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Clonal haematopoiesis involves the expansion of certain blood cell lineages and has
been associated with ageing and adverse health outcomes'™. Here we use exome
sequence data on 628,388 individuals to identify 40,208 carriers of clonal
haematopoiesis of indeterminate potential (CHIP). Using genome-wide and
exome-wide association analyses, we identify 24 loci (21 of which are novel) where
germline genetic variation influences predisposition to CHIP, including missense
variants in the lymphocytic antigen coding gene LY75, which are associated with
reducedincidence of CHIP. We also identify novel rare variant associations with clonal
haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK
Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes,
cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection
and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed
that CHIP is associated with solid cancers, including non-melanoma skin cancer and
lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent
development of myeloid but not lymphoid leukaemias. Additionally, contrary to
previous findings from the initial 50,000 UKB exomes®, our results in the full sample
donotsupportarole for IL-6 inhibition in reducing the risk of cardiovascular disease
among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of
heterogeneous phenotypes with shared and unique germline genetic causes and
varied clinical implications.

Ashumans age, somaticalterations accrue in the DNA of haematopoi-
etic stem cells (HSCs) due to mitotic errors and DNA damage. Altera-
tions that confer aselective growth advantage canlead to the expansion
of particular celllineages, aphenomenon called clonal haematopoiesis.
The presence of clonal haematopoiesis has been associated with an
increased risk of haematological neoplasms, cytopaenias, cardiovas-
cular disease (CVD), infection and all-cause mortality'>. For this reason,
identifying germline causes of clonal haematopoiesis has the potential
toimprove our understanding of initiating eventsin the development
of these common diseases.

Large-scale studies of the germline causes of clonal haematopoiesis
have used samples from the UKB and other large cohorts, but those
studies have been limited mostly to clonal haematopoiesis phenotypes
that can be assessed using single nucleotide polymorphism (SNP) array
genotype data, such as mosaic chromosomal alternations (mCA) and

mosaic loss of sex chromosomes*”® (mLOX and mLOY). Identifying
individuals with CHIP, which is defined by somatic protein-altering
mutations in genes that are recurrently mutated in clonal haemat-
opoiesis, requires sequencing of blood". Once a clone has expanded
sufficiently, the somatic variants fromthis clone can be captured along
with germline variants by exome sequencing. Since exome sequencing
captures protein-altering variants, its large-scale application enables
the detection of readily interpretable rare variant association signals,
and canelucidate critical genes and pathways and potential therapeutic
targeting®'®. So far, the largest genetic association study of CHIP has
included 3,831 CHIP mutation carriersinasample of 65,405 individuals
and hasidentified four common variant loci®.

Here, we use exome sequencing data to characterize CHIP status
in 454,803 UKB™ and 173,585 Geisinger MyCode Community Health
Initiative (GHS) participants. We then conduct a common variant
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genome-wide associationstudy (GWAS) and rare variant and gene bur-
den exome-wide association study (ExXWAS) of CHIP by leveraging 27,331
CHIP mutation carriers from the UKB. We perform areplication analysis
using 12,877 CHIP mutation carriers from the GHS cohort. To identify
germline predictors of specific clonal haematopoiesis driver mutations,
we also conduct GWAS and ExXWAS in carriers of CHIP mutations from
individual CHIP genes. We then compare genetic association findings
for CHIP to those from analyses of other clonal haematopoiesis pheno-
types determined from somaticalterationsintheblood, includingmCA,
mLOX, mLOY and telomere length. Although GWAS of these non-CHIP
clonal haematopoiesis phenotypes have been conducted*”, none
have evaluated the effect of rare variation. The EXWAS we perform here
represents the first systematic large-scale exploration of the effect of
rare variants on the genetic susceptibility of these phenotypes. Finally,
we examine the clinical consequences of somatic CHIP mutations and
germline predictors of CHIP inseveral ways. We first conduct a PheWAS™
of germline predictors of CHIP to understand their biological functions,
and test cross-sectional phenotype associations of CHIP carrier status
across 5,194 traits in the UKB. We then test the risk of incident cancer,
CVD and all-cause mortality among specific CHIP gene mutation car-
riers and use Mendelian randomization to test for evidence of causal
associations between CHIP and phenotypes of interest.

Calling CHIP

We used exome sequencing datafrom 454,803 and 173,585 individuals
fromthe UKB and GHS cohorts, respectively, to generate large callsets of
CHIP carrier status (Methods). In brief, we called somatic mutations
using Mutect2inapipeline thatincluded custom QCfiltering (Extended
DataFig.1a),and ultimately restricted our analysis to 23 well defined and
recurrent CHIP-associated genes. This focused analysis identified
29,669 variants across 27,331 individuals in the UKB (6%), and 14,766
variants across 12,877 individuals in the GHS (7.4%). DNMT3A, TET2,
ASXL1, PPMID and TP53 were the most commonly mutated genes in
both cohorts (Extended Data Fig. 2a). Although the GHS cohort had a
wider age range, and therefore a larger number of older individuals,
the prevalence by age was similar across cohorts, and reached approxi-
mately 15% by 75 years of age (Extended Data Fig. 1b,c). Prevalence of
CHIP gene-specific mutations was consistent with recurrence patterns,
withmutations in the most commonly mutated CHIP genes beginning
toincreasein prevalence at younger ages (Extended DataFig.1d,e and
Supplementary Note1). Somatic mutations within the /DH2 and SRSF2
genes co-occurred significantly more frequently than expectedin both
the UKB and GHS cohorts, whereas DNMT3A mutations co-occurred
less frequently with other mutations than expected (Extended Data
Fig.2b,cand Supplementary Table 1). Amongindividuals with multiple
CHIP mutations (Supplementary Note 2 and Supplementary Fig. 1),
JAK2 mutations consistently had the highest variant allele fraction
(VAF) (Supplementary Fig. 1b).

CHIP demographics

Compared with controls, CHIP carriersinboth the UKB and GHS cohorts
were older and more likely to be heavy smokers, consistent with
previous studies" (Table 1). Although our cohorts were predomi-
nantly comprised of European ancestry individuals, the prevalence
of CHIP was similar across all ancestries (Supplementary Fig. 2).
Inmultivariate logistic regression models, each additional year of age
was strongly associated with anincreased risk of CHIP in the UKB (odds
ratio [range] = 1.08[1.077-1.082], P <107%°°) and GHS (odds ratio =1.06
[1.057-1.063], P<1073%°), and heavy smoking was strongly associated
with CHIP carrier status in both UKB (odds ratio =1.17 [1.14-1.21],
P=7.32x10"%*) and GHS (odds ratio =1.24 [1.10-1.41], P= 6.3 x 107*).
Overall, our results suggest that the prevalence of CHIP doubles every
9-12 years of life. These associations with age and smoking were
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stronger when restricting to high-VAF (=0.1) CHIP carriers. In our mul-
tivariate modelling, women were significantly more likely to be CHIP
mutation carriers than men in the UKB (odds ratio =1.08 [1.05-1.11],
P=6.01x107),but notinthe GHS (oddsratio =1.01[0.93-1.11, P= 0.77]).
These associations were consistent when restricting to high-VAF CHIP
carriers, although therisk of high-VAF CHIP was not significantly greater
inwomen in the UKB (odds ratio =1.035[0.99-1.08], P= 0.126).

Genetic association with CHIP carrier status

We first conducted genetic association analyses in the UKB cohort to
identify germline loci associated with the risk of developing CHIP.Inthe
common variant (minor allele frequency (MAF) > 0.5%) GWAS, which
included 25,657 cases and 342,869 controls with European ancestry, we
identified 24 loci (21 novelloci) harbouring 57 independently associated
variants (Fig. 1and Supplementary Table 2). To confirm these signals,
we conducted a replication analysis in 9,523 CHIP cases and 105,502
controls of European ancestry from the GHS cohort. We estimated
that we had sufficient statistical power in the GHS to detect 19.99 true
and directionally consistent associations across lead SNPs from the
24 loci we identified in the UKB and achieved nominally significant
(P<0.05) replication for 15 SNPs (Supplementary Table 2). We used
conditional analysis and statistical fine-mapping to further evaluate
theindependence of our genome-wide associations and found results
tobe consistentacross methods (Extended Data Fig. 3, Supplementary
Note 3, Supplementary Tables 3-6 and Supplementary Fig. 3).

We next sought to identify rare germline variants associated with
CHIP. Since the CHIP phenotype is based on the presence of rare somatic
variants in recurrently mutated genes, rare germline variants poten-
tially misclassified as somatic can lead to false association signals.
To address potential misclassification, we evaluated median VAF and
association with age for each rare germline variant or gene burden
associated with CHIP. We also conditioned these rare variant analyses
onindependent common variant signals to address confounding due
to linkage disequilibrium (LD) (Supplementary Note 4). Ultimately,
we identified a single rare germline frameshift variant in the CHEK2
gene that was significantly associated with CHIP (odds ratio =2.22
[1.89-2.61], P=8.04 x 107, Supplementary Table 7), remained so after
conditioning on common variantsignals (oddsratio =2.90[1.93-4.34],
P=2.40x107),andreplicated in the GHS (oddsratio =1.56 [1.19-2.04],
P=1.22x107%). The two cancer-associated genes ATM and CHEK2 were
associated with an increased risk of CHIP via rare variant gene bur-
den testing (Supplementary Table 8), and we also found a significant
geneburden association between rare loss of function (and missense)
variantsinthe telomere maintenance and DNA replication associated
gene CTCI and anincreased risk of CHIP (odds ratio =1.55[1.32-1.81],
P=5.24 x107®). Of these three gene burden associations, the ATM and
CHEK2signals were replicated in the GHS (P=8.22 x10and P=0.03,
respectively), and VAF and age-association calculations suggested that
allthree of these gene burden signals were driven by germline variation.
We also performed genome-wide association analyses in individuals
of non-European ancestral background (Supplementary Note 5 and
Supplementary Table 9).

For each germline variant associated with CHIP and prioritized by
clumping and thresholding, conditional analysis or fine-mapping
(see Methods), we queried its associations across 937 binary and
quantitative health traits from the UKB for which we have previously
performed genetic association analysis'® (Supplementary Table 10).
Overall, the traits with significant associations consisted predominantly
of blood measures (that s, cells counts and biomarker levels), anthro-
pometric measures related to body size, autoimmune phenotypes
andrespiratory measures. SNPs with the largest number of significant
phenotypicassociationsincluded those at the HLA, TP53, ZFP36L2 and
THADA, CD164 and MYB loci (Extended Data Fig. 4). Whereas associa-
tionswithblood cell counts and biomarker levels are probably the direct



Table 1| Descriptive statistics for CHIP mutation carriers

Age Sex (% Heavy Previousblood Any blood Any cancer(- Severe Ancestry (European,
(median) female) smoking (%) cancer (%) cancer (%) NMSC, %) COVID-19 African, South Asian, other
(%) (%))
UKB CHIP 62 54.0 33.9 218 6.49 26.6 0.52 9% 1.4 1.8 0.73
No CHIP 57 54.3 275 0.60 219 17.8 0.31 95 20 2.3 0.94
GHS CHIP 73 55.2 13.7 159 127 1.7 0.45 98 14 0.1 0.65
No CHIP 57 61.6 9.57 0.63 3.22 19.7 0.18 94 3.2 0.3 19

result of expansion of individual cell lineages in blood, association with
autoimmune phenotypes couldreflect the consequences of disrupted
immune system differentiation related to clonal haematopoiesis.

