
Nature  |  Vol 610  |  13 October 2022  |  277

Article

Personalizing exoskeleton assistance while 
walking in the real world

Patrick Slade1,2, Mykel J. Kochenderfer3, Scott L. Delp1,2 & Steven H. Collins1 ✉

Personalized exoskeleton assistance provides users with the largest improvements in 
walking speed1 and energy economy2–4 but requires lengthy tests under unnatural 
laboratory conditions. Here we show that exoskeleton optimization can be performed 
rapidly and under real-world conditions. We designed a portable ankle exoskeleton 
based on insights from tests with a versatile laboratory testbed. We developed a 
data-driven method for optimizing exoskeleton assistance outdoors using wearable 
sensors and found that it was equally effective as laboratory methods, but identified 
optimal parameters four times faster. We performed real-world optimization using 
data collected during many short bouts of walking at varying speeds. Assistance 
optimized during one hour of naturalistic walking in a public setting increased 
self-selected speed by 9 ± 4% and reduced the energy used to travel a given distance by 
17 ± 5% compared with normal shoes. This assistance reduced metabolic energy 
consumption by 23 ± 8% when participants walked on a treadmill at a standard speed 
of 1.5 m s−1. Human movements encode information that can be used to personalize 
assistive devices and enhance performance.

Exoskeletons that assist leg movement show promise for enhancing 
personal mobility but have yet to provide real-world benefits. Millions  
of people have mobility impairments that make walking slower5 and 
more fatiguing6, while millions more people have occupations that 
require strenuous locomotion7. In research laboratories, exoskele-
tons can increase walking speed1,8,9 and reduce the energy required 
to walk2–4,10–16, but these benefits have not yet translated to real-world 
conditions17. Providing beneficial assistance in the real world is difficult 
for several reasons: the specialized equipment used to personalize 
assistance is not available outside the laboratory; unlike walking on a 
treadmill, everyday walking occurs in many bouts of varying speed and 
duration; and devices must be self-contained and easy to use. In this 
study, we addressed each of these challenges to demonstrate effective 
exoskeleton assistance under naturalistic conditions.

Maximizing the benefits of exoskeleton assistance requires 
personalization to individual needs, which is challenging outside 
of a laboratory. The largest improvements in human walking per-
formance have been achieved by individualizing assistance using 
human-in-the-loop optimization1–4, a process in which device con-
trol is systematically tuned to improve human performance while a 
person uses a device. Measuring important aspects of performance, 
including metabolic rate16, has required expensive laboratory equip-
ment and long periods of steady treadmill walking18. Individualizing 
consumer or medical devices in this way would require several long 
visits to a specialized clinic, which would be costly and impractical. 
If human performance could instead be estimated quickly, using 
low-cost wearable sensors, optimization could be performed as 
people moved naturally through their daily lives. This might be 
possible using musculoskeletal modelling19, but such simulations 
are computationally intensive20 and require individualization. 

Data-driven models may be able to capture important features of 
human performance more simply21–25.

We developed a data-driven model that relates human motion during 
exoskeleton-assisted walking to metabolic energy consumption and 
can be used outside the laboratory. Human movement arises from 
the interaction between the inertia of our body segments and forces 
from the environment and our muscles. We hypothesized that careful 
analysis could extract meaningful information about muscular energy 
expenditure from subtle changes in motion. In a previous experiment4, 
participants walked with exoskeleton assistance in about 3,600 differ-
ent conditions while data were recorded from both laboratory equip-
ment that measure biomechanical outcomes and low-cost, portable 
sensors on the exoskeleton. We trained a logistic regression model 
using this previous dataset (Extended Data Fig. 1). The data-driven 
classification model compared sensor data from two different patterns 
of exoskeleton assistance, each defined by a ‘control law’, and classi-
fied which control law provided a larger benefit. The model inputs 
were ankle angle and ankle velocity, segmented by gait cycle, and the 
torque parameters for each control law. The model then estimated the 
likelihood that the first control law resulted in lower metabolic energy 
expenditure. In essence, the classifier favoured later, larger exoskeleton 
torques and smooth, well timed movements that led to increased ankle 
extension at toe-off. During optimization, the user experienced a set 
of control laws, the data-driven model compared all possible pairs of 
control laws, the control laws were ranked, and an optimization algo-
rithm26 updated the estimate of the optimal parameters and generated 
a new set of control laws to evaluate (Fig. 1). This process was repeated 
until convergence criteria were met.

Data-driven optimization can use the information embedded in 
our movements to identify exoskeleton assistance patterns that are 
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as effective as those found with laboratory-based methods, but in 
one-quarter of the time. We conducted experiments to optimize assis-
tance with a tethered exoskeleton emulator (Fig. 2a). The data-driven 
optimization evaluated eight sets of control laws in 32 min, four times 
faster than the state-of-the-art approach using indirect respirometry 
to measure metabolic rate2 (Fig. 2b). Data-driven and metabolic opti-
mization approaches identified the same participant-specific adjust-
ments to assistance (Fig. 2c). Data-driven Optimized assistance and 
Metabolic Optimized assistance resulted in similar metabolic cost, 
which was significantly lower than the metabolic cost of walking with 
the exoskeleton in a Zero Torque mode (Fig. 2d). The average of the 
Data-driven Optimized parameters matched those of Generic assis-
tance, which were taken from the best previous study4, but Data-driven 
Optimized assistance provided a larger benefit. This demonstrates the 
importance of individualization; even subtle changes in torque can 
lead to substantial performance enhancements. To test the general-
ity of the data-driven model, we conducted experiments at a range 
of additional speeds and inclines with a subset of participants. The 
Data-driven Optimized assistance and Metabolic Optimized assistance 
resulted in similar torque profiles and metabolic cost reductions across 
these conditions (Fig. 2e). This shows that the data-driven classifica-
tion model captured a fundamental relationship between exoskeleton 
torque, ankle movement and whole-body walking effort. The model 
approximates this biological relationship, precluding statistical guar-
antees of optimality. Nevertheless, our results demonstrate that human 
movement encodes information related to underlying physiological 
processes, and that data-driven methods can extract this information 
without laboratory equipment or complex multi-scale models.

We developed a speed-adaptive controller to adjust assistance based 
on natural variations in walking speed. People vary their walking speed 
widely during the day27 in response to changes in context28 and con-
straints29. Variations in speed complicate exoskeleton control and may 
help explain why assistive devices that reduce walking effort during 

steady walking on a treadmill have not provided similar benefits during 
use under more natural conditions17. The speed-adaptive controller 
we developed (Extended Data Fig. 2) interpolated between assistance 
parameter values previously optimized at different walking speeds 
(Fig. 3a) based on the estimated speed of each step (Fig. 3b). We tested 
Speed-adaptive assistance on a subset of participants as they walked on 
a treadmill with sinusoidally varying speeds. Speed-adaptive assistance 
reduced the energetic cost of walking more than Generic assistance 
with constant parameters (Fig. 3c). Adjusting exoskeleton assistance 
based on speed is an effective strategy for handling speed variations 
that occur during normal walking.

We created an untethered exoskeleton for real-world assistance 
using a design approach based on emulation and optimization. Wear-
able robotic devices are typically designed using models or intuition, 
built as specialized prototypes, and then tested. However, humans are 
highly complex and diverse, making it difficult to predict the range of 
characteristics that will be optimal across a population. As a result, 
most devices designed this way are unable to provide optimal assis-
tance and often provide no benefit at all. To develop the untethered 
exoskeleton used in this study, we first performed experiments with 
versatile exoskeleton emulators30. These laboratory-based, tethered 
hardware systems allowed us to perform a wide range of control and 
optimization experiments (Figs. 1–3) and identify the electromechani-
cal characteristics that our untethered device would need. Using these 
design guidelines, we built a specialized, untethered device that pro-
vides predictable, meaningful benefits. This emulation and optimiza-
tion design paradigm can reduce the cost and time required to develop 
new wearable robots.

On the basis of the results of our emulator experiments, we designed 
a specialized, untethered ankle exoskeleton. The system consisted of an 
exoskeleton worn on each ankle and a battery pack at the waist (Fig. 4a 
and Supplementary Video 1). The exoskeleton was designed to apply the 
range of optimal torque profiles identified in the tethered optimization 
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Fig. 1 | Data-driven exoskeleton optimization. We used data from laboratory 
tests to train a model that can perform optimization in real-time outside the 
laboratory. a, During optimization, the participant walks with the exoskeleton 
and experiences a sequence of k control laws, each defining a pattern of 
exoskeleton torque. The optimizer’s goal is to identify the torque pattern that 
maximizes performance. b, Ankle angle (θ) and ankle velocity ( ̇θ) for each 
stride are recorded from sensors on the exoskeleton. c, All possible pairs of 
control laws are then compared (C). For each pair, differences in segmented 
motion data (Δ) are calculated by subtraction. d, Differences in motion are 
multiplied with classifier model weights (W), using a dot product operation, to 

obtain the pair coefficient (wij). e, A logistic function uses the pair coefficient to 
compute the probability (pij) that the first control law is more beneficial than 
the second. f, The score (S) for each control law (n) is computed by summing the 
probabilities of all pairs that include that control law. g, Control laws are then 
ranked by score and used to update an optimizer. h, The optimizer selects a set 
of k new control laws, consisting of d parameters, to evaluate. This optimization 
process is repeated until convergence criteria are satisfied, in this case a set 
number of evaluations having been completed. During real-world experiments, 
optimization was performed on the exoskeleton’s microcontroller.
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study (Fig. 2) while having low mass (1.2 kg per ankle). A brushless motor 
and custom drum transmission applied torque about the ankle joint, 
while portable electronics sensed the user’s motion and performed 
real-time control and optimization (Fig. 4b and Extended Data Fig. 3). 
The exoskeleton provided a peak torque of 54 Nm (Fig. 4c), which was 
about 50% to 75% of the biological ankle torque of participants in this 
study31. Torque was controlled using a mixture of classical feedback 
control and iterative learning32, with a tracking error of less than 1% of 
the peak torque. Maximum assistance could be applied continually 
without overheating the motor (Fig. 4d). The battery weighed 0.3 kg and 
powered the exoskeleton for at least 30 min on a single charge. While 
the energy cost of carrying mass near a distal joint is high33, locating 
motors and electronics near the assisted joint results in more efficient 
power transmission, a simpler design and lower total weight, which 
can yield large net benefits.

We used the information encoded in a single walking step to optimize 
exoskeleton assistance while people walked naturally in short bouts of 
varying speed. People take thousands of steps per day, but real-world 

walking occurs in many separate bouts, most of which are short, with 
90% being less than 100 steps in duration34. Speed is relatively consist-
ent within each bout, but varies across bouts27. This fragmentation 
presents a challenge for collecting optimization data and efficiently 
fine-tuning assistance. Our data-driven optimization method addresses 
the problem of gathering useful data from short walking bouts by using 
kinematic data collected with every step. In pilot tests, we found that 
we could accurately compare control laws based on just 44 continu-
ous steps, opportunistically captured during natural bouts, allowing 
our system to accumulate data from about 77% of steps in a typical 
day34. We addressed variations in speed by defining speed bins based 
on observed human behaviour, associating collected data with the 
appropriate bin, noting when sufficient data for any one speed bin had 
been accumulated, applying the data-driven classifier to rank assistance 
parameters and using these rankings to update the optimal parameter 
estimates for all speed bins (Extended Data Fig. 4).

