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Inferring and perturbing cell fate regulomes 
in human brain organoids

Jonas Simon Fleck1,6, Sophie Martina Johanna Jansen1,6, Damian Wollny2, Fides Zenk1, 
Makiko Seimiya1, Akanksha Jain1, Ryoko Okamoto1, Malgorzata Santel1, Zhisong He1 ✉, 
J. Gray Camp3,4,5 ✉ & Barbara Treutlein1 ✉

Self-organizing neural organoids grown from pluripotent stem cells1–3 combined with 
single-cell genomic technologies provide opportunities to examine gene regulatory 
networks underlying human brain development. Here we acquire single-cell 
transcriptome and accessible chromatin data over a dense time course in human 
organoids covering neuroepithelial formation, patterning, brain regionalization and 
neurogenesis, and identify temporally dynamic and brain-region-specific regulatory 
regions. We developed Pando—a flexible framework that incorporates multi-omic 
data and predictions of transcription-factor-binding sites to infer a global gene 
regulatory network describing organoid development. We use pooled genetic 
perturbation with single-cell transcriptome readout to assess transcription factor 
requirement for cell fate and state regulation in organoids. We find that certain factors 
regulate the abundance of cell fates, whereas other factors affect neuronal cell states 
after differentiation. We show that the transcription factor GLI3 is required for 
cortical fate establishment in humans, recapitulating previous research performed in 
mammalian model systems. We measure transcriptome and chromatin accessibility 
in normal or GLI3-perturbed cells and identify two distinct GLI3 regulomes that are 
central to telencephalic fate decisions: one regulating dorsoventral patterning with 
HES4/5 as direct GLI3 targets, and one controlling ganglionic eminence diversification 
later in development. Together, we provide a framework for how human model 
systems and single-cell technologies can be leveraged to reconstruct human 
developmental biology.

The ability to generate complex brain-like tissue in controlled culture  
environments from human stem cells offers great promise to under-
stand the mechanisms that underlie human brain development. 
Cerebral or other unguided neural organoids develop from embry-
onic stem (ES) cells or induced pluripotent stem (iPS) cells into a 
three-dimensional neuroepithelium that self-patterns, regionalizes 
and, ultimately, forms neurons of the different brain regions1–3. The fate 
and state of each cell is orchestrated in part through complex circuits 
of transcription factors (TFs), converging at regulatory elements and 
interacting with chromatin to enable precise control of gene expres-
sion. Single-cell sequencing approaches enable the profiling of gene 
expression and chromatin accessibility in individual cells, which opens 
up new opportunities to survey the set of regulatory control features 
in any given cell type or state (regulomes). Comprehensive mouse and 
human brain cell atlases can be used as a reference for understanding 
organoid cell composition and development4–6. Direct comparisons 
between organoids and primary counterparts in mouse and human 
have quantified a notable similarity between the neural progenitor and 
neuronal transcriptome profiles7–9. Brain organoids have been used 

to successfully model microcephaly2, periventricular heterotopia10,  
autism11 and other neurodevelopmental disorders12,13 that may have 
differential effects on the various human brain regions. However, 
we do not yet understand the gene regulatory networks (GRNs) that 
coordinate early human brain development in normal and perturbed  
conditions.

Research in model systems has identified core signalling factors and 
gene regulatory programs that orchestrate brain region formation in 
vertebrates. Initially, extrinsic signals establish an anterior–posterior 
axis that triggers additional localized gradients downstream to segment 
the neural tube into distinct brain regions. Combinatorial activities of 
morphogens, including SHH, WNTs, BMPs, FGFs, NOTCH, neuregulins 
and R-spondins, converge on transcription factors to execute region-
alization. Much of what is known about these pathways in regulating 
brain morphogenesis has been examined in non-human model systems, 
and it remains unclear how human brain development has diverged 
from our mammalian ancestors. Moreover, detailed studies of the 
mechanisms controlling multiregion brain organoids may provide 
new insights into the process of brain self-organization14.
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New single-cell genomic methods enable high-throughput and quan-

titative analysis of single-cell transcriptomes and accessible chromatin 
profiles. These features can also be quantified within an individual cell 
in a multi-omic measurement, providing insights into gene expression 
and regulation in the same cell. Furthermore, CRISPR–Cas gene editing 
coupled with single-cell transcriptome readouts15–17 enables pooled 
genetic perturbation experiments in vivo18. These strategies and vec-
tor systems, combined with functionalization of human iPS cells with 
inducible CRISPR–Cas9 systems, provide an opportunity to perturb 
gene function in brain organoids, and systematically assess the effects 
across human brain regions.

Here we used a multimodal approach to examine cell-fate regula-
tion during human early brain development. We first built a regulome 
from single-cell transcriptome and accessible chromatin profiling 
data across a brain organoid developmental time course. Regulome 
perturbations using multiplexed CRISPR perturbation experiments in 
organoids identified effects on regional fate decisions as well as effects 
on cell states after fate acquisition. Multiome analysis of a critical period 
of brain region formation in GLI3-knockout (KO) and Sonic Hedgehog 
signalling molecule (SHH)-exposed organoids revealed regulatory 
disruption of dorsoventral telencephalon diversification and, with 
the help of the inferred regulome, we distinguished direct and indirect 
targets of GLI3. Together, we established a regulome perspective to 
understand and examine early human brain development.

Multi-omic view of organoid development
To examine the mechanisms that underlie human brain development, 
we generated single-cell transcriptome and single-cell accessible chro-
matin profiling data over a time course of brain organoid development 
(Fig. 1a, Extended Data Fig. 1a and Supplementary Table 1). The dataset 
incorporates 11 time points from 3 human iPS cell lines and 1 ES cell line 
covering 2 months of development spanning embryoid body forma-
tion, neuroectoderm induction, neuroepithelialization, neural progeni-
tor patterning and neurogenesis. At each time point, organoid tissues 
from the four lines were dissociated and single-cell RNA-sequencing 
(scRNA-seq) and single-cell assay for transposase-accessible chromatin 
with sequencing (scATAC–seq) pipelines (10x Genomics) were run on 
the same cell suspension. The sequencing data were demultiplexed 
using single-nucleotide variants specific to each individual and the two 
modalities for each line and time point were integrated using canoni-
cal correlation analysis (CCA)19 (Extended Data Fig. 1b–f and Supple-
mentary Table 2). We constructed ‘multi-omic metacells’ containing 
information on both transcriptome and chromatin accessibility using 
minimum-cost, maximum-flow bipartite matching20 within the CCA 
space (Extended Data Fig. 1b,g,h). We evaluated the integration using a 
multiome dataset, in which the transcriptome and accessible chromatin 
were measured within the same cell, and observed strong correlation 
(Extended Data Fig. 1i,j). The metacells were integrated using clus-
ter similarity spectrum (CSS)21, and the integrated data were visual-
ized using uniform manifold approximation and projection (UMAP) 
embedding. This revealed a relatively continuous distribution of cell 
states through the entire time course (Fig. 1a). Organoid development 
proceeds from pluripotency (for example, POU5F1) through a neural 
progenitor cell (NPC) state (for example, PAX6, VIM) to progenitor and 
neuron cell states of the dorsal telencephalon (for example, EMX1, 
NEUROD6), the ventral telencephalon (for example, DLX5, ISL1, GAD1), 
of non-telencephalic regions (for example, TCF7L2, LHX9) and of a 
small mesenchymal population (for example, DCN, COL5A1), with cells 
from the different lines largely intermixed (Extended Data Fig. 1f,k,l). 
The high-dimensionality of the data could be used to identify marker 
genes and gene regulatory regions for the different cell states (Fig. 1b, 
Extended Data Fig. 1l and Supplementary Table 3). We observed a 
pseudotemporal cascade of chromatin accessibility changes over the 
developmental time course associated with genes involved in stem cell 

maintenance, neural tube patterning, morphogenesis, neural precursor 
proliferation, neuron fate specification and other relevant biological 
processes (Extended Data Fig. 1m and Supplementary Table 4).

Previous studies have described the emergence of patterning cen-
tres within the neuroepithelium that coordinate to regionalize the 
developing organoid22. To reconstruct the earliest events involved in 
cell-fate restriction, we subclustered early portions of the trajectory 
and identified molecular heterogeneity (Extended Data Fig. 2). In the 
initial stages (day 7–9), we observed a predominant neuroectodermal 
population (SIX3, CDH2, SOX3, HES5) and a minor population of cells 
expressing non-neural ectoderm markers (DLX5, TFAP2A)23,24 (Extended 
Data Fig. 2a–c). After day 9, cells differentiate into a neuroepithelial 
population (LDHA), which later diverges into NPCs expressing either 
telencephalic (FGF8) and non-telencephalic markers (WLS, WNT8B), 
followed by a second divergence into dorsal (BMP7, EMX1) and ventral 
telencephalic NPCs (DLX2; Extended Data Fig. 2d–f). RNA fluorescence 
in situ hybridization (RNA-FISH) using hybridized chain reactions (HCR) 
of whole-mount 18-day-old organoids confirmed the expression and 
spatial segregation of some of these regional markers (Extended Data 
Fig. 2g).

To assess the neuroepithelial self-patterning variation across stem 
cell lines, we collected additional single-cell multiome data includ-
ing transcriptome and accessible chromatin modalities for a total of  
9 lines (iPS cells: 409B2, B7, HOIK1, KUCG2, WIBJ2 and WTC; ES cells:  
H1, H9 and HES3) (around 3 weeks; Extended Data Fig. 3a). Heterogeneity  
analysis and comparison with a single-cell transcriptomic atlas of the 
developing mouse brain6 revealed transcriptionally distinct clusters 
organizing along an anterior–posterior axis (Extended Data Fig. 3b). 
These clusters expressed many transcription factors, secreted ligands 
and surface receptors associated with patterning centres such as the 
hypothalamic floor plate (SIX6, HES5, SIX3), roof plate (FGFR3, RSPO3, 
WNT7B) and hindbrain roof plate (MSX1, BAMBI, BNC2; Extended Data 
Fig. 3c). Notably, marker expression was consistent between lines; 
however, cluster proportions varied substantially, consistent with 
previous reports25. We further identified cluster-specific candidate 
cis-regulatory elements (CREs) of patterning-related genes and found 
that many were similarly accessible across lines (Extended Data Fig. 3d). 
These data suggest that there is interesting variation between lines 
in the propensity to self-pattern, and also support a preserved GRN 
underlying brain region formation.

We next sought to reconstruct the neurogenic differentiation trajec-
tories for each brain region. We used RNA velocity26,27 and CellRank28 
to generate a terminal fate transition probability matrix based on 
transcriptomes, which we used to construct a differentiation graph of 
high-resolution metacell clusters and assign branch identities (Fig. 1c 
and Extended Data Fig. 4a–e). The graph, presented by a force-directed 
layout, reveals an early bifurcation into anterior telencephalic and pos-
terior non-telencephalic cell states and later branching of telencephalic 
progenitors into dorsal excitatory and ventral inhibitory neuronal trajec-
tories, respectively (Fig. 1d,e). This telencephalic progenitor state before 
dorsoventral divergence is marked by the expression of DCT, DIO3 and 
SIX6, and is characterized by transient accessible chromatin regions 
(Fig. 1f). Transcriptional and regulatory dynamics can be examined 
along each neurogenic trajectory, revealing regional specificity of gene 
expression, chromatin accessibility and binding-motif enrichment for 
stage-specific transcription factors (Fig. 1f and Extended Data Fig. 4f,g). 
Together, these data provide a multi-omic developmental atlas span-
ning the course of brain organoid regionalization and neurogenesis.

Regulatory network inference with Pando
To infer the GRN underlying human brain organoid development, we 
developed an algorithm called Pando (Fig. 2a and Methods), which 
leverages multimodal single-cell genomic measurements and models 
gene expression through TF–peak interactions. Pando first identifies 
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candidate regulatory regions that show accessibility across the orga-
noid time course by incorporating information on conservation29 
and previous CRE annotations30 (candidate regions; Extended Data 
Fig. 5a,b). We performed cleavage under targets and tagmentation 
(CUT&Tag) analysis of the H3K27ac histone modification marking 
active promoters and enhancers to assess regulatory region selec-
tion performance. We found that 94% of accessible peaks intersecting 
with H3K27ac were among the candidate regions, indicating a strong 
enrichment for active regulatory regions (Extended Data Fig. 5a). Next, 
candidate regions are assigned to genes in their vicinity and TF-binding 
sites are predicted for each region (Extended Data Fig. 5c–e). Linking 
regulatory regions to genes on the basis of proximity has limitations; 
however, it is an effective assumption for many regulatory interactions 
at the genome scale31,32, and we observed a strong correlation between 
gene expression and a regulatory domain that includes proximal pro-
moter and gene body regions (Extended Data Fig. 1i). Pando then uses 
a regression model to infer the relationship between the expression of 
each target gene, TF expression and binding-site accessibility (Fig. 2a 
and Extended Data Fig. 5f). As a consequence, Pando jointly infers sets 
of positively or negatively regulated target genes (gene modules) as 
well as regulatory genomic regions (regulatory modules) for each TF 
(Fig. 2b and Extended Data Fig. 5g–i). We visualized the GRN using a 
UMAP embedding, which revealed groups of TFs that are involved in 

different phases of brain organoid development, broadly representing 
the pseudotemporal order of cell state transitions (Fig. 2c). A series of 
TFs tracked transitions from pluripotency (such as POU5F1, LIN28A) to  
neuroepithelium induction (for example, SOX2 and HES1), with 
additional module neighbourhoods linked to brain regional NPC 
specification and neuron differentiation (Fig. 2d and Extended Data 
Fig. 5j,k). Nodes associated with initializing (pluripotency) and terminal 
states (regionalized neurons) had a high degree of centrality, reflect-
ing the high number of correlated expressed genes for these states.  
We found that certain TF modules were pseudotime-dependent inde-
pendent of brain regional identity (such as SP9, SCRT1), whereas others 
showed specificity for a given brain region (for example, EMX1, NR1D1, 
NEUROD6 in the dorsal telencephalon; IRX5 in non-telencephalon) 
(Extended Data Fig. 5j,k). Globally, this GRN shows that regulatory 
region accessibility and TF expression track with stages of organoid 
development and segregate during brain regionalization.

To better understand how chromatin accessibility constrains and 
specifies GRN activity in different brain organoid regions, we next 
analysed the differential accessibility of inferred binding sites between 
regional branches. We pruned regulatory edges with strongly depleted 
accessibility and could identify TFs with highly branch-specific target 
sets (Fig. 2e). We further partitioned the global GRN into branch-specific 
GRNs (Fig. 2f), representing subgraphs of which the activity is shaped 
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expression and motif enrichment z-score (Methods). Values are minimum–
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by changes in chromatin accessibility between branches. Within these 
subgraphs, we computed TF activity as the mean coefficient of all active 
connections multiplied by the mean expression in the branch (Fig. 2g). 
Comparing TF activity in the dorsal and ventral telencephalon branch 
revealed TFs with high branch specificity (such as NEUROD2, NFIA, 
SOX6) as well as TFs of which the mode of regulation changed between 
mainly activating (positive activity) to mainly repressing (negative 
activity; for example, HEY1, JUND, ZKSCAN1) and vice versa (such as 
SOX2). Together, these analyses provide a rich resource for future 
research to understand the gene regulatory programs controlling 
human brain regionalization and TF-mediated cell programming.

