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Personalized exoskeleton assistance provides users with the largestimprovementsin
walking speed' and energy economy?®*but requires lengthy tests under unnatural
laboratory conditions. Here we show that exoskeleton optimization can be performed
rapidly and under real-world conditions. We designed a portable ankle exoskeleton
based oninsights from tests with a versatile laboratory testbed. We developed a

data-driven method for optimizing exoskeleton assistance outdoors using wearable
sensors and found that it was equally effective as laboratory methods, but identified
optimal parameters four times faster. We performed real-world optimization using
data collected during many short bouts of walking at varying speeds. Assistance
optimized during one hour of naturalistic walking in a public setting increased
self-selected speed by 9 + 4% and reduced the energy used to travel a given distance by
17 £ 5% compared with normal shoes. This assistance reduced metabolic energy
consumption by 23 + 8% when participants walked on a treadmill at astandard speed
of 1.5 m s, Human movements encode information that can be used to personalize
assistive devices and enhance performance.

Exoskeletons that assist leg movement show promise for enhancing
personal mobility but have yet to provide real-world benefits. Millions
of people have mobility impairments that make walking slower’ and
more fatiguing®, while millions more people have occupations that
require strenuous locomotion’. In research laboratories, exoskele-
tons can increase walking speed"®® and reduce the energy required
towalk®*°7¢ but these benefits have not yet translated to real-world
conditions". Providing beneficial assistance in the real world is difficult
for several reasons: the specialized equipment used to personalize
assistance is not available outside the laboratory; unlike walking on a
treadmill, everyday walking occursin many bouts of varying speed and
duration; and devices must be self-contained and easy to use. In this
study, we addressed each of these challenges to demonstrate effective
exoskeleton assistance under naturalistic conditions.

Maximizing the benefits of exoskeleton assistance requires
personalization to individual needs, which is challenging outside
of alaboratory. The largest improvements in human walking per-
formance have been achieved by individualizing assistance using
human-in-the-loop optimization'*, a process in which device con-
trolis systematically tuned toimprove human performance whilea
person uses adevice. Measuring important aspects of performance,
including metabolic rate'®, has required expensive laboratory equip-
ment and long periods of steady treadmill walking'®. Individualizing
consumer or medical devices in this way would require several long
visits to aspecialized clinic, which would be costly and impractical.
If human performance could instead be estimated quickly, using
low-cost wearable sensors, optimization could be performed as
people moved naturally through their daily lives. This might be
possible using musculoskeletal modelling®, but such simulations
are computationally intensive?® and require individualization.

Data-driven models may be able to capture important features of
human performance more simply® %,

We developed a data-driven model that relates human motion during
exoskeleton-assisted walking to metabolic energy consumption and
can be used outside the laboratory. Human movement arises from
the interaction between the inertia of our body segments and forces
fromthe environment and our muscles. We hypothesized that careful
analysis could extract meaningful information about muscular energy
expenditure from subtle changes in motion. Ina previous experiment*,
participants walked with exoskeleton assistance inabout 3,600 differ-
ent conditions while datawere recorded from both laboratory equip-
ment that measure biomechanical outcomes and low-cost, portable
sensors on the exoskeleton. We trained a logistic regression model
using this previous dataset (Extended Data Fig. 1). The data-driven
classification model compared sensor data from two different patterns
of exoskeleton assistance, each defined by a ‘control law’, and classi-
fied which control law provided a larger benefit. The model inputs
were ankle angle and ankle velocity, segmented by gait cycle, and the
torque parameters for each control law. The model then estimated the
likelihood that the first control law resulted in lower metabolic energy
expenditure.Inessence, the classifier favoured later, larger exoskeleton
torques and smooth, well timed movements thatled toincreased ankle
extension at toe-off. During optimization, the user experienced a set
of control laws, the data-driven model compared all possible pairs of
control laws, the control laws were ranked, and an optimization algo-
rithm? updated the estimate of the optimal parameters and generated
anewsetof control laws to evaluate (Fig. 1). This process was repeated
until convergence criteria were met.

Data-driven optimization can use the information embedded in
our movements to identify exoskeleton assistance patterns that are
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Fig.1|Data-driven exoskeleton optimization. We used data from laboratory
teststotrainamodel that can perform optimizationinreal-time outside the
laboratory. a, During optimization, the participant walks with the exoskeleton
and experiences asequence of k control laws, each defining a pattern of
exoskeleton torque. The optimizer’s goalis to identify the torque pattern that
maximizes performance. b, Ankle angle () and ankle velocity () foreach
stridearerecorded from sensors on the exoskeleton. ¢, All possible pairs of
controllaws are then compared (C). For each pair, differences insegmented
motion data (4) are calculated by subtraction. d, Differences in motion are
multiplied with classifier model weights (W), using a dot product operation, to

as effective as those found with laboratory-based methods, but in
one-quarter of the time. We conducted experiments to optimize assis-
tance withatethered exoskeleton emulator (Fig. 2a). The data-driven
optimization evaluated eight sets of control laws in 32 min, four times
faster than the state-of-the-art approach using indirect respirometry
to measure metabolic rate? (Fig. 2b). Data-driven and metabolic opti-
mization approaches identified the same participant-specific adjust-
ments to assistance (Fig. 2c). Data-driven Optimized assistance and
Metabolic Optimized assistance resulted in similar metabolic cost,
which was significantly lower than the metabolic cost of walking with
the exoskeleton in a Zero Torque mode (Fig. 2d). The average of the
Data-driven Optimized parameters matched those of Generic assis-
tance, which were taken from the best previous study*, but Data-driven
Optimized assistance provided alarger benefit. This demonstrates the
importance of individualization; even subtle changes in torque can
lead to substantial performance enhancements. To test the general-
ity of the data-driven model, we conducted experiments at a range
of additional speeds and inclines with a subset of participants. The
Data-driven Optimized assistance and Metabolic Optimized assistance
resultedinsimilar torque profiles and metabolic cost reductions across
these conditions (Fig. 2e). This shows that the data-driven classifica-
tionmodel captured afundamental relationship between exoskeleton
torque, ankle movement and whole-body walking effort. The model
approximates this biological relationship, precluding statistical guar-
antees of optimality. Nevertheless, our results demonstrate that human
movement encodes information related to underlying physiological
processes, and that data-driven methods can extract thisinformation
without laboratory equipment or complex multi-scale models.

We developed aspeed-adaptive controller to adjust assistance based
onnatural variations in walking speed. People vary their walking speed
widely during the day? in response to changes in context® and con-
straints?. Variations in speed complicate exoskeleton control and may
help explain why assistive devices that reduce walking effort during
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obtain the pair coefficient (w;). e, Alogistic function uses the pair coefficient to
compute the probability (p;) that thefirst control law is more beneficial than
thesecond.f, Thescore (S) for each control law (n) is computed by summing the
probabilities of all pairs thatinclude that control law. g, Control laws are then
ranked by score and used to update anoptimizer. h, The optimizer selectsaset
of knew control laws, consisting of d parameters, to evaluate. This optimization
processisrepeated until convergence criteriaare satisfied, in this case aset
number of evaluations having been completed. During real-world experiments,
optimization was performed on the exoskeleton’s microcontroller.

steady walking on atreadmill have not provided similar benefits during
use under more natural conditions”. The speed-adaptive controller
we developed (Extended Data Fig. 2) interpolated between assistance
parameter values previously optimized at different walking speeds
(Fig.3a) based onthe estimated speed of each step (Fig. 3b). We tested
Speed-adaptive assistance on asubset of participants as they walked on
atreadmill with sinusoidally varying speeds. Speed-adaptive assistance
reduced the energetic cost of walking more than Generic assistance
with constant parameters (Fig. 3c). Adjusting exoskeleton assistance
based on speed is an effective strategy for handling speed variations
that occur during normal walking.

We created an untethered exoskeleton for real-world assistance
using adesign approach based on emulation and optimization. Wear-
able robotic devices are typically designed using models or intuition,
builtas specialized prototypes, and then tested. However, humans are
highly complex and diverse, making it difficult to predict the range of
characteristics that will be optimal across a population. As aresult,
most devices designed this way are unable to provide optimal assis-
tance and often provide no benefit at all. To develop the untethered
exoskeleton used in this study, we first performed experiments with
versatile exoskeleton emulators®. These laboratory-based, tethered
hardware systems allowed us to perform a wide range of control and
optimization experiments (Figs. 1-3) and identify the electromechani-
cal characteristics that our untethered device would need. Using these
design guidelines, we built a specialized, untethered device that pro-
vides predictable, meaningful benefits. This emulation and optimiza-
tion design paradigm can reduce the cost and time required to develop
new wearable robots.

Onthe basis of the results of our emulator experiments, we designed
aspecialized, untethered ankle exoskeleton. The system consisted of an
exoskeleton wornoneach ankle and abattery pack at the waist (Fig. 4a
and Supplementary Video1). The exoskeleton was designed to apply the
range of optimal torque profilesidentified in the tethered optimization
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Fig.2|Data-driven optimizationresults. a, Exoskeleton assistance was
applied using atethered ankle exoskeleton emulator*. b, Assistance parameters
optimized using the data-driven method converged to within 5% of the
parametersidentified using metabolic optimization, butin one-quarter of the
time (n=9).Theerrorbarsrepresent the standard deviation. ¢, Individual
participants had unique Data-driven Optimized parameters, centred around
the Genericassistance parameters. d, Data-driven Optimized assistance and
Metabolic Optimized assistance resulted in similar metabolic costs of walking,
significantly lower than with Zero Torque, Normal Shoes or Generic assistance,

study (Fig. 2) while having low mass (1.2 kg per ankle). Abrushless motor
and custom drum transmission applied torque about the ankle joint,
while portable electronics sensed the user’s motion and performed
real-time control and optimization (Fig. 4b and Extended DataFig. 3).
The exoskeleton provided a peak torque of 54 Nm (Fig. 4c), which was
about 50% to 75% of the biological ankle torque of participants in this
study®. Torque was controlled using a mixture of classical feedback
controland iterative learning®, with a tracking error of less than 1% of
the peak torque. Maximum assistance could be applied continually
without overheatingthe motor (Fig.4d). The battery weighed 0.3 kg and
powered the exoskeleton for at least 30 min on a single charge. While
the energy cost of carrying mass near a distal joint is high®, locating
motors and electronics near the assisted joint results in more efficient
power transmission, a simpler design and lower total weight, which
canyield large net benefits.