Real-world optimization quickly improved assistance during natural 
walking conditions. We conducted experiments in which participants 
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Fig. 2 | Data-driven optimization results. a, Exoskeleton assistance was 
applied using a tethered ankle exoskeleton emulator43. b, Assistance parameters 
optimized using the data-driven method converged to within 5% of the 
parameters identified using metabolic optimization, but in one-quarter of the 
time (n = 9). The error bars represent the standard deviation. c, Individual 
participants had unique Data-driven Optimized parameters, centred around 
the Generic assistance parameters. d, Data-driven Optimized assistance and 
Metabolic Optimized assistance resulted in similar metabolic costs of walking, 
significantly lower than with Zero Torque, Normal Shoes or Generic assistance, 

when walking at 1.25 m s−1 (ANOVA, n = 9, *P ≤ 2.7 × 10−8, **P ≤ 2.4 × 10−5, 
***P ≤ 0.047). The boxes extend from the lower to upper quartile values of the 
data, with a line at the median and a dot at the mean. The whiskers extend 
between the minimum and maximum of the data values. e, Optimized torque 
patterns varied with walking condition, with similar changes in Data-driven 
Optimized and Metabolic Optimized parameters. Data-driven Optimized 
assistance and Metabolic Optimized assistance led to similar reductions in 
metabolic rate when walking at 0.75 m s−1 (slow), 1.25 m s−1 (normal) and 
1.75 m s−1 (fast), and on a 10° incline at 1.25 m s−1.
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performed one hour of walking in short bouts with exoskeleton assis-
tance (Fig. 5a) on a public sidewalk (Fig. 5b and Supplementary Video 2). 
Participants were given ecologically relevant35 audio prompts28 that 
caused them to self-select walking speeds that matched a ground-truth 
distribution27 (Fig. 5c). Prompts were provided in random order and 
at specific intervals to obtain bout durations that also matched a 
ground-truth distribution34 (Fig. 5d). The optimizer steadily converged 

throughout the experiment (Fig. 5e), indicating steadily decreasing 
uncertainty as to which exoskeleton parameters would result in optimal 
performance according to the data-driven model. Post hoc analysis 
showed that the optimizer did not reach steady state, suggesting that 
additional time could have provided a better estimate of the optimal 
parameters. Peak torques optimized during naturalistic walking were 
larger than those from treadmill-based experiments (Fig. 5f). Partici-
pants may have felt more stable during outdoor walking36, allowing 
them to benefit from larger torques, consistent with observations from 
other comparisons of outdoor and treadmill walking with exoskeleton 
assistance37.

Real-world Optimized assistance increased self-selected walking 
speed and reduced the metabolic energy expended per distance 
travelled during naturalistic walking. In a separate validation experi-
ment, participants performed a fixed set of outdoor walking bouts 
with varying durations and speeds, while ground-truth metabolic rate 
and speed were measured (Supplementary Video 3). Condition order 
was randomized (Extended Data Table 1). With Real-world Optimized 
assistance, the energetic cost of transport was reduced by 17 ± 5% 
(analysis of variance (ANOVA), n = 10, P = 0.039) and walking speed was 
increased by 9 ± 4% (ANOVA, n = 10, P = 0.031) compared with Normal 
Shoes (Fig. 5g). These energy savings are equivalent to removing a 9.2 kg 
backpack38, and the increase in walking speed of 0.12 m s−1 is similarly 
meaningful39. Real-world Optimized assistance provided roughly twice 
the benefits of Generic Speed-adaptive assistance, indicating that per-
sonalization was an important contributor to these benefits. Generic 
Speed-adaptive assistance may have provided a larger benefit if it had 
used the average of the torque parameters optimized during outdoor 
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walking, rather than treadmill walking. These results demonstrate that 
lower-limb exoskeletons can provide meaningful benefits under natu-
ralistic walking conditions and provide benchmarks for assessing the 
real-world benefits of future devices. Assistance can be personalized 
automatically in a natural setting, seamlessly improving human–robot 
interaction over time.

Assistance optimized under real-world conditions produced even 
larger benefits under standard treadmill conditions. After performing 
optimization in a public setting, we tested our untethered exoskeleton 
during standardized laboratory walking conditions to directly compare 
with previous devices16. Real-world Optimized assistance reduced the 
energy cost of treadmill walking by 16% at 1.25 m s−1, 23% at 1.5 m s−1, and 
18% when walking up a 10° incline (ANOVA, n = 10, P < 0.023) compared 
with Normal Shoes (Fig. 5h and Extended Data Table 2), approximately 
twice the benefits of the previous devices with the best performance 
for these conditions (Extended Data Fig. 5). The energy savings during 
inclined walking were equivalent to removing a 15.2 kg backpack40. 

Pilot results suggest that the device provides similar benefits under 
other conditions, including walking on a 5° incline, loaded walking and 
stair climbing (Extended Data Fig. 6). Emulator-informed hardware 
design coupled with opportunistic, data-driven optimization led to 
exceptional performance enhancements across walking conditions.

Participants reported that the untethered exoskeleton was easy 
to use and relatively comfortable. Wearable robotic devices should 
be usable, comfortable and functional for everyday activities to be 
adopted by users41. Participants reported that the exoskeleton was 
relatively easy to use (Extended Data Table 3), ranking it in the 65th 
percentile of previously surveyed consumer devices42. Participants 
found that the exoskeleton did not interfere with their clothing and 
had a manageable weight, but were neutral as to whether it would be 
comfortable to wear throughout the day (Extended Data Table 4). Par-
ticipants reported that it was easy to put on and take off the exoskeleton, 
stand while wearing the exoskeleton, and walk indoors and outdoors 
for extended periods with the exoskeleton (Extended Data Table 5). 

15 m

Start

0.9

1.6

End

Bouts > 210 s

f

a b dc e

O
p

tim
iz

at
io

n 
co

nv
er

ge
nc

e 
(

)

g

0%

0%

0%

–23%

–16%

–18%

Individual participants
Generic Speed-adaptive

0.8 1.3 1.8

Walking speed (m s–1)

0

2.3

P
ro

b
ab

ili
ty

 d
en

si
ty

0 200

Bout time (s)

0

15

N
um

b
er

 o
f b

ou
ts

W
al

ki
ng

 s
p

ee
d

 (m
 s

–1
)

Generations

0 24
0

SoOptimization bouts

Validation bouts
Ground-truth 
distribution

1.07 1.33 1.58 1.07 1.33 1.58
0

10

40

O
p

tim
iz

ed
 r

is
e 

tim
e 

(%
)

Gait cycle (%)

Rise time

To
rq

ue

Gait cycle (%)

To
rq

ue Peak 
torque

O
p

tim
iz

ed
 p

ea
k 

to
rq

ue
 (N

m
)

0

35

54

Walking speed (m s–1) Walking speed (m s–1)

0

1

2

3

4

5

C
os

t 
of

 t
ra

ns
p

or
t 

(J
 k

g–1
 m

–1
)

0%

0%

–9%

–17%

0

1.5

W
al

ki
ng

 s
p

ee
d

 (m
 s

–1
)

5% 9%

*

*

Outdoor bouts
n = 10

M
et

ab
ol

ic
 c

os
t 

(W
 k

g–1
)

0

2

4

6

8

*

*

*

1.25 m s–1

n = 10
1.5 m s–1

n = 10
10º incline

n = 10

h
Normal Shoes

Generic Speed-adaptive

Real-world Optimized

Fig. 5 | Real-world optimization of exoskeleton assistance. a, Participant 
walking on the public validation course. b, Map of the 566-m course used for 
optimization and validation. Participants walked the course repeatedly during 
optimization. c,d, Distribution of self-selected walking speeds (c) and walking 
bout durations (d) during optimization and validation, compared with 
previously recorded ground-truth distributions of real-world walking data27,34. 
e, As assistance was optimized over one hour of naturalistic bouts of walking, 
the convergence parameter (σ) continually improved. The error band 
represents one standard deviation. f, Optimized parameters for each 
participant were unique. The red squares depict the Generic Speed-adaptive 
assistance parameters, consisting of constant values for peak torque 
normalized to body mass (Nm kg−1) and rise time (percent gait cycle). For ease 
of comparison, we show the Generic Speed-adaptive peak torque in Nm, 

averaged across all participants. Peak torque values in this figure are not 
normalized to emphasize that several participants reached the maximum peak 
torque that the untethered exoskeleton could provide. The inset torque 
profiles indicate how each torque parameter affected the assistance profile.  
g, During validation under naturalistic walking conditions on the public course, 
Real-world Optimized assistance substantially reduced the energy cost of 
transport and increased walking speed compared with Normal Shoes (ANOVA, 
n = 10, *P ≤ 0.039). h, Real-world Optimized assistance also substantially 
reduced the metabolic cost of walking compared with Normal Shoes during 
benchmark treadmill conditions (ANOVA, n = 10, *P ≤ 0.023). Boxes extend 
from the lower to upper quartiles, with a line at the median and a dot at the 
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Six of the ten participants reported that they would prefer using the 
exoskeleton rather than normal shoes if they were to walk the public 
course again. The device we tested is a research prototype and not a 
refined product; substantial improvements would be required to allow 
reliable, unsupervised use during typical daily activities. The survey 
results suggest that it may be possible to create mobility-enhancing 
products that are easy to use, comfortable and reliable, and that many 
people may opt to use them.

