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Genome sequencing of cancers often reveals mosaics of different subclones present

in the same tumour'>, Although these are believed to arise according to the principles
of somatic evolution, the exact spatial growth patterns and underlying mechanisms
remain elusive*’. Here, to address this need, we developed a workflow that generates
detailed quantitative maps of genetic subclone composition across whole-tumour
sections. These provide the basis for studying clonal growth patterns, and the
histological characteristics, microanatomy and microenvironmental composition of
each clone. The approach rests on whole-genome sequencing, followed by highly
multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and
dedicated algorithms to link these layers. Applying the base-specificin situ
sequencing workflow to eight tissue sections from two multifocal primary breast
cancersrevealed intricate subclonal growth patterns that were validated by
microdissection. Ina case of ductal carcinomain situ, polyclonal neoplastic
expansions occurred at the macroscopic scale but segregated within
microanatomical structures. Across the stages of ductal carcinomain situ, invasive
cancer and lymph node metastasis, subclone territories are shown to exhibit distinct
transcriptional and histological features and cellular microenvironments. These
results provide examples of the benefits afforded by spatial genomics for deciphering
the mechanisms underlying cancer evolution and microenvironmental ecology.

Cancers are complex and dynamicentities that are constantly reshaped
by the interactions between neoplastic cells and their microenviron-
ments* %, Whole-genome sequencing (WGS) analysis of the average can-
cer detects thousands of somatic mutations and multiple genetically
related yet distinct groups of cells termed ‘subclones’8. However, as
genomic technologies typically assay DNA from dissociated tissues, the
phenotypic consequences and the ecosystem pressures that are critical
to fully understanding cancer evolution are lost™™°. Consequently, rela-
tively little is currently known about the nature or causes of spatial pat-
terns of cancer growth, phenotypic characteristics of distinct subclonal
lineages or their interactions with tissue ecosystems™. Still, thisinforma-
tionappearskey because adverse cancer outcomes—growth, progression
and recurrence—are properties of genetically distinct subclones®?,
Lineage tracing using somatic mutations is a powerful tool for infer-
ring the ancestral relationships between cancer subclones, but methods
to perform this in preserved human tissue context are lacking>*"2°,
Histology-driven sampling, such as laser capture microdissection

(LCM)?, combined with low-input nucleic acid library sequencing or
evensingle-cell sequencing goes some way towards resolving subclone
spatial structure”. However, even the most exhaustive sampling strat-
egy will struggle to provide an unbiased representation of the cancer
cloneterritories, particularly across whole-tumour sections. Recently
described spatial genomics approaches permit the de novo spatial
detection of cancer clones with distinct copy number profiles, but this
does not permit the detection of point mutations or quantitative read
outs ofintermixed clones*?, It has previously been demonstrated that
individual mutations can be detected insitu using in situ hybridization®
or mutation-specific padlock probes® 2%, However, these approaches
are limited by the number of available fluorophores. Given that every
cancer and subclone thereinis genetically unique, to reconstruct ances-
tral relationships in both space and time, we need to be able to trace
multiple, cancer-specific somatic mutations simultaneously?®.

To address this need, we developed a genetic clone mapping work-
flow that is centred around base-specific in situ sequencing (BaSISS)
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technology. We derived quantitative maps of multiple genetic clones
in eight tissues from two multifocal breast cancers that span the main
histological stages of early cancer progression: ductal carcinomainsitu
(DCIS), invasive cancer and lymph node metastasis®. In a case of DCIS,
clones exhibited co-existence and segregation patterns in different
parts of the breast ductal anatomy. By integrating genetic clone maps
with multimodal spatial data layers, we found that genetically similar
regions can be scattered across wide areas yet maintain similar tran-
scriptional and histological features and foster recurrent ecosystems.
Finally, we found that genetic progression, which encapsulates the
historical order of events, does not necessarily translate directly to
transitionsin histological state that are commonly assumed to reflect
the stages of cancer progression, thus warranting acombined genetic
and histological assessment of cancer evolution.

The BaSISS workflow

The BaSISS workflow is centred around fresh frozen tissue blocks that
undergo serial cryosectioning to generate tissue for bulk WGS and
z-stacked sections for in-tissue spatial clone mapping and spatial phe-
notyping (Fig. 1a). Following subclone detection from bulk WGS data,
there are three core BaSISS steps. First, to facilitate detection of multi-
ple clones of interest, BaSISS padlock probes with sequence-specific
oligonucleotide target recognition arms are designed towards both
mutant and wild-type alleles of clone-defining somatic variants.
A unique 4-5nucleotide reader barcode on each probe enables mul-
tiplexing®. BaSISS targets can take the form of any expressed somatic
mutation, including point mutations and rearrangement breakpoints,
and can be supplemented with copy number alterations (Supple-
mentary Table 1). Second, BaSISS and transcript detection are per-
formed as previously described for gene expression ISS using cyclical
microscopy?**° (Fig. 1a and Supplementary Methods).

Third, continuous spatial subclone maps are generated using a sta-
tistical algorithm that exploits BaSISS signals as well as local cell counts
(derived from the DAPI channel during the fluorescence microscopy
of BaSISS) using two-dimensional Gaussian processes (Extended Data
Fig.1and Supplementary Methods). The variational Bayesian model
also accounts for unspecific or wrongly decoded signals and variable
probeefficiency and is augmented by variant allele fractions in the bulk
genomic sequencing data. Inan optional, fourth characterization step,
BaSISS clone maps canbe aligned and integrated with additional layers
of spatial phenotype data. In this study, we performed spatially resolved
single-cell transcriptomics using targeted ISS (using a previously pub-
lished 91 gene oncology, a novel 62 gene immune panel and drawing
on published single-cell RNA sequencing data)*** and immunohisto-
chemistry (IHC) staining (Extended Data Fig. 2a-c and Supplementary
Methods). Additional sections were obtained to performvalidation of
ourworkflow using LCM and low-input WGS as previously described*
(Extended DataFig. 3a).

