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Spatial genomics maps the structure, nature 
and evolution of cancer clones

Artem Lomakin1,2,3,15, Jessica Svedlund4,15, Carina Strell4,5, Milana Gataric1,2, Artem Shmatko3, 
Gleb Rukhovich2,3, Jun Sung Park1,2,3, Young Seok Ju6, Stefan Dentro1,2,3, 
Vitalii Kleshchevnikov2, Vasyl Vaskivskyi2, Tong Li2, Omer Ali Bayraktar2, Sarah Pinder7,8, 
Andrea L. Richardson9, Sandro Santagata10,11,12, Peter J. Campbell2, Hege Russnes13,14, 
Moritz Gerstung1,3 ✉, Mats Nilsson4 ✉ & Lucy R. Yates2 ✉

Genome sequencing of cancers often reveals mosaics of different subclones present 
in the same tumour1–3. Although these are believed to arise according to the principles 
of somatic evolution, the exact spatial growth patterns and underlying mechanisms 
remain elusive4,5. Here, to address this need, we developed a workflow that generates 
detailed quantitative maps of genetic subclone composition across whole-tumour 
sections. These provide the basis for studying clonal growth patterns, and the 
histological characteristics, microanatomy and microenvironmental composition of 
each clone. The approach rests on whole-genome sequencing, followed by highly 
multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and 
dedicated algorithms to link these layers. Applying the base-specific in situ 
sequencing workflow to eight tissue sections from two multifocal primary breast 
cancers revealed intricate subclonal growth patterns that were validated by 
microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic 
expansions occurred at the macroscopic scale but segregated within 
microanatomical structures. Across the stages of ductal carcinoma in situ, invasive 
cancer and lymph node metastasis, subclone territories are shown to exhibit distinct 
transcriptional and histological features and cellular microenvironments. These 
results provide examples of the benefits afforded by spatial genomics for deciphering 
the mechanisms underlying cancer evolution and microenvironmental ecology.

Cancers are complex and dynamic entities that are constantly reshaped 
by the interactions between neoplastic cells and their microenviron-
ments4–6. Whole-genome sequencing (WGS) analysis of the average can-
cer detects thousands of somatic mutations and multiple genetically 
related yet distinct groups of cells termed ‘subclones’2,7,8. However, as 
genomic technologies typically assay DNA from dissociated tissues, the 
phenotypic consequences and the ecosystem pressures that are critical 
to fully understanding cancer evolution are lost9,10. Consequently, rela-
tively little is currently known about the nature or causes of spatial pat-
terns of cancer growth, phenotypic characteristics of distinct subclonal 
lineages or their interactions with tissue ecosystems11. Still, this informa-
tion appears key because adverse cancer outcomes—growth, progression 
and recurrence—are properties of genetically distinct subclones3,12–16.

Lineage tracing using somatic mutations is a powerful tool for infer-
ring the ancestral relationships between cancer subclones, but methods 
to perform this in preserved human tissue context are lacking3,14,17–20. 
Histology-driven sampling, such as laser capture microdissection 

(LCM)21, combined with low-input nucleic acid library sequencing or 
even single-cell sequencing goes some way towards resolving subclone 
spatial structure19. However, even the most exhaustive sampling strat-
egy will struggle to provide an unbiased representation of the cancer 
clone territories, particularly across whole-tumour sections. Recently 
described spatial genomics approaches permit the de novo spatial 
detection of cancer clones with distinct copy number profiles, but this 
does not permit the detection of point mutations or quantitative read 
outs of intermixed clones22,23. It has previously been demonstrated that 
individual mutations can be detected in situ using in situ hybridization24 
or mutation-specific padlock probes25–28. However, these approaches 
are limited by the number of available fluorophores. Given that every 
cancer and subclone therein is genetically unique, to reconstruct ances-
tral relationships in both space and time, we need to be able to trace 
multiple, cancer-specific somatic mutations simultaneously8.

To address this need, we developed a genetic clone mapping work-
flow that is centred around base-specific in situ sequencing (BaSISS) 
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technology. We derived quantitative maps of multiple genetic clones 
in eight tissues from two multifocal breast cancers that span the main 
histological stages of early cancer progression: ductal carcinoma in situ 
(DCIS), invasive cancer and lymph node metastasis29. In a case of DCIS, 
clones exhibited co-existence and segregation patterns in different 
parts of the breast ductal anatomy. By integrating genetic clone maps 
with multimodal spatial data layers, we found that genetically similar 
regions can be scattered across wide areas yet maintain similar tran-
scriptional and histological features and foster recurrent ecosystems. 
Finally, we found that genetic progression, which encapsulates the 
historical order of events, does not necessarily translate directly to 
transitions in histological state that are commonly assumed to reflect 
the stages of cancer progression, thus warranting a combined genetic 
and histological assessment of cancer evolution.

The BaSISS workflow
The BaSISS workflow is centred around fresh frozen tissue blocks that 
undergo serial cryosectioning to generate tissue for bulk WGS and 
z-stacked sections for in-tissue spatial clone mapping and spatial phe-
notyping (Fig. 1a). Following subclone detection from bulk WGS data, 
there are three core BaSISS steps. First, to facilitate detection of multi-
ple clones of interest, BaSISS padlock probes with sequence-specific 
oligonucleotide target recognition arms are designed towards both 
mutant and wild-type alleles of clone-defining somatic variants.  
A unique 4–5 nucleotide reader barcode on each probe enables mul-
tiplexing27. BaSISS targets can take the form of any expressed somatic 
mutation, including point mutations and rearrangement breakpoints, 
and can be supplemented with copy number alterations (Supple-
mentary Table 1). Second, BaSISS and transcript detection are per-
formed as previously described for gene expression ISS using cyclical 
microscopy27,30 (Fig. 1a and Supplementary Methods).