Single-cell TF perturbations in organoids
To begin to understand the mechanisms regulating cell fate and state 
during human brain development, we used a pooled perturbation 
screen17 in mosaic organoids (Fig. 3a). We designed gRNAs and gen-
erated a pooled lentiviral library targeting 20 TFs (each targeted by  
3 gRNAs) expressed in different stages of both organoid and primary 
developing human cortex7 and with no expression in iPS cells or the 
neuroectoderm stages (Fig. 3b and Extended Data Fig. 6a,b). We trans-
duced iPS cells containing an inducible Cas9 cassette with the lentiviral 
gRNA library, and sorted and expanded vector-positive iPS cells on 
the basis of fluorescence (Extended Data Fig. 6c). We induced Cas9 
expression in the infected iPS cells expressing different gRNAs, and 
used the mosaic pool of iPS cells to generate mosaic brain organoids 
containing a multitude of perturbed genotypes. Fluorescence was 
maintained throughout organoid development, and bulk amplicon 
sequencing revealed relatively homogenous detection of the gRNAs 

(Extended Data Figs. 6d and 7a). At day 60, at which neural progenitors 
and neurons coexist in the organoid and all targeted TFs have been or 
are being expressed (Fig. 3b and Extended Data Fig. 6a,b), we dissoci-
ated the mosaic organoids and sequenced single-cell transcriptomes 
and guide cDNA amplicons of three individual organoids as well as a 
pool of multiple organoids. We recovered 22,449 cells with an assigned 
gRNA. Each gRNA for all 20 targets was detected at an average of 1 gRNA 
detected per cell (Fig. 3c and Extended Data Fig. 7b–e). We generated 
a UMAP embedding, analysed cell type heterogeneity, and annotated 
NPCs, intermediate progenitors and neurons in the dorsal telencepha-
lon, the ventral telencephalon as well as in non-telencephalic develop-
ing brain regions (Fig. 3d and Extended Data Fig. 7f–i).

We tested the association of gRNA detection on cell type abundance 
and on differential gene expression within cell types (Extended Data 
Fig. 8). We first hierarchically clustered Louvain clusters on the basis 
of gRNA abundance and observed grouping by brain region (Extended 
Data Fig. 8a). This showed that different brain regions exhibited unique 
gRNA compositions, suggesting region-specific effects of TF perturba-
tions. We next stratified the detected gRNAs using a log-transformed 
odds ratio (P value based on a Cochran–Mantel–Haenszel test) and 
assessed the consistency of the effect across organoids and gRNAs 
(Extended Data Fig. 8b and Supplementary Table 5). On the basis of 
these metrics, we found that gRNAs targeting eight TFs showed con-
sistent enrichment in the ventral telencephalon branch with corre-
sponding depletion in the other regions, including the cortex (Fig. 3e; 
for example, GLI3, TBR1). Another set of perturbations showed the 
opposing effect, with enrichment of TF targeting gRNAs in the cortex 
and depletion in either the ventral telencephalon or non-telencephalon 
(such as HES1, HOPX). We focused on HES1 and GLI3, two genes that are 
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whether the regulation is mainly activating (+) or repressing (−).
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expressed at the dorsoventral branchpoint and show opposing effects 
on dorsal telencephalon commitment (Fig. 3e,f). Both genes are known 
regulators of mouse cortical development33–35 and are associated with 
developmental disorders in humans14,36. We used the GRN inferred 
from the developmental time course to investigate how GLI3- and 
HES1-target gene expression is correlated with transition probabilities 
into dorsal telencephalon (Fig. 3g). We found that genes activated by 
GLI3 were positively correlated with cortical transition probabilities, 
whereas HES1 had a repressive effect on such genes. This suggests an 
antagonistic involvement of these two genes in shaping the dorsoven-
tral fate decision in the human telencephalon. Notably, we also found 
that, for several TFs, perturbation led to detectable transcriptomic 
effects rather than composition changes (Extended Data Fig. 8c–f 
and Supplementary Tables 6 and 7). In particular, E2F2—a crucial cell 
cycle regulator37—altered the transcriptome of both dorsal and ventral  
telencephalic neurons, suggesting that misregulation of cell cycle exit 
has a substantial effect on the neuronal transcriptome state. Together, 
these data provide one of the first implementations of a multiplexed 
perturbation experiment in organoids to examine the effect of genetic 
perturbations on human brain cell fate and state development.

GLI3 directly targets HES regulomes
Mosaic perturbations suggested that GLI3 is involved in dorsoven-
tral neuronal fate specification in the human telencephalon. GLI3 is a 
well-known mediator of SHH signalling38, with GLI3 loss-of-function 
mutations resulting in the failure of the cortex to form in mice, and 
the expansion of ventral telencephalic neuronal identities into dor-
sal locations within the developing brain39,40. In humans, mutations 

in GLI3 are associated with Greig cephalopolysyndactyly syndrome 
and Pallister Hall syndrome, in which patients have variable presenta-
tions of brain malformations depending on the particular mutations14.  
To confirm that GLI3 is involved in cell-fate establishment in the human 
context, and to examine the underlying developmental mechanisms, 
we used CRISPR–Cas9 gene editing to generate two independent 
GLI3-knockout (KO) iPS cell lines and a control wild-type (WT) cell 
line that went through the editing process (Fig. 3h and Extended Data 
Fig. 9a–d). We generated KO and WT brain organoids and confirmed 
that the GLI3 protein is not detected in the KO organoids (Extended Data 
Fig. 9c, e). We performed scRNA-seq analysis of KO and WT organoids 
at day 45, a time point of early neurogenesis, and analysed the cellular 
heterogeneity (Fig. 3i and Extended Data Fig. 9f). Notably, KO cells 
were depleted in the dorsal telencephalon, with a strong enrichment 
in the ventral telencephalon (Fig. 3j), and differential gene expression 
analysis revealed that GLI3 KO affects ventral telencephalic cell states 
(Fig. 3k and Supplementary Table 8). Both of these observations were 
consistent with the mosaic perturbation experiment.

Interestingly, the TF MEIS2, a marker of lateral/caudal ganglionic 
eminence (LGE/CGE) relative to medial ganglionic eminence (MGE), 
was strongly downregulated in GLI3-KO conditions (Fig. 3j). Further 
analysis of the ventral telencephalic neuron heterogeneity identified 
distinct LGE/CGE-like and MGE-like neuronal populations with GLI3-KO 
cells strongly enriched in MGE neurons (Extended Data Fig. 9g,h). We 
observed expression alterations in GLI3-KO LGE-like neurons compared 
with the WT LGE state; genes involved in dorsoventral patterning (PAX6, 
MEIS2, DLK1) were differentially expressed (Extended Data Fig. 9h). 
These data confirm that GLI3 is necessary for cortical neuron fate estab-
lishment in humans, and its absence affects ventral telencephalon 

MYT1L

ZEB2

TBR1
BCL11B
ZFPM2

ST18

E2F2

LHX2
MEIS1
HES1
HOPX

GLI3

Primary Organoid
Targets

NeuronNPC IPStage

SOX9
SOX1

PAX6
FOXN4

NEUROD1

NEUROD6

SOX5
BACH2

a Lentiviral
gRNA library

20 genes
3 gRNAs per gene

iCas9 iPS cells

Mosaic
cerebral

organoids

Fraction of cells

E
xp

er
im

en
t

1.00.50

1

2

3

4

c

Ventral t.Dorsal t.N.t.

Branch

d

b

Consistent
gRNA
Consistent
e ect0–1.5 1.5

log2[odds ratio]
2 3

C
om

p
os

iti
on

 c
ha

ng
e

Telencephalon

Dorsal Ventral N.t.

HOPX
HES1

MYT1L
SOX5

BACH2
NEUROD6

SOX9
FOXN4

ZEB2
SOX1

NEUROD1
PAX6

BCL11B
ST18
TBR1
GLI3e

scRNA-seq + amplicon-seq

60 days

GLI3

HES1

gRNA
1 2 3

GLI3

0 0.2 0.4 0.6–0.2–0.4–0.6

Activating
Repressing

0 1.5

GLM coe cient

HES1

–0.4 –0.2 0 0.2 0.4

gf

Correlation to dorsal t.

UMAP

6 weeks NPC Neuron

KO WTVentral t.
Dorsal t.

N.t.

iCRISPR
iPS cells

g2

Gene editing

g1
GLI3

Clonal iPS cell
lines

KO1 KO2 WT

scRNA
-seq

6 weeks

h

C
lu

st
er

p
ro

p
or

tio
n

0

1

KO2KO1 WT

j

k

i

–1.0

–0.5

0

0.5

1.0

–1.5 –1.0 –0.5 0 0.5 1.0
Coef�cient (GLI3 KO)

q < 10–4

None
Isogenic KO
CROP-seq
Both

DLX2

CRABP2

MEIS2

GPM6A

PAX6

SOX11

NPC
Neuron

HES1

GLI3
FOXN4

Target gene

MYT1L
NEUROD1

MEIS1 PAX6
ZFPM2

SOX1
SOX5
SOX9
ST18
ZEB2
None

NEUROD6
TBR1
LHX2
HOPX

E2F2
BCL11B
BACH2

UMAP

–1.5

0

1

G
en

e
ex

p
re

ss
io

n
m

in
–m

ax
-s

ca
le

d
m

ea
n

lo
g

[n
o

rm
.c

o
un

ts
+

1]

Activating
Repressing

Correlation to dorsal t.

C
oe

f�
ci

en
t 

(C
R

O
P

-s
eq

) DE in ventral
t. neurons
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neurodevelopmental fate decisions. a, Schematic of the single-cell TF 
perturbation experiment using the CRISPR droplet sequencing (CROP-seq)  
method. b, The minimum–maximum-scaled average expression (log[transcript 
counts per 10,000 + 1]) of targeted genes in NPCs, IPs and neurons of the 
primary and organoid cortex. c, The proportion of cells with each perturbation 
for each experiment. d, UMAP embedding with cells coloured by detected 
gRNA (left) and branch assignment (right). e, Regional enrichment of gRNAs. 
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represent consistent effects between experiments and statistically significant 
(FDR < 0.01) effects on composition. The arrows indicate the predominant 
observed effect. f, UMAP embedding coloured by consistent gRNAs for 
selected genes that had a strong effect on fate regulation. g, The Spearman 
correlation of HES1-target (top, n = 18 genes) and GLI3-target (bottom, n = 42 

genes) genes to transition probabilities into the dorsal branch. The GRN  
was subsetted to retain connections that are accessible at the branchpoint  
(>5% detection rate). The centre line represents the median, the box limits show 
the 25–75% interquartile range and the whiskers indicate 1.5× the interquartile 
range. h, Schematic of the GLI3 loss-of-function experiment using an inducible 
CRISPR–Cas9 nickase system. i, UMAP embedding of scRNA-seq data from 
6-week-old WT and GLI3-KO brain organoids showing the trajectories from 
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distribution of cluster (colour) assignment per organoid for each condition.  
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coefficients of the linear model. Colours indicate significance (FDR < 10−4) in 
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development by promoting MGE neurogenesis and altering LGE neu-
ronal expression, consistent with a role in MGE fate repression41 and 
LGE neuron state regulation (Extended Data Fig. 9h,i).

GLI3 is expressed broadly in progenitors of the telencephalon and of 
non-telencephalic regions (Extended Data Fig. 4f), suggesting distinct 
GLI3 regulatory roles during different phases of brain development. 
We therefore generated single-cell multiome data (10x Genomics) of 
WT and GLI3-KO organoids at a time point (3 weeks) preceding dors-
oventral patterning (Fig. 4a and Extended Data Fig. 10a–c). WT and 
GLI3-KO organoids showed comparable cell composition (Fig. 4b); 
however, strong differential expression and differential accessibility 
was detected between KO and WT cells in the telencephalic progenitor 
population (clusters 0 and 2; Fig. 4b,c and Supplementary Table 9). Dif-
ferentially expressed genes (DEGs) included HES1 (upregulated) and 
HES4 and HES5 (downregulated) (Fig. 4d and Extended Data Fig. 10d), as 
well EMX2 (downregulated). Interestingly, GLI3-KO cells showed upreg-
ulation of SOX4 and SOX11, two genes detected as downregulated in 
HES1-perturbed cells in the pooled single-cell perturbation experiment, 

consistent with the opposing effect of GLI3 and HES1 on dorsal telen-
cephalic fate emergence (Fig. 3e and Extended Data Fig. 10e).

Combining single-cell data of WT and GLI3-KO organoids of both 
time points (3 and 6 weeks) revealed TFs and signalling pathways that 
are differentially expressed specifically in telencephalic progenitors, 
ventral telencephalic NPCs and ventral telencephalic neurons (Fig. 4e), 
hinting towards a distinct regulatory role of GLI3 in these different 
developmental stages. In telencephalic progenitors, GLI3 KO leads to 
the upregulation of FGF-related genes (FGF8, SPRY1, FGF13) and the 
downregulation of WNT-related genes (WNT7B, WNT5B, LGR5), whereas 
ventral telencephalic cells showed dysregulation of hedgehog pathway 
receptor PTCH1 and several transcription factors including NKX2-1, 
EMX2, GSX2 and ID1. GLI3 KO induced differential accessibility of CREs 
linked to these genes and pathways (Fig. 4e, Extended Data Fig. 10f,g 
and Supplementary Tables 10 and 11). Interestingly, many genes were 
differentially expressed only in the later ventral telencephalic stages, 
whereas CREs were differential accessibility already in telencephalic pro-
genitors (for example, NKX2-1, ID1), indicating a potential priming effect.
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Fig. 4 | Single-cell multiome view of GLI3 loss of function reveals distinct 
regulomes and effectors of dorsoventral telencephalon specification.  
a, Schematic of the experiment measuring the transcriptome and chromatin 
accessibility in the same cell at 3 weeks of brain organoid development.  
b, UMAP embedding coloured by cluster and labelled by projected cell fate. 
Inset: UMAP coloured by genetic state. c, The number of DEGs of control  
(WT) versus GLI3-KO cells in the different clusters. d, Differential expression in 
telencephalic progenitors (clusters 0 and 2) after GLI3 KO. e, DEGs after GLI3 KO 
for early telencephalic progenitors (week 3), ventral telencephalic progenitors 
(week 6) and neurons (week 6), and differential accessibility after GLI3 KO in 
early telencephalic progenitors (week 3). Genes are coloured according to the 
associated signalling pathway (if applicable) and molecular function. f,g, GRN 
subgraph for early telencephalic (f) and ventral telencephalon (g) progenitors, 

showing first- and second-order GLI3 targets. The circles represent genes for 
which all TFs are labelled. The edges are coloured on the basis of TF regulatory 
interaction. h, The GLI3-binding score (the sum of CUT&Tag signal intensity for 
the gene body + 2 kb) in WT organoids versus log-transformed fold change in 
differential expression in early telencephalic progenitors (week 3). Genes with 
differentially accessible (DA) CREs are coloured black. Signal tracks of GLI3 
binding matched with differential accessibility peaks of HES4 and HES5 in early 
telencephalic progenitors. i, The z-scored mean correlation between module 
gene expression and branch probabilities (branch activation score) for 
differentially expressed TFs. j, The log-transformed fold change of genes after 
treatment with SHH versus GLI3 KO. GO terms are shown for common DEGs, 
SHH-treatment-specific and GLI3-specific DEGs. k, Schematic summarizing 
the results from the GLI3 and SHH perturbations.
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We investigated the perturbation signatures in the context of our 
inferred GRN, and observed strong consistency between GLI3 direct 
and indirect targets and detected DEGs, supporting the predictability 
of the GRN (Fig. 4f,g and Extended Data Fig. 10h–k). Two GLI3 sub-GRNs 
describe distinct perturbation effects in telencephalic progenitors and 
in the ventral telencephalon branch, respectively (Fig. 4f,g). Before 
dorsoventral fate bifurcation, the sub-GRN suggests that GLI3 directly 
activates HES4, HES5, PAX6, OTX2 and CREB5, with 76% of the DEGs being 
indirect targets of GLI3. After specification of the ventral telencephalon, 
a second sub-GRN suggests that GLI3 directly regulates PAX6, LHX8, ID1 
and BCL11A. GLI3 CUT&Tag analysis in 3-week-old organoids revealed 
extensive GLI3 binding at genomic regions nearby (HES4, HES5, CREB5 
and PAX6) that also show differential accessibility in GLI3-KO cells, 
confirming that GLI3 binds to these targets directly in telencephalic 
progenitors (Fig. 4h). Interestingly, even though HES4/5 can be targets 
of the Notch pathway, we did not observe enrichment for other NOTCH 
targets, suggesting the independence of Notch signalling (Extended 
Data Fig. 10m). We assessed the relevance of GLI3 targets in driving dor-
sal or ventral telencephalic fate establishment by computing a dorsal 
and ventral telencephalon branch activation score for each TF module 
(Fig. 4i, Extended Data Fig. 10l). This analysis suggests that the GLI3 
targets HES5, EMX2 and PAX6 are major drivers of dorsal telencephalic 
fate, whereas FOXG1 and DMRTA1 activate ventral telencephalic fate.