Two cases of multifocal breast cancer

The cohortincludes eight tissue blocks from two patients (P1and P2)
who underwent a surgical mastectomy for a multifocal breast cancer.
These patients were selected to permit acomparison between genetic
and histological progression models in early breast cancer develop-
ment? (Fig.1b,c). P1Lhad two separate oestrogen receptor (ER)-positive,
human epidermal growth factor receptor 2 (HER2)-negative primary
invasive breast cancers (PBCs) withina 5-cm bed of DCIS; we used tissue
blocks fromboth PBCs (samples P1-ER1and P1-ER2) and three regions
from DCIS (samples P1-D1, P1-D2 and P1-D3). P2 had two separate PBCs
of the ‘triple-negative’ subtype (lacking the ER, progesterone recep-
tor and HER2). We sampled both PBCs (samples P2-TN1and P2-TN2)
and an axillary lymph node that contained metastatic cancer deposits
(sample P2-LN1) (Fig.1b).

Accurate and reproducible maps of clones

To demonstrate that spatial BaSISS signal counts can provide amean-
ingful read out of the underlying somatic genotype, we first focused
onthreesamples from P1(P1-ER1, P1-ER2 and P1-D1) (Fig. 1b). Previous
multiregional WGS experiments identified mutation clusters that
equated to six phylogenetic tree branches, and these were present
at different levels across the three samples® (Fig. 2a,b, Extended Data
Fig. 3b and Supplementary Table 3). To enable spatial detection of
subclones, BaSISS padlock probes were designed towards 51 alleles
that report on each branch of the phylogenetic tree: 25 single-base
substitutions and the equivalent wild-type base, as well as an ampli-
fied oncogene (FGFRI) (black numbers; Fig. 2b and Supplementary
Table 1). Subclones are referred to by a patient identifier and the
colour of the corresponding node of the phylogenetic tree: P1-purple,
Pl-red, P1-grey, P1-orange, P1-green and P1-blue (Fig. 2b). A subclone
genotype comprises the branch mutations accumulated as one moves
fromthe tree root to the subclone node, therefore P1-green contains
grey, blue and green branch mutations (Extended Data Fig. 3b). The
bulk WGS-derived tree was corroborated by spatial co-occurrence of
BaSISS signals and LCM-WGS validation data (Fig. 2c and Extended
DataFigs.3c,d and 4a).

Onaverage, 97% of detected BaSISS spot signals were converted into
feasible barcodes®. The median target-specific coverage across 300 mm?
of breast tissue was 13,000-fold (Supplementary Table 4). BaSISS-derived
variant allele fractions exhibited strong correlation across replicate
experimentsonserial tissue sections (R = 0.76-0.93, Pearson’s; Extended
DataFig. 4b), demonstrating quantitative reproducibility.

BaSISS signals coloured according to their subclonal mutation
branchrevealed afirst, albeit noisy, visual glimpse of subclonal growth
structure (Fig. 2d). Broad patterns were preserved in technical replicate
experiments using adjacent tissue sections (Extended Data Fig. 4c).
Although the number of signals detected per nucleus (n = 0.82) does
not provide single-cell resolution of the somatic genotype, it is possi-
bletoaggregate information (1) spatially over areas of approximately
100 x 100 um?, and (2) across alleles co-occurring in a particular
subclone to infer the local clonal composition of different tumour
clones and normal cells (Supplementary Table 4). This process gener-
ated detailed maps covering several squared centimetres of tumour
tissues (Fig. 2e). Of note, the clone mapping algorithm also implicitly
adjusts the observed allele frequencies for arange of systematic biases
(Extended DataFig.4d), stemming from the use of RNA-derived signals,
differential BaSISS probe sensitivity and allele confusion to produce
highly consistent maps across replicates (Extended Data Fig. 4e).
Although the raw BaSISS variant allele fractions of many probes were
noisy owing to the aforementioned biases, the modelled allele frequen-
cieswerein highly accurate agreement with LCM-WGS validation data
(Fig. 2¢,g and Supplementary Table 5). This further corroborates the
quantitative nature of BaSISS-derived clone maps that can be explored
using aninteractive web browser (https://www.cancerclonemaps.org/).

Charting histogenomic relationships
Histology-driven sampling of well-defined stages of cancer progression
can uncover mechanisms and markers of disease progression'®%2%34,
Up to two-thirds of PBCs contain bothinvasive cancer and intermixed
DCIS, a non-obligate precursor lesion. How these distinct ‘stages’ of
cancer development might relate to genetic diversification within the
same tissue is generally unknown® (Fig. 1c). To demonstrate that BaSISS
can chart these relationships across entire tissue sections, we exam-
ined three PBC samples with intermixed invasive and DCIS histology:
P1-ER1, P1-ER2 and P2-TN1 (Fig. 3 and Extended Data Figs. 5 and 6a-c).
BaSISS detected 2-4 subclones per PBCinaccordance with bulk WGS
data. Clone maps (Fig. 3a,e) and the quantitative clonal composition of
73 individually annotated microregions (Fig. 3b,f and Extended Data

Nature | Vol 611 | 17 November 2022 | 595


https://www.cancerclonemaps.org/

Article

a
WGS subclone discovery 1. BaSISS probe design 4. BaSISS spatial phenotype integration
Cancer evolution g
“?’ Bulk WGS ——» Mutation branches Select branch Base-specific —>WGs BaSISS clone
S mutation markers padiock probes
3 b0 b1 b2 b3 for BaSISS maps
4
: 00 - N —easiss
2 - &9 e H&E/IHC
S N o [ Xo) -> - -o—/_ Unique
o - ‘o000 > (Y (Y barcode | ST histopathology
/, © > ——>s atial
Z 00 b3 N ——— patial N Spatial
. > Yy (9] CD) —— phenotypes transcriptomics
S B e 1009
e ) g % Recognition Tissue Cell types and
g 3 Mutant allele % Wild-type allele arms block expression
=5 0% |
\]

2. BaSISS transcript detection

Quantitative clone maps

Barcode sequencing
by ligation and cyclical imaging

‘Stitch” hundreds of
sequenced tiles

Transcript detection in situ

Rolling circle
amplification
<C

L] s

Round 1, 2,3, 4

Spatial cell counts
Barcode deconvolution
BasSISS signals 1

3. BaSISS
clone mapping —>
(Gaussian process)

—_—

b P1 Sample histology Experiment Experiment
37 f
Munifoyce:g;ca(?\nesn pi-ert [l il il W ves
et pr-cre [ ENENE ™
ot Ml Hl N
| pi-o2 [l | I | | Receptor status
'Q_’ P1-03 [l | I | | B ERHER2
B ERHER2-
P2 p2rvt [l 1 mn W ErHeER2:
66 years of age X
Multifocal PBC (NST) P2-TN2 . .. ..
L= P2-LN1 [ ] H HB
y o3 G =S fo gE Io
0o e3 =5 2955 3:
3 72 a8y 8o 08 S%
g 8 2= 5
£ € o

Fig.1| The BaSISS workflow to generate cancer clone maps. a, Following
denovo mutationdetectionand subclone discovery in WGS data, the BaSISS
workflow is performed as follows: (1) bespoke mutation-specific padlock
probesare designed. (2) BaSISS transcripts are detected. Toachieve this,
BaSISS padlock probes hybridize to complementary DNA (cDNA) in situ.