Analyses of individual CHIP gene mutations

Toidentify CHIP subtype-specific risk variants, we defined gene-specific
CHIP phenotypes for each of the eight most commonly mutated CHIP
genes. For each subtype, we selected individuals with mutationsin one
of the eight genes and no mutations in any of the other genes used to
define CHIP. We then conducted genetic association analyses compar-
ing these single CHIP gene carriers to CHIP-free controls, with replica-
tioninthe GHS, and observed shared, unique, and opposing effects of
associated loci on CHIP subtypes, including 8 genome-wide significant
loci that were not significant in our overall analysis of CHIP (Fig. 2a,
Extended Data Fig. 5 and Supplementary Tables 11-19).

DNMT3A, which was the most commonly mutated gene in the overall
CHIP phenotype, had the largest number of significantly associated loci
(n=23), most of which overlapped with the overall CHIP association
signals. Six loci achieved genome-wide significance in our DNMT3A
CHIP analysis that were not significant in our overall analysis (RABIF,
TSC22D2,ABCC5,MYB, FLT3and TCL1A; Extended DataFig. 5). Although
most loci harboured variants that increased CHIP risk, two excep-
tions are noteworthy (Fig. 2b). At the PARPI locus on chromosome 1,
atightly linked block of around 30 variants (29 in the 95% credible set
from fine-mapping; Supplementary Table 6) with an alternate allele

Common variants (MAF > 0.005)

frequency (AAF) of 0.15 was associated with reduced risk of DNMT3A
CHIP (odds ratio = 0.87[0.84-0.90], P=2.70 x 107). PARP1 has arolein
DNA damage repair, and many variants in this block have been identi-
fied across multiple transcriptomic studies of blood as PARPI expres-
sion quantitative trait loci (eQTLs) that associate with reduced PARP1
gene expression™*". Furthermore, a missense variant (rs1136410-G,
V762A) thatis predicted aslikely to be damaging (combined annotation
dependent depletion (CADD) score =27.9) is a part of this LD block,
and hasrecently been reported to associate withimproved prognosis
and survivalin myelodysplastic syndromes'® (MDS). Atalocus on chro-
mosome 2, rs78446341 (P1247L in LY75) was associated with reduced
risk of DNMT3A CHIP (odds ratio = 0.78 [0.72-0.84], P=3.70 x10%°),
and was prioritized by fine-mapping (Extended Data Fig. 3). LY75 fea-
tureslymphocyte-specific expression (Supplementary Fig. 4a), and is
thought to be involved in antigen presentation and lymphocyte pro-
liferation®. We also identified a second rare (AAF = 0.002) missense
variant (rs147820690-T, G525E) that associated with reduced risk of
DNMT3A CHIP at close to genome-wide significance (odds ratio = 0.48
[0.36-0.63], P=1.15x107). This variant was predicted as likely to be
damaging (CADD = 23.6) and remains associated (odds ratio = 0.63
[0.51-0.77], P=4.80 x10°®) when conditioning on common variant
signal in this locus (that is, this rare variant signal is independent of
the common variant signal in this locus). This variant was also prior-
itized by fine-mapping (Extended Data Fig. 3 and Methods for jointly
fine-mapping common and rare variants). Finally, these signals in PARP1
and LY75replicated in the GHS (Fig. 2b).
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Fig.1| GWAS of CHIP. Manhattan plot showing results from a genome-wide
association analysis of CHIP. Twenty-four locireach genome-wide significance
(P<5x107% dashed line), and top-associated variants per locus are labelled
withbiologically relevant genes. Three of these loci have been previously
identified (black), whereas 21 represent novel associations (red). Loci with

suggestive signal (P<5x107) arelabelled in grey. Association models were run

withage, age? sexand age x sex, and 10 ancestry-informative principal

components as covariates. P-values are uncorrected and are from two-sided

tests performed using approximate Firth logistic regression.
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Fig.2|Germline effect size comparisons across CHIP and Forest plots of
PARP1and LY75missense variants. a, Using results from CHIP gene-specific
association analyses, effect sizes ofindex SNPs are compared across CHIP
subtypes. SNPs were chosen as those that wereindependent on the basis of
clumpingand thresholding (with some refinement based on our conditionally
independentvariantlist) and genome-wide significantinatleastone
association with CHIP or a CHIP subtype. Certain loci showed notably different
effectsacross CHIP subtypes, as seenat the CD164 locus, whichwas associated
with DNMT3A CHIP and ASXL1 CHIP but not TET2CHIP, and the TCL1Alocus,
whichwas associated with increased risk of DNMT3A CHIP but reduced risk of

Among loci associated with multiple CHIP subtypes (Supplementary
Note 6), we observed genome-wide significant association signals at
the TCL1Alocus that were not present in the overall CHIP analysis. This
locusis notable because it exhibited genome-wide significant effects
in opposing directions across CHIP subtypes (Extended Data Figs. 2a
and 5 and Supplementary Table 20), with lead SNPs (for example,
rs2887399-T, rs11846938-G and rs2296311-A) at the locus associated
with an increased risk of DNMT3A CHIP (odds ratio =1.14 [1.11-1.17],
P=2.13x10°) butareduced risk of TET2 CHIP (odds ratio = 0.75[0.71-
0.80], P=9.14 x107%2) and ASXLI1 CHIP (odds ratio = 0.70 [0.65-0.76],
P=8.59 x107). Effect estimates from the other five CHIP gene-specific
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(95% confidence interval)

other CHIP subtypes (blue rectangles). b, Forest plots are shown reflecting the
protective associations of a PARPI missense variant (rs1136410-G) and two LY75
missense variants (rs78446341-A, rs147820690-T) with our DNMT3A CHIP
phenotypeinthe UKB and GHS cohorts. Centre points represent odds ratios
asestimated by approximate Firthlogistic regression, witherrors bars
representing 95% confidenceintervals. P-values are uncorrected and reflect
two-sided tests. Numbers below the cases and controls columns represent
counts of individuals with homozygote reference, heterozygote and
homozygous alternative genotypes, respectively.

association analyses were also consistent with protective effects. This
is consistent with findings from a recent genetic association study of
CHIPinthe TOPMed cohort", which identified agenome-wide signifi-
cant positive association of the TCL1A locus and DNMT3A CHIP as well
asanominally significant opposing signal for TET2 CHIP. Additionally,
the DNMT3A CHIP-increasing allele has been found to reduce the risk
of mLOY in a recent GWAS’. This observation suggests that DNMT3A
CHIPis distinctamong clonal haematopoietic subtypes with regard to
the genetic influence of the TCLI1A locus, which may relate to the fact
that TCL1A has been reported to directly interact with and inactivate
DNMT3A%,



CHIP and mosaic chromosomal alterations

To evaluate therelationship between CHIP and other forms of somatic
alterations of the blood, we used phenotype information onother types
of clonal haematopoiesis that are available for UKB participants*”'2,
We first evaluated the phenotypic overlap between CHIP and mLOY,
mLOX and autosomal mosaic chromosomal alterations (mCAaut).
CHIP is distinct from mCA phenotypes (mCAaut, mLOX and mLOY),
with more than 80% of CHIP carriers having no identified mCAs (Sup-
plementary Fig. 4b). Furthermore, having an mCA is not significantly
associated with being a CHIP carrier after adjusting for age, sex and
smoking status (odds ratio =1.02, P=0.27). Carriers of only a single
clonal haematopoiesis driver (that is, CHIP, mLOY, mLOX or mCAaut)
were younger on average than those with multiple clonal haematopoie-
sislesions, and mCAautand CHIP carriers were youngest among single
clonal haematopoiesis phenotype carriers (Supplementary Fig. 4c).
Wethen conducted GWAS and ExXWAS analyses of these somatic alter-
ation phenotypes and evaluated the germline genetic contributions
shared between CHIP and these traits (Supplementary Fig. 5 and Sup-
plementary Tables 21-27). Genome-wide genetic correlation (r,)****was
nominally significant between CHIPand mLOY (r,= 0.27,P= 0.014 (uncor-
rected); Supplementary Table 21). Notably, variants at 4 loci (marked by
the genes ATM, LY75, CD164 and GSDMC) showed similar associations
with both CHIP and mLOY, whereas variants at the SETBPI locus were
negatively associated with CHIP and positively associated with mLOY.
These comparisons suggest that despite being distinct clonal haemat-
opoietic phenotypes, CHIP and mLOY share multiple germline genetic
risk factors. Althoughthe commonvariant association analyses of these
other somaticalteration phenotypes were undertaken for the purpose of
comparingto CHIP,and our results are consistent with recent published
associations for these non-CHIP UKB somatic alteration phenotypes*”$,
we also identified novel rare variant and gene burden associations via
ExWAS analyses (Supplementary Note 7, Supplementary Tables 22-27
and Supplementary Fig. 6). We also extended our EXWAS analysis to
telomere length and identified multiple novel rare variant associations
(Supplementary Note 8 and Supplementary Tables 28-30).

Phenotypic associations with CHIP

Clonal haematopoiesis has been associated with an increased risk of
haematologic malignancy and CVD, as well as other health outcomes
including all-cause mortality and susceptibility to infection®***?, To
test for expected as well as potentially novel associations, we performed
cross-sectional association analyses across 5,041 traits (2,640 binary
and 2,401 quantitative traits) from the UKB, curated as part of our
efforts for the UKB Exome Sequencing Consortium. We performed
Firth penalized logistic regression using CHIP gene mutation carrier
status (thatis, whether anindividual had amutationin our callset within
aspecific CHIP gene) as the binary outcome for 22 of the 23 CHIP genes
inour callset (counts were too low for CSF3R; Methods), with age, sex
and ten genetic principal components as covariates. Our results are
consistent with previous findings, with the majority of associated
phenotypes deriving from cardiovascular, haematologic, neoplastic,
infectious, renaland/or smoking-related causes (Fig.3, Supplementary
Fig.7 and Supplementary Table 31).

