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Self-organizing neural organoids grown from pluripotent stem cells'® combined with
single-cell genomic technologies provide opportunities to examine gene regulatory
networks underlying human brain development. Here we acquire single-cell

transcriptome and accessible chromatin data over adense time course in human
organoids covering neuroepithelial formation, patterning, brain regionalization and
neurogenesis, and identify temporally dynamic and brain-region-specific regulatory
regions. We developed Pando—a flexible framework that incorporates multi-omic
dataand predictions of transcription-factor-binding sites to infer aglobal gene
regulatory network describing organoid development. We use pooled genetic
perturbation with single-cell transcriptome readout to assess transcription factor
requirement for cell fate and state regulation in organoids. We find that certain factors
regulate the abundance of cell fates, whereas other factors affect neuronal cell states
after differentiation. We show that the transcription factor GLI3 is required for
cortical fate establishment in humans, recapitulating previous research performedin
mammalian model systems. We measure transcriptome and chromatin accessibility
innormal or GLI3-perturbed cells and identify two distinct GLI3 regulomes that are
central to telencephalic fate decisions: one regulating dorsoventral patterning with
HES4/5 as direct GLI3 targets, and one controlling ganglionic eminence diversification
later in development. Together, we provide a framework for how human model
systems and single-cell technologies can be leveraged to reconstruct human
developmental biology.

The ability to generate complex brain-like tissue in controlled culture
environments from human stem cells offers great promise to under-
stand the mechanisms that underlie human brain development.
Cerebral or other unguided neural organoids develop from embry-
onic stem (ES) cells or induced pluripotent stem (iPS) cells into a
three-dimensional neuroepithelium that self-patterns, regionalizes
and, ultimately, forms neurons of the different brain regions' . The fate
and state of each cellis orchestrated in part through complex circuits
of transcription factors (TFs), converging at regulatory elements and
interacting with chromatin to enable precise control of gene expres-
sion. Single-cell sequencing approaches enable the profiling of gene
expression and chromatin accessibility inindividual cells, which opens
up new opportunities to survey the set of regulatory control features
inany given cell type or state (regulomes). Comprehensive mouse and
human brain cell atlases can be used as areference for understanding
organoid cell composition and development* . Direct comparisons
between organoids and primary counterparts in mouse and human
have quantified anotable similarity between the neural progenitor and
neuronal transcriptome profiles”®. Brain organoids have been used

to successfully model microcephaly?, periventricular heterotopia®,
autism™ and other neurodevelopmental disorders™* that may have
differential effects on the various human brain regions. However,
we do not yet understand the gene regulatory networks (GRNs) that
coordinate early human brain development in normal and perturbed
conditions.

Researchin model systems has identified core signalling factors and
generegulatory programs that orchestrate brain region formationin
vertebrates. Initially, extrinsic signals establish an anterior-posterior
axisthat triggersadditional localized gradients downstreamto segment
the neural tubeinto distinct brain regions. Combinatorial activities of
morphogens, including SHH, WNTs, BMPs, FGFs, NOTCH, neuregulins
and R-spondins, converge on transcription factors to execute region-
alization. Much of what is known about these pathways in regulating
brain morphogenesis hasbeen examined innon-human model systems,
and it remains unclear how human brain development has diverged
from our mammalian ancestors. Moreover, detailed studies of the
mechanisms controlling multiregion brain organoids may provide
new insights into the process of brain self-organization™.
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New single-cell genomic methods enable high-throughputand quan-
titative analysis of single-cell transcriptomes and accessible chromatin
profiles. These features can also be quantified within anindividual cell
inamulti-omic measurement, providing insightsinto gene expression
andregulationinthesame cell. Furthermore, CRISPR-Cas gene editing
coupled with single-cell transcriptome readouts™ " enables pooled
genetic perturbation experiments in vivo'®, These strategies and vec-
tor systems, combined with functionalization of humaniPS cells with
inducible CRISPR-Cas9 systems, provide an opportunity to perturb
gene functioninbrain organoids, and systematically assess the effects
across human brain regions.

Here we used a multimodal approach to examine cell-fate regula-
tion during human early brain development. We first built aregulome
from single-cell transcriptome and accessible chromatin profiling
data across a brain organoid developmental time course. Regulome
perturbations using multiplexed CRISPR perturbation experimentsin
organoidsidentified effects on regional fate decisions as well as effects
oncellstates after fate acquisition. Multiome analysis of a critical period
ofbrainregion formationin GL/3-knockout (KO) and Sonic Hedgehog
signalling molecule (SHH)-exposed organoids revealed regulatory
disruption of dorsoventral telencephalon diversification and, with
the help of theinferred regulome, we distinguished direct and indirect
targets of GLI3. Together, we established a regulome perspective to
understand and examine early human brain development.

Multi-omic view of organoid development

To examine the mechanisms that underlie humanbrain development,
we generated single-cell transcriptome and single-cell accessible chro-
matin profiling data over atime course of brain organoid development
(Fig.1a, Extended Data Fig. 1aand Supplementary Table1). The dataset
incorporates11time points from 3 humaniPS celllinesand1ES cell line
covering 2 months of development spanning embryoid body forma-
tion, neuroectoderminduction, neuroepithelialization, neural progeni-
tor patterning and neurogenesis. At each time point, organoid tissues
from the four lines were dissociated and single-cell RNA-sequencing
(scRNA-seq) and single-cell assay for transposase-accessible chromatin
with sequencing (scATAC-seq) pipelines (10x Genomics) were run on
the same cell suspension. The sequencing data were demultiplexed
using single-nucleotide variants specific to eachindividual and the two
modalities for each line and time point were integrated using canoni-
cal correlation analysis (CCA)" (Extended Data Fig. 1b-fand Supple-
mentary Table 2). We constructed ‘multi-omic metacells’ containing
information onboth transcriptome and chromatin accessibility using
minimum-cost, maximum-flow bipartite matching?® within the CCA
space (Extended DataFig.1b,g,h). We evaluated the integration using a
multiome dataset, in which the transcriptome and accessible chromatin
were measured within the same cell, and observed strong correlation
(Extended Data Fig. 1i,j). The metacells were integrated using clus-
ter similarity spectrum (CSS)?, and the integrated data were visual-
ized using uniform manifold approximation and projection (UMAP)
embedding. This revealed a relatively continuous distribution of cell
states through the entire time course (Fig. 1a). Organoid development
proceeds from pluripotency (for example, POUS5FI) through a neural
progenitor cell (NPC) state (for example, PAX6, VIM) to progenitor and
neuron cell states of the dorsal telencephalon (for example, EMX1,
NEUROD®), the ventral telencephalon (for example, DLX5,ISL1, GADI),
of non-telencephalic regions (for example, TCF7L2, LHX9) and of a
small mesenchymal population (for example, DCN, COL5A1), with cells
from the different lines largely intermixed (Extended Data Fig. 1f k,I).
The high-dimensionality of the data could be used to identify marker
genesand generegulatory regions for the different cell states (Fig. 1b,
Extended Data Fig. 1l and Supplementary Table 3). We observed a
pseudotemporal cascade of chromatin accessibility changes over the
developmental time course associated with genesinvolved in stem cell
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maintenance, neural tube patterning, morphogenesis, neural precursor
proliferation, neuron fate specification and other relevant biological
processes (Extended Data Fig. Im and Supplementary Table 4).

Previous studies have described the emergence of patterning cen-
tres within the neuroepithelium that coordinate to regionalize the
developing organoid®. To reconstruct the earliest events involved in
cell-fate restriction, we subclustered early portions of the trajectory
and identified molecular heterogeneity (Extended DataFig. 2). In the
initial stages (day 7-9), we observed a predominant neuroectodermal
population (S/X3, CDH2, SOX3, HESS5) and a minor population of cells
expressing non-neural ectoderm markers (DLXS, TFAP2A)** (Extended
Data Fig. 2a-c). After day 9, cells differentiate into a neuroepithelial
population (LDHA), which later diverges into NPCs expressing either
telencephalic (FGF8) and non-telencephalic markers (WLS, WNTSB),
followed by asecond divergence into dorsal (BMP7, EMXI) and ventral
telencephalic NPCs (DLX2; Extended Data Fig. 2d-f). RNA fluorescence
insitu hybridization (RNA-FISH) using hybridized chainreactions (HCR)
of whole-mount 18-day-old organoids confirmed the expression and
spatial segregation of some of these regional markers (Extended Data
Fig.2g).

To assess the neuroepithelial self-patterning variation across stem
celllines, we collected additional single-cell multiome data includ-
ing transcriptome and accessible chromatin modalities for a total of
9 lines (iPS cells: 409B2, B7, HOIK1, KUCG2, WIBJ2 and WTC; ES cells:
H1,H9 and HES3) (around 3 weeks; Extended Data Fig.3a). Heterogeneity
analysis and comparison with a single-cell transcriptomic atlas of the
developing mouse brain® revealed transcriptionally distinct clusters
organizing along an anterior-posterior axis (Extended Data Fig. 3b).
These clusters expressed many transcription factors, secreted ligands
and surface receptors associated with patterning centres such as the
hypothalamic floor plate (SIX6, HESS, SIX3), roof plate (FGFR3, RSPO3,
WNT7B) and hindbrain roof plate (MSX1, BAMBI, BNC2; Extended Data
Fig. 3c). Notably, marker expression was consistent between lines;
however, cluster proportions varied substantially, consistent with
previous reports®. We further identified cluster-specific candidate
cis-regulatory elements (CREs) of patterning-related genes and found
that many were similarly accessible across lines (Extended Data Fig. 3d).
These data suggest that there is interesting variation between lines
in the propensity to self-pattern, and also support a preserved GRN
underlying brain region formation.

We next sought to reconstruct the neurogenic differentiation trajec-
tories for each brain region. We used RNA velocity?** and CellRank*
to generate a terminal fate transition probability matrix based on
transcriptomes, which we used to construct a differentiation graph of
high-resolution metacell clusters and assign branch identities (Fig. 1c
and Extended DataFig.4a-e). The graph, presented by aforce-directed
layout, reveals an early bifurcationinto anterior telencephalic and pos-
terior non-telencephalic cell states and later branching of telencephalic
progenitorsinto dorsal excitatory and ventral inhibitory neuronal trajec-
tories, respectively (Fig.1d,e). This telencephalic progenitor state before
dorsoventral divergence is marked by the expression of DCT, DIO3 and
SIX6, and is characterized by transient accessible chromatin regions
(Fig. 1f). Transcriptional and regulatory dynamics can be examined
alongeach neurogenic trajectory, revealing regional specificity of gene
expression, chromatin accessibility and binding-motif enrichment for
stage-specifictranscription factors (Fig. 1fand Extended DataFig. 4f,g).
Together, these data provide a multi-omic developmental atlas span-
ning the course of brain organoid regionalization and neurogenesis.

Regulatory network inference with Pando

To infer the GRN underlying human brain organoid development, we
developed an algorithm called Pando (Fig. 2a and Methods), which
leverages multimodal single-cell genomic measurements and models
gene expression through TF-peak interactions. Pando firstidentifies
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Fig.1|Multi-omic atlas of brain organoid development reveals
developmental hierarchies and critical stages of fate decision. a, Schematic
of the experimental design and UMAP embedding of integrated multi-omic
metacells. Organoids fromthreeiPS cell linesand one ES cell line were
dissociated for paired scRNA-seqand scATAC-seq at time points spanning

4 days to 2 months of development. The two modalities were integrated to
form metacells withRNA and ATAC components. EB, embryoid body;

IPs, intermediate progenitors; N.ect., neuroectoderm; N.epi., neuroepithelium;
PSCs, pluripotent stem cells. b, Examples of loci with differential accessibility
duringorganoid development from pluripotency. ¢, Schematic of the branch-
inference strategy. High-resolution clusters were assigned to branches on the
basis of terminal fate transition probabilities calculated based on RNA velocity.

candidate regulatory regions that show accessibility across the orga-
noid time course by incorporating information on conservation®
and previous CRE annotations® (candidate regions; Extended Data
Fig. 5a,b). We performed cleavage under targets and tagmentation
(CUT&Tag) analysis of the H3K27ac histone modification marking
active promoters and enhancers to assess regulatory region selec-
tion performance. We found that 94% of accessible peaks intersecting
with H3K27ac were among the candidate regions, indicating a strong
enrichment for active regulatory regions (Extended DataFig. 5a). Next,
candidateregions are assigned to genesintheir vicinity and TF-binding
sites are predicted for each region (Extended Data Fig. 5c-e). Linking
regulatory regions to genes on the basis of proximity has limitations;
however, itis an effective assumption for many regulatory interactions
atthegenomescale®?, and we observed a strong correlation between
gene expressionand aregulatory domain thatincludes proximal pro-
moter and genebody regions (Extended Data Fig. 1i). Pando then uses
aregression model to infer the relationship between the expression of
eachtarget gene, TF expression and binding-site accessibility (Fig. 2a
and Extended DataFig. 5f). Asa consequence, Pando jointly infers sets
of positively or negatively regulated target genes (gene modules) as
well as regulatory genomic regions (regulatory modules) for each TF
(Fig. 2b and Extended Data Fig. 5g—i). We visualized the GRN using a
UMAP embedding, which revealed groups of TFs that are involved in

d, Branchvisualizationinaforce-directed layout. The circles represent
high-resolution clusters of metacells coloured by assignment (neuroepithelium
(grey); non-telencephalon progenitors (teal); telencephalon progenitors
(plum); dorsal telencephalon (orange); ventral telencephalon (purple)).

e, Graphrepresentation of regional branches coloured by mean expression
(log[transcript counts per10,000 +1]) (top) and gene activity (log[transcript
counts per10,000 +1]) (bottom) of marker genes. The range of valuesis
indicated for each plot. Norm., normalized. f, Stage- and branch-specific gene
expression and motif enrichment z-score (Methods). Values are minimum-
maximum (min-max) scaled across rows. N.t., non-telencephalon;

t., telencephalon.

different phases of brain organoid development, broadly representing
the pseudotemporal order of cell state transitions (Fig. 2c). A series of
TFstracked transitions from pluripotency (such as POU5F1, LIN28A) to
neuroepithelium induction (for example, SOX2 and HES1), with
additional module neighbourhoods linked to brain regional NPC
specification and neuron differentiation (Fig. 2d and Extended Data
Fig.5j,k). Nodes associated with initializing (pluripotency) and terminal
states (regionalized neurons) had a high degree of centrality, reflect-
ing the high number of correlated expressed genes for these states.
We found that certain TF modules were pseudotime-dependent inde-
pendent of brain regional identity (such as SP9, SCRT1), whereas others
showed specificity for agiven brain region (for example, EMX1, NR1D1,
NEURODG in the dorsal telencephalon; IRX5 in non-telencephalon)
(Extended Data Fig. 5j,k). Globally, this GRN shows that regulatory
region accessibility and TF expression track with stages of organoid
development and segregate during brain regionalization.