Third, continuous spatial subclone maps are generated using a sta-
tistical algorithm that exploits BaSISS signals as well as local cell counts 
(derived from the DAPI channel during the fluorescence microscopy 
of BaSISS) using two-dimensional Gaussian processes (Extended Data 
Fig. 1 and Supplementary Methods). The variational Bayesian model 
also accounts for unspecific or wrongly decoded signals and variable 
probe efficiency and is augmented by variant allele fractions in the bulk 
genomic sequencing data. In an optional, fourth characterization step, 
BaSISS clone maps can be aligned and integrated with additional layers 
of spatial phenotype data. In this study, we performed spatially resolved 
single-cell transcriptomics using targeted ISS (using a previously pub-
lished 91 gene oncology, a novel 62 gene immune panel and drawing 
on published single-cell RNA sequencing data)30,31 and immunohisto-
chemistry (IHC) staining (Extended Data Fig. 2a–c and Supplementary 
Methods). Additional sections were obtained to perform validation of 
our workflow using LCM and low-input WGS as previously described32 
(Extended Data Fig. 3a).

Two cases of multifocal breast cancer
The cohort includes eight tissue blocks from two patients (P1 and P2) 
who underwent a surgical mastectomy for a multifocal breast cancer. 
These patients were selected to permit a comparison between genetic 
and histological progression models in early breast cancer develop-
ment29 (Fig. 1b,c). P1 had two separate oestrogen receptor (ER)-positive, 
human epidermal growth factor receptor 2 (HER2)-negative primary 
invasive breast cancers (PBCs) within a 5-cm bed of DCIS; we used tissue 
blocks from both PBCs (samples P1-ER1 and P1-ER2) and three regions 
from DCIS (samples P1-D1, P1-D2 and P1-D3). P2 had two separate PBCs 
of the ‘triple-negative’ subtype (lacking the ER, progesterone recep-
tor and HER2). We sampled both PBCs (samples P2-TN1 and P2-TN2) 
and an axillary lymph node that contained metastatic cancer deposits 
(sample P2-LN1) (Fig. 1b).

Accurate and reproducible maps of clones
To demonstrate that spatial BaSISS signal counts can provide a mean-
ingful read out of the underlying somatic genotype, we first focused 
on three samples from P1 (P1-ER1, P1-ER2 and P1-D1) (Fig. 1b). Previous  
multiregional WGS experiments identified mutation clusters that 
equated to six phylogenetic tree branches, and these were present 
at different levels across the three samples3 (Fig. 2a,b, Extended Data 
Fig. 3b and Supplementary Table 3). To enable spatial detection of 
subclones, BaSISS padlock probes were designed towards 51 alleles 
that report on each branch of the phylogenetic tree: 25 single-base 
substitutions and the equivalent wild-type base, as well as an ampli-
fied oncogene (FGFR1) (black numbers; Fig. 2b and Supplementary 
Table 1). Subclones are referred to by a patient identifier and the  
colour of the corresponding node of the phylogenetic tree: P1-purple, 
P1-red, P1-grey, P1-orange, P1-green and P1-blue (Fig. 2b). A subclone 
genotype comprises the branch mutations accumulated as one moves 
from the tree root to the subclone node, therefore P1-green contains 
grey, blue and green branch mutations (Extended Data Fig. 3b). The 
bulk WGS-derived tree was corroborated by spatial co-occurrence of 
BaSISS signals and LCM–WGS validation data (Fig. 2c and Extended 
Data Figs. 3c,d and 4a).

On average, 97% of detected BaSISS spot signals were converted into 
feasible barcodes33. The median target-specific coverage across 300 mm2 
of breast tissue was 13,000-fold (Supplementary Table 4). BaSISS-derived 
variant allele fractions exhibited strong correlation across replicate 
experiments on serial tissue sections (R = 0.76–0.93, Pearson’s; Extended 
Data Fig. 4b), demonstrating quantitative reproducibility.

BaSISS signals coloured according to their subclonal mutation 
branch revealed a first, albeit noisy, visual glimpse of subclonal growth 
structure (Fig. 2d). Broad patterns were preserved in technical replicate 
experiments using adjacent tissue sections (Extended Data Fig. 4c). 
Although the number of signals detected per nucleus (n = 0.82) does 
not provide single-cell resolution of the somatic genotype, it is possi-
ble to aggregate information (1) spatially over areas of approximately 
100 × 100 µm2, and (2) across alleles co-occurring in a particular 
subclone to infer the local clonal composition of different tumour 
clones and normal cells (Supplementary Table 4). This process gener-
ated detailed maps covering several squared centimetres of tumour  
tissues (Fig. 2e). Of note, the clone mapping algorithm also implicitly 
adjusts the observed allele frequencies for a range of systematic biases 
(Extended Data Fig. 4d), stemming from the use of RNA-derived signals, 
differential BaSISS probe sensitivity and allele confusion to produce 
highly consistent maps across replicates (Extended Data Fig. 4e). 
Although the raw BaSISS variant allele fractions of many probes were 
noisy owing to the aforementioned biases, the modelled allele frequen-
cies were in highly accurate agreement with LCM–WGS validation data 
(Fig. 2c,g and Supplementary Table 5). This further corroborates the 
quantitative nature of BaSISS-derived clone maps that can be explored 
using an interactive web browser (https://www.cancerclonemaps.org/).