ASXL1 CHIP was associated with the largest number and widest
range of traits, and many of these associations traced to correlates of
smoking. SUZ12 CHIP showed a distinct association profile amongst
CHIP genes, with alarger proportion of associations in endocrine and
ophthalmologic traits than other CHIP genes. Many traits showed
associations with DNMT3A CHIP and TET2 CHIP that were in opposing
directions, including white blood cell count, platelet count and neu-
trophil count, which were all positively associated with DNMT3A CHIP
and negatively associated with TET2 CHIP. These results are consist-
ent with functional differences in the haematopoietic phenotypes of

DNMT3A- and TET2-knockout mice?. Notably, body mass index (BMI)
and fat percentage were negatively associated with DNMT3A CHIP and
other leukaemogenic CHIP mutations (for example, JAK2, CALR and
MPL), but are positively associated with other CHIP subtypes (for
example, TET2and ASXL1). We also observed significant associations
between JAK2 mutations and gout, which may reflect the increased
uric acid production that can accompany haematopoiesis® and/or
renal disease?, or even uric acid-independent associations identified
between anaemia and gout®,

Givenrecent reports that clonal haematopoiesis is associated with
anincreased risk of COVID-19 and other infections**, we also tested
for an association between CHIP and COVID-19 infection in the UKB
cohort®. When restricting to CHIP carriers with VAF >10% (Supple-
mentary Note 9), we found that CHIP carrier status was significantly
associated with COVID-19 hospitalization (odds ratio =1.26 [1.07-
1.47], P=4.5x107) and severe COVID-19 infection (odds ratio = 1.55
[1.19-1.99], P=8.5 x107*) in logistic regression models that excluded
individuals with any previous blood cancers and that adjusted for age,
sex, smoking, BMI, type 2 diabetes, active malignancy, and five genetic
principal components. Analyses at the CHIP subtype level suggested
that PPMI1D carriers may be at elevated risk of severe COVID-19 (odds
ratio =5.42[1.89-12.2], P=2.8 x 107*; Supplementary Note 9).

Longitudinal disease risk among CHIP carriers

Given the confounding that can bias cross-sectional association analy-
ses, we performed survival analyses to evaluate whether individuals
with CHIP at the time of enrolment and blood sampling in the UKB were
atanincreasedrisk of subsequent CVD, cancer and all-cause mortality.
To do this, we generated aggregate longitudinal phenotypes of CVD,
lymphoid cancer, myeloid cancer, lung cancer, breast cancer, prostate
cancer, colon cancer and overall survival (that is, any death). Because
prior longitudinal studies of CHIP and the risk of many of these out-
comes have focused on high-VAF CHIP, we focused on CHIP carriers
with VAF > 0.10 for these analyses. To complement these longitudinal
analyses, we used Mendelian randomization to evaluate the relation-
ship between CHIP and subsequent disease (Extended Data Fig. 6a,
Supplementary Note 10 and Supplementary Table 32).

We observed a significantly increased risk of CVD in CHIP carriers
(hazardratio =1.11[1.03-1.19], P= 4.2 x 10%), which was driven by TET2
CHIP (hazard ratio =1.31 [1.14-1.51], P=1.3 x 10™*; Supplementary
Fig. 8a). However, this risk estimate is lower than the hazard ratio of
1.59 recently reported by Bick et al.® in an analysis of CHIP from the first
50,000 UKB participants (hereafter referred to as the 50k UKB subset)
with exome sequencing data available. Therefore, we restricted our
analysis to the 50,000 individuals from the previous study and found
that the estimated hazard ratiois indeed higher in this subset (hazard
ratio=1.30 [1.06-1.59], P=0.013; Supplementary Fig. 8b). Bick et al.
also observed a cardio-protective effect of IL6R rs2228145-C (agenetic
proxy for IL-6 receptor inhibition) among CHIP carriersin the 50k UKB
subset, so we repeated that analysisin boththe 50k UKB subset and the
fullUKB cohort (n =430,924 in these analyses). We observed the same
CHIP-specific protective IL6R effectin the 50k UKB subset as previously
reported (hazard ratio = 0.60[0.40-0.89], P= 0.012), however we did
notfind any/L6R effectinthe full cohort (hazard ratio = 0.99[0.91-1.07],
P=0.784,n=430,924; Extended Data Fig. 7a-d). These results were
consistent when varying which CHIP mutations we used to define CHIP
case status, as well as when using different VAF thresholds and a variety
of CVD endpoint composites (Methods). We did not find any association
between CHIP and CVD, nor a CHIP-specific protective IL6R effect, when
repeating this analysis in the GHS cohort (Supplementary Figs. 8d and
9a, b). Furthermore, we did not find evidence for a casual association
between CHIP and CVD when using atwo-sample Mendelian randomi-
zation approach (Supplementary Note 10, Supplementary Fig.10 and
Supplementary Table 32).
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Fig.3|Phenome association profiles per CHIP subtype. Profiles are shown
foreach CHIP gene subtypereflecting phenome-wide association results.
They-axis (concentric circles) represents the proportion of phenotypes within
atrait category that were nominally associated (P < 0.05) with carrier status of
the CHIP gene. A CHIP gene had to have atleast one disease category with the
proportion of associated phenotypes > 0.2tobeincludedinthefigure. As
expected, haematological traits show the largest proportion of phenotypic

We next tested whether CHIP carriers are at an increased risk of
haematologic and solid cancers, and whether risk differed by CHIP
mutational subtype for the three most common CHIP genes (that is,
DNMT3A, TET2 and ASXLI; Extended DataFigs. 7-9 and Supplementary
Figs.11-14). To control for the possibility that toxic chemotherapeutic
treatment for previous cancers might drive the development of CHIP
mutations® and/or otherwise confound association analyses, we per-
formed all analyses after excluding individuals with any diagnoses of
cancer prior to DNA collection. As expected, we found CHIP carriers
with VAF > 0.10 to be at asignificantly elevated risk of developing any
blood cancer (hazard ratio = 3.88 [3.46-4.36], P=9.10 x 10™; Sup-
plementary Fig. 11a), and we identified similarly elevated risk when
replicating these analysesin the GHS (Supplementary Fig.11d). We also
estimated the risk of CHIP on neoplastic myeloid subtypes, including
acute myeloid leukaemia (AML), MDS and myeloproliferative neo-
plasms (MPN), and found that high-VAF CHIP carriers have more than
23-foldincreasedrisk of acquiringan MPN (hazard ratio = 23.11[17.63~
30.29],P=1.60 x10™™) (Extended DataFig. 8). As expected, we identi-
fied asignificant association between myeloid leukaemia and CHIP by
Mendelian randomization (Supplementary Note 10, Supplementary
Fig.12 and Supplementary Table 32).

Wethen tested whether CHIP carriers had anincreased risk of devel-
oping solid tumours, and found that high-VAF carriers are at signifi-
cantly increased risk of developing lung cancer (hazard ratio =1.64
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trait associations overall. The largest number of cancer associations are seen
for DNMT3A CHIP, whereas JAK2 CHIP shows the highest proportion of
cardiovascular associations. Respiratory associations are most pronounced
for ASXL1 CHIP.SUZ12 CHIP shows a unique profile across CHIP subtypes,
withahigher proportion of ophthalmological and endocrine associations.
Association models were run with age, age?, sexand age x sex, and ten
ancestry-informative principal components as covariates.

[1.42-1.90],P=1.10 x 10™),and more modest increased risk of develop-
ing prostate cancer (hazard ratio =1.18 [1.05-1.32], P=5.30 x 10*) and
non-melanomaskin cancer (hazard ratio=1.14[1.04-1.24],P=4.7 1073,
Fig. 4 and Supplementary Fig.13). We also observed a non-significant
increased risk of developing breast cancer (hazard ratio =1.14 [0.99-
1.31], P=0.062) and no increase in risk for the development of colon
cancer (hazardratio=0.95[0.78-1.15], P= 0.59; Supplementary Fig.13).
Models estimating event risk on the basis of CHIP mutational subtype
(for example, DNMT3A CHIP) suggest that these associations with pros-
tate and breast cancer are driven primarily by DNMT3A mutations. Only
the association with lung cancer was replicated in the GHS (Fig. 13e),
although sample sizes were limited for the analyses in the GHS owing
to how the biobank data were ascertained (Methods).

Giventhe strongassociations between CHIP and both blood and lung
cancers, and the associations between smoking and both CHIP and
lung cancer, we performed additional analyses stratified by smoking
status to test whether these associations were driven by smoking and
merely marked by CHIP mutations. Although smoking statusis difficult
toascertain, we used aninclusive ‘ever smoker’ definition to minimize
the likelihood that individuals labelled as non-smokers had engaged
in any smoking (Methods). High-VAF CHIP carriers had an increased
risk of developing blood cancers in both smokers (hazard ratio = 3.95
[3.25-4.78], P=2.80 x 10**) and non-smokers (hazard ratio = 3.97 [3.43-
4.58],P=1.10 x1077; Supplementary Fig.14a, b). Notably, lung cancer
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Fig. 4 |Increasedrisk oflung canceramong CHIP carriers. a, Forest plot and
table featuring hazard ratio estimates from Cox proportional hazard models
oftherisk lung canceramong CHIP carriers. Error bars representa 95%
confidenceinterval. Associations are similar across common CHIP subtypes, as
wellasamong CHIP carriers with lower VAF (=2%). Models are adjusted for sex,
low density lipoprotein, high density lipoprotein, smoking status, pack years,
BMI, essential primary hypertension, type 2 diabetes mellitus, and 10 genetic
principal components specific toaEuropean ancestral background. HR,
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mutation. b, Estimated associations via four Mendelian randomization
methods between CHIP and lung cancer. Each pointrepresents one of 29
instrumental variables (thatis, conditionally independent SNPs) that were
identified in the UKB cohortas associated with CHIP. The x-axis shows the
effectestimate (beta) of the SNP on CHIP in the UKB cohort, and the y-axis
shows the effect estimate (beta) of the SNP on lung cancer in the GHS cohort.
Theslope ofeachregression line represents the effect size estimated by
respective methods. VW, inverse variance weighted.

risk for high-VAF CHIP carriers was significantly elevated among both
smokers (hazard ratio =1.67[1.41-1.97], P=1.5 x 10~°) and non-smokers
(hazard ratio =2.02[1.53-2.67], P=8.30 x 107 ; Extended Data Fig. 9a,b).
These associations were driven by DNMT3A and ASXL1 CHIP carriers,
with both estimated to have elevated lung cancer riskin both smokers
and non-smokers. We replicated the association between CHIP carrier
status and lung cancer in both smokers and non-smokers in the GHS
(Extended Data Fig. 9c,d). Overall, these models suggest that CHIP
mutation carriers are at an elevatedrisk of both blood cancer and lung
cancer, independent of smoking status.