We used theinformation encodedin asingle walking step to optimize
exoskeleton assistance while people walked naturally in short bouts of
varying speed. People take thousands of steps per day, but real-world

whenwalkingat1.25ms™ (ANOVA,n=9,*P<2.7x1078,**P<2.4x1075,
***P<0.047). Theboxes extend from the lower to upper quartile values of the
data, withalineatthe medianand adotatthe mean. The whiskers extend
between the minimum and maximum of the datavalues. e, Optimized torque
patterns varied with walking condition, with similar changesin Data-driven
Optimized and Metabolic Optimized parameters. Data-driven Optimized
assistance and Metabolic Optimized assistance led to similar reductionsin
metabolic rate whenwalkingat 0.75 ms™ (slow), 1.25 ms™ (normal) and
1.75ms™ (fast),andonal0®inclineat1.25ms™.

walking occurs in many separate bouts, most of which are short, with
90% being less than100 steps in duration®. Speed is relatively consist-
ent within each bout, but varies across bouts?. This fragmentation
presents a challenge for collecting optimization data and efficiently
fine-tuningassistance. Our data-driven optimization method addresses
the problem of gathering useful data from short walking bouts by using
kinematic data collected with every step. In pilot tests, we found that
we could accurately compare control laws based on just 44 continu-
ous steps, opportunistically captured during natural bouts, allowing
our system to accumulate data from about 77% of steps in a typical
day**. We addressed variations in speed by defining speed bins based
on observed human behaviour, associating collected data with the
appropriate bin, noting when sufficient datafor any one speed bin had
beenaccumulated, applying the data-driven classifier to rank assistance
parameters and using these rankings to update the optimal parameter
estimates for all speed bins (Extended Data Fig. 4).

Real-world optimization quickly improved assistance during natural
walking conditions. We conducted experiments in which participants
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parameters for each step based on walking speed on the previous step.
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b, Ground truth and estimated walking speed for arepresentative participant.
Speed was estimated on each step using amodel that took stride period asan

performed one hour of walking in short bouts with exoskeleton assis-
tance (Fig. 5a) onapublic sidewalk (Fig. 5b and Supplementary Video 2).
Participants were given ecologically relevant® audio prompts® that
caused themto self-select walking speeds that matched aground-truth
distribution? (Fig. 5¢). Prompts were provided in random order and
at specific intervals to obtain bout durations that also matched a
ground-truth distribution® (Fig. 5d). The optimizer steadily converged
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input (Extended Data Fig.2) witharoot-mean-square error (RMSE)

of 0.06 ms™. The shaded region represents the mean + one standard deviation.
¢, When participants (n=3) walked onatreadmill that varied speed sinusoidally
between0.75ms™ and1.75 ms™, Speed-adaptive assistance reduced the
metabolic cost of walking more than the fixed Generic assistance.

throughout the experiment (Fig. Se), indicating steadily decreasing
uncertainty asto which exoskeleton parameters would result in optimal
performance according to the data-driven model. Post hoc analysis
showed that the optimizer did not reach steady state, suggesting that
additional time could have provided a better estimate of the optimal
parameters. Peak torques optimized during naturalistic walking were
larger than those from treadmill-based experiments (Fig. 5f). Partici-
pants may have felt more stable during outdoor walking®, allowing
themto benefit fromlarger torques, consistent with observations from
other comparisons of outdoor and treadmill walking with exoskeleton
assistance”.

Real-world Optimized assistance increased self-selected walking
speed and reduced the metabolic energy expended per distance
travelled during naturalistic walking. In a separate validation experi-
ment, participants performed a fixed set of outdoor walking bouts
with varying durations and speeds, while ground-truth metabolicrate
and speed were measured (Supplementary Video 3). Condition order
was randomized (Extended Data Table 1). With Real-world Optimized
assistance, the energetic cost of transport was reduced by 17 + 5%
(analysis of variance (ANOVA), n =10, P= 0.039) and walking speed was
increased by 9 + 4% (ANOVA, n =10, P=0.031) compared with Normal
Shoes (Fig. 5g). These energy savings are equivalent toremovinga9.2kg
backpack?®, and the increase in walking speed of 0.12 m s is similarly
meaningful®. Real-world Optimized assistance provided roughly twice
the benefits of Generic Speed-adaptive assistance, indicating that per-
sonalization was an important contributor to these benefits. Generic
Speed-adaptive assistance may have provided alarger benefitif it had
used the average of the torque parameters optimized during outdoor

Fig.4|Untethered ankle exoskeleton. a, A participant walkingina
community setting wearing the exoskeleton. b, The exoskeleton consists of

(1) abattery pack wornon the waist, (2) amotor, drum and rope transmission to
produce assistive torques, (3) electronics toreceive sensor data, command the
motor and perform optimization, (4) acarbon fibre and aluminium frame to
transmit forces, and (5) ashoe and (6) a calf strap to transfer forces to the body.
¢, The motor can apply a peak torque of 54 Nmwhenwalkingat1.5ms?,
sufficient to match the optimized assistance parametersidentified inemulator
experiments. Torques were tracked accurately; the shaded region represents
the mean + one standard deviation.d, The motor temperature during 30 min of
walking with maximum assistance remained well below the 75 °C thermal limit.
Anexponential fitindicated asteady-state temperature of 35.4 °C.
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Fig.5|Real-world optimization of exoskeleton assistance. a, Participant
walking on the public validation course. b, Map of the 566-m course used for
optimizationand validation. Participants walked the course repeatedly during
optimization. ¢,d, Distribution of self-selected walking speeds (c) and walking
boutdurations (d) during optimization and validation, compared with
previously recorded ground-truth distributions of real-world walking data?”3*,
e, Asassistance was optimized over one hour of naturalistic bouts of walking,
the convergence parameter (o) continuallyimproved. The error band
represents one standard deviation. f, Optimized parameters for each
participant were unique. The red squares depict the Generic Speed-adaptive
assistance parameters, consisting of constant values for peak torque
normalized tobody mass (Nm kg™) and rise time (percent gait cycle). For ease
of comparison, we show the Generic Speed-adaptive peak torquein Nm,

walking, rather than treadmill walking. These results demonstrate that
lower-limb exoskeletons can provide meaningful benefits under natu-
ralistic walking conditions and provide benchmarks for assessing the
real-world benefits of future devices. Assistance can be personalized
automatically inanatural setting, seamlessly improving human-robot
interaction over time.

Assistance optimized under real-world conditions produced even
larger benefits under standard treadmill conditions. After performing
optimizationina publicsetting, we tested our untethered exoskeleton
during standardized laboratory walking conditions to directly compare
with previous devices'. Real-world Optimized assistance reduced the
energy cost of treadmill walking by 16%at1.25 ms™,23%at1.5ms™,and
18% whenwalking up a10°incline (ANOVA, n =10, P < 0.023) compared
with Normal Shoes (Fig.5h and Extended Data Table 2), approximately
twice the benefits of the previous devices with the best performance
for these conditions (Extended Data Fig. 5). The energy savings during
inclined walking were equivalent to removing a15.2 kg backpack*.

averaged acrossall participants. Peak torque valuesin this figure are not
normalized to emphasize that several participants reached the maximum peak
torque that the untethered exoskeleton could provide. Theinset torque
profilesindicate how each torque parameter affected the assistance profile.

g, During validation under naturalistic walking conditions on the public course,
Real-world Optimized assistance substantially reduced the energy cost of
transportand increased walking speed compared with Normal Shoes (ANOVA,
n=10,*P<0.039). h,Real-world Optimized assistance also substantially
reduced the metabolic cost of walking compared with Normal Shoes during
benchmark treadmill conditions (ANOVA, n=10,*P< 0.023). Boxes extend
fromthe lower to upper quartiles, withaline at the medianand adot at the
mean. Whiskers extend between the minimum and maximum values.

Pilot results suggest that the device provides similar benefits under
other conditions, including walking on a 5°incline, loaded walking and
stair climbing (Extended Data Fig. 6). Emulator-informed hardware
design coupled with opportunistic, data-driven optimization led to
exceptional performance enhancements across walking conditions.
Participants reported that the untethered exoskeleton was easy
to use and relatively comfortable. Wearable robotic devices should
be usable, comfortable and functional for everyday activities to be
adopted by users*. Participants reported that the exoskeleton was
relatively easy to use (Extended Data Table 3), ranking it in the 65th
percentile of previously surveyed consumer devices*. Participants
found that the exoskeleton did not interfere with their clothing and
had a manageable weight, but were neutral as to whether it would be
comfortable to wear throughout the day (Extended Data Table 4). Par-
ticipantsreported thatit was easy to put onand take off the exoskeleton,
stand while wearing the exoskeleton, and walk indoors and outdoors
for extended periods with the exoskeleton (Extended Data Table 5).
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Six of the ten participants reported that they would prefer using the
exoskeleton rather than normal shoes if they were to walk the public
course again. The device we tested is aresearch prototype and not a
refined product; substantialimprovements would be required to allow
reliable, unsupervised use during typical daily activities. The survey
results suggest that it may be possible to create mobility-enhancing
productsthatare easy to use, comfortable andreliable, and that many
people may opt to use them.