These approaches to real-world personalization, adaptive assistance 
and specialized exoskeleton design could potentially be extended to 
address the needs of workers with physically demanding jobs and peo-
ple with mobility impairments. A similar overall development approach 
could be used to address the most important outcomes for each bio-
mechanically and neurologically similar group. Assistance could aid 
a variety of tasks, such as stair climbing or lifting, and improve other 
aspects of performance, such as balance or joint pain. In each case, 
additional training data could be collected in the laboratory and used to 
train new data-driven models, illuminating the information contained 
within the body’s movements for each task. With each training dataset, 
the learned models could be made more capable, progressively build-
ing more general relationships between movement and performance 
outcomes. Data from laboratory-based emulation and optimization 
experiments could simultaneously provide design guidelines for prod-
ucts. When used regularly, we expect devices like this to become finely 
tuned to the needs of each individual, resulting in larger performance 
enhancements than observed in this study. Longitudinal experiments 
will be needed to understand how such assistance affects behaviour and 
quality of life; as moving becomes easier, we hope to find that people 
will be more active, helping them to lead healthier lives.
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Methods

Experimental design
The research objective was to personalize exoskeleton assistance dur-
ing real-world walking. To achieve this objective, we proposed a method 
of data-driven optimization, which uses portable sensors on the exo-
skeleton to personalize assistance for each participant. We hypoth-
esized that Data-driven Optimized assistance would provide larger 
reductions in metabolic rate than Generic assistance. We conducted 
a power analysis based on previous laboratory-based optimization 
experiments and found that a sample size of eight participants was 
necessary for the planned validation experiments. This analysis used 
a power of 1 − β = 0.8, a significance level of α = 0.05, the difference 
in mean metabolic rate between optimized (1.44 W kg−1) and generic 
(1.64 W kg−1) assistance from a previous experiment4, and the variabil-
ity in metabolic rate (standard deviation 0.15 W kg−1) from the same 
experiment4. In this context, β is the probability of incorrectly accept-
ing the null hypothesis. We collected data from nine participants for 
the tethered exoskeleton experiments and ten participants for the 
untethered exoskeleton experiments. We tested more participants 
than the minimum number determined by the power analysis to pro-
vide a factor of safety in case data from any participants were found to 
be unusable during later analysis. All participants that were recruited 
completed the corresponding experiment, and all data from all partici-
pants were included in each corresponding analysis. All participants 
had at least 8 h of experience walking with assistance from powered 
ankle exoskeletons, minimizing the effects of training that can occur 
while participants learn to walk with an exoskeleton4. All participants 
were volunteers and provided written informed consent before com-
pleting the protocol (IRB-48749), which was approved by the Stanford 
University institutional review board. Consent was obtained for publica-
tion of identifiable images of research participants. The experiments 
consisted of human participant testing in both laboratory and outdoor 
settings. Participants wore bilateral ankle exoskeletons and walked 
under a series of assistance conditions in a randomized order. Each 
of the experiments is described in the following sections. We used a 
one-way ANOVA to determine whether differences in the metabolic 
cost of walking across assistance conditions were different from zero.

Measuring the metabolic cost of walking
The metabolic cost of walking was computed with measurements 
from respirometry equipment. Respirometry equipment was used 
to measure the volume of carbon dioxide and oxygen exchanged on 
each breath. A standard equation was used to compute metabolic 
energy expenditure in watts for each breath44. Metabolics measure-
ments during the real-world walking experiment and validation were 
collected with portable respirometry equipment worn using a vest 
on the participant’s torso (K5, COSMED). Metabolics measurements 
during other exoskeleton experiments were collected with tethered 
respirometry equipment (Quark CPET, COSMED). Metabolics data 
were recorded during a quiet standing condition at the beginning of 
each day of experiments. This quiet standing value was removed from 
subsequent measurements to isolate the energy cost associated with 
walking and remove any absolute error associated with respirometry 
system calibration. The change in metabolic rate as a percentage of a 
baseline condition, measured within the same experiment, is reported 
as the primary outcome to account for differences in respirometry 
equipment calibration coefficients between data collections. Partici-
pants refrained from all food and drink except for water for at least 3 h 
before experiments that included respirometry measurements to avoid 
confounds from the thermal effect of food. Steady-state metabolic 
cost was computed by averaging data from the last 3 min of each 6-min 
condition. Cumulative metabolic cost was computed as the total energy 
expended during the condition45, including the metabolic cost beyond 
that of quiet standing for 3 min following completion of the condition, 

following methods from previous studies of non-steady gait23,29. Excess 
oxygen consumption and carbon dioxide production during the return 
to steady state in quiet standing reflect delays between instantane-
ous energy use at muscles and expired gas measurements that arise 
owing to mitochondrial, transport and respiratory dynamics18. Includ-
ing respiratory data from the period following activity enables more 
accurate measurement of the energy actually expended during short 
bouts of walking46. The energetic cost of transport was calculated as 
the cumulative metabolic cost divided by the total distance walked.

Exoskeleton assistance conditions
A variety of exoskeleton assistance conditions were evaluated to 
determine the benefits that they provided to the user. These assis-
tance conditions included walking in Normal Shoes and walking with 
the exoskeletons while they applied Zero Torque, Generic assistance, 
Speed-adaptive assistance, Generic Speed-adaptive assistance, Meta-
bolic Optimized assistance, Data-driven Optimized assistance and 
Real-world Optimized assistance.

We tested walking in Normal Shoes, without the exoskeleton, as a 
baseline condition for the untethered exoskeleton experiments. Ide-
ally, assistance from an untethered exoskeleton would lead to a lower 
metabolic cost than walking in Normal Shoes, providing a net benefit to 
the user. Separate pairs of the same type of Nike running shoe, weighing 
0.3 kg per shoe, were used for the Normal Shoes condition and incor-
porated into the tethered exoskeleton and the untethered exoskeleton.

The Zero Torque mode was an exoskeleton condition in which the 
exoskeleton provided no assistive torques. During this mode, the exo-
skeleton maintained a small amount of slack in the cable transmission 
so that virtually no torque was applied to the ankle. This condition 
was used as a baseline for experiments with the tethered exoskeleton 
(but not for experiments with the untethered exoskeleton) because 
it allowed us to isolate the benefits of exoskeleton assistance from 
the energetic costs of wearing the emulator, which were expected to 
differ from those of an untethered device specialized to provide the 
same assistance.

The Generic assistance condition used a fixed set of assistance param-
eters identified from a previous optimization experiment. Generic 
assistance patterns have been found to reduce the metabolic cost of 
walking less than assistance personalized to each individual2–4. The 
tethered exoskeleton experiments in this study used Generic assistance 
computed by averaging the optimized parameters from a group of 
participants in a previous experiment using the same tethered ankle 
exoskeleton that had provided the largest energetic benefits owing to 
exoskeleton assistance so far4. The Generic assistance pattern allowed 
us to estimate the contributions of personalization through data-driven 
optimization in tests with the tethered emulator.

During Speed-adaptive assistance, the exoskeleton used estimates 
of walking speed to select assistance parameters expected to be 
more effective at that speed. The speed-adaptive control approach 
is described in detail in ‘Speed-adaptive controller and validation 
experiment’. In the Speed-adaptive condition, the controller interpo-
lated between separate sets of assistance parameters that had been 
optimized for the same participant at walking speeds of 0.75 m s−1, 
1.25 m s−1 and 1.75 m s−1. This condition was used to test the efficacy of 
the speed-adaptive control approach for handling speed variations 
during treadmill walking with the tethered exoskeleton emulator.

In the Generic Speed-adaptive assistance condition, the 
speed-adaptive controller selected assistance parameters expected to 
be more effective at that speed for an average participant. The control-
ler interpolated between separate sets of Generic assistance parameters 
for each walking speed, computed by averaging the optimized assis-
tance profiles from the tethered exoskeleton experiments in this study 
(Fig. 2). The generic parameters for 0.75 m s−1 and 1.75 m s−1 were com-
puted by averaging across three participants’ optimized parameters, 
whereas the generic parameters for walking at 1.25 m s−1 were computed 
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by averaging ten participant’s optimized parameters. The Generic 
Speed-adaptive assistance condition was compared with Real-world 
Optimized assistance during overground walking with the untethered 
exoskeleton. Ideally, the Generic Speed-adaptive parameters would 
have been taken as the average values from real-world optimization, 
but those values were not yet known at the time the experiment was 
conducted. The Generic Speed-adaptive condition provided the best 
available comparator for isolating the benefits of personalization dur-
ing overground experiments with the untethered exoskeleton.

Metabolic Optimized assistance was personalized based on met-
abolic measurements using a previously established optimization 
method2 for identifying the exoskeleton control parameters that mini-
mize the metabolic cost of walking for a specific person. To perform 
metabolic optimization, a participant walked on a treadmill while 
receiving exoskeleton assistance. The same assistance profile, or ‘con-
trol law’, was provided to the participant for 2 min while respirometry 
measurements were recorded and the steady-state metabolic cost of 
walking for that control law was estimated18. Participants repeated 
this process of walking on a treadmill for 2 min per control law until a 
fixed number of control laws had been evaluated. We refer to the set 
of control laws to be evaluated as one ‘generation’ of control laws—the 
terminology used in evolution-inspired optimization strategies such 
as the covariance matrix adaptation evolutionary strategy (CMA-ES)26. 
Each generation of control laws must be tested before updating the 
estimate of the optimal control law and generating a new generation of 
control laws to test. On the basis of heuristics relating generation size 
to the number of parameters to be optimized26, the lab-based experi-
ments with four optimization parameters had participants complete 
eight control laws per generation. After each generation, an optimizer 
(CMA-ES) ranked the control laws in order of metabolic cost, updated 
the optimization parameters and selected a new set of promising 
control laws to evaluate. This optimization approach was established 
in previous experiments that demonstrated large improvements in 
the metabolic energy cost of walking and running with exoskeleton 
assistance2,4,47. This optimizer was selected because it is sample effi-
cient, meaning that it requires relatively few evaluations to reach a 
reliable estimate of the optimal parameters. In the context of exoskel-
eton optimization, that means fewer exoskeleton control modes to be 
experimentally tested on the human participant, which is important 
both to study design and to real-world use of devices that personalize 
assistance. Metabolic Optimized assistance was used to validate the 
data-driven optimization approach in the first experiments with the 
tethered exoskeleton emulator.

Data-driven Optimized assistance was personalized using data-driven 
optimization. The data-driven optimization used the same optimiza-
tion framework as the metabolic optimization, except that it used the 
data-driven classifier, rather than indirect respirometry measure-
ments, to perform the ranking step. The classifier was trained on data 
from a previous laboratory experiment4 and compared control laws 
based on the exoskeleton torque parameters applied and the result-
ing ankle angle and ankle angular velocity (Fig. 1 and Extended Data 
Fig. 1). The data-driven optimization condition was applied in tests of 
the data-driven optimization approach using the tethered exoskeleton 
emulator.

Real-world Optimized assistance used speed-adaptive control with 
parameters that were personalized using the data-driven optimization 
approach while walking with the untethered ankle exoskeleton under 
naturalistic conditions. The controller used the same speed estimation 
and adaptation approach as with the Generic Speed-adaptive condi-
tion, except that the parameters for each speed were personalized 
to the individual participant using opportunistic optimization. The 
Real-world Optimized parameters were computed using the approach 
detailed in ‘Opportunistic optimization approach’. The Real-world 
Optimized condition was applied in outdoor and treadmill tests with 
the untethered exoskeleton.

Data-driven optimization
Data-driven optimization personalized assistance using a data-driven 
classification model to determine which exoskeleton control param-
eters provided the largest benefits for each person. The participant 
walked while receiving a sequence of different patterns of exoskeleton 
assistance, each defined by the corresponding control law. During 
laboratory-based experiments, participants walked on a treadmill 
for 30 s for each control law. During real-world experiments, partici-
pants walked overground for 44 continuous steps for each control 
law. A fixed number of exoskeleton control laws, comprising one gen-
eration of the evolution-inspired optimizer, were then ranked using 
the data-driven classifier. The optimizer then updated its estimate 
of the optimal parameters and generated a new set of control laws to 
evaluate. The following paragraphs detail what type of data were col-
lected, how the data were processed, how the data-driven classification 
model evaluated control laws, how the optimizer was updated based 
on the data-driven classifications and how a new set of control laws was 
selected for evaluation in the next generation of optimization (Fig. 1).