We also found support for a causal association between CHIP and
lung cancer (inverse variance weighted odds ratio (OR,) = 1.55[1.34-
1.80],P=8.90 x107%; Fig. 4 and Extended Data Table 1), as well as more
modest support for causal associations between CHIP and melanoma
(ORyw =1.39[1.13-1.1.71], P= 0.0021), CHIP and non-melanomaskin can-
cer (ORyw =1.26[1.13-1.41], P=5.30 x 10~%), CHIP and prostate cancer
(ORw=1.20[1.03-1.1.39], P=0.017), and CHIP and breast cancer (1.17
[1.04-1.31], P=0.01), when performing Mendelian randomization

(Extended Data Fig. 6a, Supplementary Note 10 and Supplementary
Table 32). Although there is a concern that variants predisposing to
CHIP via cancer-associated pathways (for example, telomere biology,
DNA damage repair and cell cycle regulation) may confound these asso-
ciations viahorizontal pleiotropy, Egger-based Mendelian randomiza-
tion methods that account for this bias by fitting a non-zero intercept
provided additional support for these associations. Finally, the risk
of death from any cause was significantly elevated among high-VAF
CHIP carriers (hazard ratio=1.27[1.18-1.36], P=2.70 x 10 ™), and was
similar across DNMT3A, TET2 and ASXL1 CHIP subtypes (Extended
DataFig. 6b).

Inthis study, we present the largest assessment to date of individuals
with CHIP mutation carrierinformation, as well as the use of these calls
to identify novel common and rare variant loci associated with CHIP
and CHIP subtypes. Theseloci, which have shared, unique and oppos-
ing effects on the risk of developing different types of CHIP and other
somatic alterations of the blood, highlight the fact that germline vari-
ants can predispose to clonal expansions, and that CHIP encapsulates
acomplexset of heterogeneous phenotypes. We further show that the
genetic aetiology of CHIP is reflected in its clinical consequences, as
therisk of various clinical conditionsis differentially associated across
CHIP gene mutations.

Thenewlociidentified inthis study provide afoundation onwhich to
investigate the biological mechanisms that lead to specific features of
CHIP. For example, among CHIP-associated loci, variantsin the TCLIA
locus that are associated with an increase in the risk of DNMT3A CHIP
have the opposite effect on the risk of all other CHIP and clonal hae-
matopoiesis subtypes. Coupled with recent findings that link the role
of TCL1A in mLOY to lymphocytes’ (for example, B cells), our results
further suggest TCL1A as a critical mediator of clonal haematopoiesis
as well as clonal haematopoiesis subtype-specific differences.

Several novel loci associated with DNMT3A CHIP harbour genes
that are potential targets for the development of new treatments to
prevent or slow the expansion of CHIP clones. Both PARPI and LY75
contain missense variants associated with reduced risk of CHIP and of
DNMT3A CHIP specifically. The variants in the PARPI locus are signifi-
cantly associated with reduced PARP1gene expressionin whole blood®
(P<1x1075), and the V762A missense variant (rs1136410-G) has been
recently reported to associate with improved prognosis and survival
in MDS®, Given the well-established role of PARPIin DNA repair®, and
thatarecent CRISPR screen study in zebrafish identified PARPI inhibi-
tionas aselectivekiller of TET2 mutant haematopoietic stem cells®, it
seems plausible thatatherapeutic strategy thatinhibits PARPI might be
viable for the antagonization of CHIP clone expansion. Furthermore,
PARPI-inhibiting drugs are already approved for use in the treatment of
BRCA-mutant cancers®. Conversely, PARPI inhibition is known to cause
haematologic toxicity and to increase the risk of treatment related
haematologic malignancy®. Therefore, further researchis needed to
test whether PARPI inhibition may be appropriate for use in antago-
nizing the expansion of CHIP clones, and whether any effect is clonal
haematopoiesis subtype-specific.

The more common LY75 missense variant (rs78446341-A, P1247L)
is located in the extracellular domain of lymphocytic antigen 75
(also known as DEC-205 or CD205), and has arole in antigenic cap-
ture, processing and presentation®. The rarer LY/5 missense vari-
ant (rs147820690-T, G525E) is located in a C-type lectin domain
and reported to interact directly with this receptor’s ligand. LY75 is
expressed predominantly in haematopoietic-derived cells**® (and
particularly dendritic cells), and its ablation impairs T cell prolifera-
tion and response to antigen challenge?. The protective associations
with this variant that we identified appear to be most pronounced for
DNMT3A CHIP and mLOY, and highlight LY75 as a potential therapeu-
tic target for the antagonization of clonal haematopoiesis in general.

Although most of the phenotypic associations we observe in our
cross-sectional analyses are expected associations with haematologic
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and oncologic traits, the associations we identify with obesity and body
mass traits are of particular interest. This relationship between body
mass and CHIP may relate toinflammatory or hormonal signalling, and
directions of effect that we estimate are consistent with recent find-
ings that DNMT3A CHIP reduces bone mineral density viaincreasesin
macrophage-mediated IL-20 signalling®. The fact that the association
we report between obesity and body mass and CHIP are in opposing
directions across CHIP subtypes (for example, negative in DNMT3A
CHIP and positive in TET2 CHIP and ASXL1 CHIP) suggests that the rela-
tionship between CHIP and adiposity is complex and requires further
investigation.

Perhaps most unexpectedly, we found associations between CHIP
and CVD to be more modest than previously reported' . DNMT3A muta-
tions do not associate with CVD, which is consistent with the absence
of any association between CHIP and CVD when applying Mendelian
randomization. However, this patternis not seen across CHIP associa-
tions with solid tumours, which we found to be driven by DNMT3A,
and to be supported by Mendelian randomization. Overall, our results
further clarify therole of CHIP mutational subtypesin the development
of cancer and CVD and emphasize the importance of viewing (and
potentially treating) different CHIP subtypes as distinct haematologic
preconditions.

Whereas Bick et al. ®. found statistical support for reduced CVD inci-
dence among CHIP carriers with an/L6R coding mutation (rs2228145-C)
serving as a genetic proxy for IL-6 inhibition, we do not find any sup-
port for this association when extending their analysis from the first
50,000 exomes in the UKB to the full cohort of 450,000 exomes, nor
when repeating this analysis in 175,000 exomes from the GHS cohort.
The signal identified across the first 50,000 exomes may result from
achanceascertainment bias*°. Alternatively, whereas the rs2228145-C
variant is thought to mimic IL-6 inhibition, and therefore confer pro-
tection from heart disease*, neither our analysis nor Bick et al. found
evidence that rs2228145 carriers are protected from CVD in subjects
without CHIP. Therefore, itis possible that this mutationis a poor proxy
for IL-6 inhibition, and that direct pharmacological inhibition of IL-6
may still antagonize the interplay between CHIP clone expansion and
the onset of CVD.

This study benefits from its biobank-scale size, which we leverage
to further resolve clonal haematopoiesis subtypes and broadly assess
clinical phenotypes associated with CHIP. However, limitationsinclude
the potential inclusion in our CHIP callset of a small number of ger-
mline variants, alack of serial sampling, and alack of experimental data
to characterize the mechanisms underpinning the novel associations
that we identify. Although we have taken many steps to ensure the
quality of our callset and analysis (Supplementary Notes 11 and 12 and
Supplementary Figs.15-18), the misclassification of somatic variants
with high VAF as germline variants, and/or the misclassification of
true germline variants as somatic clonal haematopoiesis variants (for
example, germline variants at genomic positions identified as clonal
haematopoiesis hotspots) remain challenges inherent to calling and
analysing CHIP and clonal haematopoiesis when using population
scale genomic data. Serial sampling would enable the evaluation of
changes to CHIP clones over time, and future studies that focus on
such serial analysis at large scale will be able to better estimate CHIP
subtype-specific clonal changes and clinical risk. Such increased data
assets would also likely facilitate the identification of additional genes
that show recurrent mutation during clonal haematopoiesis, as well
as how such mutations relate to one another (that is, in dependency,
mutual exclusivity and temporal order). Nonetheless, we identify
many novel common and rare variant associations with CHIP and other
clonal haematopoiesis phenotypes, which help to set the stage for
future functional, mechanistic and therapeutic studies. On the whole,
our analyses emphasize that CHIP is really a composite of somatic
mutation-driven subtypes, with shared genetic aetiology and distinct
risk profiles.
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Methods

Study approval

UKB study: ethical approval for the UKB study was previously obtained
from the North West Centre for Research Ethics Committee (11/
NW/0382). The work described herein was approved by UKB under
application number 26041. GHS study: approval for DiscovEHR analy-
ses was provided by the Geisinger Health System Institutional Review
Board under project number 2006-0258.

Exome sequencing and variant calling

Sample preparation and sequencing were done at the Regeneron
Genetics Center as previously described'®*°. In brief, sequencing
libraries were prepared using genomic DNA samples from the UKB,
followed by multiplexed exome capture and sequencing. Sequencing
was performed on the lllumina NovaSeq 6000 platform using S2 (first
50,000 samples) or S4 (all other samples) flow cells. Read mapping,
variant calling and quality control were done according to the Seal
Point Balinese (SPB) protocol*’, whichincluded the mapping of reads
to the hg38 reference genome with BWA MEM, the identification of
smallvariants with WeCall, and the use of GLnexus to aggregate these
files into joint-genotyped, multi-sample VCF files. While certain UKB
exome analysis efforts have used calls generated with the OQFE pipe-
line*, this pipeline has only been used to a limited degree for disease
association analysis. Therefore, we chose to use calls from the SBP
pipeline, which have been used very extensively for disease association
analysis, including the largest set of association analyses done with
UKB exome data'. Depth and allelic valance filters were then applied,
and samples were filtered out if they showed disagreement between
genetically determined and reported sex, high rates of heterozygosity
or contamination (estimated with the VerifyBamld tool as a FREEMIX
score >5%),low sequence coverage, or genetically determined sample
duplication.