Finally, we wanted to understand the interplay between GLI3 and 
SHH—a major inducer of telencephalon ventralization42,43. Organoids 
were treated with SHH for 3 days during the neuroepithelial stage 
(3 weeks) followed by multiome profiling. Differential expression analy-
sis revealed downregulation of GLI3 in SHH-treated versus untreated 
control telencephalic progenitors (Extended Data Fig. 10n,o) and, over-
all, there was a highly significant correlation with GLI3-KO-induced 
DEGs (Fig. 4j; Pearson’s r = 0.5). Gene Ontology (GO) analysis showed 
that shared and GLI3-specific DEGs were enriched in genes related 
to brain regionalization and differentiation, whereas SHH-specific 
DEGs were largely lipid-metabolism related. This suggests that SHH 
promotes ventralization predominantly by preventing GLI3-induced 
dorsalization39,44. Taken together, our data-driven approach provides 
a multiphasic GLI3 gene regulatory model for human telencephalon 
development that is consistent with previous studies, while also pro-
posing downstream effectors (Fig. 4k).

Discussion
The human brain has unique features that distinguish it from other 
species. Despite the high-resolution descriptions of mouse and human 
developing brain cell composition from recent cell atlas efforts4–6, it has 
been a major challenge to study the mechanisms that control human 
brain development owing to the difficulty in obtaining tissue at the 
earliest stages of brain patterning, and the lack of methods to system-
atically manipulate gene function. Here we integrated transcriptome, 
chromatin accessibility and genetic perturbation datasets to provide 
insights into the mechanisms that underlie human brain regionaliza-
tion. In a broad sense, we found that the programs identified in mouse 
and other non-human model systems are well conserved in humans, 
and the extent that stem-cell-derived brain tissues recapitulate these 
programs is notable. We focused on GLI3 as a well-studied transcrip-
tion factor controlling dorsoventral fate specification in the rodent 
telencephalon. We found clear evidence that this same transcriptional 
program is well conserved in humans. Importantly, these data provide 
strong evidence that multiregion human brain organoids can be pre-
dictive model systems. Note that unguided neural organoid protocols 
result in strong variation between stem lines with regard to proportions 
of regions represented in each organoid or batch.

We established the Pando GRN inference framework, which incor-
porates features of the regulatory genome that have not previously 
been used for the global analysis of developmental programs. Pando 

generalizes regression-based GRN inference for multimodal datasets 
by combining transcriptome, chromatin accessibility, an expanded TF 
family motif reference, known CREs and evolutionary conservation into 
a flexible framework. The R package implements the full GRN inference 
strategy, including candidate region selection, motif matching, model 
fitting and discovery of gene and regulatory modules. Furthermore, 
it offers a wide range of regression models to be used for GRN infer-
ence. We have highlighted interesting aspects of the network, such 
as TF modules involved in the transition from pluripotency through 
neuroectoderm to a neuroepithelium, as well as the subnetworks asso-
ciated with regionalized brain states. Such network analysis can guide 
future experiments designed to program specific neuronal states, and 
can be used to interpret gene perturbations in human organoids45. Note 
that current limitations include the lack of comprehensive active and 
repressive histone modification and chromatin conformation status 
across organoid development, as well as incomplete TF motif databases. 
We expect these to be an active area of research, and Pando has the 
flexibility to include such priors into the GRN inference framework.

We validated the critical role of GLI3 in dorsal telencephalic cell-fate 
specification in humans, and further identified the contribution of 
GLI3 during specification of MGE and LGE/CGE neurons. The integra-
tion of the single-cell multiome data from GLI3-KO organoids and the 
global GRN suggested a model in which GLI3 becomes induced in early 
telencephalic NPCs through SHH signalling during neuroepithelial 
regionalization. GLI3 then regulates downstream targets, activating 
cortical fate acquisition through differential activity of HES5, HES4 
and HES1, and inhibiting the MGE induction program through regula-
tion of BCL11A, LHX8 and NKX2-1. Our data also suggest that GLI3 can 
regulate HES genes directly, probably through NOTCH-independent 
mechanisms similar to what has been described recently during mouse 
limb development46. More broadly, our data reveal the extraordinary 
potential of multimodal single-cell genomic and organoid technologies 
to understand gene regulatory programs of human brain development.
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Methods

Experimental methods
Stem cell and organoid culture. We used six human iPS cell lines 
(Hoik1, Wibj2, Kucg2 from the HipSci resource47; 409B2 from the RIKEN 
BRC cell bank; 01F49i-N-B7 (B7) from Institute of Molecular and Clini-
cal Ophthalmology Basel; and WTC from the Allen Institute) and three 
human ES cell lines (H1-PAX6YFP (H1) and H9 from WiCell and HES-3 
NKX2.1GFP/w (HES3) from the Murdoch Children's Research Insti-
tute). Stem cell lines were cultured in mTESR1 (Stem Cell Technologies, 
05851) with mTeSR1 supplement (Stem Cell Technologies, 05852) and 
supplemented with penicillin–streptomycin (1:200, Gibco, 15140122) 
on Matrigel-coated plates (Corning, 354277). Cells were passaged 1–2 
times per week after dissociation with TryplE (Gibco, 12605010) or 
EDTA in DPBS (final concentration 0.5 mM) (Gibco, 12605010). The 
medium was supplemented with Rho-associated protein kinase (ROCK) 
inhibitor Y-27632 (final concentration 5 µM, STEMCELL Technologies, 
72302) the first day after passage. Cells were tested for mycoplasma 
infection regularly using PCR validation (Venor GeM Classic, Minerva 
Biolabs) and found to be negative. A total of 4,500–5,000 cells were 
plated in ultralow-attachment plates (Corning, CLS7007) to generate 
brain organoids using a whole-brain organoid differentiation protocol2. 
The use of human ES cells for the generation of brain organoids was ap-
proved by the ethics committee of northwest and central Switzerland 
(2019-01016) and the Swiss federal office of public health.

Single-cell RNA-seq, ATAC–seq and multiome experiments for the 
developmental time course. Brain organoids were generated from 
four different stem cell lines (H9, 409B2, Wibj2, Hoik1) simultaneously. 
Brain organoids of the same batch were dissociated at multiple time 
points of the course of brain organoids development. We collected 
these single-cell suspensions from an embryoid body time point (day 4),  
the time points of neuronal induction (days 7, 9 and 11) and after em-
bedding in Matrigel and starting the neuronal differentiation process 
(days 12, 16, 18, 21, 26, 31 and 61). Organoids of the four different cell 
lines were pooled on the basis of size and dissociated together, and the 
cell lines were later demultiplexed on the basis of the single-nucleotide 
polymorphism information. Multiple organoids of each line were 
pooled together to obtain a sufficient number of cells. For the early 
time points, 15 organoids per cell line were pooled, decreasing this num-
ber to minimally 3 organoids for the later time points (Supplementary 
Table 1). For time points just after Matrigel embedding, Matrigel was 
dissolved in Cell Recovery Solution (Corning, 354253) for 15 min at 4 °C. 
The organoids were cut in halves and washed three times with HBSS 
without Ca2+ and Mg2+ (STEMCELL Technologies, 37250). Single-cell 
suspensions were acquired by dissociation of the organoids with a 
papain-based dissociation (Miltenyi Biotec, 130-092-628). Prewarmed 
papain solution (2 ml) was added to the organoids and incubated for 
15 min at 37 °C. Enzyme mix A was added before the tissue pieces were 
triturated 5–10 times with 1,000 µl wide-bore and P1000 pipette tips. 
The tissue pieces were incubated twice for 10 min at 37 °C with tritura-
tion steps in between and after with P200 and P1000 pipette tips. Cells 
were filtered with consecutively with 30 µm and 20 µm preseparation 
filters and centrifuged. Cells were resuspended and viability and cell 
count were assessed using a Trypan Blue assay on the automated cell 
counter Countess (Thermo Fisher Scientific). Cell suspensions were 
split in two and resuspended in CryoStor CS10 (STEMCELL Technolo-
gies, 07952) and cryopreserved at −80 °C. The next day, cryotubes 
were transferred to liquid nitrogen for storage until the scRNA-seq and 
scATAC-seq experiments were performed.

The cryopreserved single-cell suspensions of each time point were 
thawed by warming up the cryo for 1–2 min in a water bath at 37 °C and 
directly centrifuged in 10 ml prewarmed DMEM with 10% FBS. Cells 
were washed twice with PBS + 5% BSA and filtered through a 40 µm cell 
strainer (Flomi). For scATAC–seq, nuclei were isolated according to the 

protocol provided by 10x genomics (Demonstrated protocol CG000169 
Rev D) using the low-input protocol and a lysis time of 3 min. Nuclei were 
loaded at a concentration that would result in the recovery of 10,000 
nuclei. In case of less nuclei recovered, the maximum number of nuclei 
was targeted. scATAC–seq libraries were generated using the Chro-
mium Single Cell ATAC V1 Library & Gel Bead Kit. Before sequencing, 
an additional clean-up step was performed to enrich shorter fragments 
by applying a double-sided (1.2–0.75×) clean-up with AMPureXP beads 
(Beckman Coulter) and Illumina Free Adapter Blocking Reagent was 
used to reduce potential index hopping. The libraries were sequenced 
on the Illumina NovaSeq platform.

For scRNA-seq, cells were put in a concentration after counting and 
viability checking that enabled targeting 10,000 cells and, in case the 
cell number was not sufficient, all cells were loaded. scRNA-seq libraries 
were generated using the Chromium Single Cell 3′ V3 Library & Gel Bead 
Kit. Single-cell encapsulation and library preparation were performed 
according to the manufacturer’s protocol.

Single-cell multiome datasets were generated from day 15 brain 
organoids of the stem cell lines Wibj2, Hoik1, 409B2, B7 and WTC, 
and day 19 brain organoids of stem cell lines (Kucg2, WTC, B7, and H1 
and HES-3 NKX2.1GFP/w) using the Chromium Single Cell Multiome 
ATAC + Gene Expression kit. Before nucleus isolation, organoids were 
dissociated with the papain-based dissociation. Nuclei were isolated 
according to the protocol provided by 10x genomics (demonstrated 
protocol CG000365, Rev B) in the lysis buffer with final amount of 0.01% 
Tween-20 and 0.01% Nonidet P40 Substitute and a lysis time of 3 min. 
Single-cell encapsulation and library preparation were performed 
according to the manufacturer’s protocol.

Libraries were pooled, FAB treated and sequenced on the Illumina 
NovaSeq platform. A summary of all single-cell experiments is provided 
in Supplementary Table 1.

Immunohistochemistry. Organoids were washed in PBS before fixing 
in 4% PFA at 4 °C overnight. The samples were washed three times with 
PBS and the organoids were then transferred to a 30% sucrose solution 
for 24–48 h for cryoprotection. Finally, organoids were transferred to 
plastic cryomolds (Tissue Tek) and embedded in OCT compound 4583 
(Tissue Tek) for snap-freezing on dry ice. For immunohistochemical 
stainings, organoids were sectioned in slices of 10 µm thickness using a 
cryostat (Thermo Fisher Scientific, Cryostar NX50). Organoid sections 
were quickly washed in PBS to remove any residual OCT and post-fixed 
in 4% PFA for 15 min at room temperature. The sections were then  
incubated in antigen-retrieval solution (HistoVT One, Nacalai Tesque) 
at 70 °C for 20 min. Excess solution was washed away with PBS and the 
tissue was incubated in blocking-permeabilizing solution (0.3% Triton 
X-100, 0.2% Tween-20 and 5% normal donkey serum in PBS) for 1 h at 
room temperature. Next, the sections were incubated overnight at 
4 °C in blocking-permeabilizing solution containing mouse anti-SOX2 
(1:200, Sigma-Aldrich, AB5603), rabbit anti-TUJ1 (1:200, BioLegend, 
801201) and goat anti-GLI3 (1:200, Novus Biological, AF3690) antibod-
ies. The next day, the sections were rinsed three times in PBS before 
incubation for 1 h at room temperature with 1:500 secondary anti-
body (donkey anti-rabbit Alexa 488, ab150073 and donkey anti-mouse 
Alexa 568, ab175472 and donkey anti-goat Alexa 647, ab150135) in 
blocking-permeabilizing solution. Finally, the secondary antibody 
solution was washed off with PBS and the sections were stained with 
DAPI before covering with ProLong Gold Antifade Mountant medium 
(Thermo Fisher Scientific). Stained organoid cryosections were imaged 
using a confocal laser scanning microscope, and six different z-plane 
images (z-step = 2–3 µm) were acquired using a ×20 magnification 
objective. The images were further processed using Fiji.