Exoskeleton torque control parameters, defined by the control law, 
were fixed within each evaluation period. The person experienced sev-
eral control laws before the data-driven model processed data and the 
optimizer updated its estimate of the optimal assistance parameters 
and generated a new set of control laws to evaluate.

The data-driven model input consisted of carefully processed porta-
ble sensor data, including ankle angle and ankle velocity measurements 
and the control law parameters that set the pattern of exoskeleton 
torque. The angle and velocity measurements were sampled using an 
absolute rotary encoder at the ankle joint of the exoskeleton worn on 
the left leg. The control law parameters consisted of four values: peak 
torque magnitude, peak time, rise time and fall time2.

Portable sensor data were processed by segmenting the ankle angle 
and velocity measurements by gait cycle and then discretizing the data 
for each gait cycle into a discrete number of bins. The gait cycles were 
segmented whenever a heel strike was detected by the pressure-sensing 
insoles. The first six gait cycles of data were discarded to avoid con-
founds from fast adaptation48 by the person in response to the new 
assistance pattern—in pilot tests, we found that data from these first 
six steps exhibited substantial changes in ankle kinematics, while sub-
sequent strides were more consistent. The remaining gait cycles were 
discretized by averaging the measurements within each of 30 discrete 
bins and then averaging each bin across the gait cycles for that control 
law. The processed data were reshaped into a single vector with 64 val-
ues: 30 binned values for the ankle angle across the gait cycle, and 30 
binned values for the ankle velocity across the gait cycle, and 4 values 
for the torque parameters. The model input consisted of the vector of 
data for one control law subtracted from the vector of data for a dif-
ferent control law, which also comprised 64 values. This difference in 
the sensor measurements provided the model with information about 
how the person’s movements and exoskeleton torque differed between 
the two control laws. The choice to segment data by gait cycle follows 
our previous findings that data-driven models can more accurately 
estimate metabolic energy expenditure from sensors worn by unas-
sisted humans when the data are formatted in this way23.

The data-driven classification model was trained to compare two 
control laws at a time, determining which control law was estimated to 
have provided a larger reduction in the metabolic cost of walking. The 
data-driven classification model was a logistic regression model. To 
train the data-driven classifier, we input previously collected data4 
that included portable sensor data, in the form of exoskeleton joint 
angles and velocities, and ground-truth labels, in the form of meta-
bolic measurements, for many exoskeleton control laws. The sensor 
data were taken as input into the model to estimate the likelihood that 
the first of the compared control laws resulted in a lower metabolic 
cost of walking compared with the second control law. The resulting 



probability was a continuous value from 0 to 1, with 1 indicating the 
highest likelihood that the first control law reduced the metabolic 
cost of walking more than the second control law. The ground-truth 
labels were computed by subtracting the measured metabolic costs, 
estimated from 2 min of respirometry data, for the two control laws. A 
label with a negative value indicated that the first control law was more 
beneficial, meaning that it reduced the metabolic cost of walking more 
than the second control law. A positive-valued label indicated that 
the second control law was more beneficial. The previously collected 
training data were from an experiment in which 10 participants walked 
under approximately 3,600 different exoskeleton control laws4. When 
training the data-driven classifier, we used regularization, a technique 
that encourages simpler models and avoids overfitting to training 
data, to improve model estimates for new data points that were not 
in the training set. In this case, we used a lasso regularization term 
that penalized the absolute value of the model weights multiplied by 
a regularization parameter with a value of 1.

The data-driven classification model was trained to capture a rela-
tionship between leg movement, exoskeleton torque parameters 
and the metabolic cost of walking with assistance. The linear weights 
used by the data-driven classifier are visualized using a colour code in 
Extended Data Fig. 1. To aid interpretation, we also overlay the mean 
difference for each model input as a black line. This was calculated as 
the value from the control law resulting in lower metabolic rate minus 
the value from the control law resulting in higher metabolic rate, aver-
aged across all pair-wise comparisons, such that the sign of the mean 
difference is meaningful. We also provide the cumulative contributions 
of each term in the model to classification over the entire training set. 
The percent contributions are calculated as the absolute value of the 
product of the model weight and the difference input, summed over 
all pair-wise comparisons, divided by the sum over all model terms. 
Even linear data-driven models can be difficult to interpret because of 
the complex interactions between model terms through the dynamics 
of the underlying system, which can be nonlinear and coupled. In this 
case, the underlying system is a human walking with an exoskeleton, 
and we expect strong interactions between exoskeleton torques, joint 
velocities and joint angles, and between states at different times in the 
gait cycle. The model may be capturing aspects of these interactions 
in non-obvious ways. Nevertheless, we can gain some intuition about 
the relationships that the model may have identified if we consider the 
effects of key model terms independently.

The model weights associated with differences in ankle kinematics 
suggest that a lower metabolic rate was associated with increased ankle 
plantarflexion at toe-off, while guarding against premature onset of 
push-off, excessive plantarflexion velocity and reduced dorsiflexion 
mid-stance. The largest single contributor to classification based on 
ankle kinematics, constituting about 10% of the total, favoured a larger 
plantarflexion angle at 62% stride, the time of toe-off during normal 
walking. A large negative weight on the difference in ankle velocity at 
48% stride seemed to penalize conditions that resulted in premature 
onset of ankle push-off. A sequence of negative weights on ankle plan-
tarflexion velocity during push-off seemed to favour slower, smoother 
movement during that phase. Taken together, these velocity regulation 
terms constituted about 16% of the total classification. Smaller nega-
tive weights on ankle angle at 38% stride and ankle velocity before the 
onset of push-off suggest a preference for conditions with greater 
mid-stance dorsiflexion. The model terms associated with ankle angle 
and velocity were most informative during late stance, when the con-
centric contractions of the plantarflexor muscles are less efficient and 
exoskeleton torque may have the most capacity to reduce metabolic 
cost49,50. During the leg swing phase, model terms contributed little 
to the total classification, consistent with expectations for an ankle 
exoskeleton that produced no torque when the foot was off the ground. 
The sum of all model weights associated with ankle angle and velocity 
were 10% and 23% of the total, respectively.

The model weights on differences in torque parameter values indi-
cated that lower metabolic rate was associated with a later time of 
peak torque and, to a lesser extent, a larger peak torque magnitude. 
Exoskeleton assistance was governed by a torque pattern defined by 
four parameters: peak torque magnitude, peak time, rise time and fall 
time2. These four parameters had allowable ranges of 0 to 1 Nm kg−1, 40% 
to 55% stride, 20% to 40% stride, and 10% to 20% stride, respectively. 
Fall time was further constrained to be at most equal to the difference 
between peak time and the time of toe-off, which prevented application 
of torque during the swing phase. The largest single contributor to clas-
sification based on exoskeleton torque, constituting about 60% of the 
total, favoured applying peak torque at a later time in the gait cycle. As 
the peak time was constrained, this term had the effect of maintaining a 
peak time close to the upper limit of 55% stride. Consequently, fall time 
was effectively constrained to its lower bound of 10% stride. The large 
model weight on peak time is consistent with previous observations 
that the timing of ankle exoskeleton assistance is important51, and that 
later onset of torque assistance can correspond to larger improvements 
in metabolic rate52. The data-driven model also favoured larger peak 
torque magnitudes, with the associated term contributing about 4% 
to the total classification. Interestingly, peak torque was not driven to 
its upper limit for most participants or conditions, and the classifica-
tion contribution of this term was about ten times less than the sum of 
contributions from ankle kinematics. This suggests that how a person 
reacts to exoskeleton assistance is more important for determining 
metabolic rate than the magnitude of the torque and power provided 
by the exoskeleton.

Exoskeleton control laws were ranked using the probability values 
estimated by the data-driven classifier. Each pair of control laws that 
were passed to the data-driven classification model yielded one prob-
ability value, defining whether the first control law was expected to have 
provided a larger benefit than the second control law. All possible pairs 
of control laws were classified with the data-driven model to obtain 
a complete set of probability values. Each control law was scored by 
summing the probabilities from all pairs that included that control law. 
The control laws were ranked by the magnitudes of their scores, with a 
larger value indicating that the control law was more likely to provide a 
larger reduction in the metabolic cost of walking (Fig. 1). This ranking 
step replaced the previous approach based on metabolic measure-
ments from indirect respirometry equipment, allowing optimization 
to take place outside the laboratory using inexpensive sensors and a 
microcontroller on the exoskeleton. Using the data-driven ranking, 
the optimizer then updated its internal parameters and generated a 
new set of control laws to evaluate. The new estimate of the optimal 
control law was equal to the weighted average of the best-performing 
control laws. New control laws were selected from a distribution around 
this estimate of the optimum, with the shape of the distribution set 
by the covariance matrix and the spread of the distribution set by the 
convergence parameter.

The data-driven optimization process can be better understood by 
working through these steps using example data. Imagine that we have 
three control laws, labelled 1, 2, and 3, which happen to be in order of 
increasing metabolic cost and decreasing peak torque. Imagine that 
these control laws had identical torque timing parameters and resulted 
in identical ankle angles and ankle velocities. When performing the 
three pair-wise comparisons (Fig. 1c), the differences between ankle 
angle and ankle velocity would be zero. The differences between torque 
parameters (ΔC12, ΔC13 and ΔC23) would each be a vector with one posi-
tive value followed by three zeros. When taking the dot product of the 
parameter differences with the model weights on control parameters, 
which are all positive (Fig. 1d), the pair coefficients (w12, w13, and w23) 
would all be positive scalars. For each of these pair coefficients, the 
logistic function (Fig. 1e) would return a probability greater than 0.5, 
indicating that the first control law in the pair is likely to have a lower 
metabolic cost than the second control law. Let us imagine that each of 
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the probability values (p12, p13, and p23) was 0.9. When performing the 
control law scoring step (Fig. 1f), the score for the first control law (s1) 
would be the sum of p12 and p13, or 1.8. The score for the second control 
law (s2) would be the sum of p21 and p23. As p21 is the complement of 
p12, p21 = 1 – p12 = 0.1. Thus, s2 would equate to 1. The score for the third 
control law (s3) would be the sum of p31 and p32, or 0.2. Thus, the scores 
would correctly rank the control laws in terms of metabolic cost. The 
optimizer would then use this ranking to perform an update, estimating 
that the optimal torque parameters were close to those of control law 
1, but slightly offset towards control law 2. The optimizer would then 
select new control laws to evaluate, drawn from a distribution around 
the new estimate of the optimal parameters (Fig. 1g).