Calling CHIP

To call CHIP carrier status, we first used the Mutect2 (GATK v4.1.4.0)
somatic caller® to generate a raw callset of somatic mutations across
allindividuals. This software aims to use mapping quality measures as
well as allele frequency information to identify somatic mutations
against a background of germline mutations and sequencing errors.
We used data generated from gnomAD v2 as the reference source for
germline allele frequency*. We generated a cohort-specific panel of
normals, which Mutect2 uses to estimate per-site beta distribution
parameters for use in refining somatic likelihood assignment. Since
CHIP is strongly associated with age, we chose 100 random UKB sam-
ples from 40 year olds and 622 samples from individuals less than
18 years of age in GHS to build these cohort-specific panels of normals.
By evaluating the degree to which default Mutect2 filtering excluded
known CHIP hotspot mutations, we noted that the default Mutect2
pass/fail filters were too stringent. Therefore, we initially considered all
Mutect2 variants (thatis, even those that did not pass default Mutect2
filtering), and proceeded to perform our own QC and somatic muta-
tion call refinement. As aninitial refinement step, we selected variants
occurring within genes that have been recurrently associated with
CHIP according to recent reports from the Broad?, the TOPMed Con-
sortium", and the Integrative Cancer Genomics (IntOGen) project®.
We then filtered putative somatic mutations using the outlined
functional criteria®. Next, we performed additional QC steps,
which consisted of (1) removing multi-allelic somatic calls, (2)
applying sequencing depth filters (total depth (DP) > 20; alternate
allele depth (AD) > 3, FIR2 and F2R1 read pair depth > 1), (3) remov-
ing sites flagged as panel of normals by Mutect2 (unless previously
reported), (4) removing indels flagged by the Mutect2 position filter,
(5) removing sites withinhomopolymer runs (a sequence of >5 identical
bases) if AD <10 or VAF < 0.08, (6), removing missense mutations in

CBL or TET2inconsistent with somaticism (thatis, P-value > 0.00lina
binomial test of VAF = 0.5), (7) removing novel (not previously reported)
variants that exhibited characteristics consistent with germline variants
or sequencing errors. Thatis, we excluded variants that had a median
VAF > 0.35, since approximately 97% of previously reported variants
(thatis, from arecent study of CHIP by the TOPMed consortium™) had
amedian VAF < 0.35. Beyond this, we evaluated the frequency distri-
butions of known variants (stratified by effect—that is, missense or
non-missense) to discern thresholds for newly identified variants (that
is, AF (allele frequency) of novel variants < AF of previously reported
variants). Additionally, novel G>T or C>A SNV calls were evaluated for
oxidation artifacts*¢. Specifically, variants with a maximum alternate
allelic depth < 6 (across all samples) and < 2 supportive reads from FIR2
(C>A) or F2R1 (G>T) mate pairs were removed, respectively.

Given that > 90% of mutations belonged to 23 recurrent CHIP-
associated genes, we restricted to variants occurring within these
genes as a final step to maximize the specificity of our callset. These
genes consisted of the 8 most frequent mutated CHIP genes (DNMT3A,
TET2,ASXL1, PPMID, TP53, JAK2, SRSF2 and SF3B1), a collection of
CHIP-associated genes containing SNV hotspots (BRAF, CSF3R,
ETNK1, GNAS, KRAS, GNBI, IDH2, MPL, NRAS, PHF6 and PRPFS8), and
CHIP-associated genes of haematological interest (CBL, CALR, RUNX1
and SUZ12). Our final CHIP set of CHIP mutation carriers consisted of
29,669 CHIP mutations across 27,331 unique individuals from UKB,
and 14,766 CHIP mutations across 12,877 unique individuals from GHS.
Variant allele fraction (VAF) was calculated using AD/(reference allele
depth (RD) + AD).

Defining CHIP and mosaic phenotypes

CHIP phenotypes were derived based on our mutation callset, whereas
mosaic chromosomal alteration (mCA) phenotypes were derived based
on previously published mCA calls from the UKB*”, First, we used
International Classification of Diseases (ICD) codes to exclude 3,596
samples from UKB and 1,222 samples from GHS that had a diagnosis
of blood cancer prior to sample collection. We also excluded 13,004
individuals from GHS whose DNA samples were collected from saliva as
opposedtoblood. For all of the phenotypes we generated and analysed
in this study, we used a combination of cancer registry data, hospital
inpatient (HESIN) data, and data from general practitioner records to
ascertain ICD10 codes. The majority of our cancer datacame fromthe
cancer registry, which we supplemented with the other sources. We
then defined multiple CHIP and mosaic phenotypes based on whether
carriers did (inclusive) or did not (exclusive) have other somatic pheno-
types. For example, individuals with atleast one CHIP mutationin our
callset were defined as carriers for a CHIP_inclusive phenotype, whereas
anyone witha CHIP mutationas well as anidentified mCA was removed
fromthisinclusive phenotypein order to define a CHIP_exclusive phe-
notype (20,606 cases and 342,869 controls). Our association analysis
with CHIP used this CHIP_inclusive phenotype, whichincluded 25,657
cases and 342,869 controls of European ancestry in UKB, and 11,821
casesand 135,106 controls of Europeanancestry in GHS. These counts
reflect the samples with European ancestral origin that remainin each
cohort after removing those with non-CHIP clonal haematopoiesis
(60,991in UKB and 0 in GHS, as we did not call mosaic chromosomal
alterationsin GHS), and those with missing meta data (348 in UKB and
4,893 in GHS). We defined mLOY carriers as male individuals witha'Y
chromosome mCA inthe UKB mCA callset that had copy change status
ofloss or unknown, mLOX asindividuals with an X chromosome mCA
in the UKB mCA callset that had copy change status of loss or unknown,
and mCAaut carriers as individuals with autosomal mCAs. We then
refined these inclusive phenotypes to define exclusive versions, with
mLOY_exclusive consisting of carriers with no X chromosome or
autosomal mCAs (36,187 cases and 151,161 controls), mLOX_exclu-
sive consisting of carriers withno Y chromosome or autosomal mCAs
(10,743 cases and 364,072 controls), and mCAaut_exclusive consisting



of carriers with no Y or X chromosomal alterations of any kind (11,154
casesand 364,072 controls). These exclusive phenotypes were used for
allanalyses comparing CHIP with mosaic phenotypes, as thisapproach
facilitated the generation of four non-overlapping phenotypes (that
is, CHIP, mLOY, mLOX, and mCAaut) that could be compared. We also
defined CHIP gene-specific phenotypes by choosing carriers as those
with mutationsin our callset froma specific gene and no mutationsin
any other of the 23 CHIP genes defining our callset. For example, CHIP
DNMT3A carriers were those with >1somatic mutations in our callset
within the DNMT3A gene, and no mutations in our callsetin any of the
other 23 CHIP genes we used for our final callset definition. The set
of 364,072 controls used in UKB that had no evidence of any clonal
haematopoiesis (thatis, no CHIP or mCAs) was considered as our set of
healthy controls, and was used across all association analyses in UKB.

Genetic association analyses

To perform genetic association analyses, we used the genome-wide
regression approachimplemented in REGENIEY, as described™. In brief,
regressions were run separately for data derived from exome sequenc-
ing as well as data derived from genetic imputation using TOPMed*,
and results were combined across these datasources for downstream
analysis. Step10f REGENIE uses genetic datato predictindividual values
for the trait of interest (that is, a polygenic risk score), which is then
used as a covariate in step 2 to adjust for population structure and
other potential confounding. For step 1, we used variants from array
datawitha MAF >1%, <10% missingness, Hardy-Weinbergequilibrium
test P-value > 107" and LD pruning (1,000 variant windows, 100 vari-
antslidingwindows and r* < 0.9), and excluded any variants with high
inter-chromosomal LD, in the major histocompatibility region, or in
regions of low complexity. For association analyses in step 2 of REG-
ENIE, we used age, age?, sex and age x sex, and 10 ancestry-informative
principal components as covariates. For analyses involving exome
data, wealsoincluded as covariates anindicator variable representing
exome sequencing batch, and 20 principal components derived from
the analysis of rare exomic variants (MAF between 2.6 x 10~ and 0.01).
Significance cutoffs and rare variant burden testing were set accord-
ing to the power calculations and logic outlined by Backman et al.™°.
Inbrief, weused P<5x1078, P<7.14x10™,P<3.6 107, for common,
rare and burden associations, respectively. Results were visualized
and processed using anin-house version of the FUMA software*. Asso-
ciation analyses were performed separately for different continental
ancestries defined based on the array data, as described™.

Replication of associations signalsin the GHS cohort

To calculate the power to achieve replicationin the GHS cohort, we first
adjusted for the effects of ‘winner’s curse’, which are expected when
choosing significant associations signals on the basis of agenome-wide
threshold®. To do this, we used the conditional likelihood approach
described by Ghosh et al.>' as implemented in the winnerscurse R
package (version 0.1.1), which adjusts the estimated betas from
genome-wide significant associations signals. These adjusted effect
estimates are provided in Supplementary Table 2 (column Effect_adj).
Wethenused these adjusted effect estimates to calculate the expected
power to detect each lead signal in the GHS replication phase using the
GHS sample size, allele frequencies, CHIP prevalence, and an alpha
level of 0.05. To summarize our expected power across the replication
phase, we summed the power across all lead variants and reported
the number of SNPs that replicated at P< 0.05 as a proportion of the
cumulative power to detect those variants.

Identifying independent signals from association results

We used three different approaches to identify independent signals
across loci that associated with CHIP. First, we used a clumping and
thresholding approach (C&T)*in which index SNPs at each significantly
associated locus were defined greedily as those with the lowest P-value.

Clumping was then done by extending linkage blocks laterally toinclude
all SNPs that have P<1x 107 and r» > 0.1 with the index SNP. Any SNP
within a clump was then removed from further analysis. This process
was repeated as long as there was > 1 additional SNP in the locus with
P<5x1078 After all clumps were made, we merged any clumps (thatis,
LD blocks) with overlapping genomic ranges. Since this approach did
not feature any iterative conditioning nor model variant effects jointly,
we also used conditional joint analysis asimplemented in GCTA COJO%
and statistical fine-mapping asimplemented in FINEMAP** to identify
independent/causal signals. COJO was run with a subset of 10,000
unrelated European ancestry samples from UKB as an LD references,
and with a COJO adjusted P-value threshold of 5 x107%, an info score
threshold of 0.3, and a MAF cutoff of 0.01. FINEMAP was run with the
shotgun stochastic search algorithm using a maximum of 30 causal
variants. We included variantsin the FINEMAP analysis thathad P< 0.1
ininverse variance weighted meta-analysis, and MAF > 0.001. The LD
matrices used for the FINEMAP analysis were constructed as weighted
meta LD matrices derived from the LD matrices from UKB and GHS. The
LD matrices from UKB and GHS were computed independently using
the same sets of samplesincluded in each GWAS.

Fine-mapping variants at the LY75locus

Tofurther evaluate whether therare variantassociationat the LY75locus
(rs147820690-T) was independent of other common and rare variant
signals, we performed joint fine-mapping (with FINEMAP) on common
and rare variants at this locus while including rarer variants then used
in our genome-wide fine-mapping. In contrast to the genome-wide
fine-mapping described above, this fine-mapping sensitivity analysis
wasdoneonly inthe UKB, was focused onthe LY/5locus, and included
all variants in our dataset. That is, the fine-mapping analysis was run
asdescribed above, but witha MAF >0.0000000001. While FINEMAP
suggests 3 credible sets are most parsimonious at this locus (poste-
rior probability = 0.8), which is consistent with the results we report
when preforming genome-wide fine-mapping, the fourth credible
set (posterior probability = 0.11) identifies rs147820690-T as the top
signal (PIP = 0.133) among 9,417 variants in the 95% credible set. This
fine-mapping approach also prioritizes rs78446341-A (CPIP =0.92,
CS =2). Furthermore, the median pairwise LD between SNPs in this
fourthcrediblesetis verylow (6.7 x10™*, compared with 0.995,0.962,
and 0.831 for the first three credible sets, respectively). Therefore,
these fine-mapping results provide additional support for both LY75
missense variants, as well as the fact that the rs147820690-T rare variant
signalis not driven by the tagging of other rare variants.