Whole-mount HCR RNA-FISH. Probe sets, amplifiers and buffers were 
ordered from Molecular Instruments. HCR in situ hybridization was 
performed according to the manufacturer’s instructions by Molecular 
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Instruments with small changes. In brief, 19-day-old organoids were 
washed once with PBS and transferred to a tube containing fresh 4% PFA 
at 4 °C and were fixed overnight at 4 °C. The samples were washed three 
times with PBST and then dehydrated with a PBST–methanol gradient 
(25%, 50%, 75% to 100%) and stored at −20 °C in 100% methanol until 
use. The samples were rehydrated with a similar series of graded metha-
nol–PBST washes for 5 min each on ice and washed an additional time 
with PBST. The samples were then treated with 10 µg ml−1 proteinase K  
(Invitrogen, 25530-049) for 3 min at room temperature. The sam-
ples were washed twice with PBST for 5 min and then post-fixed with 
4% PFA for 20 min at room temperature and subsequently washed three 
times with PBST for 5 min. The organoids were prehybridized in probe  
hybridization buffer for 30 min at 37 °C. Then, 1 pmol of each probe 
set was diluted into probe hybridization buffer and the samples were  
incubated overnight at 37 °C. The samples were washed four times with 
probe wash buffer at 37 °C and washed twice more with 5× SSCT. The 
organoids were incubated in amplification buffer for 10 min at room 
temperature before adding the precooled hairpin mixture diluted in 
amplification buffer to incubate overnight at room temperature. The 
excess hairpins were removed with three 5 min washes as well as two 
longer washes of 30 min. Organoids were stained with DAPI during one 
of the 30 min washes. The samples were stored at 4 °C and mounted on 
a µ-Slide chamber (Ibidi, 80807) and covered with 1% agarose. Images 
were acquired with lambda scanning followed by spectral unmixing 
on the Zeiss LSM980 system and processed using Fiji.

Doxycycline-inducible Cas9 nuclease and nickase cell line. The 
human iPS cell line 409B2 was used to create an iCRISPR–Cas9 nickase  
(Cas9n) and an iCRISPR–Cas9 line as described previously48. The 
doxycycline-inducible Cas9-expressing cell line was generated by  
introducing two transcription activator-like effector nucleases (TALENs) 
targeting the AAVS1 locus, which has shown to be effective for sustained 
transgene expression, and two TALEN constructs with donor plasmids. 
One of the donor plasmids contained a constitutive reverse tetracy-
cline transactivator (AAVS1-Neo-M2rtTA) and the other one contained  
a doxycycline-inducible expression cassette (Puro-Cas9). A D10A  
mutation was introduced by site-directed mutagenesis of the original 
Puro-Cas9 donor using the Q5 mutagenesis kit (New England Biolabs, 
E0554S) to generate the Cas9n. The cell lines used were tested for the 
proper expression of pluripotency markers SOX2, OCT4, TRA-1-60 and 
SSEA, quantitative PCR confirmed the doxycycline-inducible Cas9n and 
digital PCR was used to exclude off-target integration49. Both cell lines  
showed normal karyotypes after generation, but the iCRISPR–Cas9 
line acquired a common stem cell abnormality over time. A total of 
55% percent of the cells showed a derivative chromosome 2 with a long 
arm of chromosome 1 (bands q11q44) attached to the long arm of one  
chromosome 2 (band q37).

Vector and lentivirus preparation for the perturbation experi-
ment. The perturbation experiment was performed according to the 
CROP-seq protocol as described previously17 with some small altera-
tions. The experiment was performed in organoids derived from the 
inducible Cas9 nuclease line, which contains a Puro selection marker. 
To be able to select for cells that received the CROP-seq vector, Puro 
was exchanged for eGFP to isolate cells by fluorescence. We selected 
targeted TFs that had previously been shown in the literature to have 
correlated expression patterns during human cortex development in 
organoids and primary tissues, and have been studied in vertebrate 
models and shown to be involved in regulating forebrain develop-
ment. The selected TFs had minimal expression in iPS cells and neuro-
ectoderm stages to minimize the chances that organoid development 
was impaired during the early stages of organoid development. All of 
the selected TFs were expressed in the organoid dorsal telencephalon, 
and most were also expressed in at least one other branch. Three gRNA 
per targeted gene were designed by Applied Biological Materials and 

synthesized by IDT as 74 base oligonucleotides with 19 and 35 bases of 
homology to the hU6 promoter and guide RNA backbone, respectively. 
Oligonucleotides were pooled in equal amounts and were assembled 
in the vector backbone by Gibson’s isothermal assembly. The plasmid 
library was sequenced to validate the complexity of the pooled plasmid 
library. We used 10 ng of plasmid library for generating a sequencing 
library with a single PCR reaction. Illumina i7 and i5 indices were added 
by PCR and the library was sequenced on the Illumina MiSeq platform. 
After validation, lentiviruses were generated by the Viral Core Facility 
of Charité Universitätsmedizin Berlin.

Generation of mosaic organoids for perturbation experiment. 
The iCRISPR–Cas9 line was cultured on Matrigel in mTesr1 supple-
mented with penicillin–streptomycin (1:200) and Cas9 was induced 
2 days before lentiviral transduction by adding 2 µg ml−1 doxycycline. 
Then, 24 h later, cells were dissociated into single cells with TrypLE 
and 300,000 cells of the iCRISPR–Cas9 cells were plated in at least 12 
wells of Matrigel-coated 6-well plates in mTesr1 supplemented with 
penicillin–streptomycin (1:200), Y-27632 (final concentration 5 µM) 
and 2 µg ml−1 doxycycline. Next, 24 h later, cells were transduced with a 
low multiplicity of infection (MOI) where less than 30% of the cells were 
GFP+ to ensure that the majority GFP+ cells received only one lentivirus 
per cell. The viral particles were added to the culture medium (mTesr1 
supplemented with penicillin–streptomycin, Y-27632 and 2 µg ml−1 
doxycycline). Then, 24 h later, the medium was exchanged for mTesr1 
supplemented with penicillin–streptomycin and 2 µg ml−1 doxycy-
cline until 70% confluency was reached. Cells were then sorted with 
fluorescence-activated cell sorting (FACS) for GFP+ cells to enrich for 
CROP-seq-vector-positive cells and plated on Matrigel-coated plates in 
mTesr1 supplemented with 100 µg ml−1 Primocin (InvivoGen, ant-pm-1) 
and Y-27632 (final concentration 5 µM). When cells reached 70% conflu-
ency, whole-brain organoids were generated as mentioned previously.

Preparation of single-cell transcriptomes from mosaic perturbed 
organoids. After 2 months, single organoids and a pool of four orga-
noids were dissociated using a papain-based dissociation kit (Miltenyi 
Biotec, 130-092-628) as described previously. Cells were sorted using 
FACS. Cell viability and number was assessed using the Trypan Blue 
assay and the Countess automated cell counter (Thermo Fisher Sci-
entific). Finally, cells were diluted to an appropriate concentration to 
obtain approximately 7,000 cells per lane of the 10x microfluidic chip. 
scRNA-seq libraries were generated using the Chromium Single Cell 3′ 
V3 Library & Gel Bead Kit. The expression libraries were FAB-treated 
and sequenced on the Illumina NovaSeq platform.

gRNA detection from single-cell cDNA. gRNA were amplified from 
60 ng of cDNA remaining from scRNA-seq preparation with three sepa-
rate PCR reactions similar to reactions described previously50. First, 
cDNA was amplified using PCR broadly targeting the outer part of the 
U6 promoter. Subsequently, the inner portion of the U6 promoter ad-
jacent to the guide sequence and a TruSeq Illumina i5 adapter. Finally, 
we added Illumina sequencing i7 adapters. PCRs were monitored using 
quantitative PCR to avoid overamplification and, after every PCR reac-
tion, the samples were purified using SPRI beads (Beckman Coulter) 
and libraries were sequenced at 1:10 proportion of the transcriptome 
library on the Illumina NovaSeq system.

gRNA detection from gDNA. Cells from different stages of the  
organoid protocol were collected (iPS cell, embryoid body, embedded 
organoids and organoids day 30). QuickExtract (30–60 µl, Epicentre, 
QE0905T) was added to the cell pellets or organoids and the suspension 
was incubated at 65 °C for 10 min, 68 °C for 5 min and 98 °C for 5 min to 
extract the DNA. The same PCR was used to validate the library complex-
ity of the plasmid library17. The PCR was performed using the KAPA2G 
Robust PCR Kit (Peqlab, 07-KK5532-03) using the supplied buffer B and 



5 µl isolated DNA. The following program was used: 95 °C for 3 min;  
35 cycles of 95 °C for 15 s, 65 °C for 15 s and 72 °C for 15 s; 72 °C for 60 s. 
Libraries were sequenced using the Illumina MiSeq system (Nano kit) .

GLI3-KO and control line generation. Two days before lipofection, iPS 
cell medium was supplemented with 2 µg ml−1 doxycycline (Clontech, 
631311) to induce Cas9n expression. Two guides were designed using 
the Broad Institute’s CRISPR design tool (http://crispr.mit.edu/). The 
following guide pair was selected: ACAGAGGGCTCCGCCACGTGTGG, 
CCGCGGGACGGTGTTTGCCATGG. The Alt-R CRISPR–Cas9 System (IDT) 
was used for guide delivery with lipofection according to the manufac-
turer’s protocol. To form the crRNA–tracrRNA complex in a 3 µM final 
concentration for each guide complex, 1.5 µl of each guide crRNA was 
combined with 3 µl tracrRNA and 44 µl nuclease-free water. For the 
reverse transfection, 1.5 µl of the crRNA–tracr complex mix and 0.75 µl 
RNAiMAX (Invitrogen, 13778075) were diluted in 47.75 µl OPTI-MEM 
(Gibco, 1985-062) for each replicate and incubated for 20 min at room 
temperature in a well of 96-well plate coated with Matrigel (Corning, 
35248). During incubation, around 70% confluent cells were detached 
with TryplE (Gibco, 12605010), centrifuged and resuspended in 1 ml 
mTeSR with Y-27632 (final concentration 10 µM, STEMCELL Technolo-
gies, 72302). After complex incubation, cells were diluted 30 or 60 times 
in 100 µl mTeSR with Y-27632 (STEMCELL Technologies, 72302) and 
2 µg ml−1 doxycycline (Clontech, 631311) and the cell suspension was 
added to a well containing the transfection complexes. After 24 h, the 
medium was replaced with mTeSR1 medium and cells were allowed to 
recover for 72 h. Wells at 70% confluence were used for further process-
ing after 72 h. Cells were passaged as single cells in a Matrigel-coated 
(Corning, 35248) six-well plate in mTeSR medium with 1:200 penicillin–
streptomycin (Gibco, 15140122) and Y-27632 (STEMCELL Technologies, 
72302). Low amounts of cells were plated per well to avoid the fusion 
of colonies. The medium was changed daily and Y-27632 was added for 
the first 72 h to prevent apoptosis of the single cells. When colonies 
were apparent, single colonies were picked by scraping with a 10 µl 
pipette tip. Two-thirds of the cell suspension was plated in a single 
well of a Matrigel-coated 96-well plate in mTeSR1 supplemented with 
1:200 penicillin–streptomycin and Y-27632. The other portion of the 
cell suspension was pelleted and used for validation of frameshift muta-
tions by sequencing. Validated clones were expanded, cryopreserved 
and karyotyped. The three selected lines, one WT and two KO lines, 
showed a normal karyotype.

Validation of KO lines by sequencing. The cell pellets of picked colo-
nies were resuspended in 10 µl QuickExtract (Epicentre, QE0905T) 
and the suspension was incubated at 65 °C for 10 min, 68 °C for 5 min 
and 98 °C for 5 min to extract the DNA. A PCR reaction was performed 
with primers containing Illumina sequencing adapters for the targeted 
locus of the GLI3 gene. Amplification was performed using the KAPA2G 
Robust PCR Kit (Peqlab, 07-KK5532-03) using the supplied buffer B 
and 2 µl of extracted DNA. The following program was used: 95 °C for 
3 min; 35 cycles of 95 °C for 15 s, 65 °C for 15 s and 72 °C for 15 s; and 
72 °C for 60 s. Unique P5 and P7 Illumina indices were added to 0.5 µl of 
the previous PCR product with a second PCR program (98 °C for 30 s; 
25 cycles of 98 °C for 10 s, 58 °C for 10 s and 72 °C for 20 s); and 72 °C 
for 5 min), using the Phusion HF MasterMix (Thermo Fisher Scientific, 
F-531L). The double-indexed libraries were pooled and purified with 
SPRI beads. Purified libraries were sequenced on the MiSeq (Illumina) 
system resulting in paired-end sequences of 2 × 150 bp. LeeHom51 was 
used to trim the adapters after base calling using Bustard (Illumina).

Western blotting. GLI3 WT and KO organoids of day 15 were collected 
into Laemmli buffer, homogenized with a pestle (Fisherbrand, 12-141-
368) and sonicated for 15 cycles using the Bioruptor Plus. Subsequently, 
two high and low amounts of protein extractions and ladder (Thermo 
Fisher Scientific, 26620) were run on an 8% SDS–PAGE (Bio-Rad System) 

and transferred to a PVDF membrane using Wet-Blot. After blocking 
for 20 min with 4% milk powder in PBS + 0.1% Tween-20, the primary 
antibody (1:1,000, stock 0.5 µg µl−1, R&D systems, AF3690) was incu-
bated overnight at 4 °C. After washing three times for 7 min at room 
temperature in PBS + 0.1% Tween-20 on a shaker, the secondary goat 
IgG HRP-conjugated antibody (1:7,000, R&D systems HAF017) diluted 
in 4% milk in PBS + 0.1% Tween-20 was incubated for 2 h. The enhanced 
chemiluminescence signal was recorded using the ChemiDoc system. 
The loading control β-catenin (primary antibody: stock 1:10,000, Cell 
Signaling technologies, L54E2; secondary antibody: stock 0.8 µg µl−1 
1:7,000, Jackson ImmunoResearch, 115-035-003) was probed on the 
same membrane and loading was also controlled by Ponceau staining. 
Raw images are provided in Supplementary Fig. 1.

Generation of single-cell transcriptome and multiome of GLI3-KO 
and WT organoids. Organoids of GLI3 WT and KO iPS cells were gener-
ated simultaneously and dissociated with a papain-based dissociation 
kit (Miltenyi Biotec, 130-092-628) as described above. scRNA-seq was 
performed on day 45 of organoid development for both KO lines and the 
WT line for two independent organoid batches. After dissociation, cell 
viability was checked, cells were counted and 7,000 cells were targeted 
per lane of the 10x microfluidic chip. Libraries were generated with the 
Chromium Single Cell 3′ V2 Library & Gel Bead Kit and sequenced on 
the Illumina HiSeq platform.

Combined scRNA-seq and scATAC-seq were generated using the 
Chromium Single Cell Multiome ATAC + Gene Expression kit. In the 
case of SHH treatment, GLI3 WT organoids were treated with or without 
200 ng ml−1 SHH (R&D systems, 1845-SH-025/CF) every day for three 
days before the experiment on day 19. GLI3-KO and WT organoids were 
dissociated with the papain-based dissociation kit on day 19. Nuclei 
were isolated according to the protocol provided by 10x genomics 
(demonstrated protocol CG000365, Rev B) with a lysis time of 3 min. 
The gene expression and accessibility libraries were FAB-treated and 
sequenced on the Illumina NovaSeq platform.