Tethered optimization experiments
To compare the efficacy of data-driven optimization to a range of other 
assistance conditions, we conducted tethered exoskeleton experiments 
in an indoor laboratory setting. Participants wore tethered bilateral 
ankle exoskeleton emulators43. Exoskeleton assistance was governed 
by a torque pattern characterized by four parameters: peak torque 
magnitude, peak time, rise time and fall time2. The exoskeleton control 
loop ran at 1,000 Hz on a real-time computer (Speedgoat). Exoskeleton 
sensor measurements were recorded at a rate of 2,000 Hz, including 
pressure values from shoe insoles, commanded torque parameters, 
measured torque, ankle angle, and ankle velocity. Measurements were 
used to estimate time within the gait cycle as a percentage of the total 
gait cycle time, which was used to calculate the desired torque. Torque 
tracking was accomplished using a combination of classical feedback 
control and iterative learning, which accounted for errors that consist-
ently occurred at the same point in the gait cycle on each step30.

Two tethered exoskeleton experiments were used to evaluate the 
effectiveness of various assistance conditions. The first experiment 
compared assistance conditions while participants walked at 1.25 m s−1, 
a normal walking speed previously used for metabolic optimization 
experiments2,4. Healthy young adults (n = 9, 5 men and 4 women; age, 
24.8 ± 1.8 yr; body mass, 65.3 ± 8.0 kg; height, 1.73 ± 0.07 m) completed 
a two-day experimental protocol. On the first day, participants per-
formed experiments to personalize assistance parameters with meta-
bolic optimization and data-driven optimization, in a randomized 
order. Participants completed eight generations of optimization for 
each approach. Each generation consisted of eight control laws. The 
optimizations were initialized with the Generic assistance parameters, 
corresponding to the average of the optimized parameters identi-
fied for a previous group of expert participants4. The optimizations 
were initialized with the covariance matrix set to the identity matrix 
and a scaling factor that corresponded to 20% of the range of the nor-
malized assistance parameters (a sigma value of 0.1). The metabolic 
optimization control laws lasted 2 min, which allowed steady-state 
metabolic cost to be estimated from respirometry data with a good 
balance between the time required for each control law and estimation 
accuracy2. This led to a total evaluation time of 128 min of walking. 
During data-driven optimization, each control law was evaluated for 
30 s, sufficient to obtain an accurate estimate of participant motions, 
which were nearly steady following the rapid adaptation phase23. This 
required a total evaluation time of 32 min of walking. For each par-
ticipant, the parameters identified using data-driven and metabolic 
approaches were similar. For example, optimized peak torque values 
were well correlated across methods (R2 = 0.76, P = 1.4 × 10−4, n = 9). 
On the second day, participants performed a standing rest condition 
followed by assistance conditions including Normal Shoes and walking 
with the exoskeletons under Zero Torque, Generic assistance, Meta-
bolic Optimized assistance and Data-driven Optimized assistance. 
The assistance conditions for these validation tests were randomized 
and presented in a double-reversal order, as ABCDDCBA, to mitigate 
the effects of trial order related to within-day adaptation and fatigue. 
Each condition lasted for 6 min and included metabolic measurements.

The second experiment was used to evaluate the same set of assis-
tance conditions at additional speeds and treadmill grades. A subset 
of healthy adult participants from the first experiment (n = 3, 3 men; 
age, 24.0 ± 2.0 yr; body mass, 66.0 ± 8.0 kg; height, 1.76 ± 0.05 m) com-
pleted the experiment. Participants completed the same experimental 
protocol used in the first tethered exoskeleton experiment for three 
additional walking conditions: walking at a slow speed of 0.75 m s−1, a 
fast speed of 1.75 m s−1, and on a 10° incline at 1.25 m s−1.

Speed-adaptive controller and validation experiment
We developed a speed-adaptive controller that adjusted exoskeleton 
assistance based on walking speed. During real-world walking, people 
naturally vary their speed27. We hypothesized that adjusting exoskel-
eton assistance based on walking speed would provide larger metabolic 
reductions than a constant pattern of assistance. We estimated the 
walking speed of each step using a linear model, relating measured 
stride durations to measured walking speeds (Extended Data Fig. 2). 
Walking speed estimates from each step were used to interpolate exo-
skeleton assistance parameters from those optimized at a range of 
fixed speeds (Fig. 3a).

During speed-adaptive control, walking speed from one step was 
used to select the assistance parameters for the following step. We 
expect this approach to perform well when changes in walking speed 
occur slowly, or when there are rapid changes in speed but they consti-
tute a small portion of total steps, as in natural human gait. Our experi-
mental data are consistent with the observation that most acceleration 
and deceleration occurs within a few steps at the start and end of each 
walking bout. The expected stance duration was also adjusted based 
on speed estimates, following an approach established in previous 
research53. In future studies, the speed-adaptive controller could be 
improved to deliver more effective assistance during rapid changes 
in gait speed by incorporating instantaneous estimates of walking 
speed54,55 and stance duration. Acceleration regimes could also be 
considered, with a binning approach analogous to the one used for 
speeds in this study, to allow optimization of assistance specific to 
acceleration and deceleration phases. Other approaches, such as those 
using phase-based control55 or adjusting assistance based on changes 
in joint kinematics rather than walking speed56, may be beneficial for 
generalizing to a large set of activities.

We conducted a third tethered exoskeleton experiment to evaluate 
whether adapting assistance to variations in walking speed could pro-
vide larger reductions in metabolic cost than a fixed generic assistance 
profile. Healthy young adults (n = 3, 3 men; age, 24.0 ± 2.0 yr; body 
mass, 66.0 ± 8.0 kg; height, 1.76 ± 0.05 m) completed the experiment. 
These participants had previously completed the first two tethered exo-
skeleton experiments, providing Data-driven Optimized parameters 
for walking speeds of 0.75 m s−1, 1.25 m s−1, and 1.75 m s−1. Participants 
walked on a treadmill while the speed varied sinusoidally from 0.75 m s−1 
to 1.75 m s−1 with a period of 30 s. Participants completed assistance 
conditions including walking in Normal Shoes and walking with the 
exoskeletons under Zero Torque, Generic assistance (which did not 
change in response to changes in speed) and Speed-adaptive assistance 
(using the optimized control parameters previously identified for each 
participant). The validation tests were randomized and presented in 
a double-reversal ABCDDCBA order to mitigate the effects of noise in 
the metabolics measurements and trial order.

Untethered exoskeleton design
The untethered exoskeleton was designed to provide the optimized 
assistance parameters from the tethered exoskeleton experiments 
under real-world conditions. The maximum peak torque magnitude 
for the optimized assistance during the tethered exoskeleton study was 
54 Nm when walking at a moderately fast speed of 1.5 m s−1. The motor 
and power transmission elements were designed to robustly provide 
this level of assistance. A portable battery was selected to allow 30 min 



of continuous walking on a single charge. The device was designed to 
be lightweight to reduce the metabolic power required to carry the 
exoskeleton.

The untethered exoskeleton had a mass of 1.2 kg for each ankle. 
Many of the mechanical elements were the same as in the tethered 
exoskeleton, including the frame, shoe and pressure-sensor insole. New 
elements included the portable motor, drum-and-cable transmission, 
electronics, and battery (Extended Data Fig. 3). A set of computer-aided 
design files and a bill of materials are provided as Supplementary Data 2.

The brushless motor (AK80-9, CubeMars) contained a single stage 9:1 
gear ratio and internal motor driver electronics. This gearmotor has a 
rated peak torque of 18 Nm, a no-load speed of 25 rad s−1, and a mass of 
0.5 kg. We selected this motor based on simulations with a simplified 
model that predicted it would be capable of applying the patterns of 
ankle torque and velocity that corresponded to optimized assistance 
in the tethered exoskeleton experiments, assuming an additional 5:1 
gear ratio from the drum to the heel spur.

The custom drum was machined from 7075 aluminium, with a radius 
of 0.020 m. A cable connected the heel spur to the motor drum. The 
heel spur had a maximum lever arm (the distance from the centre 
of the ankle joint to the rope tie-off point) of 0.115 m. The lever arm 
decreased as the ankle plantarflexion angle increased, with a singular-
ity at a maximum plantarflexion angle of 55° ensuring that no ankle 
torque could be applied to hyperextend the ankle joint. The torque 
assistance profile of the exoskeleton was not impacted by changes in 
the lever arm because torque was measured directly at the ankle; strain 
gauges on the superior and inferior surfaces of the heel lever directly 
sensed bending moment independent of cable force. This allowed for 
accurate torque control without explicitly correcting for joint angle. 
When the motor applied torque to the drum, a force was generated in 
the cable, which then transmitted this force to the heel lever, creating 
a torque about the ankle joint of the exoskeleton. The drum-and-cable 
transmission had the added benefit of being backdrivable, avoiding 
the possibility of force spikes that can be produced by classically stiff 
actuators57,58. The cable could also be driven to a slack state to allow 
the person to move freely when desired, an important capability that 
prevents interference when not providing assistance59.

The untethered exoskeleton electronics consisted of a microcon-
troller, portable sensing elements, a motor driver integrated into the 
motor and a rechargeable battery. The untethered exoskeleton used 
a Raspberry Pi 4b microcontroller to read sensor data and perform 
real-time control and optimization at a rate of 200 Hz. A breakout board 
enabled sensors to interface with the microcontroller. A step-down 
voltage converter enabled the electronics to be safely powered by a 
portable battery. The portable sensing elements included a rotary 
encoder in the ankle joint that measured ankle angle and velocity, a 
pressure-sensing insole in the shoe, a set of strain gauges in a full Wheat-
stone bridge configuration applied to the heel spur to measure torque, 
and an amplifier (IAA100, Futek) to allow measurement of strain-gauge 
signals. The pressure-sensing insole had pressure sensors located at the 
heel, fifth metatarsal, distal phalanx of the great toe and the first meta-
tarsal. Fusing information from these different sensors enabled robust 
estimation of stance and stride period while providing measurements 
to extract information for optimizing assistance. This choice of sensors 
was guided by the design heuristic that multiple modes of sensing are 
important for effective exoskeleton control60. Muscle electrical activity 
could have provided additional information for control, but with the 
added challenge of handling noise from sensors placed on the skin61. 
The total weight of electronics was 0.15 kg.

The entire system was powered by a lithium polymer battery with a 
nominal voltage of 24 V, a capacity of 1,300 mAh, and a weight of 0.3 kg. 
Battery life was experimentally evaluated under the most demand-
ing assistance pattern, characterized by a peak torque of 54 Nm and 
late timing of peak torque. Tests were conducted while walking on a 
treadmill at a speed of 1.5 m s−1. The battery was initially charged to a 

maximum voltage of 25.2 V and the battery life experiment was stopped 
once the battery voltage reached 21.6 V, corresponding to a cell volt-
age of 3.6 V, the minimum safe level recommended for discharging a 
lithium polymer battery. During testing, cell voltage was monitored by 
a safety regulator and an audio alarm was played once the cell voltage 
reached 3.6 V. We found that the 0.3-kg battery used in real-world tests 
allowed 36.3 min of operation under these conditions.