PheWAS across CHIP-associated variants

Using 937 traits from the UKB, we queried association results for 171
SNPs from our GWAS of CHIP. These SNPs represent the union of those
identified by clumping and thresholding, conditional analysis with
GCTA COQJO, and fine-mapping with FINEMAP (fine-mapped SNPs were
chosenif they had one of the highest two posterior inclusion prob-
abilities—that is, PIPs—in any credible set). While this group of SNPs
does include signals with P< 5 x1078in our CHIP GWAS, these SNPs
represent signals prioritized as conditionally independent and/or likely
tobe causal, and we therefore deemed them worthy of exploration via
PheWAS. Some of these subthreshold signals featured many significant
PheWAS associations (P < 5x10"%in the PheWAS), and likely merit fur-
ther evaluation (for example, ZFP36L2/THADA locus on chromosome 2,
and THRBlocus onchromosome 3). The traits used in this PheWAS rep-
resent the subset of the 5,041 traits used in our cross-sectional analyses
of phenotypicassociation with CHIP mutations carrier status for which
we have previously reported common variant associations™. In brief,
for ICD10-based phenotypes, cases were required to have one or more
records of diagnosisinthe electronic health records, deathregistry data
implicating the disease, or two or more diagnosis in outpatient data
mapped to ICD10. For non-ICD10 phenotypes (quantitative measures,
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clinical outcomes, survey and touchscreen responses, and imaging
derived phenotypes), data were derived from the UKB Showcase. Par-
ticipants who did not meet the case definition for agiven ICD10-based
phenotype were removed from the analysis if they had one diagnosis
codein the outpatient data, and included as controls if they had no
diagnosis in the outpatient data. Supplementary Table 10 includes
ICD10 codes as well as trait names and descriptions.

Genetic comparisons between CHIP subtypes

For pairwise comparisons between CHIP gene mutation subtypes,
we used the union set of index SNPs (that is, independent signals in
genome-wide significant loci) from all of our CHIP and CHIP gene
subtype associations. This resulted in 93 variants, which we used to
compare effect sizes estimates between CHIP subtype pairs. Genetic
correlations were calculated using LDSC version 1.0.1 with annotation
input version2.2%,

Defining smoking phenotypes

We derived smoking phenotypes from the lifestyle and environment
questionnairein the UKB and from the electronic healthrecordsin the
GHS. Since smoking is difficult to ascertain and control for, we used
avariety of data to code multiple smoking phenotypes for various
analyses. These smoking phenotypes consisted of (1) pack years, (2)
number of cigarettes smoked per day, (3) age started/stopped smoking
(UKB only), (4) former/current smoker, (5) ever smoker and (6) heavy
smoker (smoked > 10 cigarettes a day). The ever smoker phenotype
was maximally inclusive, and coded as cases all individuals with any
evidence of prior smoking across the aforementioned phenotypes.
For ourlongitudinal analyses in UKB, we used the ‘current smoker’and
‘packyears’ (which captures the cumulative effect of smoking over one’s
lifetime) as covariates in all models that did not stratify for smoking
status. Inthe smoking stratified models, we stratified smokers based
on the ‘ever smoker’ phenotype and further adjusted for pack years
withinthe smokers subgroup. For our longitudinal analysesin GHS, we
used the ‘ever smoker’ and ‘pack years’ phenotypes as covariatesinall
models that did not stratify for smoking status, and stratified smokers
in the same manner as we did in the UKB analyses. For linear models
thatevaluated the overall relationship between age, sex, and smoking,
we used the ‘heavy smoker’ coding. Otherwise, all other analyses used
the aforementioned ‘ever smoker’ phenotype as a covariate.

Phenotypic associations with CHIP

To test for known as well as potentially novel associations, we used
REGENIE* to perform Firth-corrected tests for association between
our CHIP gene-specific phenotypes and 5,041traits (2,640 binary traits
and 2,401 quantitative traits) from the UKB (version 5). To do this, we
coded each CHIP gene-specific phenotype as1if anindividual had any
somatic CHIP mutation in the gene and O otherwise and formatted
these binary codings as pseudo-genotypes to analyse with REGENIE.
Regression models were run as described previously, with age, sex,
and genetic principal components as covariates'. After filtering out
associationtests where the total number of somatic carrierswas <5, we
were left with 83,779 total association tests (Supplementary Table 31).
Only 22 out of 23 CHIP gene subtypes were tested for association across
phenotypes as we did not have enough carriers of CSF3R mutations
to meet our minimum threshold of 5 somatic carriers that were also
disease cases. Quantitative traits were transformed using a reverse
inverse normalized transformation (RINT); effect size estimates from
these associations are in units of standard deviation. Traits used in this
analysis did not exclude any samples on the basis of having a diagnosed
haematological disease or malignancy prior to sequencing date. To visu-
alize high-level phenotypic patterns across these CHIP gene-specific
phenotypes (Fig. 3), we categorized phenotypes by disease group',
and calculated the proportion of phenotypes per disease group per
gene that were associated at a P< 0.05 alpha level (uncorrected). To

visualize the most significant of these associations, we plotted effect
sizes (Supplementary Fig. 7) by disease category for all associations
withP<1x1075,

Risk modelling among CHIP carriers

We performed longitudinal survival analyses using cox proportional
hazard models (coxph function) asimplemented in the survival R pack-
age. Given that CHIP is strongly correlated with age, models used age
as the time scale with interval censoring with age at first assessment
and age at event or censoring. This allows for an implicit adjustment
forage within the proportional hazard models. In UKB, individuals with
follow-up time in excess of 13.5 years (3% of the dataset) were censored
due to departures from the proportional hazards model. Analyses
were performed onindividuals of European ancestral background. All
modelsincluded 10 genetically determined European-specific princi-
pal components as covariates, and all analyses excluded individuals
genetically determined to be third-degree relatives or closer. In GHS,
we had limited sample size with which to perform these longitudinal
analyses. This was because GHS samples were collected at later ages
(due to the nature of the biobank and the timing of our partnership)
and fewer patients had disease onset dates subsequent to sample col-
lection (that s, the time period where the onset of CHIP can be evalu-
ated). Furthermore, in GHS, we could not derive an all-cause mortality
phenotype due to the nature of the EHR data available to us. Thisincom-
plete ascertainment may also explain why our odds ratio estimates
for risk of haematologic malignancy among CHIP carriers are lower
in the GHS cohort.

We used avariety of CHIP codings as variablesin our models to test for
potential differences between high/low VAF CHIP and/or CHIP subtypes.
First, we subset CHIP carrier status by gene (DNMT3A, TET2, ASXL1,
DNMT3A or TET2) and/or VAF (>0.1) to test for potential differences
between degree of clonal expansion (that s, high/low VAF CHIP) and/
or CHIP subtypes. Additional analyses were runrestricting CHIP muta-
tion calls to previously reported variants (for example, Jaiswal et al.?),
as well as restricting to carriers of DNMT3A mutations with at least
one mutation in another CHIP gene. Controls were defined with two
approaches: (1) any individual without CHIP mutations (the coding
used in the results we report) and (2) those without any genetic evi-
dence of clonal haematopoiesis (that is, healthy controls, as defined
above, which did not change our results). The CHIP gene-specific coding
described above varies from the phenotypic coding definitions used
in our GWAS/EXWAS, which required carriers to have mutations only
inthe specified CHIP gene and no mutations in any other CHIP genes.
Since mutational exclusivity becomes less common as VAF increases
(that s, carrying a single mutation with VAF > 0.1 and no other muta-
tions), and substantially lowers sample size, we chose this adjusted
definition for these longitudinal analyses of disease incidence. For the
composite phenotypes described below, we relied heavily on ICD10
codes from cancer registry data, hospital records and general practi-
tioner records, and supplemented these with self-reported data and
procedure codes (OPCS4). We defined prevalent disease on the basis of
event codes occurring before sample collection and used this definition
to exclude samples fromlongitudinal analysis of incident disease. For
these main analyses, we did not use any minimum number of days to
diagnosis from sample collection as an additional filtering criterion
(see Supplementary Note 12 for more details).

In UKB, cardiovascular disease was defined with the following ICD10
codes obtained from primary care, HES (hospital episode statistics),
or death registry data: 121,122, 123,1252, 1256, 7951, 7955, 1248, 1249,
1241, 1251, 1255, 1258, 1259,1630, 1631, 1632, 1633, 1634, 1635, 1637, 1638,
1639, 1651, ICD9 codes: 410, 412, and OPCS codes: K40, K41, K44, K45,
K46, K49, K502, K75 and K471. ICD9/ICD10/OPCS diagnoses or pro-
cedures recorded prior to enrolment date and self-report codes 1075
(heartattack/myocardialinfarction), 1095 (cabg), 1523 (heart bypass),
1070 (coronary angioplasty or stent), 1583 (ischaemic stroke), 1083



(stroke) were used to identify prevalent CVD cases. These were chosen
to best reflect the coding use by Bick et al. in their study of CHIP®.
In GHS, we used ICD10 codes 120-125 and 160-169, CPT codes from
33510-33523 (CABG, not continuous), 33533-33536, 35500, 35572,
35600, and 92920-92975 (PCI, not continuous). We also adjusted the
CVD codingin GHS to exclude cerebrovascular events (that is, excluded
160-169); association results were similar. The CVD coding we used
for our Mendelian randomization analysis was comparable to these
definitions but did notinclude ICD10 codes for cerebrovascular events.

For the CVD models, we included sex, LDL, HDL, pack years, smok-
ing status (current vs former, determined by self-reported data), BMI,
essential primary hypertension, and type 2 diabetes mellitus as covari-
ates. Theresults we reported used acomposite of myocardial infarction
(MI), coronary artery bypass graft (CABG), percutaneous coronary
intervention (PCI), and coronary artery disease (CAD), based on the
coding described above, and also included death from any of these
events. Results were similar when our composite included ischaemic
stroke (ISCH.TR), as well as when we repeated analyses with asubset of
recurrent CHIP mutations derived fromJaiswal et al.? or restricting car-
rier callsto variantsin DNMT3A or TET2. We also excluded samples with
any diagnosis of malignant blood cancer prior to sequencing (n = 3,596).
Missing LDL and HDL values were medianimputed, and individuals on
cholesterol medication had their raw LDL values increased by a factor
0f 1/0.68, similar to Bick et al.®. /L6R missense variant (rs2228145-C)
genotypes were modelled dominantly (coded as 1 for carriers of any
alleleand O otherwise), and we modelled the effect of this allelein CHIP
-stratified proportional hazard models, and also tested for /L6R x CHIP
interaction in a full (non-stratified) model. Models considering only
theinitial 50k UKB individuals restricted to intersection between our
unrelated UKB sample set and the samples reported by Bick etal. . For
visualization, Kaplan-Meier estimates were generated with the survfit
functionin the aforementioned survival package (version 3.2.13) and
plotted using the ggsurvplot function from the survminer package
(version 0.4.9).