To better understand how chromatin accessibility constrains and
specifies GRN activity in different brain organoid regions, we next
analysed the differential accessibility of inferred binding sites between
regional branches. We pruned regulatory edges with strongly depleted
accessibility and could identify TFs with highly branch-specific target
sets (Fig. 2e). We further partitioned the global GRN into branch-specific
GRNs (Fig. 2f), representing subgraphs of which the activity is shaped
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Fig.2|Pando leverages multimodal measurements to infer a multiphasic
GRNunderlying humanbrain organoid development. a, Schematic of the
Pando GRN-inference framework. Candidateregions areidentified through
intersection of accessible peaks with CREs or conserved elements. Predicted
TFsareselected for each candidate region through binding-motif matching.
Therelationship between TF-binding-site pairs and the expression of target
genesisthenfitted with aregression model. £, expression; A, accessibility;

g1, targetgenel;tf1,2, transcription factors; p1,4, peaks; GLM, generalized linear
model;reg., regularized. b, Signal tracks showing normalized accessibility at
thetranscriptionstartsite of EMXIin the different branches and inferred
regulatory regions for various transcription factors. Theline colour represents
thesignoftheinteraction and the box colour (greyscale) represents the
false-discovery rate (FDR) of the most significantinteraction for thisregion.

by changesin chromatin accessibility between branches. Within these
subgraphs, we computed TF activity as the mean coefficient of all active
connections multiplied by the mean expressionin the branch (Fig. 2g).
Comparing TF activity in the dorsal and ventral telencephalon branch
revealed TFs with high branch specificity (such as NEUROD2, NFIA,
SOX6) as well as TFs of which the mode of regulation changed between
mainly activating (positive activity) to mainly repressing (negative
activity; for example, HEY1, JUND, ZKSCAN]I) and vice versa (such as
SOX2). Together, these analyses provide a rich resource for future
research to understand the gene regulatory programs controlling
human brain regionalization and TF-mediated cell programming.

Single-cell TF perturbations in organoids

To beginto understand the mechanisms regulating cell fate and state
during human brain development, we used a pooled perturbation
screen” in mosaic organoids (Fig. 3a). We designed gRNAs and gen-
erated a pooled lentiviral library targeting 20 TFs (each targeted by
3 gRNAs) expressed in different stages of both organoid and primary
developing human cortex’ and with no expression in iPS cells or the
neuroectoderm stages (Fig.3b and Extended DataFig. 6a,b). We trans-
ducediPS cells containing aninducible Cas9 cassette with the lentiviral
gRNA library, and sorted and expanded vector-positive iPS cells on
the basis of fluorescence (Extended Data Fig. 6¢). We induced Cas9
expression in the infected iPS cells expressing different gRNAs, and
used the mosaic pool of iPS cells to generate mosaic brain organoids
containing a multitude of perturbed genotypes. Fluorescence was
maintained throughout organoid development, and bulk amplicon
sequencing revealed relatively homogenous detection of the gRNAs
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¢, UMAP embedding of theinferred TF network based on co-expression and
inferred interaction strengthbetween TFs. Colour and size represent the
expression-weighted pseudotime and PageRank centrality of each TF,
respectively.d, UMAP embedding shaded by module features. e, Target
specificity for branch-specific TFs.f, UMAP embedding of branch-specific
TF networks highlighting TFs with branch-specific targets and interactions
with branch-specificaccessibility. g, Groups of TFs with differential activity
between the dorsal (red) and ventral (purple) telencephalon branch. TF activity
isindicated by acoloured dot foreachbranch, connected by aline, and was
calculated by multiplying the mean regulatory coefficient (coef.) with the
average expression (expr.) inthe branch. The sign of the activity indicates
whether the regulationis mainly activating (+) or repressing (-).

(Extended DataFigs. 6d and 7a). At day 60, at which neural progenitors
and neurons coexist in the organoid and all targeted TFs have been or
are being expressed (Fig. 3b and Extended Data Fig. 6a,b), we dissoci-
ated the mosaic organoids and sequenced single-cell transcriptomes
and guide cDNA amplicons of three individual organoids as well as a
pool of multiple organoids. We recovered 22,449 cells with an assigned
gRNA.EachgRNA forall20 targets was detected at an average of 1IgRNA
detected per cell (Fig. 3c and Extended Data Fig. 7b-e). We generated
aUMAP embedding, analysed cell type heterogeneity, and annotated
NPCs, intermediate progenitors and neuronsin the dorsal telencepha-
lon, the ventral telencephalon as well as in non-telencephalic develop-
ing brainregions (Fig. 3d and Extended Data Fig. 7f-i).

Wetested the association of gRNA detection on cell type abundance
and on differential gene expression within cell types (Extended Data
Fig. 8). We first hierarchically clustered Louvain clusters on the basis
of gRNA abundance and observed grouping by brain region (Extended
DataFig. 8a). This showed that different brain regions exhibited unique
gRNA compositions, suggesting region-specific effects of TF perturba-
tions. We next stratified the detected gRNAs using a log-transformed
odds ratio (P value based on a Cochran-Mantel-Haenszel test) and
assessed the consistency of the effect across organoids and gRNAs
(Extended Data Fig. 8b and Supplementary Table 5). On the basis of
these metrics, we found that gRNAs targeting eight TFs showed con-
sistent enrichment in the ventral telencephalon branch with corre-
sponding depletioninthe other regions, including the cortex (Fig. 3e;
for example, GLI3, TBRI). Another set of perturbations showed the
opposing effect, with enrichment of TF targeting gRNAs in the cortex
and depletionineither the ventral telencephalon or non-telencephalon
(suchas HES1, HOPX). We focused on HES1and GLI3, two genes that are
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Fig. 3| TF perturbations in mosaic organoids reveal critical regulators of
neurodevelopmental fate decisions. a, Schematic of the single-cell TF
perturbation experiment using the CRISPRdroplet sequencing (CROP-seq)
method. b, The minimum-maximum-scaled average expression (log[transcript
counts per10,000 +1]) of targeted genes in NPCs, IPs and neurons of the
primary and organoid cortex. ¢, The proportion of cells with each perturbation
foreachexperiment.d, UMAP embedding with cells coloured by detected
gRNA (left) and branch assignment (right). e, Regional enrichment of gRNAs.
Thesidebar shows the number of gRNAs that were consistent and the circles
represent consistent effects between experiments and statistically significant
(FDR <0.01) effects on composition. The arrows indicate the predominant
observed effect. f, UMAP embedding coloured by consistent gRNAs for
selected genes that had astrongeffect on fate regulation. g, The Spearman
correlation of HES1-target (top, n =18 genes) and GLI3-target (bottom, n =42

expressed at the dorsoventral branchpoint and show opposing effects
ondorsaltelencephalon commitment (Fig. 3e,f). Both genes are known
regulators of mouse cortical development®**and are associated with
developmental disorders in humans!*>¢, We used the GRN inferred
from the developmental time course to investigate how GL/3- and
HESI-target gene expressionis correlated with transition probabilities
into dorsal telencephalon (Fig. 3g). We found that genes activated by
GLI3 were positively correlated with cortical transition probabilities,
whereas HEST had arepressive effect on such genes. This suggests an
antagonistic involvement of these two genes in shaping the dorsoven-
tral fate decisionin the human telencephalon. Notably, we also found
that, for several TFs, perturbation led to detectable transcriptomic
effects rather than composition changes (Extended Data Fig. 8c—f
and Supplementary Tables 6 and 7). In particular, E2F2—a crucial cell
cycleregulator¥—altered the transcriptome of both dorsal and ventral
telencephalic neurons, suggesting that misregulation of cell cycle exit
hasasubstantial effect on the neuronal transcriptome state. Together,
these data provide one of the first implementations of a multiplexed
perturbation experimentin organoids to examine the effect of genetic
perturbations on human brain cell fate and state development.

GLI3 directly targets HES regulomes

Mosaic perturbations suggested that GLI3 is involved in dorsoven-
tral neuronal fate specification in the human telencephalon. GLI3 is a
well-known mediator of SHH signalling?®, with GLI3 loss-of-function
mutations resulting in the failure of the cortex to form in mice, and
the expansion of ventral telencephalic neuronal identities into dor-
sal locations within the developing brain®#°. In humans, mutations

l_|_|_|_|_|_|
-0.6 -0.4-0.2 0 0.2 0.4 0.6

j 6weeks NPC

Neuron

HES1

Activating t_U.MAP @ Dorsal t. @® O
—l:l:l— H Repressing (_Ventralt Ko wt
L I R S t.
-04 -0.2 0 02 04 k
Correlation to dorsal t. — ~4% DE in ventral
g 10 # t. neurons bLxe
GLM coefficient @ / Sox11
GLI3 % 05 -~ CRABP2
g e
.
b1 0 g<10*
2 None
g -0.5 ® Isogenic KO
—:l:l— Activating g ® CROP-seq

® Repressing 3 -1.0 @ Both

-0.5 0

Correlation to dorsal t. Coefficient (GLI3 KO)
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wassubsetted to retain connections that are accessible at the branchpoint
(>5% detectionrate). The centre linerepresents the median, the box limits show
the 25-75% interquartile range and the whiskersindicate 1.5x the interquartile
range. h, Schematic of the GLI3 loss-of-function experiment using aninducible
CRISPR-Cas9 nickase system. i, UMAP embedding of scRNA-seq data from
6-week-old WT and GL/3-KO brain organoids showing the trajectories from
NPCs to neurons coloured by different clusters assigned to regional branches.
Theinsetis coloured by genetic condition.j, Stacked bar plots showing the
distribution of cluster (colour) assignment per organoid for each condition.

k, Differential expression (DE) in ventral telencephalic neurons for GL/3-KO
dataand CROP-seqdata containinga GLI3gRNA. Thexand yaxesindicatethe
coefficients of the linear model. Coloursindicate significance (FDR <107*) in
CROP-seq, the KO cellline or both.

in GLI3 are associated with Greig cephalopolysyndactyly syndrome
and Pallister Hall syndrome, in which patients have variable presenta-
tions of brain malformations depending on the particular mutations™.
To confirmthat GLI3isinvolved in cell-fate establishment in the human
context, and to examine the underlying developmental mechanisms,
we used CRISPR-Cas9 gene editing to generate two independent
GLI3-knockout (KO) iPS cell lines and a control wild-type (WT) cell
line that went through the editing process (Fig. 3h and Extended Data
Fig. 9a-d). We generated KO and WT brain organoids and confirmed
thatthe GLI3 proteinis not detected in the KO organoids (Extended Data
Fig.9c, e). We performed scRNA-seq analysis of KO and WT organoids
atday 45, atime point of early neurogenesis, and analysed the cellular
heterogeneity (Fig. 3i and Extended Data Fig. 9f). Notably, KO cells
were depleted in the dorsal telencephalon, with a strong enrichment
inthe ventraltelencephalon (Fig. 3j), and differential gene expression
analysis revealed that GLI3KO affects ventral telencephalic cell states
(Fig. 3k and Supplementary Table 8). Both of these observations were
consistent with the mosaic perturbation experiment.

Interestingly, the TF MEIS2, a marker of lateral/caudal ganglionic
eminence (LGE/CGE) relative to medial ganglionic eminence (MGE),
was strongly downregulated in GL/3-KO conditions (Fig. 3j). Further
analysis of the ventral telencephalic neuron heterogeneity identified
distinct LGE/CGE-like and MGE-like neuronal populations with GL/3-KO
cells strongly enriched in MGE neurons (Extended Data Fig. 9g,h). We
observed expression alterationsin GL/3-KO LGE-like neurons compared
withthe WT LGE state; genes involved in dorsoventral patterning (PAX6,
MEIS2, DLKI) were differentially expressed (Extended Data Fig. Sh).
These data confirmthat GLI3 is necessary for cortical neuron fate estab-
lishment in humans, and its absence affects ventral telencephalon
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Fig. 4 |Single-cell multiome view of GLI3 loss of function reveals distinct
regulomes and effectors of dorsoventral telencephalon specification.
a,Schematic of the experiment measuring the transcriptome and chromatin
accessibility in the same cell at 3weeks of brain organoid development.

b, UMAP embedding coloured by cluster and labelled by projected cell fate.
Inset: UMAP coloured by genetic state. ¢, The number of DEGs of control

(WT) versus GLI3-KO cellsin the different clusters. d, Differential expressionin
telencephalic progenitors (clusters 0 and 2) after GLI3KO. e, DEGs after GLI3KO
forearly telencephalic progenitors (week 3), ventral telencephalic progenitors
(week 6) and neurons (week 6), and differential accessibility after GLI3KO in
early telencephalic progenitors (week 3). Genes are coloured according to the
associated signalling pathway (if applicable) and molecular function. f,g, GRN
subgraph for early telencephalic (f) and ventral telencephalon (g) progenitors,

development by promoting MGE neurogenesis and altering LGE neu-
ronal expression, consistent with a role in MGE fate repression* and
LGE neuron state regulation (Extended Data Fig. 9h,i).