The design of the untethered device was guided by previous 
laboratory-based ankle exoskeletons, incorporating design elements 
that allowed for large assistive torques while maintaining comfortable 
forces on the body43. The shoe, carbon fibre struts and calf spacers 
were designed to be interchangeable to fit different participants, fol-
lowing best practices for fitting62. The motor-and-drum transmission 
and heel spur were designed to be one size fits all, with interchange-
able shoes and spacers accommodating differences in foot size and 
mediolateral dimensions of participants’ legs. It might at first appear 
that the force applied by the cable between the drum and heel spur 
would pull the exoskeleton down the leg, but the rigid exoskeleton 
frame allows the axial component of this force to be reacted out at the 
exoskeleton joint rather than as shear on the person’s skin43. Thus, only 
a normal force is applied to the shank of the leg, which allows for more 
comfortable application of high torques63. The carbon fibre frame of 
the exoskeleton used stiff material and a cross-section with a high-area 
moment of inertia to prevent meaningful deflection during loading. 
As the system regulated exoskeleton joint torque, rather than motor 
current or velocity, and as torque was measured directly at the joint, 
compliance and dissipation in the transmission, exoskeleton frame and 
human–exoskeleton interface did not affect the accuracy or consist-
ency of the applied torque.

The design of the untethered exoskeleton required several trade-offs. 
The highest design priority was providing a peak torque of 54 Nm during 
walking at 1.5 m s−1, specified from previous optimization experiments, 
with the least mass possible. We considered several factors to ensure 
that the motor would provide 54 Nm during operation. We simulated 
the torque needed to provide the desired assistance, overcome trans-
mission inefficiencies, and accelerate the mass of the motor rotor and 
drum as required to track ankle movements during walking at 1.5 m s−1. 
The motor had to operate at a safe steady-state temperature to prevent 
damage to the windings. A brushless motor was selected for its rela-
tively high efficiency and peak torque. This untethered exoskeleton 
was designed for the optimized parameters of our experimental par-
ticipant group, and other participants may require a different device 
with different balance between torque and weight to provide the same 
reductions in the metabolic cost of walking.

Another important decision was whether to place the motor and 
electronics near the assisted joint or closer to the torso. The energy 
cost of carrying mass at distal joints is high33, suggesting a relocated 
drive approach with heavy motors carried more proximal to the centre 
of mass of the body. We considered mounting the motor and electronics 
at the hip and using a Bowden cable to transmit forces to the ankle joint. 
Bowden cables have an inner cable that moves relative to an outer con-
duit like a bicycle brake. This introduces complex transmission dynam-
ics, including stick–slip friction, history dependence and a dependence 
on leg posture, making torque control more challenging, reducing 
control bandwidth and decreasing energy efficiency. The cables and 
additional electrical wires also add to the weight of the system. For 
these reasons, we selected a drum-and-cable transmission located on 
the shank of the leg. Locating motors and electronics near the assisted 
joint resulted in more efficient power transmission, lower transmission 
compliance, better control bandwidth and less total weight.

Our untethered exoskeleton was designed to allow tests of real-world 
personalization and resulting mobility benefits during naturalistic 
walking in a community setting. A significant amount of additional 
engineering would be required to make this device ready for everyday 
use by consumers. Everyday use would require easier donning and 
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doffing, a more comfortable interface, more robust electronics hard-
ware and more intuitive, independent control, for example, utilizing a 
smartphone app. In addition, the exoskeleton would have to be tested 
to ensure functionality during additional common activities such as 
navigating stairs, and to ensure that it did not interfere with common 
activities such as sitting and driving. While we did not directly evaluate 
descending stairs in this study, we did notice that the long heel spur 
required participants to walk carefully to avoid hitting the previous 
step. This design choice was made for convenience, allowing us to use 
as many elements from our previous tethered exoskeleton design as 
possible. A less obtrusive transmission would be needed for a con-
sumer device. The commercially available Dephy ExoBoot64 provides 
an example of a more streamlined design; it has no spur behind the heel 
of the shoe, has simple donning and doffing features, and has minimal 
structure on the medial side of the leg, making it a good candidate for 
extended use in a large range of activities. Other autonomous ankle 
exoskeletons10,17 demonstrate complementary ways of designing hard-
ware that is more compatible with everyday use. With increased torque 
capacity, more accurate torque control and real-world personalization 
using the approach described here, we expect commercial devices 
could achieve similar reductions in metabolic rate.

Opportunistic optimization approach
We overcame the challenges of optimizing assistance during short 
bouts of walking at varying speeds by opportunistically accumulat-
ing data across many bouts and binning by speed. This opportunistic 
optimization approach used the same data-driven classification model 
and optimization method that were validated in the tethered experi-
ments, with the addition of a check that sufficient consecutive steps 
had been collected for each control law and a method for addressing 
a wide range of speeds (Extended Data Fig. 4).

The opportunistic optimization method checked that sufficient 
steps had been collected before moving on to the next control law. We 
chose the requirement of 44 steps to approximate the durations used 
in the tethered data-driven optimization experiments. If sufficient 
continuous steps were not collected before the end of the walking 
bout, the optimizer would start over with the same controller on the 
next bout. Once sufficient strides were collected, the next control law 
was applied for that speed bin. As with the tethered experiments, the 
first six strides of data were discarded to avoid confounds related to 
rapid adaptation to a new exoskeleton control law.

The same data-driven classification model used in the tethered 
exoskeleton experiments was used for the real-world optimization, 
but a different set of assistance torque parameters were optimized. 
The torque parameters for peak time and fall time were fixed to the 
average values of the Data-driven Optimized parameters from the first 
tethered exoskeleton experiment (54.6% of the gait cycle and 10.0% of 
the gait cycle). We fixed the values of peak time and fall time because 
the optimized values changed little across speeds and participants, 
indicating that fixed values may be sufficient. The optimized values 
of peak torque and rise time varied substantially across speeds and 
participants, and so these parameters were optimized in untethered 
exoskeleton experiments. Optimizing two, rather than four, torque 
parameters reduced the dimensionality of the optimization, requir-
ing only six, rather than eight, control laws to be collected for each 
generation of optimization. Reducing the number of control laws to be 
evaluated per generation allowed for more generations to be completed 
within a set experiment time, providing more frequent optimization 
updates and a better estimate of the optimal values. This may have 
come at the cost of suboptimal assistance timing parameters for some 
participants.

Once data for all the control laws in a generation were collected, the 
data-driven classification model ranked the control laws. The optimizer 
used this ranking to update its estimate of the optimal parameters and 
to adjust internal parameters, such as the convergence parameter (σ) 

that set the spread of the distribution from which to draw parameters 
for the next generation. Optimizations were performed for three bins 
of walking speed: less than 1.22 m s−1, between 1.22 m s−1 and 1.38 m s−1, 
and greater than 1.38 m s−1. These speeds were chosen based on the 
33rd and 66th percentile of real-world walking speed distributions27, 
resulting in an equal expected likelihood for the participant to walk 
in each bin. Speed-adaptive control interpolated assistance based on 
the speed of each individual step (Extended Data Fig. 2). When a suffi-
cient number of steps were collected for one control law, the estimated 
walking speeds for all steps during that control law were averaged, the 
corresponding speed bin was selected, and data were stored for the 
optimization process. When a complete generation of control laws were 
collected for a speed bin, control laws for that bin were ranked and the 
optimization parameters for that bin were updated. The estimate of 
the optimal assistance parameters for the other speed bins were also 
adjusted by a lesser amount, with the magnitude of the adjustment 
being proportional to the value of the convergence parameter, σ, for 
that bin (Extended Data Fig. 4). This allowed parameters in all speed 
bins to update more quickly at the beginning of the optimization, with 
decreased across-speed influences as the optimizations within each 
speed bin converged.

We chose to optimize a set of assistance parameters for each of three 
bins of walking speed, but it is possible to formulate this optimiza-
tion in different ways. The data-driven classifier requires comparisons 
of control laws at similar walking speeds. A larger number of bins of 
walking speeds could be used to provide more granular speed-based 
adaptation, at the expense of additional time to optimize a larger num-
ber of assistance parameters. It may also be possible to simultane-
ously solve for a larger set of control parameters that fully define the 
speed-adaptive controller, but this would introduce challenges related 
to the larger parameter space, interaction effects between parameters, 
and poorly conditioned maps between parameters that have a strong 
effect on assistance at one speed and little effect on assistance at differ-
ent speeds. Instead, we opted for a small set of speed bins, with a rela-
tively simple approach to updating the optimal parameter estimates.

Real-world optimization experiments
In the real-world optimization experiments, we used the untethered 
exoskeleton to optimize assistance during naturalistic bouts of walking 
and then evaluated the optimized assistance profiles under real-world 
and treadmill conditions.

Healthy adult participants (n = 10, 6 men and 4 women; age, 
24.2 ± 1.8 yr; body mass, 67.0 ± 8.2 kg; height, 1.72 ± 0.07 m) completed 
a two-day protocol. On the first day, participants walked outside in a 
public setting along a path consisting of concrete, asphalt and brick 
sidewalks (Fig. 5b) for approximately 1 h while the untethered exoskel-
eton provided assistance and performed data-driven optimization. To 
emulate natural walking, the participants received audio cues to tell 
them to start and stop walking bouts. The durations of these bouts were 
randomly drawn from a preselected distribution (Fig. 5d) that matched 
naturally occurring bout durations34. Participants stood at rest between 
bouts for a randomized duration of 5 s to 10 s. To encourage a normal 
range of speeds, we provided participants with audio prompts, such 
as “Walk as if you were walking to catch a bus” and “Walk as if you were 
walking a small dog”, at the start of each bout. A previous study28 demon-
strated that these prompts were associated with different self-selected 
walking speeds, and we expected that participants would adopt similar 
speeds. We randomly sampled from a distribution of speeds (Fig. 5c) 
that mimicked natural walking patterns measured in a previous study27.

On the second day, participants performed outdoor and treadmill 
validation tests to evaluate the benefits provided by Real-world Opti-
mized assistance. For the outdoor validation, participants walked along 
a 566-m path in the same public setting with a fixed ordering of bouts 
of specific distances and corresponding speed prompt commands that 
were selected to match real-world distributions27,34. Distances were 



set using cones to mark stopping locations, which ensured consistent 
distances for each bout. Participants completed this outdoor course 
once for each condition, including Real-world Optimized assistance, 
Generic Speed-adaptive assistance and Normal Shoes. The ordering 
of the conditions was randomized to minimize effects of testing order 
(Extended Data Table 1). The double-reversal protocol, used in the 
first three laboratory experiments, was not used because the outdoor 
experiments took significantly more time owing to the longer trial 
time, varying self-selected walking speeds, short bouts of walking, and 
rest periods between bouts and conditions. Each real-world condition 
required about 15 min, compared with about 8 min for each treadmill 
condition. Outdoor and indoor tests of Real-world Optimized assis-
tance were conducted on the same day to avoid confounding effects 
from differing respirometry system calibrations. The total walking 
time for these two experiments was about 1.5 h, and we found that 
participants were not able to complete the additional 1.5 h of walking 
that would have been required for a double-reversal approach without 
experiencing fatigue. For the 3 min following completion of the path, 
participants stood at rest while respirometry data were collected to 
capture the total metabolic cost of completing the course. The duration 
of walking for each bout was timed with a stopwatch. Walking speed for 
each bout was computed by dividing the fixed distance for that bout 
by the time spent walking during that bout. Walking speed for each 
condition was calculated as the total distance travelled divided by the 
total time spent walking while navigating the course.