Charting histogenomic relationships
Histology-driven sampling of well-defined stages of cancer progression 
can uncover mechanisms and markers of disease progression10,19,29,34. 
Up to two-thirds of PBCs contain both invasive cancer and intermixed 
DCIS, a non-obligate precursor lesion. How these distinct ‘stages’ of 
cancer development might relate to genetic diversification within the 
same tissue is generally unknown35 (Fig. 1c). To demonstrate that BaSISS 
can chart these relationships across entire tissue sections, we exam-
ined three PBC samples with intermixed invasive and DCIS histology: 
P1-ER1, P1-ER2 and P2-TN1 (Fig. 3 and Extended Data Figs. 5 and 6a–c).

BaSISS detected 2–4 subclones per PBC in accordance with bulk WGS 
data. Clone maps (Fig. 3a,e) and the quantitative clonal composition of 
73 individually annotated microregions (Fig. 3b,f and Extended Data 

https://www.cancerclonemaps.org/
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Figs. 5a,b and 6a,b) revealed that individual subclones form spatial 
patterns that were, by varying degrees, related to the histological pro-
gression states. Normal tissue elements, including immune aggregates 
and histologically normal ducts, appear unstained consistent with a 
wild-type status for the targeted clones (green and yellow contours, 
respectively; Fig. 3a,e). In P1-ER2, an area of hyperplasia was predicted 
and confirmed by LCM–WGS to be genetically unrelated to the cancer 
(blue contour; Figs. 2c and 3a).

In each PBC, the genetic and histological progression models were 
broadly consistent, in which the invasive disease was mainly composed 
of cells from the most recently diverged subclone: P1-red, P1-purple and 
P2-purple in samples P1-ER1, P1-ER2 and P2-TN1, respectively (Fig. 3b,f). 
By contrast, earlier diverging clones colocalized entirely or in part to the 
histological pre-invasive lesion: DCIS. For example, in P1-ER2, BaSISS 
predicted that green branch mutations were completely absent from 
the invasive compartment, a conclusion that is supported by three 
separate microdissections (LCM–WGS) from distant regions of invasive 
cancer in P1-ER2 (Fig. 2c and Extended Data Fig. 5c).

However, in each PBC, there was a subclone that spanned both 
DCIS and invasive histology, revealing that disconnects between 
histological and genetic progression states can exist. This was the 
case for clone P1-red in P1-ER1 and clone P1-purple in P1-ER2. These 
DCIS-invasive spanning clones could be distinguished from each 
other by hundreds of private mutations, including different inacti-
vating driver mutations in PTEN, indicating parallel evolution along 
these divergent lineages that resulted in two distinct instances of 
cancer invasion (total mutation numbers label the phylogenetic 
tree branches; Fig. 3b). The spatial predictions of the BaSISS model 
of intraductal acquisition of PTEN mutations and PTEN protein 
loss was confirmed by LCM–WGS and IHC, respectively (Fig. 2c and 
Extended Data Fig. 5d). In sample P2-TN1, the only predicted driver 
point mutation was a deleterious mutation in the tumour suppressor 
gene TP53, and this was detected in both DCIS and invasive compart-
ments and was also present in all cancer regions of the second PBC, 
P2-TN2, consistent with an early onset in the development of this 
cancer (phylogenetic tree; Fig. 3e,f). These data therefore suggest 
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Fig. 1 | The BaSISS workflow to generate cancer clone maps. a, Following 
de novo mutation detection and subclone discovery in WGS data, the BaSISS 
workflow is performed as follows: (1) bespoke mutation-specific padlock 
probes are designed. (2) BaSISS transcripts are detected. To achieve this, 
BaSISS padlock probes hybridize to complementary DNA (cDNA) in situ.  
By virtue of a highly specific DNA ligase, only completely target-complementary 
padlock probes are ligated and form closed circles. Ligated probes are 
amplified through rolling circle amplification and their reader barcodes are 
detected in tissue space through sequencing by ligation with fluorophore- 
labelled interrogation probes and cyclical microscopy. (3) Mathematical 
modelling of BaSISS signals and the genotype of clones is then performed to 

derive clone maps. (4) Subsequent phenotype and microenvironment 
characterization of clones is then possible, by integrating clone fields with 
spatial datasets acquired from serial tissue sections. The BaSISS model and cell 
typing are described further in Extended Data Figs. 1 and 2. b, The two cases of 
multifocal primary breast cancer (PBC) used to develop the BaSISS approach. 
Coloured tiles report the histological features within each sample and the 
experiments performed. The number of clones identified by WGS and targeted 
by BaSISS are reported as white numerals. c, The traditional histological  
model of breast cancer progression. DCIS, ductal carcinoma in situ;  
H&E, haematoxylin and eosin; LN, lymph node; NST, invasive carcinoma  
of no special type; TME, tumour microenvironment.
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that many, if not all, of the genetic events necessary to initiate the 
invasive transition in these three cancers were acquired within the 
ducts, and subsequently both intraductal expansion and stromal 
invasion ensued.