These approachesto real-world personalization, adaptive assistance
and specialized exoskeleton design could potentially be extended to
address the needs of workers with physically demandingjobs and peo-
ple with mobility impairments. A similar overall development approach
could be used to address the most important outcomes for each bio-
mechanically and neurologically similar group. Assistance could aid
avariety of tasks, such as stair climbing or lifting, and improve other
aspects of performance, such as balance or joint pain. In each case,
additional training data could be collected in the laboratory and used to
train new data-driven models, illuminating the information contained
within thebody’s movements for each task. With each training dataset,
thelearned models could be made more capable, progressively build-
ing more general relationships between movement and performance
outcomes. Data from laboratory-based emulation and optimization
experiments could simultaneously provide design guidelines for prod-
ucts. Whenused regularly, we expect devices like this tobecome finely
tuned to the needs of eachindividual, resulting in larger performance
enhancements than observed in this study. Longitudinal experiments
willbe needed to understand how such assistance affects behaviour and
quality of life; as moving becomes easier, we hope to find that people
will be more active, helping them to lead healthier lives.
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Methods

Experimental design

Theresearch objective was to personalize exoskeleton assistance dur-
ingreal-world walking. To achieve this objective, we proposed amethod
of data-driven optimization, which uses portable sensors on the exo-
skeleton to personalize assistance for each participant. We hypoth-
esized that Data-driven Optimized assistance would provide larger
reductions in metabolic rate than Generic assistance. We conducted
a power analysis based on previous laboratory-based optimization
experiments and found that a sample size of eight participants was
necessary for the planned validation experiments. This analysis used
apower of 1- 8=0.8, asignificance level of a = 0.05, the difference
in mean metabolic rate between optimized (1.44 W kg™) and generic
(1.64 W kg™) assistance from a previous experiment*, and the variabil-
ity in metabolic rate (standard deviation 0.15 W kg™) from the same
experiment*.In this context, Bis the probability of incorrectly accept-
ing the null hypothesis. We collected data from nine participants for
the tethered exoskeleton experiments and ten participants for the
untethered exoskeleton experiments. We tested more participants
than the minimum number determined by the power analysis to pro-
vide afactor of safety in case data from any participants were found to
be unusable during later analysis. All participants that were recruited
completed the corresponding experiment, and all data from all partici-
pants were included in each corresponding analysis. All participants
had at least 8 h of experience walking with assistance from powered
ankle exoskeletons, minimizing the effects of training that can occur
while participants learn to walk with an exoskeleton®. All participants
were volunteers and provided written informed consent before com-
pleting the protocol (IRB-48749), which was approved by the Stanford
University institutional review board. Consent was obtained for publica-
tion of identifiable images of research participants. The experiments
consisted of human participant testing inboth laboratory and outdoor
settings. Participants wore bilateral ankle exoskeletons and walked
under a series of assistance conditions in arandomized order. Each
of the experiments is described in the following sections. We used a
one-way ANOVA to determine whether differences in the metabolic
cost of walking across assistance conditions were different from zero.

Measuring the metabolic cost of walking

The metabolic cost of walking was computed with measurements
from respirometry equipment. Respirometry equipment was used
to measure the volume of carbon dioxide and oxygen exchanged on
each breath. A standard equation was used to compute metabolic
energy expenditure in watts for each breath*‘. Metabolics measure-
ments during the real-world walking experiment and validation were
collected with portable respirometry equipment worn using a vest
on the participant’s torso (K5, COSMED). Metabolics measurements
during other exoskeleton experiments were collected with tethered
respirometry equipment (Quark CPET, COSMED). Metabolics data
were recorded during a quiet standing condition at the beginning of
each day of experiments. This quiet standing value was removed from
subsequent measurements to isolate the energy cost associated with
walking and remove any absolute error associated with respirometry
system calibration. The change in metabolic rate as a percentage of a
baseline condition, measured within the same experiment, is reported
as the primary outcome to account for differences in respirometry
equipment calibration coefficients between data collections. Partici-
pantsrefrained fromall food and drink except for water for atleast3 h
before experiments thatincluded respirometry measurements to avoid
confounds from the thermal effect of food. Steady-state metabolic
cost was computed by averaging data from the last 3 min of each 6-min
condition. Cumulative metabolic cost was computed as the total energy
expended during the condition®, including the metabolic cost beyond
that of quiet standing for 3 min following completion of the condition,

following methods from previous studies of non-steady gait>*. Excess
oxygen consumption and carbon dioxide production during the return
to steady state in quiet standing reflect delays between instantane-
ous energy use at muscles and expired gas measurements that arise
owing to mitochondrial, transport and respiratory dynamics®. Includ-
ing respiratory data from the period following activity enables more
accurate measurement of the energy actually expended during short
bouts of walking*. The energetic cost of transport was calculated as
the cumulative metabolic cost divided by the total distance walked.

Exoskeleton assistance conditions

A variety of exoskeleton assistance conditions were evaluated to
determine the benefits that they provided to the user. These assis-
tance conditions included walking in Normal Shoes and walking with
the exoskeletons while they applied Zero Torque, Generic assistance,
Speed-adaptive assistance, Generic Speed-adaptive assistance, Meta-
bolic Optimized assistance, Data-driven Optimized assistance and
Real-world Optimized assistance.

We tested walking in Normal Shoes, without the exoskeleton, as a
baseline condition for the untethered exoskeleton experiments. Ide-
ally, assistance from an untethered exoskeleton would lead to alower
metabolic cost than walking in Normal Shoes, providing a net benefit to
the user. Separate pairs of the same type of Nike running shoe, weighing
0.3 kg per shoe, were used for the Normal Shoes condition and incor-
poratedinto the tethered exoskeleton and the untethered exoskeleton.

The Zero Torque mode was an exoskeleton condition in which the
exoskeleton provided no assistive torques. During this mode, the exo-
skeleton maintained asmallamount of slack in the cable transmission
so that virtually no torque was applied to the ankle. This condition
was used as a baseline for experiments with the tethered exoskeleton
(but not for experiments with the untethered exoskeleton) because
it allowed us to isolate the benefits of exoskeleton assistance from
the energetic costs of wearing the emulator, which were expected to
differ from those of an untethered device specialized to provide the
same assistance.

The Generic assistance condition used afixed set of assistance param-
eters identified from a previous optimization experiment. Generic
assistance patterns have been found to reduce the metabolic cost of
walking less than assistance personalized to each individual**. The
tethered exoskeleton experiments in this study used Generic assistance
computed by averaging the optimized parameters from a group of
participants in a previous experiment using the same tethered ankle
exoskeleton that had provided the largest energetic benefits owing to
exoskeleton assistance so far*. The Generic assistance pattern allowed
usto estimate the contributions of personalization through data-driven
optimization in tests with the tethered emulator.

During Speed-adaptive assistance, the exoskeleton used estimates
of walking speed to select assistance parameters expected to be
more effective at that speed. The speed-adaptive control approach
is described in detail in ‘Speed-adaptive controller and validation
experiment’. Inthe Speed-adaptive condition, the controller interpo-
lated between separate sets of assistance parameters that had been
optimized for the same participant at walking speeds of 0.75m s,
1.25ms™ and 1.75 ms™. This condition was used to test the efficacy of
the speed-adaptive control approach for handling speed variations
during treadmill walking with the tethered exoskeleton emulator.

In the Generic Speed-adaptive assistance condition, the
speed-adaptive controller selected assistance parameters expected to
be more effective at that speed for an average participant. The control-
lerinterpolated between separate sets of Generic assistance parameters
for each walking speed, computed by averaging the optimized assis-
tance profiles from the tethered exoskeleton experimentsin this study
(Fig.2). The generic parameters for 0.75 m s*and 1.75 m s were com-
puted by averaging across three participants’ optimized parameters,
whereas the generic parameters for walking at 1.25 m s were computed
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by averaging ten participant’s optimized parameters. The Generic
Speed-adaptive assistance condition was compared with Real-world
Optimized assistance during overground walking with the untethered
exoskeleton. Ideally, the Generic Speed-adaptive parameters would
have been taken as the average values from real-world optimization,
but those values were not yet known at the time the experiment was
conducted. The Generic Speed-adaptive condition provided the best
available comparator for isolating the benefits of personalization dur-
ing overground experiments with the untethered exoskeleton.

Metabolic Optimized assistance was personalized based on met-
abolic measurements using a previously established optimization
method?foridentifying the exoskeleton control parameters that mini-
mize the metabolic cost of walking for a specific person. To perform
metabolic optimization, a participant walked on a treadmill while
receiving exoskeleton assistance. The same assistance profile, or ‘con-
trol law’, was provided to the participant for 2 min while respirometry
measurements were recorded and the steady-state metabolic cost of
walking for that control law was estimated'®. Participants repeated
this process of walking on a treadmill for 2 min per control law until a
fixed number of control laws had been evaluated. We refer to the set
of control laws to be evaluated as one ‘generation’ of control laws—the
terminology used in evolution-inspired optimization strategies such
asthe covariance matrix adaptation evolutionary strategy (CMA-ES)*.
Each generation of control laws must be tested before updating the
estimate of the optimal control law and generating a new generation of
control laws to test. On the basis of heuristics relating generation size
to the number of parameters to be optimized®, the lab-based experi-
ments with four optimization parameters had participants complete
eight control laws per generation. After each generation, an optimizer
(CMA-ES) ranked the control laws in order of metabolic cost, updated
the optimization parameters and selected a new set of promising
control laws to evaluate. This optimization approach was established
in previous experiments that demonstrated large improvements in
the metabolic energy cost of walking and running with exoskeleton
assistance?**. This optimizer was selected because it is sample effi-
cient, meaning that it requires relatively few evaluations to reach a
reliable estimate of the optimal parameters. In the context of exoskel-
etonoptimization, that means fewer exoskeleton control modes tobe
experimentally tested on the human participant, which isimportant
both to study design and to real-world use of devices that personalize
assistance. Metabolic Optimized assistance was used to validate the
data-driven optimization approach in the first experiments with the
tethered exoskeleton emulator.