The indoor validation consisted of a standing rest condition followed 
by six treadmill conditions, each lasting 6 min. Participants walked on 
a treadmill at 1.25 m s−1, at 1.5 m s−1, and on an incline of 10° at 1.25 m s−1. 
Participants completed each treadmill speed and grade twice, once 
with Real-world Optimized assistance, as identified during the outdoor 
optimization period, and once with Normal Shoes. The ordering of 
conditions was randomized, with a constraint that the exoskeleton 
would only be donned and doffed one time to reduce experiment time 
(Extended Data Table 2). We did not use the double-reversal protocol 
in these tests because we found that participants could not reliably 
complete the additional 1.5 h of walking that would have been required 
without experiencing fatigue, and so instead used the more typical 
approach of single presentations with randomized order.

One pilot participant completed additional indoor conditions, walk-
ing at 1.25 m s−1 with an incline of 5°, walking at 1.25 m s−1 with a load of 
20% of their body weight carried in a weight vest, and stair climbing 
on a stairmill at 50 steps per minute. The results (Extended Data Fig. 6) 
were used to test the generality of the approach. Owing to the small 
sample size (n = 1), this figure and the numerical results for change in 
metabolic rate are not included in the main text.

We performed a naturalistic overground experiment in an outdoor, 
suburban community setting. People require assistance in many differ-
ent settings and for a variety of additional activities, and future work 
should extend the approaches presented in this study to optimize 
assistance and evaluate assistive device benefits for a wider range of 
tasks. For example, future devices could sense, adapt to and optimize 
assistance for various grades55, during stair navigation17 and over rough 
terrain54. These future studies will provide additional translational 
impact for daily mobility.

Comparison with other untethered exoskeletons
We compared the benefits of Real-world Optimized assistance with 
the untethered exoskeleton to the best results of comparable previous 
studies10–16. To allow direct comparison, we considered only studies 
that tested untethered devices, report data for normal walking, tested 
similar walking conditions, tested sufficient participants and used 
standard data-processing techniques. For untethered exoskeletons, 
the most relevant outcome is the percent change in the energy cost 
of walking with exoskeleton assistance to walking in normal shoes 
without the exoskeleton. Changes in walking conditions can affect 

outcomes, so we considered studies conducted at within 10% of the 
speeds and inclines that we tested. Before conducting our final experi-
ment, we selected the speeds (1.25 m s−1 and 1.5 m s−1) and inclines (10°) 
that captured the largest percent reductions in metabolic rate that had 
previously been observed for any exoskeleton study in the literature. We 
compared with previous exoskeleton studies with at least five partici-
pants, because studies reporting data from fewer tests are difficult to 
interpret owing to measurement noise and inter-participant variability. 
We compared with previous studies in which the metabolic cost of walk-
ing was calculated using standard techniques, by averaging respirom-
etry measurements during the last 2 min or 3 min of a 5-min or 6-min 
steady-state treadmill condition. One previous exoskeleton study65 
was excluded because steady-state metabolic cost was computed by 
taking the median of respirometry measurements. We found that using 
the median rather than the mean to compute metabolic rate in our 
untethered exoskeleton study increased the magnitude of the reduc-
tions in metabolic cost by an average of 7% across participants. This is a 
large amount compared with the total improvement of 23%, indicating 
that the median and mean measurements are not equivalent. We were 
not able to obtain the data from the previous study that would have 
allowed computation of the mean percent change in metabolic rate.

To keep Extended Data Fig. 5 legible, we only depict studies report-
ing results within a 5% change in metabolic rate of the best previous 
value for that condition category. There are several other untethered 
exoskeletons that have provided some reduction in metabolic rate 
under conditions similar to those tested in this study. For example, 
the Dephy ExoBoot, the commercially available exoskeleton with the 
most similar features to the prototype tested in this study, can provide a 
5.2% reduction in metabolic energy consumption compared with walk-
ing with Normal Shoes while walking on a treadmill with time-varying 
speed64. Another technologically mature untethered exoskeleton, the 
MyoSuit Beta, has shown that hip assistance during outdoor uphill 
walking can reduce metabolic rate compared with wearing the exo-
skeleton in Zero Torque mode37. Sufficient data are not yet available to 
estimate the benefits compared with walking without the exoskeleton. 
In the interests of clarity, we did not include the results of all previous 
exoskeleton experiments in Extended Data Fig. 5.

We compared the results of this study against all types of lower-limb 
exoskeleton, including devices that assist the knees and hips, to provide 
the clearest understanding of the relative benefits of this design and 
personalization approach. Considering instead only ankle exoskeletons 
would allow for a more mechanistic comparison of system compo-
nents and biomechanics outcomes, at the cost of reduced generality 
of the high-level findings. As exoskeleton technologies mature and 
address more tasks and populations, joint-specific benefits or restric-
tions related to specific conditions may make it more sensible to apply 
joint-specific comparisons in some contexts.

Our untethered exoskeleton provided the largest reductions in the 
metabolic cost of walking primarily owing to the way it personalized 
assistance to individual users, but hardware design differences may 
also have contributed to its efficacy. Design differences between the 
untethered exoskeleton and some previous devices include: directly 
measuring joint torque, rather than inferring it from motor current; 
providing slack in the transmission to avoid interference during leg 
swing and Zero Torque mode; and larger peak torque capabilities, 
such that benefits were limited more by the user’s ability to accept 
assistance than by limitations in the hardware. Directly measuring 
joint torque requires additional electronics hardware for sensing and 
signal processing but enables more precise control of applied torques, 
which eliminates errors owing to model mismatch and power losses 
in the transmission and interface with the body. This helps provide 
users with a consistent assistance pattern. Placing slack in the trans-
mission cable during periods when zero torque is desired prevents 
the inadvertent application of the small damping torques needed for 
linear feedback control. Although they may seem small, these damping 
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torques can substantially increase user effort. Allowing for larger peak 
torques, in this case approximately twice the value of previous unteth-
ered ankle exoskeletons10,17,64,66, allowed for a larger range of possible 
assistance parameters. This makes it more likely that the global opti-
mum for a given participant and walking speed lie within the range of 
hardware-feasible control. Larger torques require a rigid frame to react 
out transmission forces in the exoskeleton joint43, rather than through 
shear on the skin63, to maintain user comfort. The present results would 
therefore seem to favour devices that can apply higher torques to 
achieve greater benefits from assistance, at the cost of greater worn 
mass. This relationship, however, will be sensitive to the populations 
and tasks that are assisted. The above design decisions enabled the 
untethered ankle exoskeleton in this study to provide accurate, reli-
able and substantial assistance to the user, which enabled participants 
to obtain large net benefits from real-world personalized assistance.

Participant surveys on exoskeleton usability
Participants completed a series of surveys to evaluate the ease of use, 
comfort and functionality of the untethered exoskeleton after comple-
tion of all the experiments. Participants completed a System Usability 
Scale survey67 to determine how easy it was to operate the untethered 
exoskeleton. Users reported that the exoskeleton was relatively easy to 
use, with an overall score of 72.5 (Extended Data Table 3), placing it in 
the 65th percentile of 5,000 devices previously surveyed42. Participants 
also completed surveys adapted from the Orthotics and Prosthetics 
Users’ Survey68, which acts as a self-report instrument for evaluating 
the outcomes of prosthetics and orthotics services in a clinically useful 
manner. Among comfort-related outcomes, participants were most likely 
to agree that the weight of the device was manageable, that it was easy to 
put on and that their clothes were free of wear (Extended Data Table 4). 
Participants were more likely to be neutral or to disagree that the exo-
skeleton would be comfortable throughout the day. Among outcomes 
related to functionality, participants found standing, walking indoors 
and outdoors, and donning and doffing the exoskeleton to be easy or 
very easy (Extended Data Table 5). Participants found picking objects up 
from the ground and walking up steep ramps to be slightly difficult. When 
asked whether they would prefer to use the exoskeleton or normal shoes 
if they had to complete the outdoor walking course again, six out of the 
ten participants reported that they would prefer to use the exoskeleton.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All study data necessary to replicate this work are available in the Source 
Data included with the paper. Computer-aided design files and a bill 
of materials for the untethered ankle exoskeleton are provided in Sup-
plementary Data 2. Source data are provided with this paper.

Code availability
Optimization code samples are provided in Supplementary Data 1. 
This code uses Python version 3.6.1. The required python packages are 
numpy (1.17.4), scikit-learn (0.21.3), scipy (1.3.2) and matplotlib (2.0.2).
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Extended Data Fig. 1 | Weights, inputs, and effects for the data-driven 
classification model. The data-driven classifier decoded latent information 
from human movement that was not otherwise interpretable, allowing 
exoskeleton assistance to be optimized without laboratory-based 
measurement equipment. Top row: Model weights and mean inputs. The model 
compares data from two control laws at a time and associates inputs with 
higher or lower metabolic rate to estimate which control law resulted in a lower 
metabolic rate. Inputs comprised differences in ankle angle and ankle angular 
velocity at 30 different points in the gait cycle and differences in the four 
control law parameters of peak torque magnitude, peak time, rise time, and fall 
time. The data-driven model weights that multiply these differences are shown 
as a background colour of blue or red. Blue indicates that a positive difference 
is associated with lower metabolic rate, while red indicates that a positive 
difference is associated with higher metabolic rate. Darker colours indicate 
greater influence. Black lines depict the average, across all training data, of the 

differences in inputs. To generate this average, we ordered each pair-wise 
comparison by metabolic rate, such that inputs from the control law with a 
higher metabolic rate were always subtracted from those with a lower 
metabolic rate. Typical values of the model inputs differ, in part because of 
differences in units, and so the magnitudes of model weights do not 
correspond well to the contributions of those terms to the classification 
overall. Bottom row: The classification contributions of each term in the model, 
averaged over the entire training set. The percent contribution is calculated as 
the absolute value of the product of the model weight and the input difference, 
summed over all pair-wise comparisons, divided by the sum over all model 
terms. For the x-axes, 0% and 100% of the gait cycle refer to the instant of heel 
strike of the assisted limb at the beginning and end of one stride. Toe-off occurs 
at about 62% of the gait cycle. For a discussion of the intuitive meaning of the 
weights and contributions, please see the Methods subsection “Data-driven 
optimization”.
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Extended Data Fig. 2 | Speed-adaptive control approach. a, To calibrate the 
walking speed estimator, data are collected while the participant walks at 
several prescribed speeds, each within the range of speeds associated with a 
set of assistance parameters to be optimized. The measured stride durations 
and ground-truth speed measurements from those tests are used to fit an 
affine equation with linear regression. b, The resulting model can then be used 

to estimate walking speed based on measurements of stride duration alone.  
c, The speed-adaptive controller relates estimated walking speed to 
exoskeleton assistance parameters by interpolating between assistance 
parameters specified at a set of chosen speeds. In this case, there are three sets 
of optimized parameters corresponding to three different walking speeds.