GLI3is expressed broadly in progenitors of the telencephalon and of
non-telencephalicregions (Extended Data Fig. 4f), suggesting distinct
GLI3 regulatory roles during different phases of brain development.
We therefore generated single-cell multiome data (10x Genomics) of
WT and GL/3-KO organoids at a time point (3 weeks) preceding dors-
oventral patterning (Fig. 4a and Extended Data Fig. 10a-c). WT and
GLI3-KO organoids showed comparable cell composition (Fig. 4b);
however, strong differential expression and differential accessibility
was detected between KO and WT cellsin the telencephalic progenitor
population (clusters 0 and 2; Fig.4b,c and Supplementary Table 9). Dif-
ferentially expressed genes (DEGs) included HESI (upregulated) and
HES4and HESS (downregulated) (Fig.4d and Extended Data Fig.10d), as
well EMX2 (downregulated). Interestingly, GLI3-KO cells showed upreg-
ulation of SOX4 and SOX11, two genes detected as downregulated in
HESI1-perturbed cellsinthe pooled single-cell perturbation experiment,
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showing first-and second-order GLI3 targets. Thecircles represent genes for
whichall TFsarelabelled. The edges are coloured on the basis of TF regulatory
interaction. h, The GLI3-binding score (the sum of CUT&Tag signal intensity for
thegenebody +2kb) in WT organoids versus log-transformed fold change in
differential expressioninearly telencephalic progenitors (week 3). Genes with
differentially accessible (DA) CREs are coloured black. Signal tracks of GLI3
binding matched with differential accessibility peaks of HES4 and HES5in early
telencephalic progenitors. i, The z-scored mean correlation between module
gene expression and branch probabilities (branch activation score) for
differentially expressed TFs. j, The log-transformed fold change of genes after
treatment with SHH versus GLI3KO. GO terms are shown for common DEGs,
SHH-treatment-specific and GLI3-specific DEGs. k, Schematic summarizing
theresults from the GLI3 and SHH perturbations.

consistent with the opposing effect of GLI3 and HES1 on dorsal telen-
cephalic fate emergence (Fig. 3e and Extended Data Fig. 10e).
Combining single-cell data of WT and GL/3-KO organoids of both
time points (3 and 6 weeks) revealed TFs and signalling pathways that
are differentially expressed specifically in telencephalic progenitors,
ventral telencephalic NPCs and ventral telencephalic neurons (Fig. 4e),
hinting towards a distinct regulatory role of GLI3 in these different
developmental stages. In telencephalic progenitors, GLI3KO leads to
the upregulation of FGF-related genes (FGFS8, SPRY1, FGF13) and the
downregulation of WNT-related genes (WNT7B, WNTS5B, LGR5), whereas
ventral telencephalic cells showed dysregulation of hedgehog pathway
receptor PTCHI and several transcription factors including NKX2-1,
EMX2,GSX2 and ID1. GLI3KO induced differential accessibility of CREs
linked to these genes and pathways (Fig. 4e, Extended Data Fig. 10f,g
and Supplementary Tables 10 and 11). Interestingly, many genes were
differentially expressed only in the later ventral telencephalic stages,
whereas CREs were differential accessibility already in telencephalic pro-
genitors (for example, NKX2-1,1D1), indicating a potential priming effect.



We investigated the perturbation signatures in the context of our
inferred GRN, and observed strong consistency between GLI3 direct
andindirect targets and detected DEGs, supporting the predictability
ofthe GRN (Fig. 4f,g and Extended Data Fig.10h-k). Two GLI3 sub-GRNs
describe distinct perturbation effects in telencephalic progenitors and
in the ventral telencephalon branch, respectively (Fig. 4f,g). Before
dorsoventral fate bifurcation, the sub-GRN suggests that GLI3 directly
activates HES4, HESS, PAX6, OTX2 and CREBS, with 76% of the DEGs being
indirecttargets of GLI3. After specification of the ventral telencephalon,
asecond sub-GRN suggests that GLI3 directly regulates PAX6, LHXS,ID1
and BCLIIA. GLI3 CUT&Tag analysis in 3-week-old organoids revealed
extensive GLI3 binding at genomic regions nearby (HES4, HESS, CREBS
and PAX6) that also show differential accessibility in GL/3-KO cells,
confirming that GLI3 binds to these targets directly in telencephalic
progenitors (Fig. 4h). Interestingly, even though HES4/5 can be targets
ofthe Notch pathway, we did not observe enrichment for other NOTCH
targets, suggesting the independence of Notch signalling (Extended
DataFig.10m). We assessed the relevance of GLI3 targetsin driving dor-
sal or ventral telencephalic fate establishment by computing a dorsal
and ventral telencephalonbranch activation score foreach TF module
(Fig. 4i, Extended Data Fig. 101). This analysis suggests that the GLI3
targets HESS, EMX2 and PAX6 are major drivers of dorsal telencephalic
fate, whereas FOXG1and DMRTAI1 activate ventral telencephalic fate.

Finally, we wanted to understand the interplay between GLI3 and
SHH—amajor inducer of telencephalon ventralization*>*’, Organoids
were treated with SHH for 3 days during the neuroepithelial stage
(3 weeks) followed by multiome profiling. Differential expression analy-
sis revealed downregulation of GL/3in SHH-treated versus untreated
control telencephalic progenitors (Extended Data Fig.10n,0) and, over-
all, there was a highly significant correlation with GLI3-KO-induced
DEGs (Fig. 4j; Pearson’s r = 0.5). Gene Ontology (GO) analysis showed
that shared and GLI3-specific DEGs were enriched in genes related
to brain regionalization and differentiation, whereas SHH-specific
DEGs were largely lipid-metabolism related. This suggests that SHH
promotes ventralization predominantly by preventing GLI3-induced
dorsalization***, Taken together, our data-driven approach provides
amultiphasic GLI3 gene regulatory model for human telencephalon
development that is consistent with previous studies, while also pro-
posing downstream effectors (Fig. 4k).

Discussion

The human brain has unique features that distinguish it from other
species. Despite the high-resolution descriptions of mouse and human
developing brain cell composition from recent cell atlas efforts* ¢, it has
been a major challenge to study the mechanisms that control human
brain development owing to the difficulty in obtaining tissue at the
earliest stages of brain patterning, and the lack of methods to system-
atically manipulate gene function. Here we integrated transcriptome,
chromatin accessibility and genetic perturbation datasets to provide
insights into the mechanisms that underlie human brain regionaliza-
tion.Inabroad sense, we found that the programsidentified in mouse
and other non-human model systems are well conserved in humans,
and the extent that stem-cell-derived brain tissues recapitulate these
programs is notable. We focused on GLI3 as a well-studied transcrip-
tion factor controlling dorsoventral fate specification in the rodent
telencephalon. We found clear evidence that this same transcriptional
programis well conserved in humans. Importantly, these data provide
strong evidence that multiregion human brain organoids can be pre-
dictive model systems. Note that unguided neural organoid protocols
resultinstrong variation between stemlines with regard to proportions
of regions represented in each organoid or batch.

We established the Pando GRN inference framework, which incor-
porates features of the regulatory genome that have not previously
been used for the global analysis of developmental programs. Pando

generalizes regression-based GRN inference for multimodal datasets
by combining transcriptome, chromatin accessibility,anexpanded TF
family motifreference, known CREs and evolutionary conservationinto
aflexible framework. The R package implements the full GRN inference
strategy, including candidate region selection, motif matching, model
fitting and discovery of gene and regulatory modules. Furthermore,
it offers a wide range of regression models to be used for GRN infer-
ence. We have highlighted interesting aspects of the network, such
as TF modules involved in the transition from pluripotency through
neuroectodermtoaneuroepithelium, as well as the subnetworks asso-
ciated with regionalized brain states. Such network analysis can guide
future experiments designed to program specific neuronal states, and
canbe usedtointerpret gene perturbationsin human organoids®. Note
that current limitations include the lack of comprehensive active and
repressive histone modification and chromatin conformation status
across organoid development, as well asincomplete TF motif databases.
We expect these to be an active area of research, and Pando has the
flexibility to include such priors into the GRN inference framework.
We validated the critical role of GLI3 in dorsal telencephalic cell-fate
specification in humans, and further identified the contribution of
GLI3 during specification of MGE and LGE/CGE neurons. The integra-
tion of the single-cell multiome data from GL/3-KO organoids and the
global GRN suggested amodelinwhich GLI3 becomesinducedin early
telencephalic NPCs through SHH signalling during neuroepithelial
regionalization. GLI3 then regulates downstream targets, activating
cortical fate acquisition through differential activity of HESS, HES4
and HES1, and inhibiting the MGE induction program through regula-
tion of BCL11A, LHX8 and NKX2-1. Our data also suggest that GLI3 can
regulate HES genes directly, probably through NOTCH-independent
mechanisms similar towhat has been described recently during mouse
limb development*¢. More broadly, our data reveal the extraordinary
potential of multimodal single-cell genomic and organoid technologies
tounderstand gene regulatory programs of human brain development.
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Methods

Experimental methods

Stem cell and organoid culture. We used six human iPS cell lines
(Hoik1, Wibj2, Kucg2 from the HipSci resource*’; 409B2 from the RIKEN
BRC cell bank; 01F49i-N-B7 (B7) from Institute of Molecular and Clini-
cal Ophthalmology Basel; and WTC from the Allen Institute) and three
human ES cell lines (H1-PAX6YFP (H1) and H9 from WiCell and HES-3
NKX2.1GFP/w (HES3) from the Murdoch Children's Research Insti-
tute). Stem celllines were cultured inmTESR1 (Stem Cell Technologies,
05851) with mTeSR1supplement (Stem Cell Technologies, 05852) and
supplemented with penicillin-streptomycin (1:200, Gibco, 15140122)
on Matrigel-coated plates (Corning, 354277). Cells were passaged 1-2
times per week after dissociation with TryplE (Gibco, 12605010) or
EDTA in DPBS (final concentration 0.5 mM) (Gibco, 12605010). The
medium was supplemented with Rho-associated protein kinase (ROCK)
inhibitor Y-27632 (final concentration 5 uM, STEMCELL Technologies,
72302) the first day after passage. Cells were tested for mycoplasma
infectionregularly using PCR validation (Venor GeM Classic, Minerva
Biolabs) and found to be negative. A total of 4,500-5,000 cells were
platedin ultralow-attachment plates (Corning, CLS7007) to generate
brain organoids using awhole-brain organoid differentiation protocol®.
Theuse of humanES cells for the generation of brain organoids was ap-
proved by the ethics committee of northwest and central Switzerland
(2019-01016) and the Swiss federal office of public health.

Single-cell RNA-seq, ATAC-seq and multiome experiments for the
developmental time course. Brain organoids were generated from
four different stem cell lines (H9,409B2, Wibj2, Hoik1) simultaneously.
Brain organoids of the same batch were dissociated at multiple time
points of the course of brain organoids development. We collected
these single-cell suspensions from an embryoid body time point (day 4),
the time points of neuronal induction (days 7,9 and 11) and after em-
beddingin Matrigel and starting the neuronal differentiation process
(days 12,16, 18, 21,26, 31 and 61). Organoids of the four different cell
lines were pooled on the basis of size and dissociated together, and the
celllines were later demultiplexed on the basis of the single-nucleotide
polymorphism information. Multiple organoids of each line were
pooled together to obtain a sufficient number of cells. For the early
time points, 15 organoids per cell line were pooled, decreasing this num-
ber to minimally 3 organoids for the later time points (Supplementary
Table1). For time points just after Matrigel embedding, Matrigel was
dissolvedin Cell Recovery Solution (Corning, 354253) for15 minat4 °C.
The organoids were cut in halves and washed three times with HBSS
without Ca?" and Mg?" (STEMCELL Technologies, 37250). Single-cell
suspensions were acquired by dissociation of the organoids with a
papain-based dissociation (MiltenyiBiotec,130-092-628). Prewarmed
papain solution (2 ml) was added to the organoids and incubated for
15 minat37 °C. Enzyme mix Awas added before the tissue pieces were
triturated 5-10 times with 1,000 pl wide-bore and P1000 pipette tips.
Thetissue pieces were incubated twice for 10 min at 37 °C with tritura-
tionstepsinbetweenand after with P200 and P1000 pipette tips. Cells
were filtered with consecutively with 30 pum and 20 pm preseparation
filters and centrifuged. Cells were resuspended and viability and cell
count were assessed using a Trypan Blue assay on the automated cell
counter Countess (Thermo Fisher Scientific). Cell suspensions were
splitintwo and resuspended in CryoStor CS10 (STEMCELL Technolo-
gies, 07952) and cryopreserved at —80 °C. The next day, cryotubes
were transferred to liquid nitrogen for storage until the scRNA-seqand
scATAC-seq experiments were performed.

The cryopreserved single-cell suspensions of each time point were
thawed by warming up the cryo for1-2 mininawaterbathat37 °Cand
directly centrifuged in 10 ml prewarmed DMEM with 10% FBS. Cells
were washed twice with PBS +5% BSA and filtered through a40 pm cell
strainer (Flomi). For scATAC-seq, nuclei wereisolated according to the

protocol provided by 10x genomics (Demonstrated protocol CG0O00169
Rev D) using the low-input protocol and alysis time of 3 min. Nuclei were
loaded at a concentration that would result in the recovery of 10,000
nuclei. In case of less nuclei recovered, the maximum number of nuclei
was targeted. scATAC-seq libraries were generated using the Chro-
mium Single Cell ATAC V1 Library & Gel Bead Kit. Before sequencing,
anadditional clean-up step was performed to enrich shorter fragments
by applyingadouble-sided (1.2-0.75x) clean-up with AMPureXP beads
(Beckman Coulter) and Illumina Free Adapter Blocking Reagent was
used toreduce potentialindex hopping. The libraries were sequenced
on the lllumina NovaSeq platform.

ForscRNA-seq, cells were putina concentration after counting and
viability checking that enabled targeting 10,000 cells and, in case the
cellnumber was not sufficient, all cells were loaded. scRNA-seq libraries
were generated using the Chromium Single Cell 3’ V3 Library & Gel Bead
Kit. Single-cell encapsulation and library preparation were performed
according to the manufacturer’s protocol.

Single-cell multiome datasets were generated from day 15 brain
organoids of the stem cell lines Wibj2, Hoikl, 409B2, B7 and WTC,
and day 19 brain organoids of stem cell lines (Kucg2, WTC, B7, and H1
and HES-3 NKX2.1GFP/w) using the Chromium Single Cell Multiome
ATAC + Gene Expression kit. Before nucleus isolation, organoids were
dissociated with the papain-based dissociation. Nuclei were isolated
according to the protocol provided by 10x genomics (demonstrated
protocol CGO00365, Rev B) in the lysis buffer with final amount of 0.01%
Tween-20 and 0.01% Nonidet P40 Substitute and a lysis time of 3 min.
Single-cell encapsulation and library preparation were performed
according to the manufacturer’s protocol.

Libraries were pooled, FAB treated and sequenced on the lllumina
NovaSeq platform. Asummary of all single-cell experimentsis provided
inSupplementary Table 1.