By virtue ofahighly specific DNAligase, only completely target-complementary
padlock probes areligated and form closed circles. Ligated probes are
amplified through rolling circle amplification and their reader barcodes are
detectedintissue space through sequencing by ligation with fluorophore-
labelled interrogation probes and cyclical microscopy. (3) Mathematical
modelling of BaSISS signals and the genotype of clonesis then performed to

Figs. 5a,b and 6a,b) revealed that individual subclones form spatial
patterns that were, by varying degrees, related to the histological pro-
gression states. Normal tissue elements, includingimmune aggregates
and histologically normal ducts, appear unstained consistent with a
wild-type status for the targeted clones (green and yellow contours,
respectively; Fig.3a,e).In P1-ER2, an area of hyperplasia was predicted
and confirmed by LCM-WGS to be genetically unrelated to the cancer
(blue contour; Figs. 2c and 3a).

Ineach PBC, the genetic and histological progression models were
broadly consistent, inwhichtheinvasive disease was mainly composed
of cells from the most recently diverged subclone: P1-red, P1-purple and
P2-purpleinsamples P1-ER1, P1-ER2 and P2-TN1, respectively (Fig. 3b,f).
By contrast, earlier diverging clones colocalized entirely orin part tothe
histological pre-invasive lesion: DCIS. For example, in P1-ER2, BaSISS
predicted that green branch mutations were completely absent from
the invasive compartment, a conclusion that is supported by three
separate microdissections (LCM-WGS) from distant regions of invasive
cancer in P1-ER2 (Fig. 2c and Extended Data Fig. 5c).
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derive clone maps. (4) Subsequent phenotype and microenvironment
characterization of clonesis then possible, by integrating clone fields with
spatial datasets acquired fromserial tissue sections. The BaSISS model and cell
typingaredescribed furtherin Extended DataFigs.1and 2. b, The two cases of
multifocal primary breast cancer (PBC) used to develop the BaSISS approach.
Colouredtiles report the histological features withineachsample and the
experiments performed. The number of clonesidentified by WGS and targeted
by BaSISS are reported as white numerals. ¢, The traditional histological

model of breast cancer progression. DCIS, ductal carcinomain situ;

H&E, haematoxylinand eosin; LN, lymph node; NST, invasive carcinoma

of nospecial type; TME, tumour microenvironment.

However, in each PBC, there was a subclone that spanned both
DCIS and invasive histology, revealing that disconnects between
histological and genetic progression states can exist. This was the
case for clone P1-red in P1-ER1 and clone P1-purple in P1-ER2. These
DCIS-invasive spanning clones could be distinguished from each
other by hundreds of private mutations, including different inacti-
vating driver mutations in PTEN, indicating parallel evolutionalong
these divergent lineages that resulted in two distinct instances of
cancer invasion (total mutation numbers label the phylogenetic
tree branches; Fig. 3b). The spatial predictions of the BaSISS model
of intraductal acquisition of PTEN mutations and PTEN protein
loss was confirmed by LCM-WGS and IHC, respectively (Fig. 2c and
Extended Data Fig. 5d). In sample P2-TN1, the only predicted driver
point mutation was a deleterious mutation in the tumour suppressor
gene TP53,and this was detected inboth DCIS and invasive compart-
ments and was also present in all cancer regions of the second PBC,
P2-TN2, consistent with an early onset in the development of this
cancer (phylogenetic tree; Fig. 3e,f). These data therefore suggest
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Fig.2|Converting BaSISS spatial signalsinto maps of clones. a, Bar plots of
cancer cell fractions (CCFs) derived from bulk WGS of the P1samples.

b, Phylogenetic treereconstructed from multiregional bulk WGS data from P1
(seeSupplementary Methods for details). Each branchis labelled with the total
number of WGS mutations defining the branch (grey text) and the number of
BaSISS probes designed to target that branch (black text). ¢, Three heatmaps of
variant allele fractions (VAFs) calculated using data derived from n=11regions
of PI-ER1and P1-ER2 (marked in d). Raw BaSISS VAFs (for each target mutation
the number of mutant signals divided by total number of mutant plus wild-type
signals) (top) and model-imputed BaSISS VAFs (middle) are derived from raw
BaSISS signal datawithin these regions. Inserial tissue cryosections,
corresponding z-stack regions were identified and subjected to LCM-WGS.
Resulting LCM-WGS VAFs are presented (bottom). Mean per-gene correlations

that many, if not all, of the genetic events necessary to initiate the
invasive transition in these three cancers were acquired within the
ducts, and subsequently both intraductal expansion and stromal
invasion ensued.

Phenotypic changes accompany progression

Next, by integrating additional layers of spatial data, we sought
to establish how phenotypic changes relate to genetic-state and
histological-state transitions. In P1-ER1and P1-ER2, consistent with a
more proliferative phenotype, PTEN-mutant clone regions exhibited
denserKi-67 IHC nuclear staining, than PTEN wild-type ancestral clone
regions (false-discovery rate (FDR) = 0.004 P1-red versus P1-orange;
and FDR = 0.03 P1-purple versus P1-green) (Fig. 3c,d and Extended Data
Fig.5e). However, for agiven genetic clone, the Ki-67 score was similar

0.8 BaSISS mutation ID (coloured by branch)
0.6 CKAP5 DENND1A KIAA0652

BaSISS clones mapped

areapproximately 0.41and 0.90 for BaSISS to LCM-WGS and model-imputed
VAFsto LCM-WGS comparisons, respectively. Sample names are coloured
accordingto the dominant BaSISS subclone in the sampled region. Each row
represents atargeted mutation. The mutations plotted ind are labelled by their
genename; for PTENthere are two separate mutations. d, Spatial BaSISS
detections of barcodes reporting on five selected mutations, coloured
accordingto their targeted branch. White contoursindicate LCM regions
(relatestoc). e, BaSISS clone maps in physical space projected onthe DAPlimage
(nucleiare white), derived using BaSISS mathematical modelling of signals
from45informative targets. Each clone has a different colour,and dominant
clonesarereported (shownifthe CCFis more than 25% and the inferred local
cell density is more than 300 cells per mm?). Scale bars, 2.5 mm (d,e).

irrespective of whether it occupied a DCIS or invasive state, indicating
thatupregulation of Ki-67 is temporally related to acquisition of a PTEN
mutation and precedes invasion.