Phenotypic changes accompany progression
Next, by integrating additional layers of spatial data, we sought 
to establish how phenotypic changes relate to genetic-state and 
histological-state transitions. In P1-ER1 and P1-ER2, consistent with a 
more proliferative phenotype, PTEN-mutant clone regions exhibited 
denser Ki-67 IHC nuclear staining, than PTEN wild-type ancestral clone 
regions (false-discovery rate (FDR) = 0.004 P1-red versus P1-orange; 
and FDR = 0.03 P1-purple versus P1-green) (Fig. 3c,d and Extended Data 
Fig. 5e). However, for a given genetic clone, the Ki-67 score was similar 

irrespective of whether it occupied a DCIS or invasive state, indicating 
that upregulation of Ki-67 is temporally related to acquisition of a PTEN 
mutation and precedes invasion.

By contrast, cellular resolution spatial transcriptomics analysis of 
P1-ER2 revealed that epithelial cell expression of several genes—CLDN4 
(encoding claudin 4), ACTB (encoding β-actin), KRT5 (encoding keratin 5)  
and CTSL2 (encoding lysosomal cysteine protease cathepsin V)—dif-
fered between DCIS and invasive compartments occupied by the same, 
P1-purple, clone (Extended Data Fig. 5f). These transcriptional changes 
might therefore be considered more closely linked to the histological 
transition rather than genetic changes traced by this approach. Expres-
sion of CLDN4 was consistently lower in the invasive compartment than 
to each DCIS clone. However, for some genes such as ACTB, expression 
patterns changed in opposing directions in the invasive cancer relative 
to the sampled DCIS clone (expression is higher than P1-green DCIS 
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(see Supplementary Methods for details). Each branch is labelled with the total 
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cell density is more than 300 cells per mm2). Scale bars, 2.5 mm (d,e).
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(FDR = 0.02) and lower than P1-purple DCIS (FDR = 0.013)) or were 
highly specific to a genetically more distant DCIS clone (Extended 
Data Fig. 5f).

Attempts to isolate the changes associated with invasive transition 
might also be confounded by heterogeneity within the invasive com-
partment. In P2-TN1, we therefore sought to examine whether the two 
genetically distinct invasive subclones (P2-blue and P2-purple) were 
phenotypically distinct. The two cancer clones exhibited distinct mor-
phological (nuclear and architectural) features (P = 0.04, Fisher’s exact 
test) (H&E image insets; Fig. 3e,f) and occupied neighbourhoods with 
different stroma (FDR = 0.02) and immune cells such as myeloid cell 
densities (FDR = 0.08) (mini-image insets; Fig. 3e and Extended Data 
Fig. 6a–c). Transcriptional programs were also distinct, with statistically 
significant differences in gene expression for 12 of 91 genes between 
clones (Extended Data Fig. 6d). Together, these data indicate that the 
particular clones sampled can have a profound effect on attempts to 
identify the phenotypic changes implicated in driving or arising during 
histological progression.

Growth patterns of pre-invasive clones
To demonstrate that BaSISS can be used to chart growth patterns in 
relation to complex tissue structures, we turned our attention to three 
DCIS samples from P1 that spanned a tissue surface area of 224 mm2 
(P1-D1, P1-D2 and P1-D3) (Fig. 4a and Extended Data Fig. 7a). The adult 
female breast comprises multiple, branching ductal systems, termed 
lobes, that extend from the nipple surface to the acini of the lobules, 
as illustrated in Fig. 4c36,37. DCIS arises from the duct epithelium and is 
considered a lobar disease as it typically involves the ducts and lobules 
of a single lobe38. Although DCIS is known to be genetically heterogene-
ous19, how DCIS clones are organized and grow through the wider duct 
system remains elusive39.

The clone maps generated for the three samples formed striking 
mosaics of mainly green and orange, and occasional blue and grey that 
localized to areas of histologically confirmed DCIS (Fig. 4a and Extended 
Data Fig. 7a). Immune clusters and occasional normal or hyperplastic 
ducts appeared white (unstained), consistent with a different genetic 
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mutation-containing genes. Branches and nodes are coloured to reflect the 
clones mapped in a. Heatmaps report clone composition in 34 and 44 
histologically annotated epithelial-containing microregions of P1-ER1 and 
P1-ER2, respectively. Microregions include individual ducts or randomly 

selected similarly sized regions of invasive cancer (see Extended Data Figs. 4b 
and 5b and the web browser https://www.cancerclonemaps.org/ for 
microregion details). HP, hyperplasia; N, normal ducts. c,d, IHC in P1-ER1 (c) 
and P1-ER2 (d) for the proliferative marker Ki-67 in six clone territories 
(indicated by contour colour); the percentage of nuclei staining positive 
(brown) is reported. Scale bars, 250 µm. e, As in a, but a clone map of P2-TN1. 
Scale bar, 2.5 mm. Mini-images report ISS-derived cell types (right) and H&E 
tissue section snapshots of the two cancer growth patterns (GP1 and GP2)  
reported in P2-TN1 (left). Scale bar, 250 μm. f, Phylogenetic tree for P2 and 
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contribution of different growth patterns to the microregion, defined by 
distinct nuclear and architectural features (Supplementary Methods).
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ancestry. In P1-D3, a 3-mm length of a large duct exhibited both a genetic 
and a histological transition from normal ductal epithelium to DCIS 
along its length, confirming that, although neoplastic involvement 
was extensive in this lobe, it was incomplete (Extended Data Fig. 7a). 
On dividing the glandular tissue into lobules (white dashed contours; 
Fig. 4a), it was apparent that a handful of lobules contained a single 
clone, but often multiple clones co-occurred. Indeed, we were surprised 
to observe that the same clones repeatedly co-existed within lobules 
that spanned centimetres of tissue. These appearances seem at odds 
with the traditional model of clonal competition in which a fitter clone 
generates localized monoclonal sweeps (Fig. 4c).