Data-driven Optimized assistance was personalized using data-driven
optimization. The data-driven optimization used the same optimiza-
tionframework as the metabolic optimization, except thatit used the
data-driven classifier, rather than indirect respirometry measure-
ments, to perform the ranking step. The classifier was trained on data
from a previous laboratory experiment* and compared control laws
based on the exoskeleton torque parameters applied and the result-
ing ankle angle and ankle angular velocity (Fig. 1 and Extended Data
Fig.1). The data-driven optimization condition was applied in tests of
the data-driven optimization approach using the tethered exoskeleton
emulator.

Real-world Optimized assistance used speed-adaptive control with
parameters that were personalized using the data-driven optimization
approach while walking with the untethered ankle exoskeleton under
naturalistic conditions. The controller used the same speed estimation
and adaptation approach as with the Generic Speed-adaptive condi-
tion, except that the parameters for each speed were personalized
to the individual participant using opportunistic optimization. The
Real-world Optimized parameters were computed using the approach
detailed in ‘Opportunistic optimization approach’. The Real-world
Optimized condition was applied in outdoor and treadmill tests with
the untethered exoskeleton.

Data-driven optimization

Data-driven optimization personalized assistance using a data-driven
classification model to determine which exoskeleton control param-
eters provided the largest benefits for each person. The participant
walked whilereceiving a sequence of different patterns of exoskeleton
assistance, each defined by the corresponding control law. During
laboratory-based experiments, participants walked on a treadmill
for 30 s for each control law. During real-world experiments, partici-
pants walked overground for 44 continuous steps for each control
law. A fixed number of exoskeleton control laws, comprising one gen-
eration of the evolution-inspired optimizer, were then ranked using
the data-driven classifier. The optimizer then updated its estimate
of the optimal parameters and generated a new set of control laws to
evaluate. The following paragraphs detail what type of data were col-
lected, how the data were processed, how the data-driven classification
model evaluated control laws, how the optimizer was updated based
onthe data-driven classifications and how a new set of control laws was
selected for evaluationin the next generation of optimization (Fig. 1).

Exoskeleton torque control parameters, defined by the control law,
were fixed within each evaluation period. The person experienced sev-
eral control laws before the data-driven model processed dataand the
optimizer updated its estimate of the optimal assistance parameters
and generated a new set of control laws to evaluate.

The data-driven modelinput consisted of carefully processed porta-
blesensor data, including ankle angle and ankle velocity measurements
and the control law parameters that set the pattern of exoskeleton
torque. The angle and velocity measurements were sampled using an
absolute rotary encoder at the ankle joint of the exoskeleton worn on
theleftleg. The control law parameters consisted of four values: peak
torque magnitude, peak time, rise time and fall timeZ.

Portable sensor data were processed by segmenting the ankle angle
and velocity measurements by gait cycle and then discretizing the data
for each gait cycleinto a discrete number of bins. The gait cycles were
segmented whenever a heel strike was detected by the pressure-sensing
insoles. The first six gait cycles of data were discarded to avoid con-
founds from fast adaptation*® by the person in response to the new
assistance pattern—in pilot tests, we found that data from these first
six steps exhibited substantial changesin ankle kinematics, while sub-
sequent strides were more consistent. The remaining gait cycles were
discretized by averaging the measurements withineach of 30 discrete
binsand then averaging each binacross the gait cycles for that control
law. The processed datawere reshaped into a single vector with 64 val-
ues: 30 binned values for the ankle angle across the gait cycle, and 30
binned values for the ankle velocity across the gait cycle, and 4 values
for the torque parameters. The model input consisted of the vector of
data for one control law subtracted from the vector of data for a dif-
ferent control law, which also comprised 64 values. This difference in
the sensor measurements provided the model with information about
how the person’s movements and exoskeleton torque differed between
the two control laws. The choice to segment data by gait cycle follows
our previous findings that data-driven models can more accurately
estimate metabolic energy expenditure from sensors worn by unas-
sisted humans when the data are formatted in this way?.

The data-driven classification model was trained to compare two
controllaws atatime, determining which control law was estimated to
have provided alarger reductionin the metabolic cost of walking. The
data-driven classification model was a logistic regression model. To
train the data-driven classifier, we input previously collected data*
thatincluded portable sensor data, in the form of exoskeleton joint
angles and velocities, and ground-truth labels, in the form of meta-
bolic measurements, for many exoskeleton control laws. The sensor
datawere taken asinputinto the model to estimate the likelihood that
the first of the compared control laws resulted in alower metabolic
cost of walking compared with the second control law. The resulting



probability was a continuous value from 0 to 1, with 1indicating the
highest likelihood that the first control law reduced the metabolic
cost of walking more than the second control law. The ground-truth
labels were computed by subtracting the measured metabolic costs,
estimated from 2 min of respirometry data, for the two control laws. A
label with anegative valueindicated that the first control law was more
beneficial, meaning that it reduced the metabolic cost of walking more
than the second control law. A positive-valued label indicated that
the second control law was more beneficial. The previously collected
training datawere fromanexperimentin which 10 participants walked
under approximately 3,600 different exoskeleton control laws*. When
training the data-driven classifier, we used regularization, atechnique
that encourages simpler models and avoids overfitting to training
data, to improve model estimates for new data points that were not
in the training set. In this case, we used a lasso regularization term
that penalized the absolute value of the model weights multiplied by
aregularization parameter with a value of 1.

The data-driven classification model was trained to capture arela-
tionship between leg movement, exoskeleton torque parameters
and the metabolic cost of walking with assistance. The linear weights
used by the data-driven classifier are visualized using acolour code in
Extended Data Fig. 1. To aid interpretation, we also overlay the mean
difference for each modelinput as ablack line. This was calculated as
the value from the control law resulting in lower metabolic rate minus
the value from the control law resulting in higher metabolic rate, aver-
aged across all pair-wise comparisons, such that the sign of the mean
differenceis meaningful. We also provide the cumulative contributions
of each terminthe modelto classification over the entire training set.
The percent contributions are calculated as the absolute value of the
product of the model weight and the difference input, summed over
all pair-wise comparisons, divided by the sum over all model terms.
Evenlinear data-driven models canbe difficult tointerpret because of
the complexinteractions between model terms through the dynamics
of the underlying system, which can be nonlinear and coupled. In this
case, the underlying system is a human walking with an exoskeleton,
and we expect stronginteractions between exoskeleton torques, joint
velocities and joint angles, and between states at different timesin the
gait cycle. The model may be capturing aspects of these interactions
innon-obvious ways. Nevertheless, we can gain some intuition about
therelationships that the model may have identified if we consider the
effects of key model terms independently.

The model weights associated with differences in ankle kinematics
suggest that alower metabolic rate was associated withincreased ankle
plantarflexion at toe-off, while guarding against premature onset of
push-off, excessive plantarflexion velocity and reduced dorsiflexion
mid-stance. The largest single contributor to classification based on
ankle kinematics, constituting about10% of the total, favoured alarger
plantarflexion angle at 62% stride, the time of toe-off during normal
walking. A large negative weight on the difference in ankle velocity at
48% stride seemed to penalize conditions that resulted in premature
onset of ankle push-off. A sequence of negative weights on ankle plan-
tarflexion velocity during push-off seemed to favour slower, smoother
movement during that phase. Taken together, these velocity regulation
terms constituted about 16% of the total classification. Smaller nega-
tive weights on ankle angle at 38% stride and ankle velocity before the
onset of push-off suggest a preference for conditions with greater
mid-stance dorsiflexion. The model terms associated with ankle angle
and velocity were most informative during late stance, when the con-
centric contractions of the plantarflexor muscles are less efficient and
exoskeleton torque may have the most capacity to reduce metabolic
cost***, During the leg swing phase, model terms contributed little
to the total classification, consistent with expectations for an ankle
exoskeleton that produced no torque when the foot was off the ground.
The sum of allmodel weights associated with ankle angle and velocity
were 10% and 23% of the total, respectively.

The model weights on differences in torque parameter values indi-
cated that lower metabolic rate was associated with a later time of
peak torque and, to a lesser extent, a larger peak torque magnitude.
Exoskeleton assistance was governed by a torque pattern defined by
four parameters: peak torque magnitude, peak time, rise time and fall
time® These four parameters had allowable ranges of 0 to1 Nm kg™, 40%
to 55% stride, 20% to 40% stride, and 10% to 20% stride, respectively.
Falltime was further constrained to be at most equal to the difference
between peak time and the time of toe-off, which prevented application
oftorque during the swing phase. Thelargest single contributor to clas-
sification based on exoskeleton torque, constituting about 60% of the
total, favoured applying peak torque at alater time in the gait cycle. As
the peak time was constrained, this term had the effect of maintaining a
peak time close to the upper limit of 55% stride. Consequently, fall time
was effectively constrained toitslower bound of 10% stride. The large
model weight on peak time is consistent with previous observations
that the timing of ankle exoskeleton assistance isimportant®, and that
later onset of torque assistance can correspond to larger improvements
in metabolic rate®. The data-driven model also favoured larger peak
torque magnitudes, with the associated term contributing about 4%
tothe total classification. Interestingly, peak torque was not driven to
its upper limit for most participants or conditions, and the classifica-
tion contribution of this term was about ten times less than the sum of
contributions fromankle kinematics. This suggests that how aperson
reacts to exoskeleton assistance is more important for determining
metabolic rate than the magnitude of the torque and power provided
by the exoskeleton.