By contrast, cellular resolution spatial transcriptomics analysis of
P1-ER2 revealed that epithelial cell expression of several genes—CLDN4
(encodingclaudin4),ACTB(encoding 3-actin), KRT5 (encodingkeratin 5)
and CTSL2 (encoding lysosomal cysteine protease cathepsin V)—dif-
fered between DCIS and invasive compartments occupied by the same,
P1-purple, clone (Extended Data Fig. 5f). These transcriptional changes
might therefore be considered more closely linked to the histological
transition ratherthangenetic changes traced by this approach. Expres-
sion of CLDN4 was consistently lower in the invasive compartment than
toeach DCIS clone. However, for some genes such asACTB, expression
patterns changed inopposing directionsin the invasive cancer relative
to the sampled DCIS clone (expression is higher than P1-green DCIS
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a, BaSISS maps of two PBCs from P1with intermixed DCIS and invasive cancer.
The most prevalent genetic cloneis projected asa coloured field (corresponds
tob) on DAPlimages (reported ifthe CCF ismore than 25% and the inferred
local cell density is more than 300 cells per mm?). Scale bar, 2.5 mm. Pie charts
report the WGS-estimated clone composition of P1-ER1and P1-ER2. Inset
images (right) areregions of P1-ER2 (H&E-stained serial tissue sections) that
represent three histological progression states. Scale bar, 250 pum.b, The
phylogenetic tree was inferred from P1multiregion WGS: branches are scaled
accordingto and annotated with the number of WGS mutations and driver
mutation-containing genes. Branches and nodes are coloured toreflect the
clonesmappedina.Heatmaps report clone compositionin34 and 44
histologically annotated epithelial-containing microregions of P1-ER1and
P1-ER2, respectively. Microregionsinclude individual ducts or randomly

(FDR =0.02) and lower than P1-purple DCIS (FDR = 0.013)) or were
highly specific to a genetically more distant DCIS clone (Extended
Data Fig. 5f).

Attempts toisolate the changes associated with invasive transition
might also be confounded by heterogeneity within the invasive com-
partment. In P2-TN1, we therefore sought to examine whether the two
genetically distinct invasive subclones (P2-blue and P2-purple) were
phenotypically distinct. The two cancer clones exhibited distinct mor-
phological (nuclear and architectural) features (P= 0.04, Fisher’s exact
test) (H&E imageinsets; Fig.3e,f) and occupied neighbourhoods with
different stroma (FDR = 0.02) and immune cells such as myeloid cell
densities (FDR = 0.08) (mini-image insets; Fig. 3e and Extended Data
Fig. 6a—c). Transcriptional programs were also distinct, with statistically
significant differences in gene expression for 12 of 91 genes between
clones (Extended DataFig. 6d). Together, these data indicate that the
particular clones sampled can have a profound effect on attempts to
identify the phenotypic changesimplicated in driving or arising during
histological progression.
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selected similarly sized regions of invasive cancer (see Extended Data Figs. 4b
and 5b and the web browser https://www.cancerclonemaps.org/ for
microregion details). HP, hyperplasia; N, normal ducts. ¢,d, IHCin P1-ER1(c)
and P1-ER2 (d) for the proliferative marker Ki-67 in six clone territories
(indicated by contour colour); the percentage of nuclei staining positive
(brown)isreported.Scalebars,250 pm. e, Asina, butaclone map of P2-TNI.
Scalebar, 2.5 mm. Mini-images report ISS-derived cell types (right) and H&E
tissue section snapshots of the two cancer growth patterns (GP1and GP2)
reportedin P2-TN1 (left). Scale bar, 250 um. f, Phylogenetic tree for P2 and
heatmap of 36 P2-TN1 microregions, asinb. Branches relating to clones not
detectedinthissample (thatis, only found in P2-LN1) are shaded grey. The
bottom heatmapis the estimate by the histopathologist and reports the
contribution of different growth patterns to the microregion, defined by
distinct nuclear and architectural features (Supplementary Methods).

Growth patterns of pre-invasive clones

To demonstrate that BaSISS can be used to chart growth patternsin
relationto complex tissue structures, we turned our attention to three
DCIS samples from P1 that spanned a tissue surface area of 224 mm?
(P1-D1, P1-D2 and P1-D3) (Fig. 4a and Extended Data Fig. 7a). The adult
female breast comprises multiple, branching ductal systems, termed
lobes, that extend from the nipple surface to the acini of the lobules,
asillustrated in Fig. 4c**¥. DCIS arises from the duct epitheliumandis
considered alobar disease asit typically involves the ducts and lobules
ofasinglelobe®. Although DCIS is known to be genetically heterogene-
ous', how DCIS clones are organized and grow through the wider duct
system remains elusive®.

The clone maps generated for the three samples formed striking
mosaics of mainly green and orange, and occasional blue and grey that
localized to areas of histologically confirmed DCIS (Fig.4aand Extended
DataFig. 7a). Immune clusters and occasional normal or hyperplastic
ducts appeared white (unstained), consistent with a different genetic
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Fig.4|Growth patterns and histological associations of DCIS clones.