Immunohistochemistry. Organoids were washed in PBS before fixing
in4% PFA at4 °Covernight. The samples were washed three times with
PBS and the organoids were then transferred to a 30% sucrose solution
for24-48 hfor cryoprotection. Finally, organoids were transferred to
plastic cryomolds (Tissue Tek) and embedded in OCT compound 4583
(Tissue Tek) for snap-freezing on dry ice. Forimmunohistochemical
stainings, organoids were sectioned inslices of 10 pm thickness using a
cryostat (Thermo Fisher Scientific, Cryostar NX50). Organoid sections
were quickly washed in PBS to remove any residual OCT and post-fixed
in 4% PFA for 15 min at room temperature. The sections were then
incubatedin antigen-retrieval solution (HistoVT One, Nacalai Tesque)
at70 °Cfor 20 min. Excess solution was washed away with PBS and the
tissue was incubated in blocking-permeabilizing solution (0.3% Triton
X-100, 0.2% Tween-20 and 5% normal donkey serum in PBS) for 1 h at
room temperature. Next, the sections were incubated overnight at
4 °Cinblocking-permeabilizing solution containing mouse anti-SOX2
(1:200, Sigma-Aldrich, AB5603), rabbit anti-TUJ1 (1:200, BioLegend,
801201) and goat anti-GLI3 (1:200, Novus Biological, AF3690) antibod-
ies. The next day, the sections were rinsed three times in PBS before
incubation for 1 h at room temperature with 1:500 secondary anti-
body (donkey anti-rabbit Alexa 488, ab150073 and donkey anti-mouse
Alexa 568, ab175472 and donkey anti-goat Alexa 647, ab150135) in
blocking-permeabilizing solution. Finally, the secondary antibody
solution was washed off with PBS and the sections were stained with
DAPIbefore covering with ProLong Gold Antifade Mountant medium
(Thermo Fisher Scientific). Stained organoid cryosections were imaged
using a confocal laser scanning microscope, and six different z-plane
images (z-step = 2-3 um) were acquired using a x20 magnification
objective. The images were further processed using Fiji.

Whole-mount HCR RNA-FISH. Probe sets, amplifiers and buffers were
ordered from Molecular Instruments. HCR in situ hybridization was
performed according to the manufacturer’sinstructions by Molecular
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Instruments with small changes. In brief, 19-day-old organoids were
washed once with PBS and transferred to a tube containing fresh 4% PFA
at4 °Candwere fixed overnightat4 °C. The samples were washed three
times with PBST and then dehydrated witha PBST-methanol gradient
(25%,50%, 75% to 100%) and stored at —20 °C in 100% methanol until
use. The samples were rehydrated with a similar series of graded metha-
nol-PBST washes for 5 min each onice and washed an additional time
with PBST. The samples were then treated with 10 ug ml™ proteinase K
(Invitrogen, 25530-049) for 3 min at room temperature. The sam-
ples were washed twice with PBST for 5 min and then post-fixed with
4% PFA for 20 minatroom temperature and subsequently washed three
times with PBST for 5 min. The organoids were prehybridized in probe
hybridization buffer for 30 min at 37 °C. Then, 1 pmol of each probe
set was diluted into probe hybridization buffer and the samples were
incubated overnightat37 °C. The samples were washed four times with
probe wash buffer at 37 °C and washed twice more with 5x SSCT. The
organoids were incubated in amplification buffer for 10 min at room
temperature before adding the precooled hairpin mixture diluted in
amplification buffer to incubate overnight at room temperature. The
excess hairpins were removed with three 5 min washes as well as two
longer washes of 30 min. Organoids were stained with DAPI during one
ofthe 30 minwashes. The samples were stored at 4 °C and mounted on
ap-Slide chamber (Ibidi, 80807) and covered with 1% agarose. Images
were acquired with lambda scanning followed by spectral unmixing
on the Zeiss LSM980 system and processed using Fiji.

Doxycycline-inducible Cas9 nuclease and nickase cell line. The
humaniPS cellline 409B2 was used to create an iCRISPR-Cas9 nickase
(Cas9n) and an iCRISPR-Cas9 line as described previously*s. The
doxycycline-inducible Cas9-expressing cell line was generated by
introducingtwo transcriptionactivator-like effector nucleases (TALENS)
targeting the AAVSIlocus, which has shownto be effective for sustained
transgene expression, and two TALEN constructs with donor plasmids.
One of the donor plasmids contained a constitutive reverse tetracy-
cline transactivator (AAVS1-Neo-M2rtTA) and the other one contained
a doxycycline-inducible expression cassette (Puro-Cas9). A DI0A
mutation wasintroduced by site-directed mutagenesis of the original
Puro-Cas9 donor using the Q5 mutagenesis kit (New England Biolabs,
E0554S) to generate the Cas9n. The cell lines used were tested for the
proper expression of pluripotency markers SOX2, 0CT4, TRA-1-60 and
SSEA, quantitative PCR confirmed the doxycycline-inducible Cas9n and
digital PCR was used to exclude off-target integration*’. Both cell lines
showed normal karyotypes after generation, but the iCRISPR-Cas9
line acquired acommon stem cell abnormality over time. A total of
55% percent of the cells showed a derivative chromosome 2 with along
arm of chromosome 1 (bands ql1q44) attached to the long arm of one
chromosome 2 (band q37).

Vector and lentivirus preparation for the perturbation experi-
ment. The perturbation experiment was performed according to the
CROP-seq protocol as described previously” with some small altera-
tions. The experiment was performed in organoids derived from the
inducible Cas9 nuclease line, which contains a Puro selection marker.
To be able to select for cells that received the CROP-seq vector, Puro
was exchanged for eGFP to isolate cells by fluorescence. We selected
targeted TFs that had previously been shown in the literature to have
correlated expression patterns during human cortex developmentin
organoids and primary tissues, and have been studied in vertebrate
models and shown to be involved in regulating forebrain develop-
ment. The selected TFs had minimal expressioniniPS cells and neuro-
ectoderm stages to minimize the chances that organoid development
was impaired during the early stages of organoid development. All of
theselected TFs were expressed in the organoid dorsal telencephalon,
and most were also expressed in atleast one other branch. Three gRNA
per targeted gene were designed by Applied Biological Materials and

synthesized by IDT as 74 base oligonucleotides with 19 and 35 bases of
homology to the hU6 promoter and guide RNA backbone, respectively.
Oligonucleotides were pooled in equal amounts and were assembled
inthe vector backbone by Gibson’s isothermal assembly. The plasmid
library was sequenced to validate the complexity of the pooled plasmid
library. We used 10 ng of plasmid library for generating a sequencing
library with asingle PCR reaction. llluminai7 and i5 indices were added
byPCRandthelibrary was sequenced on the lllumina MiSeq platform.
After validation, lentiviruses were generated by the Viral Core Facility
of Charité Universitatsmedizin Berlin.

Generation of mosaic organoids for perturbation experiment.
The iCRISPR-Cas9 line was cultured on Matrigel in mTesr1 supple-
mented with penicillin-streptomycin (1:200) and Cas9 was induced
2 days before lentiviral transduction by adding 2 pg ml™ doxycycline.
Then, 24 hlater, cells were dissociated into single cells with TrypLE
and 300,000 cells of the iCRISPR-Cas9 cells were plated in at least 12
wells of Matrigel-coated 6-well plates in mTesrl supplemented with
penicillin-streptomycin (1:200), Y-27632 (final concentration 5 pM)
and 2 pg mi™ doxycycline. Next, 24 hlater, cells were transduced with a
low multiplicity of infection (MOI) where less than 30% of the cells were
GFP*to ensure that the majority GFP* cells received only one lentivirus
per cell. Theviral particles were added to the culture medium (mTesrl
supplemented with penicillin-streptomycin, Y-27632 and 2 pg ml™
doxycycline). Then, 24 hlater, the medium was exchanged for mTesr1l
supplemented with penicillin-streptomycin and 2 pug ml™ doxycy-
cline until 70% confluency was reached. Cells were then sorted with
fluorescence-activated cell sorting (FACS) for GFP* cells to enrich for
CROP-seq-vector-positive cellsand plated on Matrigel-coated platesin
mTesrlsupplemented with100 pg ml™ Primocin (InvivoGen, ant-pm-1)
and Y-27632 (final concentration 5 pM). When cells reached 70% conflu-
ency, whole-brain organoids were generated as mentioned previously.

Preparation of single-cell transcriptomes from mosaic perturbed
organoids. After 2 months, single organoids and a pool of four orga-
noids were dissociated using a papain-based dissociation kit (Miltenyi
Biotec,130-092-628) as described previously. Cells were sorted using
FACS. Cell viability and number was assessed using the Trypan Blue
assay and the Countess automated cell counter (Thermo Fisher Sci-
entific). Finally, cells were diluted to an appropriate concentration to
obtainapproximately 7,000 cells per lane of the 10x microfluidic chip.
scRNA-seq libraries were generated using the Chromium Single Cell 3’
V3 Library & Gel Bead Kit. The expression libraries were FAB-treated
and sequenced on the lllumina NovaSeq platform.

dRNA detection from single-cell cDNA. gRNA were amplified from
60 ng of cDNAremaining from scRNA-seq preparation with three sepa-
rate PCR reactions similar to reactions described previously*. First,
cDNA was amplified using PCR broadly targeting the outer part of the
U6 promoter. Subsequently, the inner portion of the U6 promoter ad-
jacenttotheguidesequenceandaTruSeqllluminai5adapter. Finally,
we added Illuminasequencing i7 adapters. PCRs were monitored using
quantitative PCR to avoid overamplification and, after every PCR reac-
tion, the samples were purified using SPRI beads (Beckman Coulter)
and libraries were sequenced at 1:10 proportion of the transcriptome
library on the Illumina NovaSeq system.

dRNA detection from gDNA. Cells from different stages of the
organoid protocol were collected (iPS cell, embryoid body, embedded
organoids and organoids day 30). QuickExtract (30-60 pl, Epicentre,
QE0905T) wasadded to the cell pellets or organoids and the suspension
wasincubated at 65 °C for 10 min, 68 °Cfor 5 minand 98 °Cfor 5 minto
extractthe DNA. The same PCR was used to validate the library complex-
ity of the plasmid library"”. The PCR was performed using the KAPA2G
Robust PCRKit (Peqlab, 07-KK5532-03) using the supplied buffer Band



5 plisolated DNA. The following program was used: 95 °C for 3 min;
35cyclesof95°Cfor15s,65°Cfor15sand 72 °Cfor15s;72°Cfor60s.
Libraries were sequenced using the lllumina MiSeq system (Nano kit) .

GLI3-KO and control line generation. Two days before lipofection, iPS
cellmedium was supplemented with 2 ng mi™ doxycycline (Clontech,
631311) to induce Cas9n expression. Two guides were designed using
the Broad Institute’s CRISPR design tool (http://crispr.mit.edu/). The
following guide pair was selected: ACAGAGGGCTCCGCCACGTGTGG,
CCGCGGGACGGTGTTTGCCATGG. The Alt-R CRISPR-Cas9 System (IDT)
was used for guide delivery with lipofection according to the manufac-
turer’s protocol. To form the crRNA-tracrRNA complexin a3 puM final
concentration for each guide complex, 1.5 pl of each guide crRNA was
combined with 3 pl tracrRNA and 44 pl nuclease-free water. For the
reverse transfection, 1.5 pl of the crRNA-tracr complex mixand 0.75 pl
RNAiIMAX (Invitrogen, 13778075) were diluted in 47.75 pl OPTI-MEM
(Gibco,1985-062) for eachreplicate and incubated for 20 minatroom
temperature in a well of 96-well plate coated with Matrigel (Corning,
35248).Duringincubation, around 70% confluent cells were detached
with TryplE (Gibco, 12605010), centrifuged and resuspended in 1 ml
mTeSR with Y-27632 (final concentration 10 uM, STEMCELL Technolo-
gies, 72302). After complexincubation, cells were diluted 30 or 60 times
in100 pl mTeSR with Y-27632 (STEMCELL Technologies, 72302) and
2 ug ml™ doxycycline (Clontech, 631311) and the cell suspension was
added to awell containing the transfection complexes. After 24 h, the
medium was replaced with mTeSR1 medium and cells were allowed to
recover for 72 h. Wells at 70% confluence were used for further process-
ing after 72 h. Cells were passaged as single cells in a Matrigel-coated
(Corning, 35248) six-well platein mTeSR medium with 1:200 penicillin-
streptomycin (Gibco, 15140122) and Y-27632 (STEMCELL Technologies,
72302). Low amounts of cells were plated per well to avoid the fusion
of colonies. The medium was changed daily and Y-27632 was added for
the first 72 h to prevent apoptosis of the single cells. When colonies
were apparent, single colonies were picked by scraping with a10 pl
pipette tip. Two-thirds of the cell suspension was plated in a single
well of a Matrigel-coated 96-well plate in mTeSR1 supplemented with
1:200 penicillin-streptomycin and Y-27632. The other portion of the
cellsuspension was pelleted and used for validation of frameshift muta-
tions by sequencing. Validated clones were expanded, cryopreserved
and karyotyped. The three selected lines, one WT and two KO lines,
showed a normal karyotype.

Validation of KO lines by sequencing. The cell pellets of picked colo-
nies were resuspended in 10 pl QuickExtract (Epicentre, QE0905T)
and the suspension was incubated at 65 °C for 10 min, 68 °C for 5 min
and 98 °C for 5 minto extract the DNA. APCR reaction was performed
with primers containing llluminasequencing adapters for the targeted
locus of the GLI3gene. Amplification was performed using the KAPA2G
Robust PCR Kit (Peqlab, 07-KK5532-03) using the supplied buffer B
and 2 pl of extracted DNA. The following program was used: 95 °C for
3 min; 35 cycles of 95°C for 15s, 65 °C for15s and 72 °C for 15 s; and
72°Cfor 60 s.Unique P5and P7llluminaindices were added to 0.5 pl of
the previous PCR product with asecond PCR program (98 °Cfor 30 s;
25 cycles of 98 °C for10's, 58 °C for 10 s and 72 °C for 20 s); and 72 °C
for 5 min), using the Phusion HF MasterMix (Thermo Fisher Scientific,
F-531L). The double-indexed libraries were pooled and purified with
SPRIbeads. Purified libraries were sequenced on the MiSeq (Illumina)
systemresulting in paired-end sequences of 2 x 150 bp. LeeHom®' was
used to trim the adapters after base calling using Bustard (Illumina).

Western blotting. GLI3WT and KO organoids of day 15 were collected
into Laemmli buffer, homogenized with a pestle (Fisherbrand, 12-141-
368) and sonicated for 15 cycles using the Bioruptor Plus. Subsequently,
two high and low amounts of protein extractions and ladder (Thermo
Fisher Scientific,26620) were run on an 8% SDS-PAGE (Bio-Rad System)

and transferred to a PVDF membrane using Wet-Blot. After blocking
for 20 min with 4% milk powder in PBS + 0.1% Tween-20, the primary
antibody (1:1,000, stock 0.5 pg pl™, R&D systems, AF3690) was incu-
bated overnight at 4 °C. After washing three times for 7 min at room
temperature in PBS + 0.1% Tween-20 on a shaker, the secondary goat
IgG HRP-conjugated antibody (1:7,000, R&D systems HAF017) diluted
in4% milkin PBS + 0.1% Tween-20 was incubated for 2 h. The enhanced
chemiluminescence signal was recorded using the ChemiDoc system.
Theloading control -catenin (primary antibody: stock 1:10,000, Cell
Signaling technologies, L54E2; secondary antibody: stock 0.8 pg pl™
1:7,000, Jackson ImmunoResearch, 115-035-003) was probed on the
same membrane and loading was also controlled by Ponceau staining.
Rawimages are provided in Supplementary Fig. 1.

