology’, ‘biophysics’, ‘biotechnology and 
applied microbiology’, ‘cell biology’, ‘developmental biology’, ‘evolu-
tionary biology’ and ‘microbiology’ are extended subjects within the 
life sciences and biomedicine research area) and 38 NBER technology 
subcategories (for example, ‘agriculture’, ‘food’, ‘textile’; ‘coating’; ‘gas’; 
‘organic’; and ‘resins’ are subcategories within the chemistry technol-
ogy category).
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In addition, we also include controls for the ‘mean age of team mem-

bers’ (that is, ‘career age’, defined as the difference between the publi-
cation year of the focal paper or patent and the first year in which each 
author or inventor published a paper or patent) and the ‘mean number 
of previous works produced by team members’. Although increases 
in rates of self-citations may indicate that scientists and inventors 
are becoming more narrowly focused on their own work, these rates 
may also be driven in part by the amount of previous work available 
for self-citing. Similarly, although increases in the age of work cited 
in papers and patents may indicate that scientists and inventors are 
struggling to keep up, they may also be driven by the rapidly aging 
workforce in science and technology78,79. For example, older scientists 
and inventors may be more familiar with or more attentive to older 
work, or may actively resist change80. These control variables help to 
account for these alternative explanations.

Supplementary Table 3 shows summary statistics for variables used in 
the ordinary-least-squares regression models. The diversity of work cited 
is measured by normalized entropy, which ranges from 0 to 1. Greater 
values on this measure indicate a more uniform distribution of citations 
to a wider range of existing work; lower values indicate a more concen-
trated distribution of citations to a smaller range of existing work. The 
tables show that the normalized entropy in a given field and year has a 
nearly maximal average entropy of 0.98 for both science and technol-
ogy. About 16% of papers cited in a paper are by an author of the focal 
paper; the corresponding number for patents is about 7%. Papers tend 
to rely on older work and work that varies more greatly in age (measured 
by standard deviation) than patents. In addition, the average CD5 of a 
paper is 0.04 whereas the average CD5 of a patent is 0.12, meaning that 
the average paper tends to be less disruptive than the average patent.

We find that using more diverse work, less of one’s own work and 
older work tends to be associated with the production of more disrup-
tive science and technology, even after accounting for the average age 
and number of previous works produced by team members. These 
findings are based on our regression results, shown in Extended Data 
Table 1. Models 6 and 12 present the full regression models. The models 
indicate a consistent pattern for both science and technology, wherein 
the coefficients for diversity of work cited are positive and significant 
for papers (0.159, P < 0.01) and patents (0.069, P < 0.01), indicating that 
in fields in which there is more use of diverse work, there is greater 
disruption. Holding all other variables at their means, the predicted 
CD5 of papers and patents increases by 303.5% and 1.3%, respectively, 
when the diversity of work cited increases by 1 s.d. The coefficients of 
the ratio of self-citations to total work cited is negative and significant 
for papers (−0.011, P < 0.01) and patents (−0.060, P < 0.01), showing that 
when researchers or inventors rely more on their own work, discovery 
and invention tends to be less disruptive. Again holding all other vari-
ables at their means, the predicted CD5 of papers and patents decreases 
by 622.9% and 18.5%, respectively, with a 1 s.d. increase in the ratio. The 
coefficients of the interaction between mean age of work cited and 
dispersion in age of work cited is positive and significant for papers 
(0.000, P < 0.01) and patents (0.001, P < 0.01), suggesting that—holding 
the dispersion of the age of work cited constant—papers and patents 
that engage with older work are more likely to be disruptive. The pre-
dicted CD5 of papers and patents increases by a striking 2,072.4% and 
58.4%, respectively, when the mean age of work cited increases by 1 s.d. 
(about nine and eight years for papers and patents, respectively), again 
holding all other variables at their means. In summary, the regression 
results suggest that changes in the use of previous knowledge may 
contribute to the production of less disruptive science and technology.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data associated with this study are freely available in a public reposi-
tory at https://doi.org/10.5281/zenodo.7258379. Our study draws on 
data from six sources: the American Physical Society, JSTOR, Microsoft 
Academic Graph, Patents View, PubMed and WoS. Data from Microsoft 
Academic Graph, Patents View and PubMed are publicly available, 
and our repository includes complete data for analyses from these 
sources. Data from the American Physical Society, JSTOR and WoS are 
not publicly available, and were used under licence from their respec-
tive publishers. To facilitate replication, our repository includes limited 
versions of the data from these sources, which will enable calculation of 
basic descriptive statistics. The authors will make full versions of these 
data available upon request and with permission from their respective 
publishers. Source data are provided with this paper.