Exoskeleton control laws were ranked using the probability values
estimated by the data-driven classifier. Each pair of control laws that
were passed to the data-driven classification model yielded one prob-
ability value, defining whether the first control law was expected to have
provided alarger benefit than the second control law. All possible pairs
of control laws were classified with the data-driven model to obtain
a complete set of probability values. Each control law was scored by
summing the probabilities from all pairs thatincluded that control law.
The control laws were ranked by the magnitudes of their scores, witha
larger valueindicating that the control law was more likely to provide a
larger reduction in the metabolic cost of walking (Fig. 1). This ranking
step replaced the previous approach based on metabolic measure-
ments fromindirect respirometry equipment, allowing optimization
to take place outside the laboratory using inexpensive sensors and a
microcontroller on the exoskeleton. Using the data-driven ranking,
the optimizer then updated its internal parameters and generated a
new set of control laws to evaluate. The new estimate of the optimal
control law was equal to the weighted average of the best-performing
controllaws. New control laws were selected fromadistribution around
this estimate of the optimum, with the shape of the distribution set
by the covariance matrix and the spread of the distribution set by the
convergence parameter.

The data-driven optimization process can be better understood by
working through these steps using example data. Imagine that we have
three control laws, labelled 1, 2, and 3, which happen to be in order of
increasing metabolic cost and decreasing peak torque. Imagine that
these controllaws had identical torque timing parameters and resulted
inidentical ankle angles and ankle velocities. When performing the
three pair-wise comparisons (Fig. 1c), the differences between ankle
angle and ankle velocity would be zero. The differences between torque
parameters (ACy,, AC;;and AC,;) would each be a vector with one posi-
tive value followed by three zeros. When taking the dot product of the
parameter differences with the model weights on control parameters,
which are all positive (Fig. 1d), the pair coefficients (w,,, w5, and w,;)
would all be positive scalars. For each of these pair coefficients, the
logistic function (Fig. 1e) would return a probability greater than 0.5,
indicating that the first control law in the pair is likely to have a lower
metabolic cost than the second control law. Let usimagine that each of
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the probability values (p,,, pi5, and p,;) was 0.9. When performing the
control law scoring step (Fig. 1f), the score for the first control law (s,)
would be the sum of p;,and p;, or 1.8. The score for the second control
law (s,) would be the sum of p,, and p,;. As p,, is the complement of
P12 Pn=1-p,=0.1.Thus, s, would equate to 1. The score for the third
control law (s;) would be the sum of p5; and p,,, or 0.2. Thus, the scores
would correctly rank the control laws in terms of metabolic cost. The
optimizer would then use thisranking to performan update, estimating
that the optimal torque parameters were close to those of control law
1, but slightly offset towards control law 2. The optimizer would then
select new control laws to evaluate, drawn fromadistributionaround
the new estimate of the optimal parameters (Fig. 1g).

Tethered optimization experiments

To compare the efficacy of data-driven optimization to arange of other
assistance conditions, we conducted tethered exoskeleton experiments
inanindoor laboratory setting. Participants wore tethered bilateral
ankle exoskeleton emulators*, Exoskeleton assistance was governed
by atorque pattern characterized by four parameters: peak torque
magnitude, peak time, rise time and fall time?. The exoskeleton control
loopranat1,000 Hzon areal-time computer (Speedgoat). Exoskeleton
sensor measurements were recorded at arate of 2,000 Hz, including
pressure values from shoe insoles, commanded torque parameters,
measured torque, ankle angle, and ankle velocity. Measurements were
used to estimate time within the gait cycle as a percentage of the total
gait cycle time, whichwas used to calculate the desired torque. Torque
tracking was accomplished using a combination of classical feedback
control anditerative learning, which accounted for errors that consist-
ently occurred at the same point in the gait cycle on each step®.

Two tethered exoskeleton experiments were used to evaluate the
effectiveness of various assistance conditions. The first experiment
compared assistance conditions while participants walked at1.25 ms™,
anormal walking speed previously used for metabolic optimization
experiments®*, Healthy young adults (n =9, 5 men and 4 women; age,
24.8 +1.8 yr;body mass, 65.3 + 8.0 kg; height,1.73 + 0.07 m) completed
atwo-day experimental protocol. On the first day, participants per-
formed experiments to personalize assistance parameters with meta-
bolic optimization and data-driven optimization, in a randomized
order. Participants completed eight generations of optimization for
each approach. Each generation consisted of eight control laws. The
optimizations were initialized with the Generic assistance parameters,
corresponding to the average of the optimized parameters identi-
fied for a previous group of expert participants*. The optimizations
were initialized with the covariance matrix set to the identity matrix
and ascaling factor that corresponded to 20% of the range of the nor-
malized assistance parameters (a sigma value of 0.1). The metabolic
optimization control laws lasted 2 min, which allowed steady-state
metabolic cost to be estimated from respirometry data with a good
balance between the time required for each control law and estimation
accuracy?. This led to a total evaluation time of 128 min of walking.
During data-driven optimization, each control law was evaluated for
30 s, sufficient to obtain an accurate estimate of participant motions,
whichwere nearly steady following the rapid adaptation phase?. This
required a total evaluation time of 32 min of walking. For each par-
ticipant, the parameters identified using data-driven and metabolic
approaches were similar. For example, optimized peak torque values
were well correlated across methods (R?=0.76, P=1.4 x10™*,n=9).
On the second day, participants performed a standing rest condition
followed by assistance conditions including Normal Shoes and walking
with the exoskeletons under Zero Torque, Generic assistance, Meta-
bolic Optimized assistance and Data-driven Optimized assistance.
The assistance conditions for these validation tests were randomized
and presented in a double-reversal order, as ABCDDCBA, to mitigate
the effects of trial order related to within-day adaptation and fatigue.
Each condition lasted for 6 min and included metabolic measurements.

The second experiment was used to evaluate the same set of assis-
tance conditions at additional speeds and treadmill grades. A subset
of healthy adult participants from the first experiment (n =3, 3 men;
age,24.0 £ 2.0 yr; body mass, 66.0 * 8.0 kg; height, 1.76 + 0.05 m) com-
pleted the experiment. Participants completed the same experimental
protocol used in the first tethered exoskeleton experiment for three
additional walking conditions: walking at a slow speed of 0.75ms™, a
fast speed of 1.75ms™, andonalO°inclineat1.25ms™.

Speed-adaptive controller and validation experiment

We developed a speed-adaptive controller that adjusted exoskeleton
assistance based onwalking speed. During real-world walking, people
naturally vary their speed”. We hypothesized that adjusting exoskel-
etonassistance based on walking speed would provide larger metabolic
reductions than a constant pattern of assistance. We estimated the
walking speed of each step using a linear model, relating measured
stride durations to measured walking speeds (Extended Data Fig. 2).
Walking speed estimates from each step were used to interpolate exo-
skeleton assistance parameters from those optimized at a range of
fixed speeds (Fig. 3a).

During speed-adaptive control, walking speed from one step was
used to select the assistance parameters for the following step. We
expect thisapproach to perform well when changes in walking speed
occurslowly, orwhen there are rapid changes in speed but they consti-
tute asmall portion of total steps, as in natural human gait. Our experi-
mental dataare consistent with the observation that most acceleration
and deceleration occurs withinafew steps at the start and end of each
walking bout. The expected stance duration was also adjusted based
on speed estimates, following an approach established in previous
research®. In future studies, the speed-adaptive controller could be
improved to deliver more effective assistance during rapid changes
in gait speed by incorporating instantaneous estimates of walking
speed®** and stance duration. Acceleration regimes could also be
considered, with a binning approach analogous to the one used for
speeds in this study, to allow optimization of assistance specific to
accelerationand deceleration phases. Other approaches, suchasthose
using phase-based control®® or adjusting assistance based on changes
in joint kinematics rather than walking speed*®, may be beneficial for
generalizing to alarge set of activities.

We conducted athird tethered exoskeleton experiment to evaluate
whether adapting assistance to variations in walking speed could pro-
videlarger reductions in metabolic cost than afixed generic assistance
profile. Healthy young adults (n =3, 3 men; age, 24.0 + 2.0 yr; body
mass, 66.0 + 8.0 kg; height, 1.76 + 0.05 m) completed the experiment.
These participants had previously completed the first two tethered exo-
skeleton experiments, providing Data-driven Optimized parameters
for walking speeds of 0.75ms™, 1.25ms™, and 1.75 m s™. Participants
walked on atreadmill while the speed varied sinusoidally from0.75 ms™
to1.75 ms™ with a period of 30 s. Participants completed assistance
conditions including walking in Normal Shoes and walking with the
exoskeletons under Zero Torque, Generic assistance (which did not
changeinresponseto changesin speed) and Speed-adaptive assistance
(using the optimized control parameters previously identified for each
participant). The validation tests were randomized and presented in
adouble-reversal ABCDDCBA order to mitigate the effects of noise in
the metabolics measurements and trial order.

Untethered exoskeleton design

The untethered exoskeleton was designed to provide the optimized
assistance parameters from the tethered exoskeleton experiments
under real-world conditions. The maximum peak torque magnitude
forthe optimized assistance during the tethered exoskeleton study was
54 Nmwhenwalking at amoderately fast speed of 1.5 m s™. The motor
and power transmission elements were designed to robustly provide
thislevel of assistance. A portable battery was selected to allow 30 min



of continuous walking on asingle charge. The device was designed to
be lightweight to reduce the metabolic power required to carry the
exoskeleton.