Bulk CUT&Tag for GLI3 and H3K27ac. Single-cell suspensions of 
18- or 23-day-old brain organoids were prepared using the Miltenyi 
Neural Tissue Dissociation Kit (P) (Miltenyi Biotec, 130-092-628)  
according to the manufacturer’s guidelines. Cells were counted and 
directly transferred into CUT&Tag Wash buffer supplemented 0.01% 
digitonin (20 mM HEPES pH 7.5; 150 mM NaCl; 0.5 mM spermidine;  
1× Roche protease inhibitor cocktail). Per experiment, 1.5 million cells 
were used and incubated with 1.5 µg anti-GLI3 antibodies (R&D systems, 
AF3690) or 1 µg anti-H3K27ac antibodies (Diagenode, C15410196). All 
of the following steps were performed as described previously52. The 
protein A-Tn5 was purified in house as described previously52. The final 
libraries were sequenced on the NovaSeq platform with paired-end 
2 × 50 bp read length.

Data analysis methods
Preprocessing of scRNA-seq data from the organoid time course. 
We used Cell Ranger (v.3.0.2) with the default parameters to obtain 
transcript count matrices by aligning the sequencing reads to the hu-
man genome and transcriptome (hg38, provided by 10x Genomics, 
v.3.0.0). Count matrices were further preprocessed using the Seurat 
R package (v.3.2)19. First, cells were filtered on the basis of unique mo-
lecular identifier (UMI) counts, the number of detected genes and the 
fraction of mitochondrial genes. The threshold of mitochondrial gene 
fraction was held constant across datasets (<0.2). As sequencing depth 
varied between time points, the threshold of UMI count and number 
of detected genes was set individually for each sample as follows: days 
4 and 7: #UMI: >10,000, <80,000; #features: >3,000, <8,000; day 11: 
#UMI: >10,000, <60,000; #features: >3,000, <8,000; day 12: #UMI: 
>2,500, <40,000; #features: >1,000, <6,000; day 16: #UMI: >10,000, 
<60,000; #features: >3,000, <8,000; days 18 and 21: #UMI: >2,500, 
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<60,000; #features: >1,500, <8,000; day 26: #UMI: >2,500, <60,000; 
#features: >2,000, <8,000; day 31: #UMI: >2,500, <50,000; #features: 
>2,400, <7,500; day 61: #UMI: >1,000, <60,000; #features: >1,000, 
<8,000.

Transcript counts were normalized to the total number of counts 
for that cell, multiplied by a scaling factor of 10,000 and subsequently 
natural-log transformed (NormalizeData()).

Preprocessing of scATAC–seq data from the organoid time course. 
We used Cell Ranger ATAC (v.1.1.0) with the default parameters to obtain 
fragment files by aligning the sequencing reads to the human genome 
and transcriptome (hg38, provided by 10x Genomics, v.1.1.0). Peaks 
were called from the fragment file using MACS2 (v.2.2.6). Both the frag-
ment files and the peak count matrices were further preprocessed using 
Seurat (v.3.2)19 and Signac (v.1.1)53. First, peaks were filtered by width 
(<10,000 bp, >20 bp) to retain only high-quality peaks. Furthermore, 
the following quality control metrics were computed using Signac:  
a transcription start site (TSS) enrichment score (TSSEnrichment()), 
nucleosome signal (NucleosomeSignal()), the percentage of reads in 
peaks and the ratio of reads in genomic blacklist regions. Subsequently, 
cells were filtered based on the following metrics: percentage of reads 
in peaks > 30%; number of peak region fragments > 5,000; blacklist 
ratio < 0.003; nucleosome signal < 5; number of TSS fragments > 5,000; 
TSS enrichment score > 2.

We then created a unified set of peaks from the union of peaks from all 
of the samples by merging overlapping and adjacent peaks. The unified 
set of peaks was requantified for each sample using the fragment file 
(FeatureMatrix()). Peak counts were normalized by term frequency–
inverse document frequency (tf-idf) normalization using the Signac 
functions RunTFIDF().

Demultiplexing of different lines based on single-nucleotide variant 
information. Cells pooled from different stem cell lines were demul-
tiplexed using demuxlet54. Genotyping information was called using 
bcftools based on (sc)RNA-seq (B7, H1 and HES3) or DNA-seq data (H9 
and 409B2)25,55 or downloaded from the HipSci (WIBJ2, HOIK1) or Allen  
Institute (WTC) website. All files were merged using bcftools and sites  
with the same genotypes in all of the samples were filtered out.  
Demuxlet was run with default settings. Cells with ambiguous or dou-
blet assignments were removed from the data. For all other cells, the 
best singlet assignment was considered.

Integration of transcriptome and chromatin accessibility data. 
To create a shared feature space between the two modalities, gene 
activities were calculated from chromatin accessibility data using the 
Signac function GeneActivity() with the default parameters and sub-
sequently log-normalized with a scaling factor of 10,000. For each 
time point and line separately, we performed CCA on gene activities 
and gene expression data using the Seurat function RunCCA() based 
on 2,000 features, which were selected using the Seurat function  
SelectIntegrationFeatures(). In CCA space, we performed minimum- 
cost maximum-flow (MCMF) bipartite matching between the modalities 
as described previously20 (https://github.com/ratschlab/scim). The 
function get_cost_knn_graph() was used with knn_k = 10, null_cost_per-
centile = 99, capacity_method=’uniform’ and otherwise the default 
parameters. On the basis of the bipartite matches, matched cells were 
summarized to metacells containing measurements from both modali-
ties. If multiple cells from one modality were included in a metacell, the 
arithmetic mean between cells was calculated.

Removal of cells with glycolysis signature. An additional quality- 
control step was applied at the level of metacells to remove cells with 
transcriptomic signatures of glycolysis upregulation. This was based on 
primary cell type predictions using public human fetal brain scRNA-seq 
data (Nowakowski dataset)4. We fit a multinomial logistic regression 

model with lasso regularization penalty (alpha = 1), using gene expres-
sion ranks of the Nowakowski dataset as the training set, to predict the 
cell type identity of metacells in the organoid developmental time 
course. Metacells that were predicted to be of ‘glycolysis’ identity 
were excluded from the dataset. To fit the logistic regression model 
and automatically determine the regularization parameter lambda 
through cross-validation, we used the function cv.glmnet() from the 
glmnet R package.

Integration of different lines and time points. Integration of lines and 
time points was performed using the log-normalized gene expression 
data of metacells. To select a set of features suitable for integration of 
all lines and time points, we selected the union of the 100 most vari-
able genes for each time point separately (local) as well as across the 
full dataset (global). Analogously, we selected the union of locally and 
globally variable transcription factors (Supplementary Table 2). We 
used the union of the selected genes and TFs and further excluded 
cell-cycle-related genes56 from the set. Next, we computed cell cycle 
scores using the Seurat function CellCycleScoring(). Subsequently the 
data were z-scaled, cell cycle scores were regressed out (ScaleData()) 
and Principal Component Analysis (PCA) was performed using the 
Seurat function RunPCA(). We used the first 10 principal components 
(PCs) to integrate the different time points in the dataset using the CSS 
method21. To remove any remaining cell cycle signal for any downstream 
tasks, we again regressed out the cell cycle scores from the integrated 
CSS matrix. To obtain a two-dimensional representation of the data, we 
performed UMAP57 using RunUMAP() with spread = 0.5, min.dist = 0.2 
and otherwise the default parameters.

Calculation of motif enrichment scores. Position weight matrices 
of human TF-binding motifs were obtained from the CORE collection 
of JASPAR202058. Motif positions in accessible chromatin regions 
were determined using the R package motifmatchr (v.1.14) (https://
doi.org/10.18129/B9.bioc.motifmatchr) through the Signac function 
FindMotifs(). Enrichment scores of motifs in accessible regions were 
calculated for each metacell using chromVAR59 through the Signac 
function RunChromVAR().

RNA velocity calculation. To obtain count matrices for the spliced and 
unspliced transcriptome, we used kallisto (v.0.46.0)60 by running the 
command line tool loompy fromfastq from the Python package loompy 
(v.3.0.6) (https://linnarssonlab.org/loompy/). Spliced and unspliced 
transcriptomes were summarized to the metacell level as described 
above. RNA velocity was subsequently calculated using scVelo (v.0.2.2)27 
and further analysed using scanpy (v.1.7.0)61. First, 2,000 highly variable 
features were selected using the function scanpy.pp.highly_variable_
genes(). Cell cycle genes56 were excluded from this feature set and the 
dataset was subsetted to the resulting gene set. Subsequently, moments 
were computed in CSS space using the function scvelo.pp.moments() 
with n_neighbors = 30. RNA velocity was calculated using the function 
scvelo.tl.velocity() with mode=‘stochastic’ and a velocity graph was 
constructed using scvelo.tl.velocity_graph() with the default param-
eters. To order cells in the developmental trajectory, a root cell was 
chosen randomly from cells of the first time point (day 4) and veloc-
ity pseudotime was computed with scvelo.tl.velocity_pseudotime(). 
The obtained velocity pseudotime was further rank-transformed and 
divided by the total number of metacells in the dataset.

Annotation of organoid developmental stages. To annotate different 
organoid developmental stages, we first divided the dataset into 20 
bins on the basis of quantiles of velocity pseudotime. For each bin, we 
computed the average gene expression and peak accessibility across 
metacells and computed the pairwise Pearson correlation between 
log-normal gene expression values of each bin. From the correlation 
coefficient r, we defined a distance metric as 1 − r and used it to perform 
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hierarchical clustering using the ward.D2 method as implemented in 
the stats R package (hclust()). On the basis of the resulting clusters, bins 
were manually annotated as PS cells, neuroectoderm, neuroepithelium,  
NPCs or neurons.

Identification of stage-specific chromatin access. To find sets of 
peaks with stage-specific accessibility, we computed for each stage 
the percentage of metacells in which each peak was detected. We then 
computed a specificity score by dividing the detection percentage 
for each stage by the detection percentage of all other metacells. We 
filtered peaks with an in-stage detection percentage of >15% and a stage 
specificity of >1.5. From these peaks, we selected the top 5,000 peaks 
with the highest specificity score. Using these specific peak sets for 
each stage, we used GREAT31 with the GRCh38 genome assembly and 
otherwise the default parameters to obtain functional enrichment re-
sults. We reported GO biological process enrichments with FDR < 0.01 
and that were supported by >30 foreground regions.

Inference of regional cell-fate trajectories. To resolve the regional 
cell fate branches we relied on CellRank (v.1.3.0)28 to compute transi-
tion probabilities into terminal cell states and PAGA62 to obtain a graph 
abstraction of the transcriptomic manifold. First, terminal neuronal 
states were annotated manually using VoxHunt (v.1.0.0)8 based on the 
top 20 structure markers. To resolve the developmental trajectories 
leading up to the emergence of neurons with distinct regional identities, 
transition probabilities to each of the terminal states were computed 
for each cell using CellRank. A transition matrix was constructed by 
combining a velocity kernel (VelocityKernel()) and a connectivity kernel 
(ConnectivityKernel()) with weights of 0.5 each. Absorption probabili-
ties for each of the predefined terminal states were computed using 
the GPCCA estimator. From these probabilities, we computed a transi-
tion score by ranking the absorption probabilities and normalizing by 
dividing by the total number of metacells. We then constructed a graph 
abstraction of the dataset by high-resolution clustering using the Lou-
vain algorithm63 with a resolution of 20. We used PAGA to compute the 
connectivites between clusters (scvelo.tl.paga()) and summarized tran-
sition scores for each of the clusters. To find branch points at which the 
transition probabilities into different fates diverge, we then constructed 
a nearest-neighbour graph between the high-resolution clusters based 
on their transition scores (k = 30). We further pruned the graph to re-
tain only edges between nodes with a connectivity score of >0.2 and 
edges going forward in pseudotime, that is, from a node with a lower 
velocity pseudotime to a node with a higher velocity pseudotime. The 
resulting graph is directed with respect to pseudotemporal progres-
sion and represents a coarse-grained abstraction of the fate trajectory, 
connecting groups of cells with both similar transition probabilities to 
the different lineages and high connectivities on the transcriptomic 
manifold. To assign fate identities to each branch in the graph, we first 
selected the nodes with the highest transition probability and pseudo-
time for each of the terminal states as tips. We then performed 10,000 
random walks with 200 steps from each tip along edges backwards in 
pseudotime using the igraph R package (v.1.2.6) (https://igraph.org/). 
Next, we computed for each node the visitation frequency from each 
of the terminal states. We then assigned branch identities to each node 
on the basis of the visitation frequencies as follows: if a node’s visita-
tion frequency from one tip was more than 100× higher than from the 
next highest tip, it was unambiguously assigned the identity of this 
tip. If the visitation frequencies from multiple tips were within 100× of 
each other, then the node was assigned the identity of all of such tips. 
Nodes that were assigned both the dorsal telencephalic and ventral 
telencephalic identity were relabelled as ‘telencephalon’. Nodes that 
were assigned all three identities were labelled as ‘early’ to indicate 
that their fate was not yet committed. Nodes that could not be reached 
through this procedure were assigned the identity of the node with 
the highest connectivity score. The final labelled graph was visualized 

using the Fruchterman–Reingold layout algorithm as implemented in 
the igraph R package.

Analysis and integration of multiome data in the neuroepithelial 
stage. Initial transcript count and peak accessibility matrices were  
obtained with Cell Ranger Arc (v.1.0.0) and further preprocessed using 
the Seurat (v.3.2)19 and Signac (v.1.1)64 R packages. Transcript counts were 
log-normalized and peak counts were tf-idf-nomalized. On the basis of 
the RNA modality, the data were integrated with previously described 
data from the neuroepithelial stage using Seurat CCA integration with the 
default parameters. PCA was performed on integrated, log-normalized 
and z-scaled transcript counts and Louvain clustering was performed 
using the Seurat function FindClusters() with a resolution of 0.8.

Identification of CREs from multiome data. CREs for genes were dis-
covered by linking peaks to genes by co-accessibility and co-expression 
between ATAC and RNA modalities, respectively. This was achieved 
using the Seurat function LinkPeaks() with the default parameters.

GRN inference with Pando. We developed Pando to infer GRNs while 
taking advantage of multimodal single-cell measurements, where both 
the RNA and the ATAC components are either measured for each cell 
or integrated to obtain metacells or clusters with both modalities. The 
core GRN inference algorithm in Pando can be summarized in four 
main steps:

(1) Selecting candidate regulatory genomic regions.
(2) Scanning regions for transcription factor binding motifs.
(3) Selecting region–TF pairs for each target gene.
(4)  Constructing a regression model with region–TF pairs as independent  

variables and the expression of the target gene as the response 
variable.

The coefficients (or importances) of this model can now be seen as a 
measure of interaction between the region–TF pair and the downstream 
gene, resulting in a regulatory graph. In the following sections, we will 
describe these steps in more detail.

Selection of candidate regions for GRN inference. To narrow the set of 
genomic regions that are taken into account for each target gene when 
constructing the model, we can take advantage of prior knowledge about 
the potential importance of these regions. Genomic sequence conserva-
tion is one such criterion that indicates the relevance of a stretch of DNA, 
as it has been maintained by natural selection. Thus, we first intersected 
the peak regions in the ATAC–seq data with the set of PhastCons conserved 
elements29 from an alignment of 30 mammals (obtained from https://
genome.ucsc.edu/). As exonic regions tend to be conserved regardless 
of their regulatory relevance, we further excluded exonic regions from 
this set. Furthermore, we considered candidate cCREs derived from the 
ENCODE project30. For this, we obtained the set of all human cCREs from 
https://screen.encodeproject.org/ (GRCh38) and intersected it with 
peak regions. The union of the resulting conserved and cCRE regions  
was carried forward as the set of candidate regions for GRN inference.