Code availability
Open-source code related to this study is available at https://doi.
org/10.5281/zenodo.7258379 and http://www.cdindex.info. We used 
Python v.3.10.6 (pandas v.1.4.3, numpy v.1.23.1, matplotlib v.3.5.2, 
seaborn v.0.11.2, spacy v.2.2, jupyterlab v.3.4.4) to wrangle, analyse 
and visualize data and to conduct statistical analyses. We used MariaDB 
v.10.6.4 to wrangle data. We used R v.4.2.1 (ggplot2 v.3.36, ggrepel 
v.0.9.0) to visualize data. We used StataMP v.17.0 (reghdfe v.5.7.3) to 
conduct statistical analyses.
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Extended Data Fig. 1 | Distribution of CD5. This figure gives an overview of the 
distribution of CD5 for papers (n = 24,659,076) and patents (n = 3,912,353). 
Panels a and c show counts of papers and patents over discrete intervals of CD5. 
Panels b and d show the distribution of CD5 over time, within 10 (papers) and  
5 (patents) year intervals, using letter-value plots. These plots are similar to 

boxplots, but generally provide more reliable summaries for large datasets. 
They are drawn by identifying the median of the underlying distribution and 
then recursively drawing boxes outward from there in either direction that 
encompass half of the remaining data.
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Extended Data Fig. 2 | CD index measured using alternative forward 
citation windows. This figure evaluates the sensitivity of our results to the use 
of different forward citation windows when computing the CD index for papers 
(n = 24,659,076) and patents (n = 3,912,353). In the main text, the index is 
computed based on citations made to papers and patents and their backward 
references as of 5 years after the year of publication. a and c plot the CD index 

using a longer, 10 year forward window, for papers and patents, respectively.  
b and d plot the CD index using all forward citations made to sample papers and 
patents as of the year 2017. Shaded bands correspond to 95% confidence 
intervals. Overall, the results mirror those reported in the main text, although 
the decline is somewhat steeper using longer forward citation windows, 
suggesting our primary results may represent a more conservative estimate.



Extended Data Fig. 3 | Diversity of language use in science and technology 
over time. This figure shows changes in the ratio of unique to total words (also 
known as the type-token ratio) over time based on data from the abstracts of 
papers (a, n = 76 WoS research area × year observations) and patents (b, n = 229 
NBER technology category × year observations). For papers, lines correspond 
to WoS research areas; for patents, lines correspond to NBER technology 
categories. For paper abstracts, lines begin in 1992 because WoS does not 
reliably record abstracts for papers published prior to the early 1990s. The ratio 
of unique to total words is computed separately by field (i.e., the uniqueness of 

words and total word counts are determined within WoS research areas and 
NBER technology categories). If disruption is decreasing, we may plausibly 
expect to see a decrease in the diversity of words used by scientists and 
inventors, as discoveries and inventions will be less likely to create departures 
from the status quo, and will therefore be less likely to need to introduce new 
terminology. For both papers and patents, we observe declining diversity in 
word use over time, which is consistent with this expectation and corroborates 
our findings using the CD index.
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Extended Data Fig. 4 | Declining combinatorial novelty. This figure shows 
changing patterns in the combinatorial novelty/conventionality of papers  
(a, n = 24,659,076) and patents (b, n = 3,912,353), using a previously proposed 
measure of “atypical combinations”14. The measure quantifies the degree to 
which the prior work cited by a paper or patent would be expected by chance. 
For papers, we follow prior work14 and consider combinations of cited journals. 
If a paper made three citations to prior work, and that work was published in 
three different journals—Nature, Cell, and Science—then there are three 
combinations—Nature × Cell, Nature × Science, and Science × Cell. To determine 
the degree to which each combination would be expected by chance, the 
frequency of observed pairings is compared to those in 10 “rewired” copies of 
the overall citation network, using a z-score. For patents, there is no natural 

analogue to journals, and therefore we consider pairings of primary United 
States Patent Classification (USPC) system codes. We present the results of this 
analysis following the approach of prior work14, which plots the cumulative 
distribution function of the measure. In general, there is a rightward shift in the 
cumulative distributions over time, suggesting that for both papers and 
patents, combinations are more conventional than would be expected by 
chance, consistent with what we would anticipate based on our results using 
the CD index. For patents, there is also a smaller shift in the opposite direction 
on the left side of the distribution, suggesting that novel patents in recent 
decades are somewhat more novel than novel patents in earlier decades. 
Overall, however, the bulk of the distribution is moving rightward, indicating 
greater conventionality.