Generation of single-cell transcriptome and multiome of GLI3-KO
and WT organoids. Organoids of GLI3WT and KO iPS cells were gener-
ated simultaneously and dissociated with a papain-based dissociation
kit (Miltenyi Biotec, 130-092-628) as described above. scRNA-seq was
performed on day 45 of organoid development for both KO lines and the
WT line for twoindependent organoid batches. After dissociation, cell
viability was checked, cells were counted and 7,000 cells were targeted
perlane of the10x microfluidic chip. Libraries were generated with the
Chromium Single Cell 3’ V2 Library & Gel Bead Kit and sequenced on
the lllumina HiSeq platform.

Combined scRNA-seq and scATAC-seq were generated using the
Chromium Single Cell Multiome ATAC + Gene Expression kit. In the
case of SHH treatment, GLI3WT organoids were treated with or without
200 ng ml™ SHH (R&D systems, 1845-SH-025/CF) every day for three
daysbefore the experiment on day19. GL/3-KO and WT organoids were
dissociated with the papain-based dissociation kit on day 19. Nuclei
were isolated according to the protocol provided by 10x genomics
(demonstrated protocol CG0O00365, Rev B) with a lysis time of 3 min.
The gene expression and accessibility libraries were FAB-treated and
sequenced on the Illumina NovaSeq platform.

Bulk CUT&Tag for GLI3 and H3K27ac. Single-cell suspensions of
18- or 23-day-old brain organoids were prepared using the Miltenyi
Neural Tissue Dissociation Kit (P) (Miltenyi Biotec, 130-092-628)
according to the manufacturer’s guidelines. Cells were counted and
directly transferred into CUT&Tag Wash buffer supplemented 0.01%
digitonin (20 mM HEPES pH 7.5; 150 mM NaCl; 0.5 mM spermidine;
1xRoche protease inhibitor cocktail). Per experiment, 1.5 million cells
were used and incubated with 1.5 pg anti-GLI3 antibodies (R&D systems,
AF3690) or1 pg anti-H3K27ac antibodies (Diagenode, C15410196). All
of the following steps were performed as described previously®2. The
protein A-Tn5was purified in house as described previously*. The final
libraries were sequenced on the NovaSeq platform with paired-end
2 x50 bpreadlength.

Data analysis methods

Preprocessing of scRNA-seq data from the organoid time course.
We used Cell Ranger (v.3.0.2) with the default parameters to obtain
transcript count matrices by aligning the sequencing reads to the hu-
man genome and transcriptome (hg38, provided by 10x Genomics,
v.3.0.0). Count matrices were further preprocessed using the Seurat
R package (v.3.2)". First, cells were filtered on the basis of unique mo-
lecularidentifier (UMI) counts, the number of detected genes and the
fraction of mitochondrial genes. The threshold of mitochondrial gene
fraction was held constant across datasets (<0.2). As sequencing depth
varied between time points, the threshold of UMI count and number
of detected genes was setindividually for each sample as follows: days
4 and 7: #UMI: >10,000, <80,000; #features: >3,000, <8,000; day 11:
#UMI: >10,000, <60,000; #features: >3,000, <8,000; day 12: #UMI:
>2,500, <40,000; #features: >1,000, <6,000; day 16: #UMI: >10,000,
<60,000; #features: >3,000, <8,000; days 18 and 21: #UMI: >2,500,
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<60,000; #features: >1,500, <8,000; day 26: #UMI: >2,500, <60,000;
#features: >2,000,<8,000; day 31: #UMI: >2,500, <50,000; #features:
>2,400, <7,500; day 61: #UMI: >1,000, <60,000; #features: >1,000,
<8,000.

Transcript counts were normalized to the total number of counts
for that cell, multiplied by ascaling factor of 10,000 and subsequently
natural-log transformed (NormalizeData()).

Preprocessing of scATAC-seq data from the organoid time course.
We used Cell Ranger ATAC (v.1.1.0) with the default parameters to obtain
fragmentfiles by aligning the sequencing reads to the human genome
and transcriptome (hg38, provided by 10x Genomics, v.1.1.0). Peaks
were called fromthe fragment file using MACS2 (v.2.2.6). Both the frag-
ment files and the peak count matrices were further preprocessed using
Seurat (v.3.2)" and Signac (v.1.1)*%. First, peaks were filtered by width
(<10,000 bp, >20 bp) to retain only high-quality peaks. Furthermore,
the following quality control metrics were computed using Signac:
atranscription start site (TSS) enrichment score (TSSEnrichment()),
nucleosome signal (NucleosomeSignal()), the percentage of reads in
peaks and theratio of readsin genomicblacklist regions. Subsequently,
cellswerefiltered based on the following metrics: percentage of reads
in peaks > 30%; number of peak region fragments > 5,000; blacklist
ratio < 0.003; nucleosome signal < 5; number of TSS fragments > 5,000;
TSS enrichment score > 2.

Wethen created a unified set of peaks from the union of peaks fromall
ofthe samples by merging overlapping and adjacent peaks. The unified
set of peaks was requantified for each sample using the fragment file
(FeatureMatrix()). Peak counts were normalized by term frequency-
inverse document frequency (tf-idf) normalization using the Signac
functions RunTFIDF().

Demultiplexing of different lines based on single-nucleotide variant
information. Cells pooled from different stem cell lines were demul-
tiplexed using demuxlet®. Genotyping information was called using
bceftools based on (sc)RNA-seq (B7, H1and HES3) or DNA-seq data (H9
and 409B2)** or downloaded from the HipSci (WIBJ2, HOIK1) or Allen
Institute (WTC) website. All files were merged using bcftools and sites
with the same genotypes in all of the samples were filtered out.
Demuxlet was run with default settings. Cells with ambiguous or dou-
blet assignments were removed from the data. For all other cells, the
best singlet assignment was considered.

Integration of transcriptome and chromatin accessibility data.
To create a shared feature space between the two modalities, gene
activities were calculated from chromatin accessibility data using the
Signac function GeneActivity() with the default parameters and sub-
sequently log-normalized with a scaling factor of 10,000. For each
time point and line separately, we performed CCA on gene activities
and gene expression data using the Seurat function RunCCA() based
on 2,000 features, which were selected using the Seurat function
SelectIntegrationFeatures(). In CCA space, we performed minimum-
cost maximum-flow (MCMF) bipartite matching between the modalities
as described previously® (https://github.com/ratschlab/scim). The
function get_cost_knn_graph() was used with knn_k = 10, null_cost_per-
centile = 99, capacity_method="uniform’ and otherwise the default
parameters. Onthe basis of the bipartite matches, matched cells were
summarized to metacells containing measurements from both modali-
ties. If multiple cells from one modality were included inametacell, the
arithmetic mean between cells was calculated.

Removal of cells with glycolysis signature. An additional quality-
control step was applied at the level of metacells to remove cells with
transcriptomic signatures of glycolysis upregulation. This was based on
primary cell type predictions using public human fetal brain sScRNA-seq
data (Nowakowski dataset)*. We fit a multinomial logistic regression

modelwithlassoregularization penalty (alpha =1), using gene expres-
sion ranks of the Nowakowski dataset as the training set, to predict the
cell type identity of metacells in the organoid developmental time
course. Metacells that were predicted to be of ‘glycolysis’ identity
were excluded from the dataset. To fit the logistic regression model
and automatically determine the regularization parameter lambda
through cross-validation, we used the function cv.glmnet() from the
glmnet R package.

Integration of different lines and time points. Integration of lines and
time points was performed using the log-normalized gene expression
dataof metacells. To select a set of features suitable for integration of
all lines and time points, we selected the union of the 100 most vari-
able genes for each time point separately (local) as well as across the
full dataset (global). Analogously, we selected the union of locally and
globally variable transcription factors (Supplementary Table 2). We
used the union of the selected genes and TFs and further excluded
cell-cycle-related genes*® from the set. Next, we computed cell cycle
scores using the Seurat function CellCycleScoring(). Subsequently the
data were z-scaled, cell cycle scores were regressed out (ScaleData())
and Principal Component Analysis (PCA) was performed using the
Seurat function RunPCA(). We used the first 10 principal components
(PCs) tointegrate the different time pointsin the dataset using the CSS
method®. To remove any remaining cell cycle signal for any downstream
tasks, we againregressed out the cell cycle scores fromthe integrated
CSS matrix. To obtain atwo-dimensional representation of the data, we
performed UMAP* using RunUMAP() with spread = 0.5, min.dist = 0.2
and otherwise the default parameters.

Calculation of motif enrichment scores. Position weight matrices
of human TF-binding motifs were obtained from the CORE collection
of JASPAR2020°%. Motif positions in accessible chromatin regions
were determined using the R package motifmatchr (v.1.14) (https://
doi.org/10.18129/B9.bioc.motifmatchr) through the Signac function
FindMotifs(). Enrichment scores of motifs in accessible regions were
calculated for each metacell using chromVAR® through the Signac
function RunChromVAR().

RNA velocity calculation. To obtain count matrices for the spliced and
unspliced transcriptome, we used kallisto (v.0.46.0)*° by running the
command line tool loompy fromfastq fromthe Python package loompy
(v.3.0.6) (https://linnarssonlab.org/loompy/). Spliced and unspliced
transcriptomes were summarized to the metacell level as described
above. RNA velocity was subsequently calculated using scVelo (v.0.2.2)
and further analysed using scanpy (v.1.7.0). First, 2,000 highly variable
features were selected using the function scanpy.pp.highly_variable_
genes(). Cell cycle genes* were excluded from this feature set and the
dataset was subsetted to the resulting gene set. Subsequently, moments
were computed in CSS space using the function scvelo.pp.moments()
withn_neighbors = 30. RNA velocity was calculated using the function
scvelo.tl.velocity() with mode="stochastic’ and a velocity graph was
constructed using scvelo.tl.velocity_graph() with the default param-
eters. To order cells in the developmental trajectory, a root cell was
chosen randomly from cells of the first time point (day 4) and veloc-
ity pseudotime was computed with scvelo.tl.velocity_pseudotime().
The obtained velocity pseudotime was further rank-transformed and
divided by the total number of metacells in the dataset.

Annotation of organoid developmental stages. To annotate different
organoid developmental stages, we first divided the dataset into 20
bins on the basis of quantiles of velocity pseudotime. For each bin, we
computed the average gene expression and peak accessibility across
metacells and computed the pairwise Pearson correlation between
log-normal gene expression values of each bin. From the correlation
coefficient r, we defined a distance metricas1-rand usedit to perform
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hierarchical clustering using the ward.D2 method as implemented in
thestats R package (hclust()). On the basis of the resulting clusters, bins
were manually annotated as PS cells, neuroectoderm, neuroepithelium,
NPCs or neurons.

Identification of stage-specific chromatin access. To find sets of
peaks with stage-specific accessibility, we computed for each stage
the percentage of metacellsin which each peak was detected. We then
computed a specificity score by dividing the detection percentage
for each stage by the detection percentage of all other metacells. We
filtered peaks with anin-stage detection percentage of >15% and a stage
specificity of >1.5. From these peaks, we selected the top 5,000 peaks
with the highest specificity score. Using these specific peak sets for
each stage, we used GREAT* with the GRCh38 genome assembly and
otherwise the default parameters to obtain functional enrichment re-
sults. Wereported GO biological process enrichments with FDR < 0.01
and that were supported by >30 foreground regions.

Inference of regional cell-fate trajectories. To resolve the regional
cell fate branches we relied on CellRank (v.1.3.0)*® to compute transi-
tion probabilities into terminal cell states and PAGA® to obtainagraph
abstraction of the transcriptomic manifold. First, terminal neuronal
states were annotated manually using VoxHunt (v.1.0.0)®based on the
top 20 structure markers. To resolve the developmental trajectories
leading up to the emergence of neurons with distinct regional identities,
transition probabilities to each of the terminal states were computed
for each cell using CellRank. A transition matrix was constructed by
combiningavelocity kernel (VelocityKernel()) and a connectivity kernel
(ConnectivityKernel()) with weights of 0.5 each. Absorption probabili-
ties for each of the predefined terminal states were computed using
the GPCCA estimator. From these probabilities, we computed a transi-
tionscore by ranking the absorption probabilities and normalizing by
dividing by the total number of metacells. We then constructed agraph
abstraction of the dataset by high-resolution clustering using the Lou-
vainalgorithm®witharesolution of 20. We used PAGA to compute the
connectivites between clusters (scvelo.tl.paga()) and summarized tran-
sitionscores for each of the clusters. To find branch points at which the
transition probabilitiesinto different fates diverge, we then constructed
anearest-neighbour graph between the high-resolution clusters based
on their transition scores (k = 30). We further pruned the graph to re-
tain only edges between nodes with a connectivity score of >0.2 and
edges going forward in pseudotime, that is, from anode with a lower
velocity pseudotime to anode with a higher velocity pseudotime. The
resulting graph is directed with respect to pseudotemporal progres-
sionand represents acoarse-grained abstraction of the fate trajectory,
connecting groups of cells with both similar transition probabilities to
the different lineages and high connectivities on the transcriptomic
manifold. To assign fate identities toeach branchin the graph, we first
selected the nodes with the highest transition probability and pseudo-
time for each of the terminal states as tips. We then performed 10,000
random walks with 200 steps from each tip along edges backwards in
pseudotime using theigraph R package (v.1.2.6) (https://igraph.org/).
Next, we computed for each node the visitation frequency from each
ofthe terminal states. We then assigned branch identities toeach node
on the basis of the visitation frequencies as follows: if a node’s visita-
tion frequency from one tip was more than100x higher than fromthe
next highest tip, it was unambiguously assigned the identity of this
tip. If the visitation frequencies from multiple tips were within100x of
each other, then the node was assigned the identity of all of such tips.
Nodes that were assigned both the dorsal telencephalic and ventral
telencephalic identity were relabelled as ‘telencephalon’. Nodes that
were assigned all three identities were labelled as ‘early’ to indicate
that their fate was not yet committed. Nodes that could not be reached
through this procedure were assigned the identity of the node with
the highest connectivity score. The final labelled graph was visualized

using the Fruchterman-Reingold layoutalgorithm asimplemented in
theigraph R package.