However, at finer, sublobular resolution, complete or near-complete 
clonal sweeps are the dominant pattern, as exemplified by assaying 
146 representative microscopic regions that represent individual 
or small clusters of intimately related acini and ducts (beige con-
tours; Fig. 4a). The existence of frequent clonal sweeps as inferred by 
BaSISS (Fig. 4b) was corroborated by LCM–WGS of additional micro-
regions (Extended Data Fig. 7b). In some instances, including P1-D1-88 
(Extended Data Fig. 7c) and P1-D2-0 (Fig. 4a,b,d and Extended Data 
Fig. 7d–f), clonal interfaces are directly observed within a continuous 
anatomical space. However, more commonly, rapid clone field tran-
sitions (see interactive maps (https://www.cancerclonemaps.org/))  
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defined lobules. The beige contours mark 114 and 40 manually selected 
microregions in P1-D1 and P1-D2, respectively, the clonal composition of which 
is reported by the heatmaps in b. Microregions were manually selected and 
represent single or small groups of intimately related acini or ductules from the 

same lobule. b, The phylogenetic tree was inferred from P1 multiregion WGS: 
branches are scaled according to and annotated with the number of WGS 
mutations and driver mutation-containing genes. Branches and nodes are 
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coincided with the myoepithelial cell layer and/or basement mem-
brane that define an acinus or ductule border. It thus transpires that 
the microanatomical structure of resident tissues can have, an as yet 
poorly understood, role in shaping observed subclonal architectures 
(Fig. 4a,c).

DCIS clone-specific phenotypes
Integration of histological and spatial gene expression data from serial 
sections revealed that the DCIS clones, P1-green and P1-orange, exhibit 
many phenotypic differences that are consistent across large tissue 
areas (Fig. 4d,e and Extended Data Figs. 7e,f and 8a,b). Histogenetic 
associations were very strong, with regions dominated by P1-green 
being more likely to have an intermediate rather than a low nuclear 
grade (P < 0.0001; Fisher’s exact test after Bonferroni correction), 
exhibit more nuclear pleomorphism (P < 0.0001), necrosis (P < 0.0001), 
vacuoles (P < 0.0001) and a non-solid architectural growth pattern 
(P < 0.0001) (Fig. 4d,e and Extended Data Fig. 7e,f).

Clone and cell type-resolved spatial gene expression analysis using 
targeted ISS further corroborated phenotype–genotype correlations.  
A total of 28 of 91 interrogated genes were differentially expressed by 

the two main clones (FDR < 0.1, fold change > 1.5 both ways; Extended 
Data Fig. 8a,b). Consistent with a higher nuclear grade, P1-orange  
epithelial cells exhibited higher expression of the cell-cycle regulatory 
oncogenes CCND1 and CCNB1 and the oncogene ZNF703, which have 
been linked to adverse clinical outcome40. Overall, architectural and 
nuclear appearances and gene expression profiles were remarkably 
lineage-specific, and it was particularly notable that these different 
patterns could also be appreciated spatially, in regions with sublobular, 
microscopic clone intermixing, adding weight to the clone composition 
predictions by the model (Extended Data Fig. 7d).

Metastatic clones in a lymph node
Lymph node metastasis is associated with higher rates of cancer mor-
tality41. Whether it has an active role in facilitating cancer progres-
sion or simply reflects a more aggressive or distinct biology of certain 
clones is largely unknown. A substantial challenge is low cancer purity 
of diffusely infiltrated lymph nodes, which can make it difficult to sep-
arate cancer from immune cell-derived molecular signals. To demon-
strate that BaSISS can facilitate the simultaneous study of cancer and 
immune compartments in such challenging cases, we analysed BaSISS, 
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histological annotation and ISS targeted gene expression datasets from 
sample P2-LN1 (Fig. 5 and Extended Data Fig. 9).

BaSISS in P2-LN1 targeted 13 trunk and branch alleles, including point 
mutations and an expressed novel internal fusion in the CACNB1 gene 
that was co-amplified with the clinically targetable breast cancer onco-
gene HER2 in a breakage fusion bridge event (Fig. 5b and Supplementary 
Data Table 1). The model detected two clones (P2-blue and P2-orange) 
that formed spatially segregated patterns in P2-LN1 (Fig. 5a,d). Only 
P2-blue was detected in primary breast tumours (P2-TN1 and P2-TN2) 
(Fig. 3e and Extended Data Fig. 6b).

Detailed histological annotation, blinded to the clone territories, was 
performed using a combination of H&E, CD45 and pan-cytokeratin IHC 
and identified multiple metastatic cancer growth patterns (coloured 
contours; Fig. 5a,c,d and Supplementary Table 2). Intersecting the 
clone maps and histological annotations revealed strong associations 
between the two detected clones and the two main histological growth 
patterns (P < 0.0001, Fisher’s exact test) (Fig. 5d). The P2-orange clone 
formed monotonous sheets of cancer cells, exhibited weak immunore-
activity for pan-cytokeratin and often occupied sinusoidal structures. 
By contrast, P2-blue cells stained more strongly for pan-cytokeratin 
and, when clustered, surround densely packed lymphocyte cores 
(Fig. 5c,d and Extended Data Fig. 9a–d).