For models of cancers and overall survival risk tested using all CHIP
carriers, high-VAF (VAF > 0.1) CHIP carriers, and carriers of specific
CHIP gene mutations, we used unrelated European samples that did
not have any cancer diagnoses prior to sample collection (N = 360, 051
after the removal of 33,816 samples with a prior diagnosis of cancer).
Results were qualitatively the same when repeating these analyses
without excluding samples that had adiagnosis of any malignant cancer
prior to sample collection date. Cancer phenotype definitions were
derived from medical records indicating the following ICD10 codes:
C81-C96, D46, D47.1,D47.3, D47.4 for blood cancers, C81-C86, C91
forlymphoid cancers,C92,C94.4,C94.6,D45,D46,D47.1,D47.3,D47.4 for
myeloid cancers, C50 for breast cancers, C34 for lung cancers, C61
for prostate cancers, C44 for non-melanoma skin cancers (NMSC),
and C18for colon cancers (five total solid cancers). Myeloid subtypes
were defined as follow: AML (C92), MDS (D46), MPN (D47.1, D47.3,
D47.4). Given the rareness and/or non-specificity of myeloid codings
C93-95, and that the majority of these codings overlapped with those
that we used for the myeloid composite described above (that is, we
already captured these samples using the previously described cod-
ings), wedid notinclude these codings in our composite. However, we
performed sensitivity analyses that used amyeloid definition that did
include C93-C95, with findings equivalent to those described in our
main results (Supplementary Note 12). For our lymphoid composite,
we decided to combine lymphoma with lymphoid leukaemia for mul-
tiplereasons. First,insome clinical diagnostic situations (for example,
T cell lymphoblastic lymphoma and T cell lymphoblastic leukaemia;
Burkitt ymphoma and mature B cell ALL), the distinction between
‘leukaemia’ and ‘lymphoma’ is made on the basis of blast percentage
in bone marrow (thatis, >20% blasts diagnosed as leukaemia), and
may not reflect meaningful biological differences. Consistently, 22% of
C91 codings are already captured in our C81-C86 codings. Moreover,

the majority of cases across these codings correspond to tumours
derived from mature B cells, namely chronic lymphocytic leukaemia
(CLL) and mature non-Hodgkin lymphoma. Given data supporting that
mature T cell ymphomas and also some mature non-Hodgkin B cell
tumours may arise from hematopoietic stemand progenitor cells*> ¥,
we considered the relationship between a composite of mature lym-
phoid tumours and CHIP. For blood cancers, we also included cases
that self-reported leukaemia, lymphoma, or multiple myeloma. These
models included the same covariates as described for CVD (with the
exception thatwe did not adjust cholesterol level based on medication
usage). Additionally, models estimating risk for sex-specific cancers
(that is, prostate and breast) restricted to individuals of the relevant
sex and did not adjust for sex as a covariate. For smoking stratified
modelling of blood and lung cancer, we used our stricter definition of
smoking (ever vs never) and included pack years asacovariateinmodels
testing risk among smokers. To test a more conservative cutoff for
excluding patients with a diagnosis of haematologic malignancy prior
tosequencing (thatis, exclude individuals with a diagnosis prior to 90
days after DNA collection date rather than prior to the DNA collection
date itself), we conducted sensitivity analyses for the longitudinal
modelling of the risk among CHIP carriers of acquiring blood cancers
(for example, blood cancer, myeloid, lymphoid, AML, MDS and MPN).
Theseresults were the same asthose reported in our main results (Sup-
plementary Note 12).

Polygenicrisk scores

Polygenicrisk scores were calculated with Plink*® as aweighted sum of
the effects across all conditionally independent variants we identified
with GCTA COJO (74 variants, P< 5 x107°) We performed association
tests using logistic regression, with binary phenotypes of interest (that
is, our CHIP subtype phenotypes—for example, TET2 CHIP, and so on)
asthedependent variable, this polygenic risk score as the independent
variable of interest, and age, sex, smoking status (ever vs never), and
10 genetic principal components as covariates.

Software

Thecodeis publicly available and can be found at https://github.com/
rgcgithub/regenie. The REGENIE software for whole-genome regres-
sion, whichwas used to performall genetic association analysis, is avail-
ableat https://github.com/rgcgithub/regenie. GCTAv1.91.7 was used for
approximate conditional analysis. SHAPEIT4.2.0 was used for phasing
of SNP array data. Imputation was completed with IMPUTES. Somatic
calling was done with Mutect2 (GATK v4.1.4.0). We use Plink1.9/2.0 for
genotypic analysis as well as for constructing polygenic risk scores.
FINEMAP was used for fine-mapping, and genetic correlations were
calculated using LDSC version1.0.1with annotationinput version2.2.
Beyond standard R packages, visualization tools, and data process-
ing libraries (for example, dplyr, ggplot2 and data.table), we used the
survival (version 3.2.13) and survminer (version 0.4.9) packages for
survival analyses, the MendelianRandomization package for Mendelian
randomization (version 0.6.0), and the winnerscurse package (version
0.1.1; https://amandaforde.github.io/winnerscurse/) to adjust GWAS
effect size estimates for the effects of Winner’s Curse.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Individual-level sequence data, CHIP calls and polygenic scores
have been deposited with UK Biobank and are freely available to
approved researchers, as done with other genetic datasets to date’.
Individual-level phenotype data are already available to approved
researchers for the surveys and health record datasets from which
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all our traits are derived. Instructions for access to UK Biobank data
is available at https://www.ukbiobank.ac.uk/enable-your-research.
Summary statistics from UKB trait are available in the GWAS catalogue
(accession IDs are listed in Supplementary Table 33). As described™, the
HapMap3 reference panelwas downloaded from ftp://ftp.ncbi.nlm.nih.
gov/hapmap/, GnomAD v3.1 VCFs were obtained from https://gnomad.
broadinstitute.org/downloads, and VCFs for TOPMED Freeze 8 were
obtained from dbGaP as described in https://topmed.nhlbi.nih.gov/
topmed-whole-genome-sequencing-methods-freeze-8. Data used for
replication, suchas DiscovEHR exome sequencing and genotyping data,
and derived CHIP calls, can be made available to qualified, academic,
non-commercial researchers upon request via a Data Transfer Agree-
ment with Geisinger Health System (contact person: Lance Adams,
ljadams@geisinger.com).
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Extended DataFig. 3 |FinemappingresultsattheLY75locuson
chromosome2. A. Fine-mapping the summary statistics from our association
analysis of CHIP prioritizes the P1247L missense variant (rs78446341-A,

AAF =0.02) as highly likely to be the causal variant driving one of three causal
signals at thislocus (CPIP = 0.913). At the top of the panel, alocus zoom plot
shows marginal associationresults after inverse variance weighted meta
analysis across UKB and GHS (p-values are uncorrected and derive from two-
sided tests performed using approximate Firthlogistic regression and subsequent
meta analysis). Top common variants, including those prioritized by clumping
and thresholding and COJO from UKB associations are highlighted with black
circles. Thers78446341-A missense variantis highlighted as well and isin low
linkage disequilibrium (LD) with the other SNPs. FINEMAP estimated 3 signals

were most parsimonious here (PP = 0.55). B. Fine-mapping the summary
statistics from our association analysis of DNMT3A-CHIP prioritizes the P1247L
missense variant (rs78446341-A, MAF =0.02, CPIP=0.20,CS=4) and therarer
G525E missense variant (rs147820690-T, AAF = 0.002 CPIP=0.60,CS =2) as
likely to be the causal variants driving the signal at two out of four causal signals
atthislocus.Here, FINEMAP estimated 3 signals (PP = 0.57) or 4 signals

(PP =0.41) were likely; wereport results for K=3in Table S6 and show results
fromK =4 here. The other prioritized signals are those identified by clumping
and thresholdingand COJO: rs12472767-C (2-159925824-T-C,CPIP=0.99,CS =1)
and rs12472767-C (2-159821048-C-T, CPIP = 0.28, CS = 3). CS: Credible Set, PP:
Posterior Probability, PIP: Posterior Inclusions Probability, CPIP: Conditional
Posterior Inclusion Probability.
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Extended DataFig. 4 |Results fromaphenome-wide association analysis.
Results fromaphenome-wide association analysis are shown for the thirty
SNPs from our GWAS that had the largest number of significant associations

(P <5x1078). Associations are most common among hematological, body mass,
and auto-immune traits (seen across the ‘dermatology’, ‘gastroenterology’, and
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‘other’ phenotypic categories). For visualization, associations with-log10(P) < 50

wereset to 50. Association models were run with age, age?, sex, and age-by-sex,
and 10 ancestry-informative principal components (PCs) as covariates. P-values