Analysis and integration of multiome data in the neuroepithelial
stage. Initial transcript count and peak accessibility matrices were
obtained with Cell Ranger Arc (v.1.0.0) and further preprocessed using
theSeurat (v.3.2)" and Signac (v.1.1)** R packages. Transcript counts were
log-normalized and peak counts were tf-idf-nomalized. On the basis of
the RNA modality, the data were integrated with previously described
datafromthe neuroepithelial stage using Seurat CCA integration with the
default parameters. PCA was performed onintegrated, log-normalized
and z-scaled transcript counts and Louvain clustering was performed
using the Seurat function FindClusters() with a resolution of 0.8.

Identification of CREs from multiome data. CREs for genes were dis-
covered by linking peaks to genes by co-accessibility and co-expression
between ATAC and RNA modalities, respectively. This was achieved
using the Seurat function LinkPeaks() with the default parameters.

GRN inference with Pando. We developed Pando to infer GRNs while
taking advantage of multimodal single-cell measurements, where both
the RNA and the ATAC components are either measured for each cell
orintegrated to obtain metacells or clusters with both modalities. The
core GRN inference algorithm in Pando can be summarized in four
main steps:

(1) Selecting candidate regulatory genomic regions.

(2) Scanning regions for transcription factor binding motifs.

(3) Selecting region-TF pairs for each target gene.

(4) Constructingaregressionmodelwithregion-TF pairsasindependent
variables and the expression of the target gene as the response
variable.

The coefficients (orimportances) of this model cannow be seenasa
measure of interaction between the region-TF pair and the downstream
gene, resultinginaregulatory graph. Inthe following sections, we will
describe these steps in more detail.

Selection of candidate regions for GRN inference. To narrow the set of
genomic regions that are taken into account for each target gene when
constructing the model, we can take advantage of prior knowledge about
the potentialimportance of these regions. Genomic sequence conserva-
tionisonesuchcriterionthatindicates the relevance of astretch of DNA,
asithasbeenmaintained by natural selection. Thus, wefirstintersected
thepeakregionsinthe ATAC-seqdatawiththe set of PhastCons conserved
elements® from an alignment of 30 mammals (obtained from https://
genome.ucsc.edu/). As exonic regions tend to be conserved regardless
of their regulatory relevance, we further excluded exonic regions from
this set. Furthermore, we considered candidate cCREs derived from the
ENCODE project. For this, we obtained the set of all human cCREs from
https://screen.encodeproject.org/ (GRCh38) and intersected it with
peak regions. The union of the resulting conserved and cCRE regions
was carried forward as the set of candidate regions for GRN inference.

Construction of an extended motif database for GRN inference.
Because TFsneed to be matched with potential binding sites, the avail-
ability of abinding motifisrequired fora TF tobeincludedinthe GRN.
We therefore aimed to gather motifinformation for all TFsrelevantin
our dataset. First, we selected the union of the 4,000 most variable
genesineachindividual time point (Supplementary Table2). All TFsin
this set were considered to be relevant. We then obtained binding motif's
from JASPAR (2020 release)*® taking into account the CORE and the
UNVALIDATED collection. For TFs for which no binding motif was avail-
ableinJASPAR, we further considered the CIS-BP database®. Where pos-
sible, motifs with direct experimental evidence were prioritized over
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inferred motifs and motifs that were inferred based on other JASPAR mo-
tifswere prioritized over therest. For all relevant TFs that were also not
covered by CIS-BP, motifs wereinferred onthebasis of proteinsequences
imilarity to other TFs from the same family. Family information and
protein sequences for all TFs were obtained from AnimalTFDB®® and
pairwise multiple-sequence alignments were performed using the
Needleman-Wunsch algorithm® as implemented in needle from the
EMBOSS software suite (v.6.5.7)%. For each query TF, we considered all
TFs from the same family with a global sequence similarity of at least
20% and selected the motifs from the three most similar TFs. TF motifs
fromall sources were combined into one database and motif positions
inaccessible chromatin regions were determined using the R package
motifmatchr (v.1.14) (https://doi.org/10.18129/B9.bioc.motifmatchr)
through the Signac function FindMotif's().

Coarse-graining expression and chromatin accessibility data.
Before inferring the GRN, we coarse-grained the data to denoise and
remove sparsity. First, we summarized the expression and chromatin
accessibility of close cells using the pseudocell algorithm outlined in
ref. %, In brief, we randomly selected 30% of all cells in the dataset as
the seed cells and constructed a territory for each seed with the ten
nearest neighbours based on Euclidean distances using the top 20 PCs.
If one cell was assigned to multiple territories, one was randomly cho-
sen. For all cells contained in a territory, gene expression data were
summarized using the arithmetic mean. For chromatin accessibility
data, an accessibility probability for each territory was computed by
averagingbinarized read counts. We further performed latent semantic
indexing (LSI) on the peak counts of each territory using the Signac
functions RunTFIDF() followed by RunSVD(). On the basis of the top
20 LSIcomponents, we further performed high-resolution clustering
using the Louvain algorithm with aresolution of 100 and accessibility
probabilities were further summarized to a cluster level by computing
thearithmeticmeanso thateach cellin the cluster was represented by
the same vector.

Linear model-based GRN inference. Pando used aregression-based
approachtoinferthe regulatoryinteractions between TF-binding site
pairsand the corresponding gene. Although the package implements
avariety of regression models, here we used alinear model to perform
networkinference. Genomic coordinates for all genes were obtained via
the R package EnsDb.Hsapiens.v86 (https://doi.org/10.18129/B9.bioc.
EnsDb.Hsapiens.v86). For each gene, we considered aregulatoryregion
encompassing the genebody and 100 kb upstream of the TSS. We then
define alinear model on the log-normalized expression Yof the gene i
based on all TF-binding-site interactions in this region:

Y,-=zjﬁj€jaj+£,

where the log-normalized expression of transcription factorjis the
accessibility probability of the peak that overlaps its binding region,
Bisthefitted coefficient for thisinteractionand eistheintercept. The
fitted coefficients can then be interpreted as the regulatory effect of
TF-binding-site pairs on the downstream genes. To fit the linear model,
we use the function glm() from the stats R package using Gaussian noise
and anidentity link function.

Peak and gene module construction. To prune the network and retain
only significant interactions, the fitted coefficients were tested for
statistical significance using analysis of variance (ANOVA). We cor-
rected for multiple testing using the Benjamini-Hochberg method
to obtain an FDR-adjusted P value, to which a significance threshold
of 0.05 was applied. The remaining connections were further sum-
marized to extract sets of negatively (coefficient < 0) and positively
(coefficient > 0) regulated target genes and regulatory regions for
each transcription factor.

Pando implementation details. Pando wasimplemented as an R pack-
ageand isavailable at GitHub (https://github.com/quadbiolab/Pando).
Pando was designed for easy use and integrates smoothly with widely
used single-cell analysis tools in R, namely Seurat and Signac. Its core
functionality isimplemented in four main functions:

initiate_grn() selects candidate regions from the dataset and initiates
the object for GRNinference. The user can flexibly define custom sets
of candidate regions to be taken into account by Pando.

find_motifs() scans candidate regions for transcription factor motifs.
The motif database constructed in this work is included in the Pando
package, but can also be manually supplied.

infer_grn() selects regulatory regions for each target gene and
performs the model fitting. We implemented support for all gen-
eralized linear models provided by the stats R package, regularized
linear models provided by the glmnet R package®®, Bayesian regres-
sion models implemented through the brms R package’, gradient
boosting regression through the xgboost R package”, as well as
bagging and Bayesian ridge models through scikit-learn’>. Where
possible and necessary, we also implemented the appropriate sta-
tistical tests to obtain Pvalues for the coefficients. For bagging ridge
models, coefficients can be tested across estimators using a t-test
or Wilcoxon rank-sum test. For the Bayesian ridge model, we obtain
for each coefficient the mean and s.d. and subsequently calculate a
Pvalue based on the normal distribution. For Bayesian regression
models obtained from brms, we calculated Pvalues using the bayes-
testR R package”.

find_modules() constructs gene and regulatory modules for each
transcription factor.

The implementation is flexible and enables the user to apply the
Pando framework to a wide range of use-cases.

Visualization of the GRN. We sought to visualize the inferred tran-
scription factor network based on both co-expression and regula-
tory relationships between transcription factors. First, we computed
the Pearson correlation between log-normalized expression of all
transcription factors in the network across all metacells in the atlas.
From the correlation value r and estimated model coefficient S be-
tween all transcription factors i and j, we then computed a combined

scoresas
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resulting in a TF-by-TF matrix. We performed PCA on this matrix and
used top 20 PCs as an input for UMAP as implemented in the uwot R
package (https://github.com/jlmelville/uwot) with the default param-
eters.

Region-specific GRN. The region-specific GRN was generated by
incorporating region-specific accessibility profiles and region-
specific TF expressioninto the Pando-inferred GRN. To get the region-
specific accessibility, we first performed outlier analysis on the high-
resolution clusters of pseudocells described above when summarizing
the peak accessibility probabilities for Pando. In brief, for each pre-
dicted TF-binding region, a trimmed z-transformation was applied
to the accessibility probabilities across clusters, with the average
number of ATAC reads per pseudocellin the cluster as the covariate
and regressed out. Here, instead of the arithmetic mean and s.d.
across all clusters, only clusters with probabilities between the 5th
and 95th percentiles were used to calculate the mean ands.d. for the
transformation. The resulting z-scores were converted to P values
based on the standard Gaussian distribution, which represents the
statistical significance of outlier clusters with significantly lower
accessibility (BH-corrected FDR < 0.01, close outliers). Alternatively,
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the statistical significance of outlier clusters with significantly higher
accessibility was represented as1- P(BH-corrected FDR < 0.01, open
outliers). Next, a step-wise procedure was used to define clusters
withthisregionaccessible. In brief, if no close outlier was found, the
openoutliers were considered as clusters with the region accessible.
When close outliers were detected, all of the clusters except for the
close outliers were considered to have the region accessible. When
no outlier was detected, the region was considered to be accessible
in all clusters. Next, this region accessibility was propagated from
the clusters to the bimodal metacells. Given the regional identity of
the metacells, ax*enrichment test was used to identify regions that
significantly deplete metacells with the region accessible (two-sided
x* test, BH-corrected FDR < 0.01, odds ratio < 0.5, inaccessible
regions). For eachregion, the Pando-inferred TF-target regulation
mediated by the inaccessible regions in one region was excluded
from the region-specific GRN. Finally, the region-specific GRN was
further trimmed by excluding any TF with a detection rate of less
than 5% in metacells of the region.

Calculation of module activity and analysis of module branch
specificity. On the basis of the GRN inferred by Pando, the activity of
atranscription factor canberepresented by the expression of the set of
genes thatit regulates (gene modules) or by the accessibility of its set
ofregulatory regions (regulatory modules). To calculate the activity of
gene modules, we used the Seurat function AddModuleScore() with all
genesincludedin GRNinference as the background (pool). For regula-
tory modules, we used the R package chromVAR (v.1.14)*° to obtain a
set of background peaks (getBackgroundPeaks()). We then computed
deviations in accessibility from the background for each regulatory
module (computeDeviations()). Next, we assessed how the activity of
positively regulated gene modules varied during neurogenesis over
pseudotime and between branches. For this analysis, we excluded all
cells from the PSC and neuroectoderm stage. We fit three gaussian
linear models for each gene i module with module activity (Y) as the
response variable and branch assignment and/or velocity pseudotime
as the independent variables: (1) ¥; ~ branch; (2) Y; ~ pseudotime; and
(3) Y;~ branch+pseudotime.

We used the R* value of these models as the fraction of variance
explained by branch (1), pseudotime (2), or branch and pseudotime (3).
We further tested for differential module activity between the branches
for each branch point separately using a Wilcoxon rank-sum test as
implemented in the R package presto’™. For the comparison of the dor-
saland ventral telencephalon, we considered only cells in the top 30%
pseudotime quantile (NPC and neuron stages). To visualize dorsal and
ventral telencephalon-specific transcription factor networks, we first
selected positively regulated gene modules of transcription factors
with branch-specific expression (described above). For each branch,
we then selected the top 15 modules of which the module activity was
significantly upregulated (FDR < 0.05) based on the mean difference
of module activity between the branches.

Preprocessing, integration and annotation of CROP-seq single-cell
RNA-seq data. As with the organoid time course, count matrices were
obtained using Cell Ranger (v.3.0.2) and further preprocessed using the
Seurat R package (v.3.2)%. First, cells were filtered on the basis of UMI
counts (>500,<30,000), the number of detected genes (>500, <6,000)
and the fraction of mitochondrial genes (<0.1). Transcript counts were
normalized to the total number of counts for that cell, multiplied by
ascaling factor of 10,000 and subsequently natural-log transformed
(NormalizeData()). The different samples were integrated using RSS*
based on the 2,000 most variable features (FindVariableFeatures()).
InRSS space, we performed Louvain clustering with a resolution of 3.
Regional identities as well as NPC/neuron identities were assigned to
Louvain clusters using acombination of VoxHunt similarity maps and
canonical marker genes. Cells annotated as off-target cell types such as

mesenchyme and choroid plexus were removed from all downstream
analyses.

Assignment of gRNA labels to cells. To assign gRNA labels to cells,
reads obtained from amplicon sequencing were first aligned to the
human genome and transcriptome (hg38, provided by 10x Genom-
ics), which was extended with artificial chromosomes representing
the CROP-seq-Guide-GFP construct?, using Cell Ranger. We observed
that read counts of gRNA UMIs followed a bimodal distribution, with
the lower peak probably representing sequencing or amplification
artefacts. To extract the higher peak, we first fit a Gaussian mixture
model with two components on natural log-transformed read counts
using the function GaussianMixture() from the scikit-learn Python pack-
age’””. We then used a probability cut-off of 0.5 to extract the mixture
componentwith higher average read counts. From these gRNA UMIs,
we constructed a cell xguide count matrix, which was further binarized
to obtain the final cell-to-gRNA assignments.