Extended Data Fig. 3 | Diagram of untethered exoskeleton electromechanical 
hardware. These computer-aided design drawings depict the hardware 
elements of the untethered exoskeleton. The primary components are 
labelled. An image of the entire device, including textile components, can be 
found in Fig. 4b. A running shoe (not pictured) is attached to the toe strut with 
pins that extend from the tip of the toe strut into a carbon fiber plate embedded 
in the sole of the shoe. The heel of the running shoe is attached to the heel spur 
by a rope (not pictured) tied into holes on either side of the heel spur and 

passing through a plastic tube embedded in the sole of the shoe. A Vectran 
transmission cable (not pictured) transmits force from the drum to the tip  
of the heel spur. At the top of the calf strut, Velcro straps (not pictured) are 
connected to the strut through slots. These straps adhere to a separate  
Velcro strap (not pictured) worn on the shank of the leg, just below the knee.  
A complete bill of materials and set of computer-aided design files for this 
untethered exoskeleton assembly is included as Supplementary Data 2.
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Extended Data Fig. 4 | Optimizing assistance during real-world walking. 
The exoskeleton applied speed-adaptive control, which adjusted exoskeleton 
assistance parameters on each step. Stride duration (tstride) was used to estimate 
walking speed (v) as described in Fig. 3. While the participant walked, portable 
sensor data (d) were collected, which included ankle angle (θ), ankle velocity ( ̇θθ),  
and the control law defining exoskeleton assistance torque (C). If sufficient 
continuous strides (z) were not collected before the bout finished, the data 
were discarded and evaluation of the same control law began anew on the next 
walking bout. If sufficient continuous strides were collected, then data were 
stored for the associated control law number (n) and walking speed bin (b), 
selected based on the average walking speed for the collected strides. The 
control law number was incremented and the next control law was applied to 

the user. After six control laws had been applied for a given walking speed bin, 
forming one generation for the optimizer, the stored data were used to update 
the optimization parameters associated with that speed bin. When any bin 
performed an update, the estimate of the optimal parameter values (μ) for the 
other bins were also updated. Bins that were closer to convergence, indicated 
by a small value of the convergence parameter (σ) for that bin, were adjusted 
less. This approach allowed the optimizer to rapidly adapt to the participant 
early in the optimization, then to fine-tune the speed-specific parameters as 
the optimization progressed. Following the update, the optimizer selected a 
promising set of new control laws to be sequentially evaluated in the next 
generation for the associated walking speed bin.



Extended Data Fig. 5 | Exoskeleton comparison for standardized walking 
conditions. We compared the benefits of Real-world Optimized assistance 
from the untethered exoskeleton under standardized laboratory conditions to 
those of prior untethered exoskeletons10–16. We considered only the results of 
tests that: compared exoskeleton-assisted outcomes to walking in normal 
shoes without an exoskeleton; used standard indirect respirometry procedures; 
had sufficient sample sizes; and applied walking conditions within 10% of the 
chosen walking speeds and inclines in this study, which were chosen to allow 

comparison to the largest prior improvements in metabolic rate. For legibility, 
in this figure we depict only results within a 5% reduction in net metabolic cost 
of the best prior results for each category. Please see the Methods subsection 
“Comparison to other untethered exoskeletons” for a complete explanation of 
the methods used to select amongst prior exoskeleton experiments. 
Real-world Optimized assistance from the untethered exoskeleton resulted in 
large improvements in energy cost.
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Extended Data Fig. 6 | Additional untethered exoskeleton treadmill 
condition evaluations. For one pilot participant (n = 1), walking with 
Real-world Optimized assistance reduced the metabolic cost of walking 
compared to Normal Shoes during several additional treadmill conditions. 
These results suggest that Real-world Optimized assistance may perform well 
during a wide range of common walking activities. The conditions were walking 
at 1.25 m s−1 on a 5° incline, walking at 1.5 m s−1 while wearing a vest weighing 
approximately 20% body weight, and climbing stairs at a rate of 50 steps per 
minute. These results are not included in the main text due to their preliminary 
nature compared to the primary study outcomes.



Extended Data Table 1 | Randomized condition ordering for the outdoor evaluations in the real-world exoskeleton 
optimization experiment

Subject Condition 1 Condition 2 Condition 3

1 Real-world Optimized Generic Speed-adaptive Normal Shoes

2 Generic Speed-adaptive Normal Shoes Real-world Optimized

3 Normal Shoes Generic Speed-adaptive Real-world Optimized

4 Real-world Optimized Normal Shoes Generic Speed-adaptive

5 Normal Shoes Real-world Optimized Generic Speed-adaptive

6 Generic Speed-adaptive Real-world Optimized Normal Shoes

7 Real-world Optimized Generic Speed-adaptive Normal Shoes

8 Normal Shoes Real-world Optimized Generic Speed-adaptive

9 Normal Shoes Real-world Optimized Generic Speed-adaptive

10 Generic Speed-adaptive Normal Shoes Real-world Optimized

Participants completed a quiet standing condition followed by Normal Shoes, Generic Speed-adaptive exoskeleton assistance, and Real-world Optimized exoskeleton assistance conditions, 
presented in random order.
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Extended Data Table 2 | Randomized condition ordering for the indoor evaluations in the real-world exoskeleton 
optimization experiment

Subject Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 

1 Incl. Exo 1.25 Exo 1.5 Exo 1.5 NW 1.25 NW Incl. NW 

2 1.25 NW 1.5 Exo Incl. Exo 1.25 Exo Incl. NW 1.5 NW 

3 1.25 Exo Incl. Exo 1.5 Exo 1.25 NW 1.5 NW Incl. NW 

4 1.5 NW Incl. NW 1.25 NW Incl. Exo 1.25 Exo 1.5 Exo 

5 Incl. Exo 1.25 Exo 1.5 Exo 1.25 NW Incl. NW 1.5 NW 

6 1.5 NW Incl. NW 1.25 NW Incl. Exo 1.5 Exo 1.25 Exo 

7 1.5 Exo Incl. Exo 1.25 Exo 1.5 NW 1.25 NW Incl. NW 

8 Incl. NW 1.5 NW Incl. Exo 1.5 Exo 1.25 Exo 1.25 NW 

9 1.25 Exo 1.5 Exo Incl. NW 1.25 NW 1.5 NW Incl. Exo 

10 1.5 NW Incl. NW 1.25 NW 1.5 Exo Incl. Exo 1.25 Exo 

The labels ‘1.25’, ‘1.5’, and ‘Incl.’ represent the treadmill conditions of walking at 1.25 m s−1, walking at 1.5 m s−1, and walking on a 10° incline at 1.25 m s−1. The labels ‘Exo’ and ‘NW’ represent the 
Real-world Optimized assistance and Normal Shoes conditions. Conditions were presented in random order, with a constraint that the exoskeleton would only be donned and doffed once to 
reduce experiment time.



Extended Data Table 3 | Usability survey results for exoskeleton participants

Question text (4 = Strongly Agree, 3 = Somewhat Agree, 
2 = Neither Agree nor Disagree, 1 = Somewhat Disagree, 0 = Strongly Disagree)

Untethered 
Exoskeleton
(Mean ± SD)

I think that I would like to use this system frequently. 2.8 ± 1.2

I found the system unnecessarily complex. 0.5 ± 0.5

I thought the system was easy to use. 3.2 ± 0.6

I think that I would need the support of a technical person to be able to use this system. 1.4 ± 1.3

I found the various functions in this system were well integrated. 3.0 ± 0.5

I thought there was too much inconsistency in this system. 1.9 ± 0.7

I would imagine that most people would learn to use this system very quickly. 2.6 ± 1.0

I found the system very cumbersome to use. 1.1 ± 1.0

I felt very confident using the system. 2.9 ± 0.9

I needed to learn a lot of things before I could get going with this system. 0.6 ± 0.7

Total usability score (out of 100) 72.5 ± 14.5

The System Usability Scale67, which uses a Likert scale, was used to evaluate the usability of the untethered exoskeleton. Participants (n = 10) completed this survey after completing all walking 
experiments. The untethered exoskeleton was in the 65th percentile of a distribution of 5000 devices previously evaluated with the System Usability Scale42.
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Extended Data Table 4 | Survey results on the comfort of the untethered exoskeleton

Question text (4 = Strongly Agree, 3 = Agree, 2 = Neutral, 
1 = Disagree, 0 = Strongly Disagree)

Untethered Exoskeleton
(Mean ± SD)

My skin is free of abrasions and irritations. 2.3 ± 1.4

My exoskeleton is pain free to wear. 2.5 ± 1.4

My exoskeleton is comfortable throughout the day. 1.5 ± 1.1

My exoskeleton looks good. 2.3 ± 0.9

My clothes are free of wear and tear from my exoskeleton. 3.8 ± 0.4

It is easy to put on my exoskeleton. 2.9 ± 0.6

My exoskeleton fits well. 2.8 ± 0.6

My exoskeleton is durable. 2.1 ± 1.0

The weight of my exoskeleton is manageable. 2.9 ± 1.0

Average Score 23.1 ± 4.6

This survey was adapted from the Orthotics and Prosthetics Users’ Survey68, which acts as a self-report instrument for evaluating clinically useful outcomes of prosthetics and orthotics services. 
Participants (n = 10) completed the survey after completing all walking experiments.



Extended Data Table 5 | Survey results on the functionality of the untethered exoskeleton

Question text (4 = Very Easy, 3 = Easy, 2 = Difficult, 
1 = Very Difficult, 0 = Cannot Perform Activity)

Untethered Exoskeleton
(Mean ± SD)

Walk up to two hours. 3.3 ± 0.8

Walk up a steep ramp. 2.3 ± 0.8

Stand one-half hour. 3.6 ± 0.7

Walk out-doors on uneven ground. 2.7 ± 0.5

Pick up an object from the floor while standing. 2.4 ± 0.7

Balance while standing. 3.8 ± 0.4

Put on and take off exoskeleton. 3.0 ± 0.7

Walk indoors. 3.5 ± 0.5

Average Score 24.6 ± 5.1

This survey was adapted from the Orthotics and Prosthetics Users’ Survey68, which acts as a self-report instrument for evaluating the outcomes of prosthetics and orthotics services in a  
clinically useful manner. Participants (n = 10) completed this survey after completing all walking experiments.
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