areuncorrected and derive from two-sided tests performed using approximate
Firthlogistic regression. See Table S10 for full associations results.
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Exposure Outcome Estimate (95% CI) P Value
CHIP (UKB) Severe COVID19 (GHS) 0.93 (0.67-1.28) 0.64 —@—
CHIP (UKB) Cystic Kidney Disease (GHS) 0.94 (0.74-1.2) 0.61 @
CHIP (UKB) Chronic Kidney Disease (GHS) 0.95 (0.89-1.01) 0.11 Q'
CHIP (UKB) Colon Cancer (GHS) 0.96 (0.81-1.14) 0.63 "."
CHIP (UKB) Coronary Artery Disease (GHS) 0.97 (0.92-1.02) 0.26 ®
CHIP (UKB) Chronic Obstructive Pulmonary Disease (GHS) 0.98 (0.92-1.03) 0.38 ‘.
CHIP (UKB) Sepsis (GHS) 0.98 (0.92-1.05) 0.59 o
CHIP (UKB) Liver Cirrhosis (GHS) 0.99 (0.87-1.12) 0.85 "'
CHIP (UKB) Non-Alcoholic Liver Disease (NALD) (GHS) 1.01 (0.96-1.07) 0.70 .‘
CHIP (UKB) Alzheimers Disease (GHS) 1.01 (0.86-1.2) 0.87 @
CHIP (UKB) Breast Cancer (GHS) 1.17 (1.04-1.31) 0.0100 E*‘*
CHIP (UKB)  Prostate Cancer (GHS) 1.2 (1.03-1.39) 0.017 HEH
CHIP (UKB) Lymphoid Leukemia (GHS) 1.22 (0.88-1.69) 0.23 '-;—.—'
CHIP (UKB) Non-Melanoma Skin Cancer (GHS) 1.26 (1.13-1.41) 5.3e-5 E @
CHIP (UKB)  Melanoma (GHS) 1.39 (1.13-1.71)  0.0021 | —@—
CHIP (UKB) Myeloid Leukemia (GHS) 1.47 (1.05-2.06) 0.024 E'—.—*
CHIP (UKB) Lung Cancer (GHS) 1.55 (1.34-1.8) 8.9e-9 E —H@—
CHIP (UKB) CHIP (GHS) 1.94 (1.76-2.13) 3.2e-42 i @
Binary traits 0-l5 ': 2I 2!5
CHIP (UKB) Body Mass Index (BMI) (GHS) -0.01 (-0.03-0.01) 0.37 ®
CHIP (UKB)  Alanine Aminotransferase (ALT) (GHS) 0 (-0.02-0.02) 0.96 ’
Quantitative traits —0|-5 (l) 0-|5 1|
B UKB 450K Total Event HR(LCI, UCI)  P-value
CHIP == 8341 1023 1.27 (1.18,1.36) 2.7e-11
< DNMTS3A —— 4828 477 1.17 (1.06, 1.29) 1.4e-03
8 TET2 —0— 1793 235 1.26 (1.09, 1.46) 2.0e-03
2. ASXL1 - —e— 912 166  1.25(1.05,1.48) 0.012
< DNMT3As - P 420 101 1.32(0.97,1.8)  0.075
CHIP (>=2%) - Py 19929 1963  1.13(1.07,1.19) 1.9e-06
05 1 1.5 2
HR

Extended DataFig. 6 | Results from Mendelian Randomization models and estimates of germline effect on CHIP from UKB and GHS are strongly correlated
incidentrisk of deathamong CHIP carriers. A. Forest plot of resultsfromTwo  (odds ratio =1.94[1.76-2.13], P =3.2x107*}). B. CHIP and its most common
Sample Mendelian Randomization (MR) modeling of the effect of CHIP on 20 subtypesare significantly associated with death from any cause across UKB.
traits of interest (including the two quantitative traits BMland ALT). Reported Hazard ratio (HR) estimates from cox-proportional hazard models are shown,
p-valuesareuncorrected, and reflect two-sided Z-testsderived fromaninverse ~ witherrorbarsthatrepresenta95% confidenceinterval. P-valuesare uncorrected
variance weighted (IVW) MR procedure. Significant causal associationbetween  and derive from two-sided Wald tests. Models are adjusted for sex, LDL, HDL,
CHIP and breast cancer, prostate cancer, non-melanoma skin cancer, melanoma, packyears, smokingstatus, BMI, essential primary hypertension, type 2
myeloid leukemia, and lung cancer are supported by these models. Asexpected,  diabetes mellitus,and 10 European specific genetic PCs.
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without CHIP. A-B. Survival curves are drawn showing that /L6R p.Asp358Ala HDL, packyears, smokingstatus, BMI, essential primary hypertension, type 2
mutation carriers (green) are not an elevated risk of CVD incidence (y-axis) diabetes mellitus, and 10 European specific genetic PCs. Hazard ratios (HR)
compared withnon-carriers (blue) ineither the first 50K individuals from UKB were estimated using cox-proportional hazard modeling, with p-values

(A) or the full 450K cohort (B). C-D. In contrast, /L6R p.Asp358Alamutation uncorrected and derived from two-sided Wald tests.

carriersareestimated tobeatareducedriskof CVD events (C) (HR =0.60), but
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Extended DataFig. 9 |Incidentrisk oflung cancer among CHIP carriers
from the UKB and GHS cohorts. A-D. Forest plots and tables featuring hazard
ratio (HR) estimates from cox-proportional hazard models are shown, with
error bars thatrepresent a95% confidence interval. CHIP and its most common
subtypesare significantly associated with lung cancerinboth smokers and
non-smokers across UKB (A-B) and GHS (C-D). Here, results are depicted from

analyses in which we removed samples that had a diagnosis of malignant cancer
prior to DNA collection. Models are adjusted for sex, LDL, HDL, pack years,
smokingstatus, BMI, essential primary hypertension, type 2 diabetes mellitus,
and 10 European specific genetic PCs. Hazard ratios (HR) were estimated using
cox-proportional hazard modeling, with p-values uncorrected and derived
from two-sided Wald tests.



Extended Data Table 1| Results from Mendelian Randomization analysis of CHIP exposure on lung cancer risk

Exposure: CHIP (UKB) | Outcome: Lung Cancer (GHS) MR without TERT variants
Method OR (95% CI) P value OR P value
Simple median 1.41 (1.09-1.81) |0.0078 1.29 (0.99-1.67) |0.056
Weighted median 1.82(1.49-2.24) [9.20x 10 1.30(1.01-1.67) |0.043
Penalized weighted median (1.83 (1.49-2.24) [8.30 x 10° 1.30(1.01-1.67) [0.045
IVW 1.55(1.34-1.80) [8.90 x 10° 1.32 (1.09-1.60) [0.0039
Penalized robust IVW 1.55(1.28-1.88) (7.90 x 106 1.32(1.11-1.57) |0.0014
MR-Egger 2.11(1.61-2.76) [6.80 x 108 1.70 (1.05-2.75) [0.031
(intercept) 0.96 (0.93-0.99) [0.01 0.98 (0.93-1.02) (0.27
Penalized robust MR-Egger [2.12 (1.69-2.65) [6.20 x 10-11 1.67 (1.11-2.52) 10.014
(intercept) 0.96 (0.93-0.99) [0.0088 0.98 (0.94-1.02) |(0.27

Statistical results are shown from seven MR methods with differing sensitivities to outliers and/or violations of the MR assumptions. P-values are reported uncorrected. The estimated intercept
values are shown for the two MR-Egger-based methods that estimate these terms. All models provided support for a casual association between CHIP and lung cancer. Models were significant
when run without variants at the TERT locus as instrumental variables, which provides support for a causal association above and beyond any pleiotropic effects at the TERT locus (grey text).
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Data collection | No software was used for data collection.

Data analysis The is publicly available and can be found at https://github.com/rgcgithub/regenie. The REGENIE software for whole genome regression,
which was used to perform all genetic association analysis, is available at https://github.com/rgcgithub/regenie. GCTA v1.91.7 was used for
approximate conditional analysis. SHAPEIT4.2.0 was used for phasing of SNP array data. Imputation was completed with IMPUTES. Somatic
calling was done with Mutect2 (GATK v4.1.4.0). We use Plink1.9/2.0 for genotypic analysis as well as for constructing polygenic risk scores.
FINEMAP was used for fine-mapping, and genetic correlations were calculated using LDSC version 1.0.1 with annotation input version 2.2.
Beyond standard R packages, visualization tools, and data processing libraries (e.g. dplyr, ggplot2, data.table), we used the survival (version
3.2.13) and survminer (version 0.4.9) packages for survival analyses, the MendelianRandomization package for Mendelian Randomization
(version 0.6.0), and the winnerscurse package (version 0.1.1, https://amandaforde.github.io/winnerscurse/) to adjust GWAS effect size
estimates for the effects of Winner's Curse.
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from UK Biobank trait are available in the GWAS Catalog (accession IDs are listed in the tables description sheet available in the supplementary data tables excel
file). As described in Backman et al.9, the HapMap3 reference panel was downloaded from ftp://ftp.ncbi.nlm.nih.gov/hapmap/, GnomAD v3.1 VCFs were obtained
from https://gnomad.broadinstitute.org/downloads, and VCFs for TOPMED Freeze 8 were obtained from dbGaP as described in https://topmed.nhlbi.nih.gov/
topmed-whole-genome-sequencing-methods-freeze-8. Data used for replication, such as DiscovEHR exome sequencing and genotyping data, and derived CHIP calls,
can be made available to qualified, academic, non-commercial researchers upon request via a Data Transfer Agreement with Geisinger Health System (Contact
person: Lance Adams, ljadams@geisinger.com).
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Sample size Sample size was not predetermined. Association analyses were restricted to the intersection of samples with both exome sequence and array
genotypes available after QC. See methods section "Exome sequencing" for details on QC performed. All samples that pass genotype QC and
with non-missing phenotype data were included in association analyses. Sample sizes represent all available samples from both UKB and GHS,
which together represent a ten-fold increase in sample size relatively to prior publications in the literature.

Data exclusions  Phenotype selection and QC was performed as described in methods section "Health- and behavior-related phenotypes." Variant level QC was
performed as described in methods section "Exome sequencing." Variants with minor allele count less than five were excluded from
association testing. The minor allele count threshold was pre-determined based on extensive simulations performed with REGENIE. See
https://www.nature.com/articles/s41588-021-00870-7 for additional details.

Replication Replication was attempted for all significant variant-trait associations available for follow-up in the DiscovEHR study. As noted in the
manuscript, we estimated that we had sufficient power in GHS to detect 19.99 true and directionally consistent associations across lead SNPs
from the 24 loci we identified in UKB, and achieved nominally significant (p<0.05) replication for 15 SNPs (Table S2).

Randomization  Randomization was not required for the analyses completed in this study. To control for confounding, we performed association analysis with
the following covariates included in the regression model: age, age-squared, sex, age-x-sex, 10 ancestry-informative principal components, six
exome sequence batch indicator variables, and 20 principal components derived from exome variants with a MAF between 2.6x10-5 and 1%.

Blinding Blinding was not required for the analyses completed in this study. Participant recruitment and phenotype collection were obtained without

prior knowledge of sample genotypes. Association analyses were performed with all available samples, without any filtering based on sample
genotypes.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Human research participants

Policy information about studies involving human research participants

Population characteristics The UK Biobank is a prospective cohort study previously described in detail by Bycroft et al, Nature 2018 (https://
www.nature.com/articles/s41586-018-0579-z). Briefly, 94.7% of sequenced participants are of European ancestry, 54.2% are
female, the average age at assessment is 58, and the mean BMI is 26. 45% of participants report a history of smoking, and
each participant reports 8 inpatient ICD10 3D codes, on average. See supplementary table 1 for additional details.

Recruitment Please see Bycroft et al, Nature 2018.

Ethics oversight Ethical approval for the UK Biobank was previously obtained from the North West Centre for Research Ethics Committee (11/
NW/0382). The work described herein was approved by UK Biobank under application number 26041. Approval for
DiscovEHR analyses was provided by the Geisinger Health System Institutional Review Board under project number
2006-0258. Informed consent was obtained for all study participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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