Inference of perturbation probability. To account for a potential mix-
ture of unperturbed and perturbed cellsin the population, we inferred
probabilities of a gRNA having a phenotypic effect on the cell using
the strategy proposed previously®. Here a Bayesian approach is used
to obtain the probability of a cell being perturbed given the observed
transcriptome. To this end, a regression model is fit with the gene ex-
pression matrix as the response Y and the native gRNA assignments,
cell and sample covariates asindependent variables (X):

Y=XB.
After fitting the model, the model fit is re-evaluated for each cell

withthe gRNA assignment set to O (X;). The difference of the squared
errors of the two fits can then be transformed into a probability with:

Y [~ XoB) - [¥; - V?
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P(Xj =1) =logistic

wherelogistic(x) = ﬁ

Asintheoriginal publication, we used linear regression model with
elastic net regularization (alpha = 0.5) using Gaussian noise and an
identity link function to fit the model based on 500 most-variable
features. The regularization parameter lambda was automatically
determined through cross-validation asimplemented in the function
cv.glmnet() from the glmnet R package. Models were fit for each gene
ionlog-normalized transcript counts Y with binary assignments X for
eachgRNA jaswellas celltype, sample and number of detected genes
as covariates:

Yi < Neatures T Sample +cell type+ zj X/

After computing the above-described perturbation probabilities for
each celland gRNA, they were further summarized to atarget gene level
by taking the maximum probability among the three gRNAs targeting
the same gene.

Determination of transcriptomic perturbation effects in the
CROP-seq screen. To determine how gene KOs affect the transcrip-
tomic state of neuronal populations arising inbrain organoids, we used
alinear model-based approach®. For each neuronal type, we inferred
perturbation probabilities p for each target genejas mentioned above
andfitalinear model onlog-normaltranscript counts (¥) for each gene
iasfollows:

)?N Nfeatures T sample + Zj Xj
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To determine KO effectsin neural NPCs, we also used cell cycle phase
asacovariate. For this, weinferred the cell cycle phase with the Seurat
function CellCycleScoring() and then constructed the linear model
asfollows:

Y, Mpearures + SaMple + cc phase + Zj X;.

To determine the KO effects across all neurons, we inferred global
perturbation probabilities on the full dataset and thenfit alinear model
across neuronal populations onlog-normal transcript counts for each
geneyas follows:

Y < Ngeqrures T S@aMple + neuron type + zj X;.

The coefficients for each target gene were tested using ANOVA and
multiple-testing correction was performed using the Benjamini-Hoch-
berg method to obtain an FDR-adjusted P value. Genes for which the
coefficient of a target gene were significant (FDR <10™*) were treated
as differentially expressed genes for this target gene.

Determination of composition changes in the CROP-seq screen.
To assess the degree to which the KO of a target gene changes the re-
gional composition of the organoid, we first tested the enrichment
of each gRNA in each regional branch. To control for confounding
effects through differential gRNA abundance in different organoids,
we used a Cochran-Mantel-Haenzel (CMH) test stratified by organoid.
Moreover, we performed aFisher’s exact teststo test for enrichment for
each organoidindividually. Multiple-testing correction was performed
using the Benjamini-Hochberg method. To account for other potential
within-sample confounders such as clonal heritage, we first required
for eachgRNA that the enrichment was significant (FDR < 0.05) inmore
thanoneindividual organoid and that the direction of each significant
enrichment was consistent across organoids. AllgRNAs for which this
was not the case were removed. In a second step, we further required
for remaining gRNAs that the same significant effect (FDR < 0.01) was
observed for atleast one other gRNAtargeting the same gene. For the
remaining gRNAs, we summarized the assignments for each target gene
iand calculated the log odds ratio of the enrichment in each regional
branchjwith

Ne-isp=j/Ne=i:b+j

LOR; =lo
Y gNg#i:g:j/ Ng#l‘:b#j

where Nis a matrix of cell counts for each target gene in each branch.
For each target gene, the maximum log odds ratio across the three
branches was treated as a measure of composition change.

Preprocessing and integration of single-cell RNA-seq data from
the GLI3-KO experiment. Transcript count matrices were obtained
using Cell Ranger (v.3.0.2) and further preprocessed using the Seurat
R package (v.3.2)". First, cells were filtered on the basis of UMI counts
(>200, <60,000), the number of detected genes (>200, <6,000) and
the fraction of mitochondrial genes (<0.1). Transcript counts were
normalized to the total number of counts for that cell, multiplied by
ascaling factor of 10,000 and subsequently natural-log transformed
(NormalizeData()). From all protein coding, non-mitochondrial and
non-ribosomal genes, we selected the 200 most variable based on the
vstmethod (FindVariableFeatures()). PCAwas performed based onthe
z-scaled expression of these features. Different samples were integrated
using CSS* based on the top 20 PCs with the default parameters. To
visualize the dataset in two dimensions, we used UMAP on the CSS
coordinates with spread = 0.5, min.dist = 0.2.

CRISPResso analysis and protein sequence prediction. To find
clones with a frame-shift mutation, CRISPResso was used to analyse

the sequencing data”. This tool aligned the amplicons to the wild-type
genesequence to callin-frame and frameshiftindels. Analyses were per-
formed using the following parameters: -w20, -min_indentiy_score70
and-ignore_substitutions. Substitutions wereignored, only sequences
withaminimum of 70% similarity were used and only indels presentin
awindow of 20 bp from each of the gRNAs were called. Cell lines were
considered to be KOs when >98% of the reads were considered tobe a
non-homologous end-joining event, the indels caused a frameshift, not
more than two different indels were seen and were present in a 50:50
distribution. The predicted protein sequence was obtained using the
Biopython Python package’.

Preprocessing and integration of multiome data from the GLI3-KO
experiment. Initial transcript count and peak accessibility matrices
were obtained using Cell Ranger Arc (v.1.0.0) and further preprocessed
using the Seurat (v.3.2)" and Signac (v.1.1)** R packages. Peaks were
called from the fragment file using MACS2 (v.2.2.6) and combined
ina common peak set before merging. Cells were filtered based on
transcript (UMI) counts (>1,000, <25,000), mitochondrial transcript
percentage (<30%), peak fragment counts (>5,000,<700,000) and TSS
enrichmentscore (>1). Transcript counts were normalized to the total
number of counts for that cell, multiplied by ascaling factor of 10,000
and subsequently natural-log transformed (NormalizeData()). PCAwas
performed using the Seurat function RunPCA(). Different samples were
integrated based on the top 20 PCs with Harmony”” using the function
RunHarmony() fromthe R package SeuratWrappers (v.0.3.0) (https://
github.com/satijalab/seurat-wrappers) with max.iter.harmony =50
and otherwise the default parameters.

Annotation of cells from the GLI3-KO and SHH experiment. To an-
notate the cell states from both the scRNA and the multiome experi-
ments, we used the annotations of the annotated multi-omic atlas of
organoid development that was previously generated. We transferred
the regional branch labels using the method implemented in Seurat
using the functions FindTransferAnchors() and TransferData(). We
then performed Louvain clustering with a resolution 1 for the scRNA
dataand 0.8 for the multiome data. Clusters were manually assigned to
branchidentitiesbased onthe transferred labels as well as marker gene
expression. Inthe case of the multiome data, we identified populations
of mesenchymal and non-neural ectoderm cells, which were excluded
fromthe downstream analysis.

Differential expression analysis for the GLI3-KO and SHH experi-
ment. To assess the transcriptomic effects of the GLI3KO in ventral
telencephalonneurons, we performed differential expression analysis
using alinear-model-based approach analogousto the approach used
inthe CROP-seqscreen. Wefitalinear model onlog-normal transcript
counts Yforeach geneiwith the KO labeland number of detected fea-
tures asindependent variables:

Y, %< Ngearures + KO label.

The coefficient of the KO label was tested using ANOVA. To perform
differential expression of KO versus control in the multiome data
and treated versus control for the SHH experiment, we performed a
Wilcoxon rank-sum test using the presto R package (v.1.0.0)™. Multiple-
testing correction was applied to all results using the Benjamini-
Hochberg method to obtain FDR-adjusted P values.

Differential accessibility analysis for the GLI3-KO experiment. To
find peaks with differential accessibility between GLI3KO and control,
we fitageneralized linear model with binomial noise and logit link for
each peak i on binarized peak counts Y with the total number of frag-
ments per cell and the KO label as the independent variables:


https://github.com/satijalab/seurat-wrappers
https://github.com/satijalab/seurat-wrappers

Yi o nfragments +KO label.

We also fit a null model, where the KO label was omitted:

Yi o nfragmentS'

We then used a likelihood ratio test to compare the goodness
of fit of the two models using the Imtest R package (v.0.9) (https://
cran.r-project.org/web/packages/Imtest/index.html). Multiple-testing
correction was performed using the Benjamini-Hochberg method.

Comparison of perturbation effects with GRN. Before using the
GRNtointerpretthe DEresults, we first sought to assess the degree to
whichthe transcriptomic effects of the GL/I3KO are consistent with the
inferred GRN. We tested the enrichment of DE genes in the first (direct)
and second order (indirect) neighbourhood of GL/3in the GRN graph
using aFisher’s exact test. Furthermore, we computed the shortest path
from GLI3toevery DE geneinthe GRN graph. Totest how accurately the
GRN canbe used to predict the directionality of the DE, we computed
the combined direction of each path as the product of the signs of all
individual edges. We then determined the overall predicted effect of
GLI3 on each DE gene by computing the mode of the directions of all
shortest pathsleading to that gene. We defined accuracy as the fraction
of genes for which the DE direction was the inverse of the predicted
overall effect. Next, we further filtered the paths so that all paths were
composed only of DE genes and the direction of each path and subpath
was consistent with the DE direction. To visualize this subgraph, we
further pruned the graph by retaining only the path with the lowest
average log,,-transformed Pvalue for each DE gene.

Functional annotation of differentially accessible genomic regions.
To better functionally assess the epigenomic effects of the GLI3KO,
we performed functional enrichment analysis using GREAT'. We
performed differential accessibility analysis in clusters 0 and 2 (early
telencephalon) and applied an FDR threshold of 10, From all differ-
entially expressed peaks, we selected the top 5,000 peaks with the
lowest (most negative) linear model coefficient (depleted in the KO).
We further selected all peaks that were accessiblein atleast 1% of cells
inthese clusters as the set of background peaks. Using these two peak
sets, we used GREAT with the GRCh38 genome assembly and otherwise
the default parameters to obtain functional enrichment results. We
reported GO biological process enrichments with FDR < 0.01and that
were supported by >100 foreground regions.

Analysis of GLI3 CUT&Tag data. To assess GLI3 binding with CUT&Tag
data, we first obtained bigwig files with intensity scores across genomic
coordinates. Fromthese scores, we computed a per-gene binding score
by summing the intensities over the gene body plus an extended pro-
moter region of 2 kb.

Statistics and reproducibility

Representativeimages of organoidsin culture are shown frombatches
with16-96 organoids per cell line (Extended Data Figs. 1a, 6d and 9¢).
Immunohistochemistry analysis of SOX2, TUJ1 and GLI3 (Extended
DataFig.1k) was performed on four different cell lines on 2-3 organoids
per cellline from one batch. HCRRNA-FISH (Extended Data Fig. 2g) for
BMP7 and WLS was performed on day 18 organoids from four different
cell lines with 2-3 organoids per experiment and HCR RNA-FISH for
FGF8 and WNT8B was performed on day 18 organoids cell line Wibj2
for 3 organoids.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw sequencing data are available at ArrayExpress. The accessions
for the individual experiments are E-MTAB-12001 for developmental
time course scRNA-seq data, E-MTAB-11998 for developmental time
course scCATAC-seq data, E-MTAB-12004 for multiome data of the neuro-
epithelial stage, E-MTAB-11999 for scRNA-seq data of the CROP-seq
experiment, E-MTAB-12005 for amplicon sequencing of the CROP-seq
experiment, E-MTAB-11997 for scRNA-seq data of GL/3-KO organoids,
E-MTAB-12002 for multiome data of GL/3-KO organoids, E-MTAB-12003
for multiome data of SHH-treated organoids and E-MTAB-12006 for
CUT&Tag data. Processed data and the VCF files for demultiplexing
are available at Zenodo (https://doi.org/10.5281/zenod0.5242913).

Code availability

ThePando R package is available on GitHub (https://github.com/quad-
biolab/Pando). Other custom code used in the analyses is deposited
on GitHub (https://github.com/quadbiolab/organoid_regulomes).
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Extended DataFig.1|Supplemental analysis of brain organoid
developmental multiome data. a, Phase contrast (until day 15) and bright field
(day 31-60) showing examples of different stages of organoid development

for four different stem cell lines. Images are representative for 96 organoids
perline.Scalebaris200 pm. b, Schematic of the experimental design and data
integration strategy.c, Histogram of scRNA-seq and scATAC-seq quality control
metrics. d, Histograms showing assignment log likelihoods for demultiplexing
based onsingle nucleotide variants. e, Bar plot of number of cells for each time
point (top) and stacked barplot showing proportion of celllines (bottom)
atdifferent time points. f, Distribution of iPS cell (iPSC) lines on the UMAP
embedding. g, Bar plots showing number matched and unmatched cells during
MCMF bipartite matching. h, Histogram showing the number of cells per
metacell foreach cellline. i, Box plots showing correlation between gene
expressionand gene activity metrics for two multiome experiments and the

integrated metacells (n =477 genes). j, Box plots showing correlation split by
stage (n=3527 genes). Genes >95% confidence intervals of correlation to
permuted background are coloured inyellow. Box center represents the median,
boxesindicate 25%-75% interquantile range and whiskers1.5*interquantile
range. k, Immunohistochemical staining for progenitor cells (SOX2, orange and
GLI3, purple) and neurons (TUJ1, green) for 2 month old organoids of four cell
lines. DAPlis shownin cyan.Scalebar:200 pm. |, UMAP embedding coloured by
marker gene expression (log(transcript counts per 10k+1)). The range of values
isindicated for each plot. m, Hierarchical clustering of pseudotemporal bins.
Top bars show stage and proportion of time points per bin. Heatmap shows
min-max scaled mean accessibility (tf-idf normalized fragment counts) of
stage-specific peak clusters for each pseudotime bin. Representative GREAT
enrichmentsare shown for each stage.
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Extended DataFig. 3 | Signalling transcriptome and regulatory element
landscape of the organoid neuroepithelium from 9 stemcell lines.
a,Schematic of the experimental setup. Multiome quantification was performed
onorganoidsinthe neuroepithelial stage (-3 weeks) fromatotal of 9 stemcell
lines. The datawas combined with the datafrom the same stage inthe early
time course.b, UMAP embedding coloured by cellline, louvain clusters and
anterior-posterior axis (forebrain versus non-forebrain) classification score.