Construction of an extended motif database for GRN inference. 
Because TFs need to be matched with potential binding sites, the avail-
ability of a binding motif is required for a TF to be included in the GRN. 
We therefore aimed to gather motif information for all TFs relevant in 
our dataset. First, we selected the union of the 4,000 most variable 
genes in each individual time point (Supplementary Table 2). All TFs in 
this set were considered to be relevant. We then obtained binding motifs 
from JASPAR (2020 release)58 taking into account the CORE and the  
UNVALIDATED collection. For TFs for which no binding motif was avail-
able in JASPAR, we further considered the CIS-BP database65. Where pos-
sible, motifs with direct experimental evidence were prioritized over 
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inferred motifs and motifs that were inferred based on other JASPAR mo-
tifs were prioritized over the rest. For all relevant TFs that were also not 
covered by CIS-BP, motifs were inferred on the basis of protein sequence s 
imilarity to other TFs from the same family. Family information and 
protein sequences for all TFs were obtained from AnimalTFDB66 and 
pairwise multiple-sequence alignments were performed using the 
Needleman–Wunsch algorithm67 as implemented in needle from the 
EMBOSS software suite (v.6.5.7)68. For each query TF, we considered all 
TFs from the same family with a global sequence similarity of at least 
20% and selected the motifs from the three most similar TFs. TF motifs 
from all sources were combined into one database and motif positions 
in accessible chromatin regions were determined using the R package 
motifmatchr (v.1.14) (https://doi.org/10.18129/B9.bioc.motifmatchr) 
through the Signac function FindMotifs().

Coarse-graining expression and chromatin accessibility data. 
Before inferring the GRN, we coarse-grained the data to denoise and 
remove sparsity. First, we summarized the expression and chromatin 
accessibility of close cells using the pseudocell algorithm outlined in 
ref. 25. In brief, we randomly selected 30% of all cells in the dataset as 
the seed cells and constructed a territory for each seed with the ten 
nearest neighbours based on Euclidean distances using the top 20 PCs. 
If one cell was assigned to multiple territories, one was randomly cho-
sen. For all cells contained in a territory, gene expression data were 
summarized using the arithmetic mean. For chromatin accessibility 
data, an accessibility probability for each territory was computed by 
averaging binarized read counts. We further performed latent semantic 
indexing (LSI) on the peak counts of each territory using the Signac 
functions RunTFIDF() followed by RunSVD(). On the basis of the top 
20 LSI components, we further performed high-resolution clustering 
using the Louvain algorithm with a resolution of 100 and accessibility 
probabilities were further summarized to a cluster level by computing 
the arithmetic mean so that each cell in the cluster was represented by 
the same vector.

Linear model-based GRN inference. Pando used a regression-based 
approach to infer the regulatory interactions between TF–binding site 
pairs and the corresponding gene. Although the package implements 
a variety of regression models, here we used a linear model to perform 
network inference. Genomic coordinates for all genes were obtained via 
the R package EnsDb.Hsapiens.v86 (https://doi.org/10.18129/B9.bioc.
EnsDb.Hsapiens.v86). For each gene, we considered a regulatory region 
encompassing the gene body and 100 kb upstream of the TSS. We then 
define a linear model on the log-normalized expression Y of the gene i 
based on all TF–binding-site interactions in this region:

∑Y e a ε= + ,i j j j jβ

where the log-normalized expression of transcription factor j is the 
accessibility probability of the peak that overlaps its binding region, 
βj is the fitted coefficient for this interaction and ε is the intercept. The 
fitted coefficients can then be interpreted as the regulatory effect of 
TF–binding-site pairs on the downstream genes. To fit the linear model, 
we use the function glm() from the stats R package using Gaussian noise 
and an identity link function.

Peak and gene module construction. To prune the network and retain 
only significant interactions, the fitted coefficients were tested for 
statistical significance using analysis of variance (ANOVA). We cor-
rected for multiple testing using the Benjamini–Hochberg method 
to obtain an FDR-adjusted P value, to which a significance threshold 
of 0.05 was applied. The remaining connections were further sum-
marized to extract sets of negatively (coefficient < 0) and positively 
(coefficient > 0) regulated target genes and regulatory regions for 
each transcription factor.

Pando implementation details. Pando was implemented as an R pack-
age and is available at GitHub (https://github.com/quadbiolab/Pando). 
Pando was designed for easy use and integrates smoothly with widely 
used single-cell analysis tools in R, namely Seurat and Signac. Its core 
functionality is implemented in four main functions:

initiate_grn() selects candidate regions from the dataset and initiates 
the object for GRN inference. The user can flexibly define custom sets 
of candidate regions to be taken into account by Pando.

find_motifs() scans candidate regions for transcription factor motifs. 
The motif database constructed in this work is included in the Pando 
package, but can also be manually supplied.

infer_grn() selects regulatory regions for each target gene and 
performs the model fitting. We implemented support for all gen-
eralized linear models provided by the stats R package, regularized 
linear models provided by the glmnet R package69, Bayesian regres-
sion models implemented through the brms R package70, gradient 
boosting regression through the xgboost R package70,71, as well as 
bagging and Bayesian ridge models through scikit-learn72. Where 
possible and necessary, we also implemented the appropriate sta-
tistical tests to obtain P values for the coefficients. For bagging ridge 
models, coefficients can be tested across estimators using a t-test 
or Wilcoxon rank-sum test. For the Bayesian ridge model, we obtain 
for each coefficient the mean and s.d. and subsequently calculate a 
P value based on the normal distribution. For Bayesian regression 
models obtained from brms, we calculated P values using the bayes-
testR R package73.

find_modules() constructs gene and regulatory modules for each 
transcription factor.

The implementation is flexible and enables the user to apply the 
Pando framework to a wide range of use-cases.

Visualization of the GRN. We sought to visualize the inferred tran-
scription factor network based on both co-expression and regula-
tory relationships between transcription factors. First, we computed 
the Pearson correlation between log-normalized expression of all 
transcription factors in the network across all metacells in the atlas. 
From the correlation value r and estimated model coefficient β be-
tween all transcription factors i and j, we then computed a combined  
score s as

S r β= × + 1ij ij ij

resulting in a TF-by-TF matrix. We performed PCA on this matrix and 
used top 20 PCs as an input for UMAP as implemented in the uwot R 
package (https://github.com/jlmelville/uwot) with the default param-
eters.

Region-specific GRN. The region-specific GRN was generated by 
incorporating region-specific accessibility profiles and region- 
specific TF expression into the Pando-inferred GRN. To get the region- 
specific accessibility, we first performed outlier analysis on the high- 
resolution clusters of pseudocells described above when summarizing  
the peak accessibility probabilities for Pando. In brief, for each pre-
dicted TF-binding region, a trimmed z-transformation was applied 
to the accessibility probabilities across clusters, with the average 
number of ATAC reads per pseudocell in the cluster as the covariate 
and regressed out. Here, instead of the arithmetic mean and s.d. 
across all clusters, only clusters with probabilities between the 5th 
and 95th percentiles were used to calculate the mean and s.d. for the 
transformation. The resulting z-scores were converted to P values 
based on the standard Gaussian distribution, which represents the 
statistical significance of outlier clusters with significantly lower 
accessibility (BH-corrected FDR < 0.01, close outliers). Alternatively, 
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the statistical significance of outlier clusters with significantly higher 
accessibility was represented as 1 − P (BH-corrected FDR < 0.01, open 
outliers). Next, a step-wise procedure was used to define clusters 
with this region accessible. In brief, if no close outlier was found, the 
open outliers were considered as clusters with the region accessible. 
When close outliers were detected, all of the clusters except for the 
close outliers were considered to have the region accessible. When 
no outlier was detected, the region was considered to be accessible 
in all clusters. Next, this region accessibility was propagated from 
the clusters to the bimodal metacells. Given the regional identity of 
the metacells, a χ2 enrichment test was used to identify regions that 
significantly deplete metacells with the region accessible (two-sided 
χ2 test, BH-corrected FDR < 0.01, odds ratio < 0.5, inaccessible  
regions). For each region, the Pando-inferred TF–target regulation 
mediated by the inaccessible regions in one region was excluded 
from the region-specific GRN. Finally, the region-specific GRN was 
further trimmed by excluding any TF with a detection rate of less 
than 5% in metacells of the region.

Calculation of module activity and analysis of module branch 
specificity. On the basis of the GRN inferred by Pando, the activity of 
a transcription factor can be represented by the expression of the set of 
genes that it regulates (gene modules) or by the accessibility of its set 
of regulatory regions (regulatory modules). To calculate the activity of 
gene modules, we used the Seurat function AddModuleScore() with all 
genes included in GRN inference as the background (pool). For regula-
tory modules, we used the R package chromVAR (v.1.14)59 to obtain a 
set of background peaks (getBackgroundPeaks()). We then computed 
deviations in accessibility from the background for each regulatory 
module (computeDeviations()). Next, we assessed how the activity of 
positively regulated gene modules varied during neurogenesis over 
pseudotime and between branches. For this analysis, we excluded all 
cells from the PSC and neuroectoderm stage. We fit three gaussian 
linear models for each gene i module with module activity (Y) as the 
response variable and branch assignment and/or velocity pseudotime 
as the independent variables: (1) Yi ~ branch; (2) Yi ~ pseudotime; and 
(3) Yi ~ branch+pseudotime.

We used the R2 value of these models as the fraction of variance 
explained by branch (1), pseudotime (2), or branch and pseudotime (3). 
We further tested for differential module activity between the branches 
for each branch point separately using a Wilcoxon rank-sum test as 
implemented in the R package presto74. For the comparison of the dor-
sal and ventral telencephalon, we considered only cells in the top 30% 
pseudotime quantile (NPC and neuron stages). To visualize dorsal and 
ventral telencephalon-specific transcription factor networks, we first 
selected positively regulated gene modules of transcription factors 
with branch-specific expression (described above). For each branch, 
we then selected the top 15 modules of which the module activity was 
significantly upregulated (FDR < 0.05) based on the mean difference 
of module activity between the branches.

Preprocessing, integration and annotation of CROP-seq single-cell 
RNA-seq data. As with the organoid time course, count matrices were 
obtained using Cell Ranger (v.3.0.2) and further preprocessed using the 
Seurat R package (v.3.2)19. First, cells were filtered on the basis of UMI 
counts (>500, <30,000), the number of detected genes (>500, <6,000) 
and the fraction of mitochondrial genes (<0.1). Transcript counts were 
normalized to the total number of counts for that cell, multiplied by 
a scaling factor of 10,000 and subsequently natural-log transformed 
(NormalizeData()). The different samples were integrated using RSS25 
based on the 2,000 most variable features (FindVariableFeatures()). 
In RSS space, we performed Louvain clustering with a resolution of 3. 
Regional identities as well as NPC/neuron identities were assigned to 
Louvain clusters using a combination of VoxHunt similarity maps and 
canonical marker genes. Cells annotated as off-target cell types such as 

mesenchyme and choroid plexus were removed from all downstream 
analyses.

Assignment of gRNA labels to cells. To assign gRNA labels to cells, 
reads obtained from amplicon sequencing were first aligned to the 
human genome and transcriptome (hg38, provided by 10x Genom-
ics), which was extended with artificial chromosomes representing 
the CROP-seq-Guide-GFP construct17, using Cell Ranger. We observed 
that read counts of gRNA UMIs followed a bimodal distribution, with 
the lower peak probably representing sequencing or amplification 
artefacts. To extract the higher peak, we first fit a Gaussian mixture 
model with two components on natural log-transformed read counts 
using the function GaussianMixture() from the scikit-learn Python pack-
age72. We then used a probability cut-off of 0.5 to extract the mixture 
component with higher average read counts. From these gRNA UMIs, 
we constructed a cell x guide count matrix, which was further binarized 
to obtain the final cell-to-gRNA assignments.

Inference of perturbation probability. To account for a potential mix-
ture of unperturbed and perturbed cells in the population, we inferred 
probabilities of a gRNA having a phenotypic effect on the cell using 
the strategy proposed previously15. Here a Bayesian approach is used 
to obtain the probability of a cell being perturbed given the observed 
transcriptome. To this end, a regression model is fit with the gene ex-
pression matrix as the response Y and the native gRNA assignments, 
cell and sample covariates as independent variables (X):

Y X= .β

After fitting the model, the model fit is re-evaluated for each cell 
with the gRNA assignment set to 0 (X0). The difference of the squared 
errors of the two fits can then be transformed into a probability with:

∑
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where xlogistic( ) = .1
1 + e x−

As in the original publication, we used linear regression model with 
elastic net regularization (alpha = 0.5) using Gaussian noise and an 
identity link function to fit the model based on 500 most-variable 
features. The regularization parameter lambda was automatically 
determined through cross-validation as implemented in the function 
cv.glmnet() from the glmnet R package. Models were fit for each gene 
i on log-normalized transcript counts Y with binary assignments X for 
each gRNA j as well as cell type, sample and number of detected genes 
as covariates:

∑Y n X∝ + sample + cell type +i j jfeatures

After computing the above-described perturbation probabilities for 
each cell and gRNA, they were further summarized to a target gene level 
by taking the maximum probability among the three gRNAs targeting 
the same gene.

Determination of transcriptomic perturbation effects in the 
CROP-seq screen. To determine how gene KOs affect the transcrip-
tomic state of neuronal populations arising in brain organoids, we used 
a linear model-based approach15. For each neuronal type, we inferred 
perturbation probabilities p for each target gene j as mentioned above 
and fit a linear model on log-normal transcript counts (Y) for each gene 
i as follows:

∑Y n X+ sample + .i j jfeatures
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To determine KO effects in neural NPCs, we also used cell cycle phase 

as a covariate. For this, we inferred the cell cycle phase with the Seurat 
function CellCycleScoring() and then constructed the linear model 
as follows:

∑Y n X∝ + sample + cc phase + .i j jfeatures

To determine the KO effects across all neurons, we inferred global 
perturbation probabilities on the full dataset and then fit a linear model 
across neuronal populations on log-normal transcript counts for each 
gene y as follows:

∑Y n X∝ + sample + neuron type + .i j jfeatures

The coefficients for each target gene were tested using ANOVA and 
multiple-testing correction was performed using the Benjamini–Hoch-
berg method to obtain an FDR-adjusted P value. Genes for which the 
coefficient of a target gene were significant (FDR < 10−4) were treated 
as differentially expressed genes for this target gene.

Determination of composition changes in the CROP-seq screen. 
To assess the degree to which the KO of a target gene changes the re-
gional composition of the organoid, we first tested the enrichment 
of each gRNA in each regional branch. To control for confounding 
effects through differential gRNA abundance in different organoids, 
we used a Cochran–Mantel–Haenzel (CMH) test stratified by organoid. 
Moreover, we performed a Fisher’s exact tests to test for enrichment for 
each organoid individually. Multiple-testing correction was performed 
using the Benjamini–Hochberg method. To account for other potential 
within-sample confounders such as clonal heritage, we first required 
for each gRNA that the enrichment was significant (FDR < 0.05) in more 
than one individual organoid and that the direction of each significant 
enrichment was consistent across organoids. All gRNAs for which this 
was not the case were removed. In a second step, we further required 
for remaining gRNAs that the same significant effect (FDR < 0.01) was 
observed for at least one other gRNA targeting the same gene. For the 
remaining gRNAs, we summarized the assignments for each target gene 
i and calculated the log odds ratio of the enrichment in each regional 
branch j with

N N

N N
LOR = log

/

/ij
g i b j g i b j

g i g j g i b j

= ; = = ; ≠

≠ ; = ≠ ; ≠

where N is a matrix of cell counts for each target gene in each branch. 
For each target gene, the maximum log odds ratio across the three 
branches was treated as a measure of composition change.