Extended Data Fig. 5 | Contribution of field, year, and author effects. This 
figure shows the relative contribution of field, year, and author fixed effects  
to the adjusted R2 in regression models predicting CD5. The top bar shows the 
results for papers (n = 80,607,091 paper × author observations); the bottom bar 

shows the results for patents (n = 8,319,826 patent × inventor observations). 
The results suggest that for both papers and patents, stable characteristics of 
authors contribute significantly to patterns of disruptiveness. Moreover, 
relatively little of the variation is accounted for by field-specific factors.
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Extended Data Fig. 6 | CD index over time across data sources. This figure 
shows changes in CD5 over time across four additional data sources (the WoS 
[n = 24,659,076] and Patents View [n = 3,912,353] lines are included for reference): 
JSTOR (n = 1,703,353), the American Physical Society corpus (n = 478,373), 
Microsoft Academic Graph (n = 1,000,000), and PubMed (n = 16,774,282). 

Colours indicate the six different data sources. Shaded bands correspond to 
95% confidence intervals. The figure indicates that the decline in disruption is 
unlikely to be driven by our sample choice of WoS papers and Patents View 
patents.



Extended Data Fig. 7 | Alternative measures of disruption. This figure  
shows the decline in the disruption of papers (a, n = 100,000) and patents  
(b, n = 100,000) based on two alternative measures of disruption. The blue 
lines calculate disruption using a measure proposed in Bornmann et al.13, DI l

nok 
where l = 5, which makes the measure more resilient to marginal changes in the 
number of papers or patents that only cite the focal work’s references. The 
orange lines calculate disruption using a measure proposed in Leydesdorff et al.15, 

DI*, which makes the measure less sensitive to small changes in the forward 
citation patterns of papers or patents that make no backward citations. Shaded 
bands correspond to 95% confidence intervals. With both alternative 
measures, we observe decreases in disruption for papers and patents, 
suggesting that the decline is not an artefact of our operationalization of 
disruption.
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Extended Data Fig. 8 | Robustness to changes in publication, citation, and 
authorship practices. This figure evaluates whether declines in disruptiveness 
may be attributable to changes in publication, citation, and authorship practices 
for papers (n = 24,659,076) and patents (n = 3,912,353). Panels a and d adjust for 
these changes using a normalization approach. We present two alternative 
versions of the CD index, both of which account for the tendency for papers and 
patents to cite more prior work over time. Blue lines indicate normalization at 
the paper level (accounting for the number of citations made by the focal 
paper/patent). Orange lines indicate normalization at the field and year level 
(accounting for the mean number of citations made by papers/patents in the 
focal field and year). Panels b (papers) and e (patents) adjust for changes in 
publication, citation, and authorship practices using a regression approach. 
The panels show predicted values of CD5 based on regressions reported in 

Models 4 (papers) and 8 (patents) of Supplementary Table 1, which adjust for 
field × year—Number of new papers/patents, Mean number of papers/patents 
cited, Mean number of authors/inventors per paper/patent—and paper/patent- 
level—Number of papers/patents cited, Number of unlinked references—
characteristics. Predictions are made separately for each year indicator 
included in the models; we then connect these separate predictions with lines to 
aid interpretation. Finally, Panels c (papers) and f (patents) adjust for changes 
in publication, citation, and authorship practices using a simulation approach. 
The panels plot z-scores that compare values of CD5 obtained from the observed 
citation networks to those obtained from randomly rewired copies of the 
observed networks. Across all six panels, shaded bands correspond to 95% 
confidence intervals.



Extended Data Fig. 9 | Growth of scientific and technological knowledge. This figure shows the number of papers (n = 24,659,076) published (a) and patents 
(n = 3,912,353) granted (b) over time. For papers, lines correspond to WoS research areas; for patents, lines correspond to NBER technology categories.



Article
Extended Data Table 1 | Regression models of disruptiveness and the use of prior knowledge

Notes: This table evaluates the relationship between different measures of the use of prior scientific and technological knowledge and CD5. Estimates are from ordinary-least-squares  
regressions. Each coefficient is tested against the null hypothesis of being equal to 0 using a two-sided t-test. We do not adjust for multiple hypothesis testing. Robust standard errors  
are shown in parentheses.
*p < 0.1; **p < 0.05; ***p < 0.01.
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