a, BaSISS maps of pure DCIS samples: P1-D1and P1-D2. The most prevalent
genetic cloneis projected asacoloured field (which corresponds to b) on DAPI
images (reported ifthe CCFismore than 25% and the inferred local cell density
is more than 300 cells per mm?). Scale bar, 5 mm. The quantitative, continuous
nature of these data canbe examined viaaninteractive web browser (https://
www.cancerclonemaps.org/). The pie chartreports the WGS-estimated clone
composition of P1-D1. The white dashed contours delineate morphologically
defined lobules. The beige contours mark 114 and 40 manually selected
microregionsin P1-D1and P1-D2, respectively, the clonal composition of which
isreported by the heatmapsinb. Microregions were manually selected and
representsingle or small groups of intimately related acini or ductules from the

ancestry.InP1-D3,a3-mmlength of alarge duct exhibited both a genetic
and a histological transition from normal ductal epithelium to DCIS
alongits length, confirming that, although neoplastic involvement
was extensive in this lobe, it was incomplete (Extended Data Fig. 7a).
Ondividing the glandular tissue into lobules (white dashed contours;
Fig. 4a), it was apparent that a handful of lobules contained a single
clone, but oftenmultiple clones co-occurred. Indeed, we were surprised
to observe that the same clones repeatedly co-existed within lobules
that spanned centimetres of tissue. These appearances seem at odds
with the traditional model of clonal competitionin which afitter clone
generates localized monoclonal sweeps (Fig. 4c).

same lobule. b, The phylogenetic tree was inferred from P1 multiregion WGS:
branchesare scaled according to and annotated with the number of WGS
mutations and driver mutation-containing genes. Branches and nodes are
colouredtoreflect the clonesmappedina.Onlybranches detectedin P1-D1
andP1-D2are coloured. WT, wild type. ¢, Cartoon of alobe of the breast with
normal anatomy (left) and DCIS (right), with lobules exhibiting monoclonal and
polyclonalinvolvement. d, H&E images report representative subclone
histological featuresinregionsselected froma.Scale bars, 100 pmand 50 pm
(vacuoles). e, Stacked bar plot summarizes histological features of
microregions dominated by P1-green (n = 66) or P1-orange (n = 72). Nuclear
pleomorphismisameasurementof theamount of variability in size and shape
ofthe nucleiand is amajor determinant of the histological grade.

However, atfiner, sublobular resolution, complete or near-complete
clonal sweeps are the dominant pattern, as exemplified by assaying
146 representative microscopic regions that represent individual
or small clusters of intimately related acini and ducts (beige con-
tours; Fig. 4a). The existence of frequent clonal sweeps as inferred by
BaSISS (Fig. 4b) was corroborated by LCM-WGS of additional micro-
regions (Extended DataFig. 7b). In some instances, including P1-D1-88
(Extended Data Fig. 7c) and P1-D2-0 (Fig. 4a,b,d and Extended Data
Fig.7d-f), clonalinterfaces are directly observed within a continuous
anatomical space. However, more commonly, rapid clone field tran-
sitions (see interactive maps (https://www.cancerclonemaps.org/))
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Fig.5|Intrinsic and extrinsic features of metastaticsubclonesinalymph
node. a, BaSISS map of P2-LN1, which relates to P2-TN1(Fig. 3e) and P2-TN2
(Extended DataFig. 6a,b). The most prevalent genetic clone colours are
projected as coloured fields on the DAPlimage (reported if the CCF is more
than 25%; athreshold of 5% isused inregions of diffusely infiltrating blue to
allow visualization in very high normal contamination regions). Scale bar,
2.5mm. Coloured contours define microregions with distinct metastatic
cancer growth patterns (M-GP1and M-GP2); ‘+’ indicates the surrounding sinus
epithelium.b, Plots of the genomic structures in P2-blue and P2-orange clones
inthe vicinity of the HER2 gene, derived from WGS data of P2-TN2 and P2-LN1.
Vertical lines represent genomic rearrangement breakpoints coloured by the
phylogenetic tree branch where the event occurred. Dots represent local
(binned) copy number. HER2 amplification, CACNBI fusion and HER2 mutation
areBaSISStargets used totrack thiscomplex event. BFB, breakage fusion
bridge. c, Representative areas of the two main growth patterns stained with

coincided with the myoepithelial cell layer and/or basement mem-
branethat define anacinus or ductule border. It thus transpires that
the microanatomical structure of resident tissues can have, an as yet
poorly understood, role inshaping observed subclonal architectures
(Fig. 4a,c).

DCIS clone-specific phenotypes
Integration of histological and spatial gene expression data from serial
sectionsrevealed that the DCIS clones, P1-green and P1-orange, exhibit
many phenotypic differences that are consistent across large tissue
areas (Fig. 4d,e and Extended Data Figs. 7e,f and 8a,b). Histogenetic
associations were very strong, with regions dominated by P1-green
being more likely to have an intermediate rather than a low nuclear
grade (P<0.0001; Fisher’s exact test after Bonferroni correction),
exhibit more nuclear pleomorphism (P < 0.0001), necrosis (P < 0.0001),
vacuoles (P < 0.0001) and a non-solid architectural growth pattern
(P<0.0001) (Fig. 4d,e and Extended Data Fig. 7e,f).

Clone and cell type-resolved spatial gene expression analysis using
targeted ISS further corroborated phenotype-genotype correlations.
Atotal of 28 of 91 interrogated genes were differentially expressed by
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H&E.Scale bar,100 pm.d, Phylogenetic tree inferred from P2 multiregion WGS.
Branchand node colours inform the clones mappedina. The top heatmap
reports the BaSISS clone contribution to 39 histologically annotated
microregions froma (regions with 5% or more tumour cellsare included);

see https://www.cancerclonemaps.org/. Thebottom heatmap reports
microregion histological features. Pan-CK, pan-cytokeratin. e, Volcano plot of
immune cell expression of the 62 genes in the ISSimmune panel. f, Volcano plot
of epithelial cell expression of the 91genesin the ISSimmune panel.
Significantly (FDR > 0.1), differentially expressed (fold change of more than1.5
bothways) genes are coloured. g, Violin plots depict clone-specific cell-type
contribution posterior density of the generalized linear mixed model with
region-specificrandom effect, andincludes the 22 clone territories witha
dominant clone fraction of more than 0.05 in P2-LN1. Significant comparisons
were controlled for FDR using the Benjamini-Hochberg procedure.

the two main clones (FDR < 0.1, fold change > 1.5both ways; Extended
Data Fig. 8a,b). Consistent with a higher nuclear grade, P1-orange
epithelial cells exhibited higher expression of the cell-cycle regulatory
oncogenes CCNDI and CCNBI and the oncogene ZNF703, which have
been linked to adverse clinical outcome*. Overall, architectural and
nuclear appearances and gene expression profiles were remarkably
lineage-specific, and it was particularly notable that these different
patterns could also be appreciated spatially, in regions with sublobular,
microscopic cloneintermixing, adding weight to the clone composition
predictions by the model (Extended Data Fig. 7d).