¢, Bar plots (top) showing fraction of cells per cell linein each cluster. Dotplot
(left) showing min-max scaled expression (log(transcript counts per 10k + 1))
(colour) and proportion of expressing cells (dot size) for transcription factors

(TFs) and genes from different signalling pathways in clusters of 3 week old
organoid datasetsplit by cellline. Allgenes are annotated as TF, receptor, ligand,
or TFtargetand ifapplicable, coloured by the related signalling pathway.
Dotplot (right) showing expression (colour) and proportion of expressing cells
(dotsize) for the same genes of Extended Data Fig. 3d in mouse developing
brain organizer cells of differentbrainregions®. d, Dot plot showing cluster-
specificcis regulatory elements (CREs) linked to patterning genes split by
differentcelllines. Colour and size indicate peak accessibility (if-idf normalized
fragment counts) and proportion of expressing cells, respectively.
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Extended DataFig. 4| Trajectory reconstruction in the multiomic
developmental atlas. a, Time course UMAP embedding coloured by neuron
types. b, Time course UMAP embedding coloured by RNA velocity pseudotime.
¢, VoxHunt plots showing expression similarity of neuron subtypesin brain
organoids to voxelsin five example sections of the developing mouse brain
(embryonicday13.5), as well as the structural annotation of the sections.

d, UMAP embedding coloured by ranked transition probabilities. e, Scatter
plotshowing mean transition probabilities as computed by CellRank versus

velocity pseudotime. Each dot represents one high-resolution cluster. f, UMAP
embeddingof theintegrated time course and graph embedding coloured by
gene expression (log(transcript counts per 10k +1)) (top) and gene activity
(log(fragment counts per 10k +1)) (bottom) for selected marker genes. g, UMAP
and graphrepresentation coloured by transcription factor motif enrichment
z-score calculated with chromVAR* for selected motifs. The range of values is
indicated for each feature plot.
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Extended DataFig.5|Generegulatory network features of brain organoid
development. a, Numbers of chromatin access peaks and percentage of
H3K27ac-marked peaks accessible at day 18-23 (>5% detection) intersecting
with non-protein coding conserved regions (Cons.), candidate cis regulatory
regions (CRE), or exons (left). b, Representative locishowing chromatin access
(top) overlaying peak, CRE, conserved elements, and exon coordinates.

¢, Barplot showing the number of motifs used in GRN construction from two
curated databases (JASPAR, CIS-BP), and motifs assigned through amino acid
sequence similarity. d, Examples of 3 TFs with no motif annotation that were
assigned motifs based on sequence similarity. e, Loci for two exemplary genes
(FOXGI1, WLS) showing average chromatin access signal tracks, accessible
peaks, CREs, conserved elements, exons and H3K27ac CUT&Tag peaks.
f,Scatter plot and histograms show explained variance (x) versus number of
variables (y) of models for GRN construction. g, Violin plots show the
distribution of peaks (left, n =2535 target genes) and TFs per gene (middle,

0 Il Max Min
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n=2535targetgenes), and number of genes per TF (right,n =720 TFs).

h, Representative loci showing average chromatin access signal tracks at
different developmental branches overlayinginferred transcription factor
binding sites withinregulatory regions. i, UMAP representation of time course
coloured by gene expression (log(transcript counts per 10k +1)), gene module
activity (module score calculated with Seurat) (rows), and regulatory module
enrichmentz-score (calculated with chromVAR) for representative TFs
(columns). Therange of valuesisindicated for each plot. j, Variation of
module activity explained by branch, pseudotime, or branch and pseudotime
(n=720TF modules). Box plot centrelines represent the median, boxes
indicate 25%-75% interquantile range and whiskers 1.5 *interquantile range.

k, Branch and pseudotime specific TF modules. Colours represent the branch
with highest average module activity. TFs without experimentally validated
motifareshowningrey.
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Extended DataFig. 6 | Target selection and experimental details for the
single-cellinorganoid perturbation experiment. a, Min-max scaled mean
expression (log(transcript counts per 10k +1)) of genes targeted in the
single-cell genomic perturbation experimentin neuronal progenitors (NP),
intermediate progenitors (IP) and neurons in the primary human and organoid
developing cortex, aswellasiniPS cells, theembryoid body (EB), ventral
telencephalic NPCs, inhibitory neurons of the medial ganglionic eminence
(MGEin.), lateral ganglionic eminence (LGEin.), non-telencephalic NPCs,
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diencephalic excitatory neurons (Dien. ex.) and inhibitory neurons (Dien. in.)
and mesencephalic excitatory neurons (Mesen. ex.) and inhibitory neurons
(Mesen.in.).b, UMAP embedding coloured by the expression of all targeted
genes. The range of expression valuesisindicated for each feature plot.

¢, Exemplary Fluorescence-activated cell sorting plots of the sorting scheme
usedtoisolate CROP-seqvector positive iPS cells. d, Phase contrastand
CROP-seq vector positive (GFP) imaging during brain organoid development.
Images are representative for 48 imaged organoids. Scale Bar is 500 pm.
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Extended DataFig.7 | Guide detectionand cell type annotationinthe
single-cell perturbation experimentinorganoids. a, Barplot showing
number of cells with detected guide RNA (gRNA) for each targeted gene and
stacked barplot showing the distribution of the different gRNAs targeting the
samegene.b, Histogram showing the distribution of read counts for gRNA
UMIs after amplicon sequencing for one organoid. UMIs marked inred were
selected for downstream analyses. ¢, Density histograms showing the

distribution of inferred KO probabilities for gRNAs of 3 different target genes.

d, Barplotshowing cellnumber and proportion of gRNAs for all target genes.

e,Barplotshowing the number of guides detected in sequenced cells. f, UMAP
embedding with cells coloured based on experiment. g, UMAP embedding
coloured by annotated neuron subtypes. h, VoxHunt plots showing expression
similarity of neuron subtypes inbrain organoids to voxelsin five example
sections of the developing mouse brain (embryonic day 13.5), as well as the
structural annotation of the sections (left). i, UMAP embedding coloured by
expression (log(transcript counts per 10k +1)) of non-telencephalic (top),
ventral (middle) and dorsal (bottom) neuron markers. The range of expression
valuesisindicated foreachfeature plot.
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Extended DataFig. 8 | Composition and expression changes after
CRISPR-Cas9 perturbations in mosaic brain organoids. a, Hierarchical
clustering of Louvain clusters based on the composition of gRNAs targeting
different genes. Celltype and branch annotations are shown asside bars.
Compositions of organoids and composition of cells with gRNAs targeting
different genes are shown below as stacked bar plots. b, Lollipop plot showing
theimpactofeachgRNA oncelltypeabundancein dorsaland ventral
telencephalic neurons. ¢, Lollipop plots showing number of differentially
expressed genes (DEG) for targeted genes in the dorsal and ventral telencephalic
neurons.d, Differential gene expression analysis was performed to identify
potential effects on cell state. Plot shows the effect of cell composition change

process I Tnscription, DNA-templated

E2F2-specific effect I Transcription regulation

and the number of differentially expressed genes (DEGs). P-values were derived
using an F-testbased ANCOVA. e, Scatter plot shows expression changes
between neurons with E2F2 targeting gRNAs and other neuronsin dorsal
(x-axis) and ventral (y-axis) telencephalic neurons, with each dot representing
onegene. Coloursof dotsrepresent the neuron types where differential
expressionis detected. Lines show the correlation of expression changesin the
twoneurontypes, with DEgenesinbothtypesand DEgenesinonlyonetype
shownseparately. f, Examples of functional enrichment for E2F2 DEGs in dorsal
and ventral neurons with DAVID. Grey bars show enriched terms of all E2F2
DEGs, and dark bars show enriched terms of DEGs with E2F2-specific effects.
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Extended DataFig. 9 | Characterization of GLI3 knock-out organoids.

a, Quantification of editing frequency as determined by the percentage and
number of reads showing unmodified and modified alleles for the control and
both KO celllines. b, Frequency of frameshift of coding sequencereadsasa
result of the modifications seeninboth KO lines. ¢, Westernblot showing
expression of Gli3-repressor (83kDA) in the control cell line. Cateninbeta-1and
Ponceauwere used as loading control. For westernblot source data, see
Supplementary Fig.1d, Sequences of the coding strand of the differentindels of
the different KO lines. The reference sequenceis corresponding with the
controlline. The position of the gRNAs with the protospacer adjacent motif
(PAM)-sequenceis depicted above and underneath the sequence. Reference
proteinsequence with the protein sequences of each KO line of the altered
proteinsequences caused by the frame-shift. e, Brightfield images of brain
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organoid development with controland both KO cell lines. Images are
representative for 16 imaged organoids per line.Scale baris 2 mm. f, UMAP
embedding showingtrajectories from neural progenitor cells (NPCs) to neurons
coloured by different clusters assigned to branches (dorsal, ventral, and non-
telencephalon), withinset coloured by genetic condition and feature plots
coloured by expression (log(transcript counts per 10k +1)) of cell type markers.
g, UMAP embedding of ventral telencephalic GLI3 KO neurons showing

medial ganglioniceminence (MGE) and lateral/caudal ganglionic eminence
(LGE/CGE) neuronal populations (top). Feature plots show selected marker
gene expressiononthe UMAPembedding. The range of expression valuesis
indicated for each feature plot. h, Volcano plot showing differential expression
analysisin LGE neurons for GLI3WT versus KO cells. i, Schematic of observed
effect of GLI3 loss of function on dorsoventral telencephalic fate decisions.
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Extended DataFig.10| GLI3 KO induced changes in telencephalic
progenitors inbrain organoids. a, Heatmap showing min-maxscaled
expression (log(transcript counts per 10k +1)) of marker genes for unbiased
Louvain clusters.b, UMAP coloured by the expression of selected marker
genes. Therange of valuesisindicated for each plot.c, UMAP embedding
coloured by branchlabels predicted by label transfer from the organoid time
course.d, Heatmap showing DE associated with signalling pathways. e, Scatter
plotshowing DE in neural progenitor cells (NPCs) upon HES1 perturbationin
the mosaic perturbation experiment. f, Signal tracks showing differentially
accessible (DA) peaksincluster 0 and 2. g, GREAT enrichment analysis of DA
peaksincluster 0 and 2, withbox area proportional to FDR. Representative
genesareshown. h, Enrichment of DE genesin the neighbourhood of GLI3in
the GRN.i, Accuracy of GRN predicted directionality of GLI3 effect at different
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false discoveryrate (FDR) thresholds. j, Barplot showing the number of all

DE genesinthe GRN (DEGin GRN), all DE genes reachable from GLI3 inthe
graph (Reachable), DE genes where the GRN was consistent with the DE result
(Overall) and DE genes for which all subpaths from GLI3 were consistent with
the DE result (Full path). k, Barplot showing the fraction of DE genes directly
andindirectly regulated by GLI3.1, Boxplot showing the Spearman correlation
of directly (n=39) andindirectly (n =126) regulated DE genes with transition
probabilities ventral and dorsal branched. The centre line represents the median,
boxesindicate 25%-75% interquantile range and whiskers 1.5 *interquantile range.
m, Barplotshowing the enrichment of gene sets (HES1/5target genes, NOTCH
components) among telencephalic DE genes.n, UMAP embedding showing
annotation of multiome SHH experiment. o, UMAP coloured by the expression of
selected marker genes.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X’ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  See Methods. All codes are available upon request.

Data analysis See Methods. The Pando R package is available on GitHub (https://github.com/quadbiolab/Pando). Other custom code used in the analyses is
deposited on GitHub (https://github.com/quadbiolab/organoid_regulomes).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw sequencing data will be deposited into ArrayExpress. Processed data and the VCF files for demultiplexing are deposited on Zenodo (https://doi.org/10.5281/
zenodo.5242913).
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Sample size Samples are listed in Supplementary Data 1.
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Data exclusions  We excluded low quality and off-target cells using criteria as described in the Methods.

Replication We analyzed multiple organoids from multiple cell lines for each different time point in the time course and multiple organoids for the
perturbation experiment. To replicate the finding in the perturbation experiment we generated two different GLI3-KO lines and a control line
in the same editing experiment and performed the multiome and sc-RNAseq experiment on both cell lines comparing to the generated
control line. The loss of dorsal telencephalon and a strong enrichment in the ventral telencephalon was shown in two independent batches.

Randomization  Experiments were not randomized

Blinding The organoids for the sc-RNAseq experiments of KO and WT organoids were performed in a blinded fashion. The organoids were chosen by a
researcher not involved in the project. Investigators were not blinded during the other experiments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
[]IPX Antibodies XI|[] chip-seq

] Eukaryotic cell lines ] Flow cytometry

|Z |:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
|:| Animals and other organisms

}X{ |:| Human research participants

XI|[ ] Clinical data

X |:| Dual use research of concern

Antibodies

Antibodies used See Methods, in the sections "Westernblot", "Immunohistochemistry" and "Bulk Cut&Tag for GLI3 and H3K27ac"

Validation See Methods, validations as provided by the manufacturer.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) See Methods, in the section "Stem cell and organoid culture".

Authentication See Methods, in the section "Stem cell and organoid culture". Cells were further authenticated based on
single cell RNA-Seq reads compared to single nucleotide polymorphisms.

Mycoplasma contamination Cell lines were tested for mycoplasma contamination on a regular basis using a PCR-based test and were found to be
negative for mycoplasma.

Commonly misidentified lines  None.
(See ICLAC register)
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Methodology

Sample preparation iPSC were brought into suspension with TrypLE and incubation of 3 min at RT. Cells were then resuspended in mTesr1 and
spun down for 5 min 300g at 4 degrees. The pellet was resuspended in mTesR1 supplemented with 100 pg/ml Primocin and
Y-27632 (final concentration 5uM). Cells were filtered trough a 30um mesh prior to sorting. Cells were collected in mTesR1
supplemented with 100 pg/ml Primocin and Y-27632 (final concentration 5uM) and plated on matrigel. Organoids were
dissocated with the papain-based dissociation kit (Miltenyi Biotec, 130-092-628) prior to sorting as described in Methods,
filtered trough a 30um mesh prior to sorting and cells were collected in PBS with 1% BSA.

Instrument BD FACS Aria Ill and BD FACS Fusion

Software FACS Diva

Cell population abundance The final sorted population was around 11% of single cells for iPSC and 30% of single cells for two month organoid culture.

Gating strategy See Extended Data Fig. 7c. Three gates were used 1) FSC-A vs SSC were used to gate for the bulk population of cells, 2) FSC-A

vs FSH-H was used to minimize doublet sorting, 3) GFP+ populations were detemerined and gated by comparing to GFP
negative controls.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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