The untethered exoskeleton had a mass of 1.2 kg for each ankle.
Many of the mechanical elements were the same as in the tethered
exoskeleton, including the frame, shoe and pressure-sensor insole. New
elementsincluded the portable motor, drum-and-cable transmission,
electronics, and battery (Extended DataFig.3). A set of computer-aided
design files and abill of materials are provided as Supplementary Data 2.

The brushless motor (AK80-9, CubeMars) contained asingle stage 9:1
gearratio and internal motor driver electronics. This gearmotor has a
rated peak torque of 18 Nm, a no-load speed of 25 rad s, and amass of
0.5 kg. We selected this motor based on simulations with a simplified
model that predicted it would be capable of applying the patterns of
ankle torque and velocity that corresponded to optimized assistance
in the tethered exoskeleton experiments, assuming an additional 5:1
gear ratio from the drum to the heel spur.

The custom drumwas machined from 7075 aluminium, with aradius
0f 0.020 m. A cable connected the heel spur to the motor drum. The
heel spur had a maximum lever arm (the distance from the centre
of the ankle joint to the rope tie-off point) of 0.115 m. The lever arm
decreased as the ankle plantarflexion angle increased, with a singular-
ity at a maximum plantarflexion angle of 55° ensuring that no ankle
torque could be applied to hyperextend the ankle joint. The torque
assistance profile of the exoskeleton was not impacted by changesin
thelever armbecause torque was measured directly at the ankle; strain
gauges on the superior and inferior surfaces of the heel lever directly
sensed bending momentindependent of cable force. This allowed for
accurate torque control without explicitly correcting for joint angle.
When the motor applied torque to the drum, a force was generated in
the cable, which then transmitted this force to the heel lever, creating
atorque about the ankle joint of the exoskeleton. The drum-and-cable
transmission had the added benefit of being backdrivable, avoiding
the possibility of force spikes that can be produced by classically stiff
actuators®*®, The cable could also be driven to a slack state to allow
the person to move freely when desired, an important capability that
prevents interference when not providing assistance®.

The untethered exoskeleton electronics consisted of a microcon-
troller, portable sensing elements, a motor driver integrated into the
motor and a rechargeable battery. The untethered exoskeleton used
aRaspberry Pi 4b microcontroller to read sensor data and perform
real-time control and optimization at arate of 200 Hz. A breakout board
enabled sensors to interface with the microcontroller. A step-down
voltage converter enabled the electronics to be safely powered by a
portable battery. The portable sensing elements included a rotary
encoder in the ankle joint that measured ankle angle and velocity, a
pressure-sensinginsoleinthe shoe, aset of strain gaugesin a full Wheat-
stone bridge configurationapplied to the heel spur to measure torque,
and an amplifier (IAA100, Futek) to allow measurement of strain-gauge
signals. The pressure-sensing insole had pressure sensors located at the
heel, fifth metatarsal, distal phalanx of the great toe and the first meta-
tarsal. Fusing information from these different sensors enabled robust
estimation of stance and stride period while providing measurements
to extractinformation for optimizing assistance. This choice of sensors
was guided by the design heuristic that multiple modes of sensing are
important for effective exoskeleton control®®. Muscle electrical activity
could have provided additional information for control, but with the
added challenge of handling noise from sensors placed on the skin®..
The total weight of electronics was 0.15 kg.

The entire system was powered by a lithium polymer battery witha
nominal voltage of 24 V,acapacity of 1,300 mAh, and aweight of 0.3 kg.
Battery life was experimentally evaluated under the most demand-
ing assistance pattern, characterized by a peak torque of 54 Nm and
late timing of peak torque. Tests were conducted while walking on a
treadmill at a speed of 1.5 m s\, The battery was initially charged to a

maximum voltage of 25.2 Vand the battery life experiment was stopped
once the battery voltage reached 21.6 V, corresponding to a cell volt-
age of 3.6 V, the minimum safe level recommended for discharging a
lithium polymer battery. During testing, cell voltage was monitored by
asafety regulator and an audio alarm was played once the cell voltage
reached 3.6 V. We found that the 0.3-kg battery used in real-world tests
allowed 36.3 min of operation under these conditions.

The design of the untethered device was guided by previous
laboratory-based ankle exoskeletons, incorporating design elements
thatallowed for large assistive torques while maintaining comfortable
forces on the body*. The shoe, carbon fibre struts and calf spacers
were designed to be interchangeable to fit different participants, fol-
lowing best practices for fitting®’. The motor-and-drum transmission
and heel spur were designed to be one size fits all, with interchange-
able shoes and spacers accommodating differences in foot size and
mediolateral dimensions of participants’ legs. It might at first appear
that the force applied by the cable between the drum and heel spur
would pull the exoskeleton down the leg, but the rigid exoskeleton
frame allows the axial component of this force to be reacted out at the
exoskeletonjointrather than as shear on the person’s skin*. Thus, only
anormalforceisapplied tothe shank of theleg, which allows for more
comfortable application of high torques®. The carbon fibre frame of
the exoskeleton used stiff materialand a cross-section with a high-area
moment of inertia to prevent meaningful deflection during loading.
As the system regulated exoskeleton joint torque, rather than motor
current or velocity, and as torque was measured directly at the joint,
compliance and dissipationinthe transmission, exoskeleton frame and
human-exoskeleton interface did not affect the accuracy or consist-
ency of the applied torque.

The design of the untethered exoskeleton required several trade-offs.
The highest design priority was providing a peak torque of 54 Nm during
walkingat1.5m s, specified from previous optimization experiments,
with the least mass possible. We considered several factors to ensure
that the motor would provide 54 Nm during operation. We simulated
thetorque needed to provide the desired assistance, overcome trans-
missioninefficiencies, and accelerate the mass of the motor rotor and
drumasrequired to track ankle movements during walkingat1.5ms™.
The motor had to operate at asafe steady-state temperature to prevent
damage to the windings. A brushless motor was selected for its rela-
tively high efficiency and peak torque. This untethered exoskeleton
was designed for the optimized parameters of our experimental par-
ticipant group, and other participants may require a different device
with different balance between torque and weight to provide the same
reductions in the metabolic cost of walking.

Another important decision was whether to place the motor and
electronics near the assisted joint or closer to the torso. The energy
cost of carrying mass at distal joints is high®, suggesting a relocated
drive approachwith heavy motors carried more proximal to the centre
of mass of the body. We considered mounting the motor and electronics
atthe hip and using aBowden cable to transmit forces to the ankle joint.
Bowden cables have aninner cable that moves relative to an outer con-
duitlike abicycle brake. Thisintroduces complex transmission dynam-
ics, including stick-slip friction, history dependence and adependence
on leg posture, making torque control more challenging, reducing
control bandwidth and decreasing energy efficiency. The cables and
additional electrical wires also add to the weight of the system. For
thesereasons, we selected adrum-and-cable transmission located on
the shank of the leg. Locating motors and electronics near the assisted
joint resulted in more efficient power transmission, lower transmission
compliance, better control bandwidth and less total weight.

Our untethered exoskeleton was designed to allow tests of real-world
personalization and resulting mobility benefits during naturalistic
walking in acommunity setting. A significant amount of additional
engineering would be required to make this device ready for everyday
use by consumers. Everyday use would require easier donning and



Article

doffing, amore comfortable interface, more robust electronics hard-
ware and moreintuitive, independent control, for example, utilizing a
smartphone app. Inaddition, the exoskeleton would have to be tested
to ensure functionality during additional common activities such as
navigating stairs, and to ensure that it did not interfere with common
activitiessuch assitting and driving. While we did not directly evaluate
descending stairs in this study, we did notice that the long heel spur
required participants to walk carefully to avoid hitting the previous
step. This design choice was made for convenience, allowing us to use
as many elements from our previous tethered exoskeleton design as
possible. A less obtrusive transmission would be needed for a con-
sumer device. The commercially available Dephy ExoBoot®* provides
anexample of amore streamlined design; it hasno spur behind the heel
ofthe shoe, has simple donning and doffing features, and has minimal
structure on the medial side of the leg, making ita good candidate for
extended use in alarge range of activities. Other autonomous ankle
exoskeletons'®” demonstrate complementary ways of designing hard-
ware thatismore compatible with everyday use. With increased torque
capacity, more accurate torque control and real-world personalization
using the approach described here, we expect commercial devices
could achieve similar reductions in metabolic rate.

Opportunistic optimization approach

We overcame the challenges of optimizing assistance during short
bouts of walking at varying speeds by opportunistically accumulat-
ing data across many bouts and binning by speed. This opportunistic
optimizationapproach used the same data-driven classification model
and optimization method that were validated in the tethered experi-
ments, with the addition of a check that sufficient consecutive steps
had been collected for each control law and a method for addressing
awide range of speeds (Extended Data Fig. 4).

The opportunistic optimization method checked that sufficient
steps had been collected before moving on to the next control law. We
chose the requirement of 44 steps to approximate the durations used
in the tethered data-driven optimization experiments. If sufficient
continuous steps were not collected before the end of the walking
bout, the optimizer would start over with the same controller on the
nextbout. Once sufficient strides were collected, the next control law
was applied for that speed bin. As with the tethered experiments, the
first six strides of data were discarded to avoid confounds related to
rapid adaptation to a new exoskeleton control law.