Metastatic clonesinalymphnode

Lymph node metastasis is associated with higher rates of cancer mor-
tality*. Whether it has an active role in facilitating cancer progres-
sionor simply reflects amore aggressive or distinct biology of certain
clonesis largely unknown. A substantial challenge is low cancer purity
of diffusely infiltrated lymph nodes, which can make it difficult to sep-
arate cancer from immune cell-derived molecular signals. Todemon-
strate that BaSISS can facilitate the simultaneous study of cancer and
immune compartmentsinsuch challenging cases, we analysed BaSISS,
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histological annotationand ISS targeted gene expression datasets from
sample P2-LN1 (Fig. 5 and Extended Data Fig. 9).

BaSISSin P2-LN1targeted 13 trunk and branchalleles, including point
mutations and an expressed novel internal fusion in the CACNBI gene
that was co-amplified with the clinically targetable breast cancer onco-
gene HER2in abreakage fusion bridge event (Fig. 5b and Supplementary
DataTablel). The model detected two clones (P2-blue and P2-orange)
that formed spatially segregated patterns in P2-LN1 (Fig. 5a,d). Only
P2-blue was detected in primary breast tumours (P2-TN1and P2-TN2)
(Fig. 3e and Extended Data Fig. 6b).

Detailed histological annotation, blinded to the clone territories, was
performed using acombination of H&E, CD45 and pan-cytokeratin IHC
and identified multiple metastatic cancer growth patterns (coloured
contours; Fig. 5a,c,d and Supplementary Table 2). Intersecting the
clone maps and histological annotations revealed strong associations
between the two detected clones and the two main histological growth
patterns (P< 0.0001, Fisher’s exact test) (Fig. 5d). The P2-orange clone
formed monotonous sheets of cancer cells, exhibited weakimmunore-
activity for pan-cytokeratin and often occupied sinusoidal structures.
By contrast, P2-blue cells stained more strongly for pan-cytokeratin
and, when clustered, surround densely packed lymphocyte cores
(Fig. 5c,d and Extended Data Fig. 9a-d).

Wesought to determine whether transcriptional differences support
the spatialinference of clones. Consistent with the known HER2 amplifi-
cation, P2-orange expressed higher levels of HER2 (Fig. 5f and Extended
DataFig.9c). Atotal of 17 of 91 genes were differentially expressed and
many of these areimplicated in critical biological cancer pathways and/
or haverecognized prognostic value, including CTSL2, VEGFA (encod-
ing vascular endothelial growth factor receptor A) and CD24 (refs. **%)
(Fig. 5f). Spatially plotting these genes confirmed that clone-specific
expression patterns are recapitulated within multiple, spatially distinct
expansions across more than1cm?oftissue (Extended Data Fig. 9a-c).

Integration of spatial transcriptomics data also revealed that met-
astatic subclones occupied distinct immune microenvironments.
Relative to P2-orange cells, P2-blue cells resided in neighbourhoods
enrichedfor T cells and B cells (Fig. 5e,g). Infact, P2-blue cells frequently
formed clusters around B cell-rich germinal-like centres, highlight-
ing a potential clone-specific interaction with the adaptive immune
system (Fig. 5c and Extended Data Fig. 9a,d). By contrast, P2-orange
regions frequently resided inside the lymph node sinuses that were
lined by endothelial cells expressing CD34 and PDGFRB (Fig. 5c and
Extended DataFig. 9f). Most of theimmune cells in P2-orange regions
were myeloid cells with expression profiles consistent with the exist-
ence of both M1 and M2 macrophages (CD163, CD68, HAVCR2 and
FCGR3A), and the most highly enriched gene, CXCLS, is released by
hypoxic macrophages** (Fig. 5e). Indeed, relative to P2-blue, it emerges
that P2-orange experienced more hypoxic conditions manifesting as
higher cancer cell expression of VEGFA and necrotic regions (Extended
DataFig. 9¢,f). Hypoxia signatures are associated with adverse clini-
cal outcomes, probably because they reflect the emergence of envi-
ronments that can select for hypoxia-tolerant clones and/or cancer
proliferation rates outstrip neoangiogenesis®. Together, these data
demonstrate how BaSISS clone maps allow one to spatially relate such
variation in microenvironments to individual clones.

Discussion

Here we present BaSISS, a pipeline that combines a highly multi-
plexed fluorescence microscopy-based protocol and algorithms to
map and phenotypically characterize the unique set of subclones
of cancer. These maps served as the basis for further spatially and
single-cell-resolved molecular and histological characterization of
eachclone. Applying BaSISS to aseries of samples from the key stages
of breast cancer progression—carcinoma in situ, invasive cancer and
lymph node metastasis—it is notable that virtually every sample

exhibited aspatial organization of clones, which warrants further inves-
tigationinlarger cohorts. The fact that nearly all clones examined in this
dataset displayed distinct clone-specific gene expression, stromal and
immune microenvironments and microanatomical niches highlights
the functional relevance of at least some subclonal diversification.

The ability to chart clonal growth patterns and clone-specific genetic
underpinnings of the tumour microenvironmentis likely to be instru-
mental in elucidating how different evolutionary processes operate
and manifest across different cancer types—or even in histologically
normal tissues*®. Understanding the forces of malignant progres-
sion, especially invasion and metastasis, and how interactions with
the tumour microenvironment shape clinical outcomes!® appear of
particularimportance. Detailing the functional and microenvironmen-
tal characteristics of different clones is also relevant as some part of
subclonal diversity in tumours may be due to selectively neutral drift,
but the exact extent remains debated.

Particular advantages of the technology are that itis capable of inter-
rogating very large tissue sections on the scale of squared centime-
tres, which enables studying entire cross-sections of smaller tumours.
Itisalso comparably cheap, unlike solely relying on sequencing-based
methods*. The three main limitations of the approach are relatively
low sensitivity, which currently precludes single-cell genotyping, a
reliance on RNA with the resulting variation in gene expression levels
of targeted transcripts, and the fact that clone-defining mutations
need to be detected first by separate sequencing-based assays. Greater
sensitivity and spatial resolution may be achieved by including more
targets per clone and by favouring mutations with higher predicted
expression levels, for example, in higher copy number states. A switch
to hybridization-based sequencing and direct RNA-binding probes
may also improve base-specific detection by several fold***. Further
discussion of the implications of our observations and limitations of
the method s provided in a Supplementary Note.