We sought to determine whether transcriptional differences support 
the spatial inference of clones. Consistent with the known HER2 amplifi-
cation, P2-orange expressed higher levels of HER2 (Fig. 5f and Extended 
Data Fig. 9c). A total of 17 of 91 genes were differentially expressed and 
many of these are implicated in critical biological cancer pathways and/
or have recognized prognostic value, including CTSL2, VEGFA (encod-
ing vascular endothelial growth factor receptor A) and CD24 (refs. 42,43) 
(Fig. 5f). Spatially plotting these genes confirmed that clone-specific 
expression patterns are recapitulated within multiple, spatially distinct 
expansions across more than 1 cm2 of tissue (Extended Data Fig. 9a–c).

Integration of spatial transcriptomics data also revealed that met-
astatic subclones occupied distinct immune microenvironments. 
Relative to P2-orange cells, P2-blue cells resided in neighbourhoods 
enriched for T cells and B cells (Fig. 5e,g). In fact, P2-blue cells frequently 
formed clusters around B cell-rich germinal-like centres, highlight-
ing a potential clone-specific interaction with the adaptive immune 
system (Fig. 5c and Extended Data Fig. 9a,d). By contrast, P2-orange 
regions frequently resided inside the lymph node sinuses that were 
lined by endothelial cells expressing CD34 and PDGFRB (Fig. 5c and 
Extended Data Fig. 9f). Most of the immune cells in P2-orange regions 
were myeloid cells with expression profiles consistent with the exist-
ence of both M1 and M2 macrophages (CD163, CD68, HAVCR2 and 
FCGR3A), and the most highly enriched gene, CXCL8, is released by 
hypoxic macrophages44 (Fig. 5e). Indeed, relative to P2-blue, it emerges 
that P2-orange experienced more hypoxic conditions manifesting as 
higher cancer cell expression of VEGFA and necrotic regions (Extended 
Data Fig. 9e,f). Hypoxia signatures are associated with adverse clini-
cal outcomes, probably because they reflect the emergence of envi-
ronments that can select for hypoxia-tolerant clones and/or cancer 
proliferation rates outstrip neoangiogenesis45. Together, these data 
demonstrate how BaSISS clone maps allow one to spatially relate such 
variation in microenvironments to individual clones.

Discussion
Here we present BaSISS, a pipeline that combines a highly multi-
plexed fluorescence microscopy-based protocol and algorithms to 
map and phenotypically characterize the unique set of subclones 
of cancer. These maps served as the basis for further spatially and 
single-cell-resolved molecular and histological characterization of 
each clone. Applying BaSISS to a series of samples from the key stages 
of breast cancer progression—carcinoma in situ, invasive cancer and 
lymph node metastasis—it is notable that virtually every sample 

exhibited a spatial organization of clones, which warrants further inves-
tigation in larger cohorts. The fact that nearly all clones examined in this 
dataset displayed distinct clone-specific gene expression, stromal and 
immune microenvironments and microanatomical niches highlights 
the functional relevance of at least some subclonal diversification.

The ability to chart clonal growth patterns and clone-specific genetic 
underpinnings of the tumour microenvironment is likely to be instru-
mental in elucidating how different evolutionary processes operate 
and manifest across different cancer types—or even in histologically 
normal tissues46. Understanding the forces of malignant progres-
sion, especially invasion and metastasis, and how interactions with 
the tumour microenvironment shape clinical outcomes10 appear of 
particular importance. Detailing the functional and microenvironmen-
tal characteristics of different clones is also relevant as some part of 
subclonal diversity in tumours may be due to selectively neutral drift, 
but the exact extent remains debated.

Particular advantages of the technology are that it is capable of inter-
rogating very large tissue sections on the scale of squared centime-
tres, which enables studying entire cross-sections of smaller tumours.  
It is also comparably cheap, unlike solely relying on sequencing-based 
methods47. The three main limitations of the approach are relatively 
low sensitivity, which currently precludes single-cell genotyping, a 
reliance on RNA with the resulting variation in gene expression levels 
of targeted transcripts, and the fact that clone-defining mutations 
need to be detected first by separate sequencing-based assays. Greater 
sensitivity and spatial resolution may be achieved by including more 
targets per clone and by favouring mutations with higher predicted 
expression levels, for example, in higher copy number states. A switch 
to hybridization-based sequencing and direct RNA-binding probes 
may also improve base-specific detection by several fold48,49. Further 
discussion of the implications of our observations and limitations of 
the method is provided in a Supplementary Note.

It is often stated that “nothing in biology makes sense except in the 
light of evolution”50, which is likely to be true for cancer biology. The 
ability to spatially locate and molecularly characterize different cancer 
subclones adds essential features to the spatial-omics toolkit. It pro-
vides a robust evolutionary framework that is necessary to interpret 
the biological relevance of many of the more plastic spatial character-
istics of a cancer. Future widespread applications of spatial genomics 
approaches such as BaSISS will uncover how cancers grow in different 
tissues and allow us to track, trace and characterize the ill-fated clones 
that are responsible for adverse clinical outcomes.
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Extended Data Fig. 1 | Mathematical modelling BaSISS data. Mathematical 
model for generating quantitative clone maps. The essential idea is that the 
BaSISS signals count matrix D is decomposed into maps of clones M each with  

a distinct genotype G (grey shading), accounting for multiple sources of 
variability. For further details see Supplementary Methods.