The same data-driven classification model used in the tethered
exoskeleton experiments was used for the real-world optimization,
but a different set of assistance torque parameters were optimized.
The torque parameters for peak time and fall time were fixed to the
average values of the Data-driven Optimized parameters from the first
tethered exoskeleton experiment (54.6% of the gait cycle and 10.0% of
the gait cycle). We fixed the values of peak time and fall time because
the optimized values changed little across speeds and participants,
indicating that fixed values may be sufficient. The optimized values
of peak torque and rise time varied substantially across speeds and
participants, and so these parameters were optimized in untethered
exoskeleton experiments. Optimizing two, rather than four, torque
parameters reduced the dimensionality of the optimization, requir-
ing only six, rather than eight, control laws to be collected for each
generation of optimization. Reducing the number of control laws to be
evaluated per generation allowed for more generations to be completed
within a set experiment time, providing more frequent optimization
updates and a better estimate of the optimal values. This may have
come at the cost of suboptimal assistance timing parameters for some
participants.

Oncedataforallthe control lawsinageneration were collected, the
data-driven classification model ranked the control laws. The optimizer
used this ranking to update its estimate of the optimal parameters and
to adjustinternal parameters, such as the convergence parameter (o)

thatset the spread of the distribution from which to draw parameters
for the next generation. Optimizations were performed for three bins
of walking speed:lessthan1.22 ms™, between1.22ms'and1.38 ms™,
and greater than 1.38 ms™. These speeds were chosen based on the
33rd and 66th percentile of real-world walking speed distributions?,
resulting in an equal expected likelihood for the participant to walk
in each bin. Speed-adaptive control interpolated assistance based on
thespeed of eachindividual step (Extended Data Fig. 2). When a suffi-
cientnumber of steps were collected for one control law, the estimated
walking speeds for all steps during that control law were averaged, the
corresponding speed bin was selected, and data were stored for the
optimization process. Whena complete generation of control laws were
collected foraspeedbin, control laws for that bin were ranked and the
optimization parameters for that bin were updated. The estimate of
the optimal assistance parameters for the other speed bins were also
adjusted by a lesser amount, with the magnitude of the adjustment
being proportional to the value of the convergence parameter, o, for
that bin (Extended Data Fig. 4). This allowed parameters in all speed
bins to update more quickly at the beginning of the optimization, with
decreased across-speed influences as the optimizations within each
speed bin converged.

We chose to optimize aset of assistance parameters for each of three
bins of walking speed, but it is possible to formulate this optimiza-
tionin different ways. The data-driven classifier requires comparisons
of control laws at similar walking speeds. A larger number of bins of
walking speeds could be used to provide more granular speed-based
adaptation, at the expense of additional time to optimize alarger num-
ber of assistance parameters. It may also be possible to simultane-
ously solve for a larger set of control parameters that fully define the
speed-adaptive controller, but this would introduce challenges related
tothelarger parameter space, interaction effects between parameters,
and poorly conditioned maps between parameters that have astrong
effect onassistance at one speed and little effect on assistance at differ-
entspeeds. Instead, we opted for a small set of speed bins, with arela-
tively simple approach to updating the optimal parameter estimates.

Real-world optimization experiments

In the real-world optimization experiments, we used the untethered
exoskeleton to optimize assistance during naturalistic bouts of walking
and then evaluated the optimized assistance profiles under real-world
and treadmill conditions.

Healthy adult participants (n=10, 6 men and 4 women; age,
24.2 +1.8 yr;body mass, 67.0 + 8.2 kg; height, 1.72 + 0.07 m) completed
atwo-day protocol. On the first day, participants walked outside in a
public setting along a path consisting of concrete, asphalt and brick
sidewalks (Fig. 5b) for approximately 1 h while the untethered exoskel-
eton provided assistance and performed data-driven optimization. To
emulate natural walking, the participants received audio cues to tell
themto start and stop walking bouts. The durations of these bouts were
randomly drawn from a preselected distribution (Fig. 5d) that matched
naturally occurring bout durations®, Participants stood at rest between
bouts for arandomized duration of 5sto 10 s. To encourage a normal
range of speeds, we provided participants with audio prompts, such
as “Walk as if you were walking to catch abus” and “Walk as if you were
walkingasmall dog”, at the start of each bout. A previous study®® demon-
strated that these prompts were associated with different self-selected
walking speeds, and we expected that participants would adopt similar
speeds. We randomly sampled from a distribution of speeds (Fig. 5c)
that mimicked natural walking patterns measured in a previous study?.

On the second day, participants performed outdoor and treadmill
validation tests to evaluate the benefits provided by Real-world Opti-
mized assistance. For the outdoor validation, participants walked along
a566-m pathinthe same public setting with a fixed ordering of bouts
of specific distances and corresponding speed prompt commands that
were selected to match real-world distributions?**, Distances were



setusing cones to mark stopping locations, which ensured consistent
distances for each bout. Participants completed this outdoor course
once for each condition, including Real-world Optimized assistance,
Generic Speed-adaptive assistance and Normal Shoes. The ordering
ofthe conditions was randomized to minimize effects of testing order
(Extended Data Table 1). The double-reversal protocol, used in the
firstthree laboratory experiments, was not used because the outdoor
experiments took significantly more time owing to the longer trial
time, varying self-selected walking speeds, short bouts of walking, and
rest periods betweenbouts and conditions. Each real-world condition
required about 15 min, compared with about 8 min for each treadmill
condition. Outdoor and indoor tests of Real-world Optimized assis-
tance were conducted on the same day to avoid confounding effects
from differing respirometry system calibrations. The total walking
time for these two experiments was about 1.5 h, and we found that
participants were not able to complete the additional 1.5 h of walking
that would have beenrequired for adouble-reversal approach without
experiencing fatigue. For the 3 min following completion of the path,
participants stood at rest while respirometry data were collected to
capture the total metabolic cost of completing the course. The duration
of walking for each bout was timed with a stopwatch. Walking speed for
each bout was computed by dividing the fixed distance for that bout
by the time spent walking during that bout. Walking speed for each
condition was calculated as the total distance travelled divided by the
total time spent walking while navigating the course.

Theindoor validation consisted of astanding rest condition followed
by six treadmill conditions, each lasting 6 min. Participants walked on
atreadmillat1.25ms™, at1.5ms™, andonanincline of10°at1.25 ms™.
Participants completed each treadmill speed and grade twice, once
with Real-world Optimized assistance, asidentified during the outdoor
optimization period, and once with Normal Shoes. The ordering of
conditions was randomized, with a constraint that the exoskeleton
would only be donned and doffed one time to reduce experiment time
(Extended Data Table 2). We did not use the double-reversal protocol
in these tests because we found that participants could not reliably
complete the additional 1.5 h of walking that would have been required
without experiencing fatigue, and so instead used the more typical
approach of single presentations with randomized order.

One pilot participant completed additionalindoor conditions, walk-
ingat1.25 ms™ withanincline of 5°, walking at 1.25 m s with aload of
20% of their body weight carried in a weight vest, and stair climbing
onastairmill at 50 steps per minute. The results (Extended Data Fig. 6)
were used to test the generality of the approach. Owing to the small
sample size (n =1), this figure and the numerical results for change in
metabolic rate are not included in the main text.

We performed a naturalistic overground experimentinan outdoor,
suburban community setting. People require assistance in many differ-
ent settings and for a variety of additional activities, and future work
should extend the approaches presented in this study to optimize
assistance and evaluate assistive device benefits for a wider range of
tasks. Forexample, future devices could sense, adapt to and optimize
assistance for various grades®, during stair navigation” and over rough
terrain®. These future studies will provide additional translational
impact for daily mobility.

Comparison with other untethered exoskeletons

We compared the benefits of Real-world Optimized assistance with
the untethered exoskeleton to the best results of comparable previous
studies!® . To allow direct comparison, we considered only studies
that tested untethered devices, report data for normal walking, tested
similar walking conditions, tested sufficient participants and used
standard data-processing techniques. For untethered exoskeletons,
the most relevant outcome is the percent change in the energy cost
of walking with exoskeleton assistance to walking in normal shoes
without the exoskeleton. Changes in walking conditions can affect

outcomes, so we considered studies conducted at within 10% of the
speeds andinclines that we tested. Before conducting our final experi-
ment, we selected the speeds (1.25 m s?and 1.5 m s ™) and inclines (10°)
that captured the largest percent reductionsin metabolic rate that had
previously been observed for any exoskeletonstudy in the literature. We
compared with previous exoskeleton studies with at least five partici-
pants, because studies reporting data from fewer tests are difficult to
interpret owing to measurement noise and inter-participant variability.
We compared with previous studiesin which the metabolic cost of walk-
ing was calculated using standard techniques, by averaging respirom-
etry measurements during the last 2 min or 3 min of a 5-min or 6-min
steady-state treadmill condition. One previous exoskeleton study®’
was excluded because steady-state metabolic cost was computed by
taking the median of respirometry measurements. We found that using
the median rather than the mean to compute metabolic rate in our
untethered exoskeleton study increased the magnitude of the reduc-
tionsin metabolic cost by anaverage of 7% across participants. Thisisa
large amount compared with the totalimprovement of 23%, indicating
that the median and mean measurements are not equivalent. We were
not able to obtain the data from the previous study that would have
allowed computation of the mean percent change in metabolic rate.

To keep Extended Data Fig. 5 legible, we only depict studies report-
ing results within a 5% change in metabolic rate of the best previous
value for that condition category. There are several other untethered
exoskeletons that have provided some reduction in metabolic rate
under conditions similar to those tested in this study. For example,
the Dephy ExoBoot, the commercially available exoskeleton with the
most similar features to the prototype tested in this study, can provide a
5.2%reductionin metabolic energy consumption compared with walk-
ing with Normal Shoes while walking on a treadmill with time-varying
speed®. Another technologically mature untethered exoskeleton, the
MyoSuit Beta, has shown that hip assistance during outdoor uphill
walking can reduce metabolic rate compared with wearing the exo-
skeletonin Zero Torque mode®. Sufficient data are not yet available to
estimate the benefits compared with walking without the exoskeleton.
Intheinterests of clarity, we did not include the results of all previous
exoskeleton experiments in Extended Data Fig. 5.