Itis often stated that “nothing in biology makes sense exceptin the
light of evolution™®, which s likely to be true for cancer biology. The
ability to spatially locate and molecularly characterize different cancer
subclones adds essential features to the spatial-omics toolkit. It pro-
vides a robust evolutionary framework that is necessary to interpret
the biological relevance of many of the more plastic spatial character-
istics of acancer. Future widespread applications of spatial genomics
approaches such as BaSISS will uncover how cancers grow in different
tissues and allow us to track, trace and characterize theill-fated clones
that are responsible for adverse clinical outcomes.
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Data availability

Complete BaSISS and ISS datasets that are necessary to interpret, verify
and extend the research in the article are available to download (ftp://
ftp.sanger.ac.uk/pub/cancer/LomakinEtAl_BaSISS). Bulk tissue WGS
data are deposited in the European Genome Phenome Archive and are
available for download on request (https://ega-archive.org/datasets)
withthefollowingaccessions: EGAD00001002696 (P2 samples, withIDs
PD14780a,PD14780b, PD14780d and PD14780e) and EGADO0001000898
(P1samples, with IDs PD9694a, PD9694b, PD9694c and PD9694d).
Registered fluorescent microscopy images from ISS experiments
have been deposited at Biolmage Archive (https://www.ebi.ac.uk/
bioimage-archive/) underaccession number S-BIAD537. Public dataused
for single-cell RNA sequencing analysis were obtained from the NCBI's
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE176078). Source data are provided with this paper.

Code availability

All scripts and custom code for data analysis, including step-by-step
notebooks, are available at https://github.com/gerstung-lab/BaSISS and
https://doi.org/10.5281/zenodo.703731. Code used to segment nuclei
inimages is available at https://github.com/yozhikoff/segmentation.
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second iteration, nuclei with Immune and Stromal assignments were further
subdividedinto (B-cells, Myeloid and T-cells) and (CAF/PVL, Endothelial)
groups. Theidentity of nuclei that did not have any marker genes in proximity
orhadacontradictory assignment was considered unknown. PVL=
perivascular-like.c, Mean expression of the genes used in ISSimmune and
oncology panels was calculated from the breast cancer single cellRNA
sequencing (scRNA) reference (derived from Wu et al. Nature Genetics, 2021)
toaidinterpretation of the observed ISS signal distribution.
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Extended DataFig. 9 |Highly recurrentclone specific ecosystemsina
metastaticlymphnode. a, P2-LN1sample (left) DAPlimage with BaSISS
subclone fields (as shownin Fig. 5a) and coloured squares mark regions
depictedinb,c,d; (middle) pan-cytokeratinimmunohistochemistry stained
(IHC) (epithelial cells appear brown); (right) CD45 antibody (immune cells
appear brown) withISSimmune panel derived celltypes projected as coloured
dots.b—d, Snapshots of example regions dominated by P2-blue or P2-orange
clones, asindicatedina.Ineach casesignals (dots) fromselected targetsin
BaSISS b, ISS oncology c orISSimmune panels d are presented overlaid on

sections stained by IHC following the BaSISS/ISS experiment. Inthe bottom
row of cand top row of dinferred epithelial and immune cell types are
presented.Intoprows of candd, 80% transparency isapplied to the underlying
IHCimage to aid visualisation of overlaid dots. e, Spatial patterns of three
hypoxiarelated genes are projected on the entire P2-LN1 tissue section.

f, Spatial patterns of PDGFRB, CD34, CD68 and hypoxiarelated ISS signals
overlaid on HER2 (left) and CD45 IHC stained sections(right) correspond to
region of white square ontop left clone fieldimageine.
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Analysis of sample P2-LN required IHC signal projection performed on a consecutive slide back to BaSISS slide. To achieve this, we performed
a spline-based elastic registration implemented in ImageJ package UnwarpJ(Arganda-Carreras et al. 2008).

Nuclei segmentation code is available at yozhikoff/segmentation
Data analysis The manuscript used publicly available, open source R and Python libraries/packages for data analysis as described in the methods section. All
scripts and custom code for data analysis, including step-by-step notebooks are available at GitHub repository (https://github.com/gerstung-

lab/BaSISS) and under the DOI: 10.5281/zenodo.703731

Software and package version used during the analysis:
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Python (3.8.12) with packages:
-numpy (1.22.2)

- pandas (1.1.5)

- scipy (1.7.3)

- opencv (4.5.5)

- matplotlib (3.5.1)

- pymc (4.0.1)

- numpyro (0.10.0)

- scikit-image (0.19.1)

- scikit-learn (1.0.2)

- scanpy (1.8.1)

- shapely (1.8.0)

R (4.1.3) with packages:
- dbmss (2.7-10)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All figures are derived from data that is available for download via ftp://ftp.sanger.ac.uk/pub/cancer/LomakinEtAl_BaSISS

Bulk tissue whole genome sequencing data are deposited in the European Genome Phenome Archive and are available for download on request (EGA, https://ega-
archive.org/datasets) with the following accessions: EGAD00001002696 (P2 samples: with IDs PD14780a,b,d,e) and EGADO0001000898 (P1 samples: with IDs
PD9694a,b,c,d).

Registered fluorescent microscopy images from in-situ sequencing experiments are deposited at Biolmage Archive under the accession number S-BIAD537.

Public data used for single cell RNA-seq analysis were obtained from the NCBI's Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE176078)

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Both participants reported female sex, gender is not relevant

Population characteristics Participants are female, age 37 and 66 years old at time of diagnosis and surgery for multifocal breast cancers of no special
type. No prior cancer diagnosis or treatment was administered. No genotyping was performed on patients.

Recruitment At the time of tissue collection all patients with a diagnosis of primary breast cancer, attending Dana-Farber Cancer Institute
were invited to participate in project SHARE. Participants provided written consent for inclusion in the study that entails the
donation of tissue from planned clinical procedures (that exceeds pathological diagnostic requirements and would normally
be discarded) and clinical data for research purposes. The specific pathological specimens in this analysis were identified by
the local pathologist based on the presence of additional histological stages of disease (an involved lymph node or extensive
pre-cancerous lesion) and the availability of sufficient tissue blocks to perform the planned experiments. It is feasible that the
amount of intra-tumour heterogeneity observed in this study exceeds what would be observed in some smaller primary
breast cancers without multiple histological features.