Preprocessing and integration of single-cell RNA-seq data from 
the GLI3-KO experiment. Transcript count matrices were obtained 
using Cell Ranger (v.3.0.2) and further preprocessed using the Seurat 
R package (v.3.2)19. First, cells were filtered on the basis of UMI counts 
(>200, <60,000), the number of detected genes (>200, <6,000) and 
the fraction of mitochondrial genes (<0.1). Transcript counts were 
normalized to the total number of counts for that cell, multiplied by 
a scaling factor of 10,000 and subsequently natural-log transformed 
(NormalizeData()). From all protein coding, non-mitochondrial and 
non-ribosomal genes, we selected the 200 most variable based on the 
vst method (FindVariableFeatures()). PCA was performed based on the 
z-scaled expression of these features. Different samples were integrated 
using CSS21 based on the top 20 PCs with the default parameters. To 
visualize the dataset in two dimensions, we used UMAP on the CSS 
coordinates with spread = 0.5, min.dist = 0.2.

CRISPResso analysis and protein sequence prediction. To find 
clones with a frame-shift mutation, CRISPResso was used to analyse 

the sequencing data75. This tool aligned the amplicons to the wild-type 
gene sequence to call in-frame and frameshift indels. Analyses were per-
formed using the following parameters: -w20, -min_indentiy_score70 
and -ignore_substitutions. Substitutions were ignored, only sequences 
with a minimum of 70% similarity were used and only indels present in 
a window of 20 bp from each of the gRNAs were called. Cell lines were 
considered to be KOs when >98% of the reads were considered to be a 
non-homologous end-joining event, the indels caused a frameshift, not 
more than two different indels were seen and were present in a 50:50 
distribution. The predicted protein sequence was obtained using the 
Biopython Python package76.

Preprocessing and integration of multiome data from the GLI3-KO 
experiment. Initial transcript count and peak accessibility matrices 
were obtained using Cell Ranger Arc (v.1.0.0) and further preprocessed 
using the Seurat (v.3.2)19 and Signac (v.1.1)64 R packages. Peaks were 
called from the fragment file using MACS2 (v.2.2.6) and combined 
in a common peak set before merging. Cells were filtered based on 
transcript (UMI) counts (>1,000, <25,000), mitochondrial transcript 
percentage (<30%), peak fragment counts (>5,000, <700,000) and TSS 
enrichment score (>1). Transcript counts were normalized to the total 
number of counts for that cell, multiplied by a scaling factor of 10,000 
and subsequently natural-log transformed (NormalizeData()). PCA was 
performed using the Seurat function RunPCA(). Different samples were 
integrated based on the top 20 PCs with Harmony77 using the function 
RunHarmony() from the R package SeuratWrappers (v.0.3.0) (https://
github.com/satijalab/seurat-wrappers) with max.iter.harmony = 50 
and otherwise the default parameters.

Annotation of cells from the GLI3-KO and SHH experiment. To an-
notate the cell states from both the scRNA and the multiome experi-
ments, we used the annotations of the annotated multi-omic atlas of 
organoid development that was previously generated. We transferred 
the regional branch labels using the method implemented in Seurat 
using the functions FindTransferAnchors() and TransferData(). We 
then performed Louvain clustering with a resolution 1 for the scRNA 
data and 0.8 for the multiome data. Clusters were manually assigned to 
branch identities based on the transferred labels as well as marker gene 
expression. In the case of the multiome data, we identified populations 
of mesenchymal and non-neural ectoderm cells, which were excluded 
from the downstream analysis.

Differential expression analysis for the GLI3-KO and SHH experi-
ment. To assess the transcriptomic effects of the GLI3 KO in ventral 
telencephalon neurons, we performed differential expression analysis 
using a linear-model-based approach analogous to the approach used 
in the CROP-seq screen. We fit a linear model on log-normal transcript 
counts Y for each gene i with the KO label and number of detected fea-
tures as independent variables:

Y n∝ + KO label.i features

The coefficient of the KO label was tested using ANOVA. To perform 
differential expression of KO versus control in the multiome data 
and treated versus control for the SHH experiment, we performed a  
Wilcoxon rank-sum test using the presto R package (v.1.0.0)74. Multiple- 
testing correction was applied to all results using the Benjamini– 
Hochberg method to obtain FDR-adjusted P values.

Differential accessibility analysis for the GLI3-KO experiment. To 
find peaks with differential accessibility between GLI3 KO and control, 
we fit a generalized linear model with binomial noise and logit link for 
each peak i on binarized peak counts Y with the total number of frag-
ments per cell and the KO label as the independent variables:

https://github.com/satijalab/seurat-wrappers
https://github.com/satijalab/seurat-wrappers


Y n∝ + KO label.i fragments

We also fit a null model, where the KO label was omitted:

Y n∝ .i fragments

We then used a likelihood ratio test to compare the goodness 
of fit of the two models using the lmtest R package (v.0.9) (https://
cran.r-project.org/web/packages/lmtest/index.html). Multiple-testing 
correction was performed using the Benjamini–Hochberg method.

Comparison of perturbation effects with GRN. Before using the 
GRN to interpret the DE results, we first sought to assess the degree to 
which the transcriptomic effects of the GLI3 KO are consistent with the 
inferred GRN. We tested the enrichment of DE genes in the first (direct) 
and second order (indirect) neighbourhood of GLI3 in the GRN graph 
using a Fisher’s exact test. Furthermore, we computed the shortest path 
from GLI3 to every DE gene in the GRN graph. To test how accurately the 
GRN can be used to predict the directionality of the DE, we computed 
the combined direction of each path as the product of the signs of all 
individual edges. We then determined the overall predicted effect of 
GLI3 on each DE gene by computing the mode of the directions of all 
shortest paths leading to that gene. We defined accuracy as the fraction 
of genes for which the DE direction was the inverse of the predicted 
overall effect. Next, we further filtered the paths so that all paths were 
composed only of DE genes and the direction of each path and subpath 
was consistent with the DE direction. To visualize this subgraph, we 
further pruned the graph by retaining only the path with the lowest 
average log10-transformed P value for each DE gene.

Functional annotation of differentially accessible genomic regions. 
 To better functionally assess the epigenomic effects of the GLI3 KO, 
we performed functional enrichment analysis using GREAT31. We 
performed differential accessibility analysis in clusters 0 and 2 (early 
telencephalon) and applied an FDR threshold of 10−4. From all differ-
entially expressed peaks, we selected the top 5,000 peaks with the 
lowest (most negative) linear model coefficient (depleted in the KO). 
We further selected all peaks that were accessible in at least 1% of cells 
in these clusters as the set of background peaks. Using these two peak 
sets, we used GREAT with the GRCh38 genome assembly and otherwise 
the default parameters to obtain functional enrichment results. We 
reported GO biological process enrichments with FDR < 0.01 and that 
were supported by >100 foreground regions.

Analysis of GLI3 CUT&Tag data. To assess GLI3 binding with CUT&Tag 
data, we first obtained bigwig files with intensity scores across genomic 
coordinates. From these scores, we computed a per-gene binding score 
by summing the intensities over the gene body plus an extended pro-
moter region of 2 kb.

Statistics and reproducibility
Representative images of organoids in culture are shown from batches 
with 16–96 organoids per cell line (Extended Data Figs. 1a, 6d and 9c). 
Immunohistochemistry analysis of SOX2, TUJ1 and GLI3 (Extended 
Data Fig. 1k) was performed on four different cell lines on 2–3 organoids 
per cell line from one batch. HCR RNA-FISH (Extended Data Fig. 2g) for 
BMP7 and WLS was performed on day 18 organoids from four different 
cell lines with 2–3 organoids per experiment and HCR RNA-FISH for 
FGF8 and WNT8B was performed on day 18 organoids cell line Wibj2 
for 3 organoids.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data are available at ArrayExpress. The accessions 
for the individual experiments are E-MTAB-12001 for developmental 
time course scRNA-seq data, E-MTAB-11998 for developmental time 
course scATAC-seq data, E-MTAB-12004 for multiome data of the neuro-
epithelial stage, E-MTAB-11999 for scRNA-seq data of the CROP-seq 
experiment, E-MTAB-12005 for amplicon sequencing of the CROP-seq 
experiment, E-MTAB-11997 for scRNA-seq data of GLI3-KO organoids, 
E-MTAB-12002 for multiome data of GLI3-KO organoids, E-MTAB-12003 
for multiome data of SHH-treated organoids and E-MTAB-12006 for 
CUT&Tag data. Processed data and the VCF files for demultiplexing 
are available at Zenodo (https://doi.org/10.5281/zenodo.5242913).

Code availability
The Pando R package is available on GitHub (https://github.com/quad-
biolab/Pando). Other custom code used in the analyses is deposited 
on GitHub (https://github.com/quadbiolab/organoid_regulomes). 

48. González, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome 
editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

49. Riesenberg, S. & Maricic, T. Targeting repair pathways with small molecules increases 
precise genome editing in pluripotent stem cells. Nat. Commun. 9, 2164 (2018).

50. Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. 
Methods 15, 271–274 (2018).

51. Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina 
sequencing reads. Nucleic Acids Res. 42, e141 (2014).

52. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and 
single cells. Nat. Commun. 10, 1930 (2019).

53. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state 
analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

54. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic 
variation. Nat. Biotechnol. 36, 89–94 (2018).

55. Riesenberg, S. et al. Simultaneous precise editing of multiple genes in human cells. 
Nucleic Acids Res. 47, e116 (2019).

56. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by 
single-cell RNA-seq. Science 352, 189–196 (2016).

57. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation 
and projection. J. Open Source Softw. 3, 861 (2018).

58. Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor 
binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

59. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring 
transcription-factor-associated accessibility from single-cell epigenomic data. Nat. 
Methods 14, 975–978 (2017).

60. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq 
quantification. Nat. Biotechnol. 34, 525–527 (2016).

61. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data 
analysis. Genome Biol. 19, 15 (2018).

62. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference 
through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

63. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities 
in large networks. J. Stat. Mech. 2008, P10008 (2008).

64. Stuart, T. et al. Single-cell chromatin state analysis with Signac. Nat. Methods 18,  
1333–1341 (2021)

65. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor 
sequence specificity. Cell 158, 1431–1443 (2014).

66. Hu, H. et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of 
animal transcription factors. Nucleic Acids Res. 47, D33–D38 (2019).

67. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

68. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open 
Software Suite. Trends Genet. 16, 276–277 (2000).

69. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models 
via coordinate descent. J. Statistical Softw. 33, 1–22 (2010).

70. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. 
Softw. 80, 1–28 (2017).

71. Chen, T. & Guestrin, C. XGBoost. in Proc. 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining 785–794 (ACM, 2016); https://doi.org/10.1145/ 
2939672.2939785

72. Garreta, R. & Moncecchi, G. Learning scikit-learn: Machine Learning in Python (Packt 
Publishing, 2013).

73. Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their 
uncertainty, existence and significance within the Bayesian framework. J. Open Source 
Softw. 4, 1541 (2019).

74. Korsunsky, I., Nathan, A., Millard, N. & Raychaudhuri, S. Presto scales Wilcoxon and 
auROC analyses to millions of observations. Preprint at bioRxiv https://doi.org/10.1101/ 
653253 (2019).

75. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. 
Biotechnol. 34, 695–697 (2016).

https://cran.r-project.org/web/packages/lmtest/index.html
https://cran.r-project.org/web/packages/lmtest/index.html
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12001
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11998
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12004
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11999
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12005
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11997
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12002
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12003
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12006
https://doi.org/10.5281/zenodo.5242913
https://github.com/quadbiolab/Pando
https://github.com/quadbiolab/Pando
https://github.com/quadbiolab/organoid_regulomes
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1101/653253
https://doi.org/10.1101/653253


Article
76. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular 

biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
77. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with 

Harmony. Nat. Methods 16, 1289–1296 (2019).

Acknowledgements We thank the members of the Camp and Treutlein laboratories, as well  
as the laboratory of F. Theis for discussions; E. Ilcken, A. Weigert, S. Kanton and T. Schaffer  
for assistance with stem cell and organoid culture; T. Gerber, L. Sidow and K. Sekine for 
discussions relating to cloning; S. Riesenberg and S. Pääbo for providing the iCRISPPR cell 
lines; staff at the Institute for Ophthalmology Basel for providing the 01F49i-N-B7 cell line;  
staff at the Murdoch Children’s Research Institute and Murdoch University for providing the 
HES-3 NKX2.1GFP/w cell line; M. Dannemann and T. Maricic for providing genotype information 
for demultiplexing. Illumina sequencing was performed by B. Schellbach and A. Weihmann at 
the Max-Planck-Institute for Evolutionary Anthropology and I. Nissen, E. Vogel Burcklen and  
C. Beisel at the Genomics Facility at D-BSSE, ETH Zurich. FACS sorting support was provided 
by M. Di Tacchio, A. Gumienny, R. Antonialli and T. Horn at the single-cell facility at D-BSSE, 
ETH Zurich. We thank 10x Genomics for support with multiome experiments. No research with 
human ES cell lines was funded by the ERC. This work was supported by Chan Zuckerberg 
Initiative DAF, an advised fund of the Silicon Valley Community Foundation CZF2019-002440 
(to J.G.C. and B.T.), the European Research Council (803441-Anthropoid, to J.G.C.; 758877- 
Organomics, to B.T.; 874606-Braintime, to B.T.), the Swiss National Science Foundation  
(project grant 310030_84795, to J.G.C.; project grant 310030_192604, to B.T.), the Swiss 
National Center of Competence in Research Molecular Systems Engineering (to B.T.) and  
the Bavarian Ministry of Science and the Arts in the context of the ForInter network (to B.T.). 

J.S.F. was supported by the Boehringer Ingelheim Fonds. F.Z. was supported by EMBO Long- 
Term Fellowship ALTF 36-2021.

Author contributions S.M.J.J. generated organoids used in this study, with support from J.S.F., 
D.W., F.Z. and R.O.; S.M.J.J. generated all single-cell transcriptome and accessible chromatin 
datasets with support from M. Santel; S.M.J.J. performed the CROP-seq and the multiome 
experiments. J.S.F., D.W. and M. Seimiya constructed CROP-seq vectors. S.M.J.J. generated the 
GLI3 iPS cell lines and generated the scRNA-seq data on GLI3-KO organoids with help from 
D.W.; F.Z. and S.M.J.J. performed western blots for GLI3. F.Z. performed the CUT&Tag experiment. 
S.M.J.J. and A.J. generated IHC and HCR data. J.S.F. performed the analysis of the scRNA-seq/
scATAC–seq developmental time course with support from Z.H. and S.M.J.J.; J.S.F. developed 
the Pando R package. J.S.F. analysed the CROP-seq data with support from Z.H.; S.M.J.J. and 
J.S.F. analysed the GLI3-KO scRNA-seq and multiome data. J.S.F., S.M.J.J., Z.H., J.G.C. and B.T. 
designed the study and wrote the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-05279-8.
Correspondence and requests for materials should be addressed to Zhisong He, J. Gray Camp 
or Barbara Treutlein.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-022-05279-8
http://www.nature.com/reprints


Extended Data Fig. 1 | See next page for caption.