Extended Data Fig. 2 | Hierarchical cellular typing workflow. a, Scatterplots 
of between sample log2-fold change of gene expression derived from RNAseq 
and combined ISS oncology and immune experiments. Correlations indicate 
that the probes are on-target. Included genes are those with transcripts per 
million (TPM) > 25 in RNAseq and 1000 detections per million cells in ISS whose 
deviation due to low counts would be negligible, R = Pearson’s correlation 
coefficient. b, Marker genes for the cell typing were selected using hierarchical 
logistic regression. The input datasets are the targeted ISS oncology and 
immune panels. If nuclei have marker ISS signals within 5 μm from their centre, 
the corresponding cell types were assigned. At first iteration, nuclei were 

classified into 3 broad categories (Immune, Epithelial and Stromal). At the 
second iteration, nuclei with Immune and Stromal assignments were further 
subdivided into (B-cells, Myeloid and T-cells) and (CAF/PVL, Endothelial) 
groups. The identity of nuclei that did not have any marker genes in proximity 
or had a contradictory assignment was considered unknown. PVL = 
perivascular-like. c, Mean expression of the genes used in ISS immune and 
oncology panels was calculated from the breast cancer single cell RNA 
sequencing (scRNA) reference (derived from Wu et al. Nature Genetics, 2021)  
to aid interpretation of the observed ISS signal distribution.
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Extended Data Fig. 3 | BaSISS resolves ambiguous WGS derived clonal 
architectures. a, Cartoon illustrating tissue block handling for P1. b, Density 
plots of WGS derived point mutation, cancer cell fraction (CCF) estimates from 
pairs of samples (see Supplementary Methods for details). Mutation clusters 
are denoted by coloured stars. The two phylogenetic tree solutions most 
compatible with the mutation cluster CCFs are presented alongside their 
respective inferred P1-green genotypes. c, BaSISS signal detections in 
approximately 3 mm2 region of D2 (repeated x3, left), exhibit co-occurrence 

and segregation patterns of both wild-type and mutant alleles that support the 
phylogenetic tree solution ‘a’. Sample D2 clone map (right) with frequency plot 
(below) of local, mean clone composition, corresponding to horizontal dashed 
line. The quantitative, continuous nature of these data can be examined more 
fully via the interactive web browser https://www.cancerclonemaps.org/.  
d, Spatial co-occurrence matrix of BaSISS mutant allele signals from P1-D1 (top) 
and LCM-WGS read correlations from 6 microdissected regions of P1-D1/P1-D2 
reveal the same co-occurrence patterns that support tree solution ‘a’.

https://www.cancerclonemaps.org/


Extended Data Fig. 4 | Validation of the BaSISS workflow. a, Four examples 
of BaSISS clone map regions (left) (see Fig. 2e) selected for laser capture 
microdissection (LCM) and whole genome sequencing (WGS) validation. 
Corresponding regions in z-stack tissue sections stained with H&E before 
(middle) and after (right) LCM. Scale bar = 500 um. b, Scatterplots of BaSISS 
variant allele fractions (VAF) defined as the number of mutation specific 
signals divided by mutation plus wildtype signals (depth) for each mutation 
target between replicate BaSISS experiments. Data are presented as mean 

estimates and 95% HPDI. c, Replicate BaSISS experiments (relates to Fig. 2d). 
Signals for selected mutations are coloured according to branch of origin. 
Scale bar = 2.5 mm. d, Scatterplots of BaSISS VAFs (normalised to WGS VAFs) in 
related samples indicate that the BaSISS data provide a meaningful read out of 
genomic structure. R = Pearson’s correlation coefficient. e, BaSISS clone fields 
derived from replicate sequencing data: Factor 2–7 are clones corresponding 
to the same coloured branch. Factor 1 is residual, 8 is normal. Scale bar = 2.5 mm.
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Extended Data Fig. 5 | Phenotype characterisation of histo-genomic states 
in sample P1 PBCs. a, Broadly annotated H&E tissue sections of the P1-ER1 and 
P1-ER2 primary breast cancers. b, Microregions selected for detailed analysis 
overlaid on BaSISS maps (regions relate to heatmaps in Fig. 3a; numbers relate 
to histological annotations in Supplementary Table 2). c, Comparison of the 
cancer cell fractions (CCF) of 9 regions of P1-ER1/P1-ER2 determined through 
both BaSISS (top) and laser capture microdissection (LCM) whole genome 
sequencing (WGS) (bottom). d, Snapshots of immunohistochemistry (IHC) 
staining in serial fresh frozen tissue cryosections from P1-ER2. Selected 
regions with confirmed clone compositions (by LCM WGS) are presented. 
SMMHC/P63 antibody stains myoepithelial cells red, PTEN protein and the 
progesterone receptor (PR) stain brown. % reports proportion of positive 

nuclei stained, n reports number of nuclei in region assessed by QuPath digital 
software. Row 1–3 scale bars = 250 um. Row 4 scale bar = 50 um. e, Violin plots 
depict clone specific Ki67 IHC staining rate posterior density of the generalised 
linear mixed model (glmm) with region specific random effect. Significant 
comparisons were controlled for FDR using the BH procedure. Analysis was 
limited to the 11 regions with confirmed clone compositions by WGS due to 
variation between IHC and BaSISS sections in z-stack morphology (relates to 
Fig. 2d). f, Violin plots depict clone specific gene expression contribution 
posterior density of the glmm with region specific random effect. A total  
of 36 regions of P1-ER2 with a dominant clone fraction > 0.7 were analysed. 
Significant comparisons were controlled for FDR using the BH procedure.  
DCIS = Ductal carcinoma in situ.