Ethics oversight Samples and data were obtained and managed in line with the declaration of Helsinki under “project SHARE”
#93-085, approved by the Dana-Farber Harvard Cancer Center Institutional Review Board. Sample and data handling at the
Wellcome Sanger Institute, Cambridgeshire, UK was performed under the wider framework and approval for the Breast
Cancer Genome Analyses for the International Cancer Genome Consortium Working Group under REC reference: 09/
HO0306/36 (Cambridgeshire 3 Research Ethics Committee). The study was later transferred to a protocol REC: 20/PR/0905
(London-Harrow Research Ethics Committee).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

)
Q
—
(e
(D
©
O
=
s
S
-
(D
o
O
>
(@)
wn
[
3
=
Q
3

120 Y210




Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This was a biological study, not a clinical trial so we did not undertake a power calculation for the number of patients. A total of 8 tissue
samples from 2 donors was considered sufficient to develop and demonstrate the spatial profiling techniques.

Data exclusions | All patients and samples analysed were included in the data presented. No samples were excluded.

Replication For samples P1-ER1, P1-ER2, P1-D1, P2-TN2 a replicate BaSISS experiment was conducted with a slightly altered ISS protocol. Phi29 buffer
(Thermo Fisher 10X reaction buffer: 330 mM Tris-acetate (pH 7.9 at 37°C), 100 mM Mg-acetate, 660 mM K-acetate, 1% Tween 20 and 10 mM
DTT) and no Exonuclease 1 in the rolling circle amplification step. Results of clone mapping are shown in Extended Data Fig. 5 - clone field
distributions are largely replicated.
For P1-ER1 and P1-ER2 whole genome sequencing of laser capture microdissected regions that were selected based upon an ability to
identify them in both LCM and BaSISS z-stack sections. All regions that fulfilled this criteria validated the BaSISS model and are shown in Fig.2.
For some regions including those in P1-D1 and P1-D2 the tissue structure was such that we could not link regions in the z-plane. Nonetheless,
although regional clone compositions could not be validated, the general patterns of mutation/clone co-occurrence and segregation could be
confirmed from these data. Tissue availability precluded LCM in patient P2.

Randomization  This was a biological study and not a clinical trial and therefore we did not randomise subjects.

Blinding This was a biological study and not a clinical trial and therefore we did not blind. Histopathological annotation was performed by qualified
clinical pathologists without prior knowledge of the spatial genomic data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|Z Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data

|:| Dual use research of concern

XXNXXNX[s

Antibodies

Antibodies used panCK, Dako(Agilent), 1:100, Catalogue number:M3515, clone AE1/AE3, LOT: L11139890
CD45, 1:100, Dako(Agilent), Catalogue number:M0701, clone 2B11 + PD7126, LOT:20026786
Her2/ErbB2, 1:50, CellSignaling, Catalogue number:4290T, clone:D8FI2, LOT:2
SM-MHC, 1:100, BioCare Medical LLC, Catalogue number:CM 420B, mouse monoclonal, clone: SMMS-1, LOT number unknown
P63, 1:150, BioCare Medical LLC, Catalogue number:CM 163C, mouse monoclonal, clone: BC4A4, LOT number unknown
PR, DakoCytomation, 1:75, Catalogue number:M3569, mouse monoclonal, clone:PgR636, LOT number unknown
Ki67, DakoCytomation, 1:400, Catalogue number:M7240, mouse monoclonal, clone: MIB-1, LOT number unknown
PTEN, Abcam Anti-PTEN antibody, 1:500, Catalogue number:ab267787, clone:EPR22636-122, LOT number unknown
PTEN, Santa Cruz Biotechnologies, 1:300, Catalogue number:sc-7974, clone:A2B1, LOT number unknown
PTEN Cell Signalling, 1:400, Catalogue number:9559, clone:138G6, LOT number unknown
PTEN Cell Signalling, 1:500, Catalogue number:9188, clone:D4.3, LOT number unknown
ImmPRESS HRP Anti-mouse 1gG, VectorlLaboratories, Catalogue number:MP-7402-50 ready-to-use, clone not applicable, LOT number
unknown
ImmPRESS HRP Anti-rabbit IgG, VectorLaboratories, Catalogue number:MP-7401-50, ready-to-use, clone not applicable, LOT number
unknown
Labelled polymer-HRP anti-mouse (polymer-M): DakoCytomation, Catalogue number: K4007
Poly-AP anti-mouse 1gG (poly-AP-M): Leica, Catalogue number: PV6110

Validation panCK - Approved for in vitro diagnistics by IHC (CE-IVD) according to datasheet. No specific IHC validation reported by manufacturer.
Antibody AEl immunoreacts with an antigenic determinant present on most of the subfamily A cytokeratins, including cytokeratins
10, 13, 14, 15 16 and 19. Antibody AE3 reacts with an antigenic determinant shared by the subfamily B cytokeratins including 1, 2, 3,
4,5, 6,7 and 8. Please see suppliers datasheet for corresponding references.
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CD45 - Approved for in vitro diagnistics by IHC (CE-IVD) according to datasheet.
Her2/ErbB2 - Recommended for IHC by the supplier; according to datasheet this antibody may cross-react slightly with other
overexpressed RTKs. No specific IHC validation reported by manufacturer.

For Her2: no IHC validation reported by the manufacturer; the manufacturer demonstrates that the antibody recognizes a protein
band at 185kDa in Western Blot analysis of lysates from Her2 positive human cells (MCF7 and SKBR3).

PTEN IHC was validated using several anti-PTEN antibodies (Cell Signaling Technologies: anti-PTEN (D4.3) Antibody (dilution 1:50) and
anti-PTEN (138G6) Antibody; Santa Cruz Biotechnologies anti-PTEN Antibody (A2B1) (dilution 1:300); and Abcam anti-PTEN Antibody
[EPR22636-122], dilution 1:500). The Abcam anti-PTEN Antibody [EPR22636-122] displayed the best signal on frozen tissue sections
and was used in the study.

SMMHC, P63, Ki-67 and PR antibodies are used by the clinical service at Brigham and Women’s Hospital and undergo validation as
part of clinical use in Clinical Laboratory Improvement Amendments (CLIA) certified pathology laboratory using control samples (e.g.,
breast carcinoma, tonsil, etc) as recommended by the suppliers.
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