Article
Extended Data Fig. 1 | Supplemental analysis of brain organoid 
developmental multiome data. a, Phase contrast (until day 15) and bright field 
(day 31–60) showing examples of different stages of organoid development  
for four different stem cell lines. Images are representative for 96 organoids  
per line. Scale bar is 200 µm. b, Schematic of the experimental design and data 
integration strategy. c, Histogram of scRNA-seq and scATAC-seq quality control 
metrics. d, Histograms showing assignment log likelihoods for demultiplexing 
based on single nucleotide variants. e, Bar plot of number of cells for each time 
point (top) and stacked barplot showing proportion of cell lines (bottom)  
at different time points. f, Distribution of iPS cell (iPSC) lines on the UMAP 
embedding. g, Bar plots showing number matched and unmatched cells during 
MCMF bipartite matching. h, Histogram showing the number of cells per 
metacell for each cell line. i, Box plots showing correlation between gene 
expression and gene activity metrics for two multiome experiments and the 

integrated metacells (n = 477 genes). j, Box plots showing correlation split by 
stage (n = 3527 genes). Genes >95% confidence intervals of correlation to 
permuted background are coloured in yellow. Box center represents the median, 
boxes indicate 25%–75% interquantile range and whiskers 1.5 * interquantile 
range. k, Immunohistochemical staining for progenitor cells (SOX2, orange and 
GLI3, purple) and neurons (TUJ1, green) for 2 month old organoids of four cell 
lines. DAPI is shown in cyan. Scale bar: 200 µm. l, UMAP embedding coloured by 
marker gene expression (log(transcript counts per 10k+1)). The range of values 
is indicated for each plot. m, Hierarchical clustering of pseudotemporal bins. 
Top bars show stage and proportion of time points per bin. Heatmap shows  
min-max scaled mean accessibility (tf-idf normalized fragment counts) of  
stage-specific peak clusters for each pseudotime bin. Representative GREAT 
enrichments are shown for each stage.



Extended Data Fig. 2 | Heterogeneity analysis in different stages of organoid 
development. a,d, UMAP embedding of a subset of the organoid trajectory 
surrounding neuroectoderm cells (a) and the branching window (d) coloured 
by time point, velocity pseudotime, cell line, branch prediction and lovain 
clusters. b,e, Heatmap showing mean min-max scaled expression (log(transcript 
counts per 10k + 1)) of cluster markers. c, UMAP embedding coloured by  
cluster identities, expression patterns of cluster markers. Volcano plot shows 
differentially expressed (DE) genes of cluster 5 relative to other clusters.  

f, UMAP embedding coloured by rank-transformed CellRank transition 
probability to non-telencephalon, ventral telencephalon and dorsal 
telencephalon and coloured by expression of selected transcription factors.  
g, Whole-mount HCR in situ hybridizations of day 18 organoids and UMAP 
embedding coloured by expression of targets. Stainings were performed on  
2-3 organoids per cell line and representative images were shown. Scale bar: 
100 µm. The range of expression values is indicated for each feature plot.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Signalling transcriptome and regulatory element 
landscape of the organoid neuroepithelium from 9 stem cell lines.  
a, Schematic of the experimental setup. Multiome quantification was performed 
on organoids in the neuroepithelial stage (~3 weeks) from a total of 9 stem cell 
lines. The data was combined with the data from the same stage in the early 
time course. b, UMAP embedding coloured by cell line, louvain clusters and 
anterior-posterior axis (forebrain versus non-forebrain) classification score.  
c, Bar plots (top) showing fraction of cells per cell line in each cluster. Dotplot 
(left) showing min-max scaled expression (log(transcript counts per 10k + 1)) 
(colour) and proportion of expressing cells (dot size) for transcription factors 

(TFs) and genes from different signalling pathways in clusters of 3 week old 
organoid data set split by cell line. All genes are annotated as TF, receptor, ligand, 
or TF target and if applicable, coloured by the related signalling pathway. 
Dotplot (right) showing expression (colour) and proportion of expressing cells 
(dot size) for the same genes of Extended Data Fig. 3d in mouse developing 
brain organizer cells of different brain regions6. d, Dot plot showing cluster-
specific cis regulatory elements (CREs) linked to patterning genes split by 
different cell lines. Colour and size indicate peak accessibility (if-idf normalized 
fragment counts) and proportion of expressing cells, respectively.
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Extended Data Fig. 4 | Trajectory reconstruction in the multiomic 
developmental atlas. a, Time course UMAP embedding coloured by neuron 
types. b, Time course UMAP embedding coloured by RNA velocity pseudotime. 
c, VoxHunt plots showing expression similarity of neuron subtypes in brain 
organoids to voxels in five example sections of the developing mouse brain 
(embryonic day 13.5), as well as the structural annotation of the sections.  
d, UMAP embedding coloured by ranked transition probabilities. e, Scatter 
plot showing mean transition probabilities as computed by CellRank versus 

velocity pseudotime. Each dot represents one high-resolution cluster. f, UMAP 
embedding of the integrated time course and graph embedding coloured by 
gene expression (log(transcript counts per 10k +1)) (top) and gene activity 
(log(fragment counts per 10k +1)) (bottom) for selected marker genes. g, UMAP 
and graph representation coloured by transcription factor motif enrichment 
z-score calculated with chromVAR59 for selected motifs. The range of values is 
indicated for each feature plot.



Extended Data Fig. 5 | Gene regulatory network features of brain organoid 
development. a, Numbers of chromatin access peaks and percentage of 
H3K27ac-marked peaks accessible at day 18–23 (>5% detection) intersecting 
with non-protein coding conserved regions (Cons.), candidate cis regulatory 
regions (CRE), or exons (left). b, Representative loci showing chromatin access 
(top) overlaying peak, CRE, conserved elements, and exon coordinates.  
c, Barplot showing the number of motifs used in GRN construction from two 
curated databases (JASPAR, CIS-BP), and motifs assigned through amino acid 
sequence similarity. d, Examples of 3 TFs with no motif annotation that were 
assigned motifs based on sequence similarity. e, Loci for two exemplary genes 
(FOXG1, WLS) showing average chromatin access signal tracks, accessible 
peaks, CREs, conserved elements, exons and H3K27ac CUT&Tag peaks.  
f, Scatter plot and histograms show explained variance (x) versus number of 
variables (y) of models for GRN construction. g, Violin plots show the 
distribution of peaks (left, n = 2535 target genes) and TFs per gene (middle, 

n = 2535 target genes), and number of genes per TF (right, n = 720 TFs).  
h, Representative loci showing average chromatin access signal tracks at 
different developmental branches overlaying inferred transcription factor 
binding sites within regulatory regions. i, UMAP representation of time course 
coloured by gene expression (log(transcript counts per 10k + 1)), gene module 
activity (module score calculated with Seurat) (rows), and regulatory module 
enrichment z-score (calculated with chromVAR) for representative TFs 
(columns). The range of values is indicated for each plot. j, Variation of  
module activity explained by branch, pseudotime, or branch and pseudotime 
(n = 720 TF modules). Box plot centre lines represent the median, boxes 
indicate 25%–75% interquantile range and whiskers 1.5 * interquantile range.  
k, Branch and pseudotime specific TF modules. Colours represent the branch 
with highest average module activity. TFs without experimentally validated 
motif are shown in grey.
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Extended Data Fig. 6 | Target selection and experimental details for the 
single-cell in organoid perturbation experiment. a, Min-max scaled mean 
expression (log(transcript counts per 10k + 1)) of genes targeted in the 
single-cell genomic perturbation experiment in neuronal progenitors (NP), 
intermediate progenitors (IP) and neurons in the primary human and organoid 
developing cortex, as well as in iPS cells, the embryoid body (EB), ventral 
telencephalic NPCs, inhibitory neurons of the medial ganglionic eminence 
(MGE in.), lateral ganglionic eminence (LGE in.), non-telencephalic NPCs, 

diencephalic excitatory neurons (Dien. ex.) and inhibitory neurons (Dien. in.) 
and mesencephalic excitatory neurons (Mesen. ex.) and inhibitory neurons 
(Mesen. in.). b, UMAP embedding coloured by the expression of all targeted 
genes. The range of expression values is indicated for each feature plot.  
c, Exemplary Fluorescence-activated cell sorting plots of the sorting scheme 
used to isolate CROP-seq vector positive iPS cells. d, Phase contrast and 
CROP-seq vector positive (GFP) imaging during brain organoid development. 
Images are representative for 48 imaged organoids. Scale Bar is 500 µm.



Extended Data Fig. 7 | Guide detection and cell type annotation in the 
single-cell perturbation experiment in organoids. a, Barplot showing 
number of cells with detected guide RNA (gRNA) for each targeted gene and 
stacked barplot showing the distribution of the different gRNAs targeting the 
same gene. b, Histogram showing the distribution of read counts for gRNA 
UMIs after amplicon sequencing for one organoid. UMIs marked in red were 
selected for downstream analyses. c, Density histograms showing the 
distribution of inferred KO probabilities for gRNAs of 3 different target genes. 
d, Barplot showing cell number and proportion of gRNAs for all target genes.  

e, Barplot showing the number of guides detected in sequenced cells. f, UMAP 
embedding with cells coloured based on experiment. g, UMAP embedding 
coloured by annotated neuron subtypes. h, VoxHunt plots showing expression 
similarity of neuron subtypes in brain organoids to voxels in five example 
sections of the developing mouse brain (embryonic day 13.5), as well as the 
structural annotation of the sections (left). i, UMAP embedding coloured by 
expression (log(transcript counts per 10k + 1)) of non-telencephalic (top), 
ventral (middle) and dorsal (bottom) neuron markers. The range of expression 
values is indicated for each feature plot.
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Extended Data Fig. 8 | Composition and expression changes after 
CRISPR-Cas9 perturbations in mosaic brain organoids. a, Hierarchical 
clustering of Louvain clusters based on the composition of gRNAs targeting 
different genes. Cell type and branch annotations are shown as side bars. 
Compositions of organoids and composition of cells with gRNAs targeting 
different genes are shown below as stacked bar plots. b, Lollipop plot showing 
the impact of each gRNA on cell type abundance in dorsal and ventral 
telencephalic neurons. c, Lollipop plots showing number of differentially 
expressed genes (DEG) for targeted genes in the dorsal and ventral telencephalic 
neurons. d, Differential gene expression analysis was performed to identify 
potential effects on cell state. Plot shows the effect of cell composition change 

and the number of differentially expressed genes (DEGs). P-values were derived 
using an F-test based ANCOVA. e, Scatter plot shows expression changes 
between neurons with E2F2 targeting gRNAs and other neurons in dorsal 
(x-axis) and ventral (y-axis) telencephalic neurons, with each dot representing 
one gene. Colours of dots represent the neuron types where differential 
expression is detected. Lines show the correlation of expression changes in the 
two neuron types, with DE genes in both types and DE genes in only one type 
shown separately. f, Examples of functional enrichment for E2F2 DEGs in dorsal 
and ventral neurons with DAVID. Grey bars show enriched terms of all E2F2 
DEGs, and dark bars show enriched terms of DEGs with E2F2-specific effects.



Extended Data Fig. 9 | Characterization of GLI3 knock-out organoids.  
a, Quantification of editing frequency as determined by the percentage and 
number of reads showing unmodified and modified alleles for the control and 
both KO cell lines. b, Frequency of frameshift of coding sequence reads as a 
result of the modifications seen in both KO lines. c, Western blot showing 
expression of Gli3-repressor (83kDA) in the control cell line. Catenin beta-1 and 
Ponceau were used as loading control. For western blot source data, see 
Supplementary Fig. 1 d, Sequences of the coding strand of the different indels of 
the different KO lines. The reference sequence is corresponding with the 
control line. The position of the gRNAs with the protospacer adjacent motif 
(PAM)-sequence is depicted above and underneath the sequence. Reference 
protein sequence with the protein sequences of each KO line of the altered 
protein sequences caused by the frame-shift. e, Brightfield images of brain 

organoid development with control and both KO cell lines. Images are 
representative for 16 imaged organoids per line. Scale bar is 2 mm. f, UMAP 
embedding showing trajectories from neural progenitor cells (NPCs) to neurons 
coloured by different clusters assigned to branches (dorsal, ventral, and non- 
telencephalon), with inset coloured by genetic condition and feature plots 
coloured by expression (log(transcript counts per 10k + 1)) of cell type markers. 
g, UMAP embedding of ventral telencephalic GLI3 KO neurons showing  
medial ganglionic eminence (MGE) and lateral/caudal ganglionic eminence 
(LGE/CGE) neuronal populations (top). Feature plots show selected marker  
gene expression on the UMAP embedding. The range of expression values is 
indicated for each feature plot. h, Volcano plot showing differential expression 
analysis in LGE neurons for GLI3 WT versus KO cells. i, Schematic of observed 
effect of GLI3 loss of function on dorsoventral telencephalic fate decisions.
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Extended Data Fig. 10 | GLI3 KO induced changes in telencephalic 
progenitors in brain organoids. a, Heatmap showing min-max scaled 
expression (log(transcript counts per 10k +1)) of marker genes for unbiased 
Louvain clusters. b, UMAP coloured by the expression of selected marker 
genes. The range of values is indicated for each plot. c, UMAP embedding 
coloured by branch labels predicted by label transfer from the organoid time 
course. d, Heatmap showing DE associated with signalling pathways. e, Scatter 
plot showing DE in neural progenitor cells (NPCs) upon HES1 perturbation in 
the mosaic perturbation experiment. f, Signal tracks showing differentially 
accessible (DA) peaks in cluster 0 and 2. g, GREAT enrichment analysis of DA 
peaks in cluster 0 and 2, with box area proportional to FDR. Representative 
genes are shown. h, Enrichment of DE genes in the neighbourhood of GLI3 in 
the GRN. i, Accuracy of GRN predicted directionality of GLI3 effect at different 

false discovery rate (FDR) thresholds. j, Barplot showing the number of all  
DE genes in the GRN (DEG in GRN), all DE genes reachable from GLI3 in the 
graph (Reachable), DE genes where the GRN was consistent with the DE result 
(Overall) and DE genes for which all subpaths from GLI3 were consistent with 
the DE result (Full path). k, Barplot showing the fraction of DE genes directly 
and indirectly regulated by GLI3. l, Boxplot showing the Spearman correlation 
of directly (n = 39) and indirectly (n = 126) regulated DE genes with transition 
probabilities ventral and dorsal branched. The centre line represents the median, 
boxes indicate 25%–75% interquantile range and whiskers 1.5 * interquantile range. 
m, Barplot showing the enrichment of gene sets (HES1/5 target genes, NOTCH 
components) among telencephalic DE genes. n, UMAP embedding showing 
annotation of multiome SHH experiment. o, UMAP coloured by the expression of 
selected marker genes.
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