Extended Data Fig. 6 | Ecosystem characterisation in P2-TN1.  
a, Haematoxylin and eosin (H&E) stained sections of the two primary breast 
cancers from case P2. b, Microregions selected for detailed analysis overlaid  
on BaSISS maps (regions relate to heatmaps in Fig. 3a; numbers relate to 
histological annotations in Supplementary Table 2). Microregions were not 
defined for P2-TN2 as a single clone was targeted and detected. c, Cell type 
contribution posterior density of the generalised linear mixed models (glmm) 
model with region specific random effect. Significant comparisons were 

controlled for FDR using the BH procedure. 19 clone territories (with dominant 
clone fraction > 0.1) were analysed. Fibroblasts and perivascular-like cells (PVL) 
could not be differentiated within this experiment and are reported as 
‘fibroblasts’. d, Volcano plot of epithelial expression of the 91 oncology ISS 
panel genes in TN1 invasive regions. Significance was adjusted for multiple 
testing using BH procedure, only genes with FDR < 0.1 and fold change > 1.5 in 
both ways are coloured/labelled. DCIS = Ductal carcinoma in situ.
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Extended Data Fig. 7 | DCIS clone specific histologies. a, BaSISS clone map of 
P1-D3, a sample that contains Ductal carcinoma in Situ (DCIS), stroma and 
normal glandular regions. The most prevalent genetic clone colour is projected 
as a coloured field on DAPI images (reported if cancer cell fraction > 25% and 
inferred local cell density > 300 cells/mm2). Scale bar = 5 mm. Inlaid, H&E 
stained image (from a serial tissue section) details the histological transition 
from normal to DCIS morphology, consistent with the clone field transition in 
the BASISS map (scale bar = 1 mm). b, Heatmap of cancer cell fractions (CCF) 
derived from LCM WGS of six regions of P1-D1/P1-D2 with cartoon of predicted 
clone composition indicating inference of monoclonal and polyclonal growth 
patterns. c, Example of a clone interface within a single sub-lobular space in 
P1-D1. Clone fields (top left); spatial BaSISS mutation signals (top right); 

characteristic histological features on H&E (bottom left) with zoom image of 
clone interface (scale bar = 100 um) (bottom right). d, Histological, genetic and 
transcriptional features of three lobules (identified on the clone map of P1-D2; 
left, scale bar = 5 mm) are shown: H&E staining (top) scale bar = 1 mm; BaSISS 
clone fields projected on DAPI with frequency plots of the local, mean cancer 
(coloured areas) and non-cancer (white) corresponding to horizontal dashed 
line (middle); and ISS gene expression signals reporting CCND1 and KRT8 that 
exhibit clone specific spatial patterns. e, Clone maps of P1-D1/P1-D2 (as 
presented in Fig. 4a) but microregions are coloured according to histological 
grade. f, Histopathological annotations for each microregion presented 
alongside the same clone composition heatmap as shown in Fig. 4b.



Extended Data Fig. 8 | Distinct transcriptional profiles of two DCIS clones. 
a, Volcano plot of epithelial expression of the 91 oncology ISS panel genes in 
P1-D2. Significance was adjusted for multiple testing using BH procedure, only 
genes with FDR < 0.1 and fold change > 1.5 in both ways are coloured/labelled. 
The coloured genes are included in the by region plot in b. b, Heatmap of gene 
expression data within each of the 41 sampled regions in P1-D2, presented 

alongside the relevant clone composition regions (top) as per Fig. 4b. ISS 
counts in each regions are transformed by applying Poisson cdf with λ = mean 
(P1-green expression, P1-orange expression) × nuclei count in each region, thus 
divergence from 0.5 reflects deviation from the global mean expression. Only 
genes with FDR < 0.1 are presented and ordered by the confidence of 
differential.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Highly recurrent clone specific ecosystems in a 
metastatic lymph node. a, P2-LN1 sample (left) DAPI image with BaSISS 
subclone fields (as shown in Fig. 5a) and coloured squares mark regions 
depicted in b,c,d; (middle) pan-cytokeratin immunohistochemistry stained 
(IHC) (epithelial cells appear brown); (right) CD45 antibody (immune cells 
appear brown) with ISS immune panel derived cell types projected as coloured 
dots. b—d, Snapshots of example regions dominated by P2-blue or P2-orange 
clones, as indicated in a. In each case signals (dots) from selected targets in 
BaSISS b, ISS oncology c or ISS immune panels d are presented overlaid on 

sections stained by IHC following the BaSISS/ISS experiment. In the bottom 
row of c and top row of d inferred epithelial and immune cell types are 
presented. In top rows of c and d, 80% transparency is applied to the underlying 
IHC image to aid visualisation of overlaid dots. e, Spatial patterns of three 
hypoxia related genes are projected on the entire P2-LN1 tissue section.  
f, Spatial patterns of PDGFRB, CD34, CD68 and hypoxia related ISS signals 
overlaid on HER2 (left) and CD45 IHC stained sections(right) correspond to 
region of white square on top left clone field image in e.
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