We compared the results of this study against all types of lower-limb
exoskeleton, including devices that assist the knees and hips, to provide
the clearest understanding of the relative benefits of this design and
personalization approach. Considering instead only ankle exoskeletons
would allow for a more mechanistic comparison of system compo-
nents and biomechanics outcomes, at the cost of reduced generality
of the high-level findings. As exoskeleton technologies mature and
address more tasks and populations, joint-specific benefits or restric-
tionsrelated to specific conditions may make it more sensible to apply
joint-specific comparisons in some contexts.

Our untethered exoskeleton provided the largest reductionsin the
metabolic cost of walking primarily owing to the way it personalized
assistance to individual users, but hardware design differences may
also have contributed to its efficacy. Design differences between the
untethered exoskeleton and some previous devices include: directly
measuring joint torque, rather than inferring it from motor current;
providing slack in the transmission to avoid interference during leg
swing and Zero Torque mode; and larger peak torque capabilities,
such that benefits were limited more by the user’s ability to accept
assistance than by limitations in the hardware. Directly measuring
jointtorquerequires additional electronics hardware for sensing and
signal processing but enables more precise control of applied torques,
which eliminates errors owing to model mismatch and power losses
in the transmission and interface with the body. This helps provide
users with a consistent assistance pattern. Placing slack in the trans-
mission cable during periods when zero torque is desired prevents
the inadvertent application of the small damping torques needed for
linear feedback control. Although they may seem small, these damping
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torques can substantially increase user effort. Allowing for larger peak
torques, inthis case approximately twice the value of previous unteth-
ered ankle exoskeletons'®¢*%¢ allowed for a larger range of possible
assistance parameters. This makes it more likely that the global opti-
mum for agiven participant and walking speed lie within the range of
hardware-feasible control. Larger torques require arigid frame to react
out transmission forces in the exoskeleton joint®, rather than through
shear on the skin®, to maintain user comfort. The present results would
therefore seem to favour devices that can apply higher torques to
achieve greater benefits from assistance, at the cost of greater worn
mass. This relationship, however, will be sensitive to the populations
and tasks that are assisted. The above design decisions enabled the
untethered ankle exoskeleton in this study to provide accurate, reli-
able and substantial assistance to the user, which enabled participants
to obtain large net benefits from real-world personalized assistance.

Participant surveys on exoskeleton usability

Participants completed a series of surveys to evaluate the ease of use,
comfortand functionality of the untethered exoskeleton after comple-
tion of all the experiments. Participants completed a System Usability
Scale survey® to determine how easy it was to operate the untethered
exoskeleton. Users reported that the exoskeleton was relatively easy to
use, with an overall score of 72.5 (Extended Data Table 3), placingitin
the 65th percentile of 5,000 devices previously surveyed*. Participants
also completed surveys adapted from the Orthotics and Prosthetics
Users’ Survey®®, which acts as a self-report instrument for evaluating
the outcomes of prosthetics and orthotics servicesin aclinically useful
manner. Among comfort-related outcomes, participants were most likely
toagreethat the weight of the device was manageable, that it was easy to
putonand that their clothes were free of wear (Extended Data Table 4).
Participants were more likely to be neutral or to disagree that the exo-
skeleton would be comfortable throughout the day. Among outcomes
related to functionality, participants found standing, walking indoors
and outdoors, and donning and doffing the exoskeleton to be easy or
very easy (Extended Data Table 5). Participants found picking objectsup
fromthe ground and walking up steep ramps to be slightly difficult. When
asked whether they would prefer to use the exoskeleton or normal shoes
ifthey had to complete the outdoor walking course again, six out of the
ten participants reported that they would prefer to use the exoskeleton.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Allstudy datanecessary toreplicate this work are available in the Source
Data included with the paper. Computer-aided design files and a bill
of materials for the untethered ankle exoskeleton are provided in Sup-
plementary Data 2. Source data are provided with this paper.

Code availability

Optimization code samples are provided in Supplementary Data 1.
This code uses Python version 3.6.1. Therequired python packages are
numpy (1.17.4), scikit-learn (0.21.3), scipy (1.3.2) and matplotlib (2.0.2).
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Extended DataFig.1|Weights, inputs, and effects for the data-driven
classificationmodel. The data-drivenclassifier decoded latentinformation
from human movement that was not otherwise interpretable, allowing
exoskeleton assistance to be optimized without laboratory-based
measurement equipment. Top row:Model weights and mean inputs. The model
compares datafromtwo control laws atatime and associates inputs with
higher or lower metabolicrate to estimate which control law resulted in alower
metabolicrate. Inputs comprised differencesinankle angle and ankle angular
velocity at 30 different points in the gait cycle and differences in the four
control law parameters of peak torque magnitude, peak time, rise time, and fall
time. The data-driven model weights that multiply these differences are shown
asabackground colour of blue or red. Blue indicates that a positive difference
isassociated with lower metabolic rate, whilered indicates that a positive
differenceis associated with higher metabolic rate. Darker coloursindicate
greater influence. Black lines depict the average, across all training data, of the

differencesininputs. To generate this average, we ordered each pair-wise
comparison by metabolicrate, such thatinputs from the controllaw with a
higher metabolic rate were always subtracted from those with alower
metabolicrate. Typical values of the model inputs differ, in part because of
differencesinunits, and so the magnitudes of model weights do not
correspond well to the contributions of those terms to the classification
overall. Bottom row: The classification contributions of each termin the model,
averaged over theentire training set. The percent contributionis calculated as
the absolute value of the product of the model weight and the input difference,
summed over all pair-wise comparisons, divided by the sum over all model
terms. For the x-axes, 0% and 100% of the gait cycle refer to the instant of heel
strike of the assisted limb at the beginning and end of one stride. Toe-off occurs
atabout 62% of the gait cycle. For adiscussion of the intuitive meaning of the
weights and contributions, please see the Methods subsection “Data-driven
optimization”.
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Extended DataFig.2|Speed-adaptive control approach. a, To calibrate the
walking speed estimator, data are collected while the participant walks at
several prescribed speeds, each within the range of speeds associated with a
set of assistance parameters to be optimized. The measured stride durations
and ground-truth speed measurements from those testsare used to fitan
affine equation with linear regression. b, The resulting model can then be used

to estimate walking speed based on measurements of stride duration alone.

¢, Thespeed-adaptive controller relates estimated walking speed to
exoskeleton assistance parameters by interpolating between assistance
parameters specified ataset of chosenspeeds. Inthis case, there arethree sets
of optimized parameters correspondingto three different walking speeds.
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Extended DataFig.3|Diagram of untethered exoskeleton electromechanical
hardware. These computer-aided design drawings depict the hardware
elements of the untethered exoskeleton. The primary components are
labelled. Animage of the entire device, including textile components, can be
foundinFig.4b. A running shoe (not pictured) is attached to the toe strut with
pinsthatextend fromthetip of the toe strutintoacarbon fiber plate embedded
inthesoleof the shoe. The heel of the running shoeis attached to the heel spur
by arope (not pictured) tied into holes on either side of the heel spur and
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passing through a plastic tube embedded in the sole of the shoe. A Vectran
transmission cable (not pictured) transmits force from the drumto the tip
ofthe heel spur. At the top of the calf strut, Velcro straps (not pictured) are
connected to the strut throughslots. These strapsadhere to aseparate
Velcrostrap (not pictured) wornon the shank of the leg, just below the knee.
A complete bill of materials and set of computer-aided design files for this
untethered exoskeleton assemblyisincluded as Supplementary Data 2.
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Extended DataFig.4|Optimizing assistance during real-world walking.
The exoskeleton applied speed-adaptive control, which adjusted exoskeleton
assistance parameters on each step. Stride duration (¢,,,,) was used to estimate
walking speed (v) as described in Fig. 3. While the participant walked, portable
sensor data (d) were collected, which included ankle angle (6), ankle velocity o),
and the control law defining exoskeleton assistance torque (C). If sufficient
continuous strides (z) were not collected before the bout finished, the data
were discarded and evaluation of the same control law began anew on the next
walkingbout. If sufficient continuous strides were collected, then data were
stored for the associated control law number (n) and walking speed bin (),
selected based onthe average walking speed for the collected strides. The
control law number was incremented and the next control law was applied to

the user. After six control laws had been applied for agiven walking speed bin,
forming one generation for the optimizer, the stored data were used to update
the optimization parameters associated with that speed bin. When any bin
performed an update, the estimate of the optimal parameter values (p) for the
other bins were also updated. Bins that were closer to convergence, indicated
by asmallvalue of the convergence parameter (o) for that bin, were adjusted
less. Thisapproach allowed the optimizer to rapidly adapt to the participant
early in the optimization, then to fine-tune the speed-specific parameters as
the optimization progressed. Following the update, the optimizer selected a
promising set of new control laws to be sequentially evaluated in the next
generation for the associated walking speed bin.
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Extended DataFig. 5| Exoskeleton comparison for standardized walking
conditions. We compared the benefits of Real-world Optimized assistance
fromthe untethered exoskeleton under standardized laboratory conditions to
those of prior untethered exoskeletons'®®, We considered only the results of
teststhat: compared exoskeleton-assisted outcomes to walking in normal
shoeswithoutanexoskeleton; used standardindirectrespirometry procedures;
had sufficient sample sizes; and applied walking conditions within 10% of the
chosen walking speeds and inclines in this study, which were chosen to allow
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comparisonto thelargest priorimprovements in metabolic rate. For legibility,
inthis figure we depict only results withina 5% reductionin net metabolic cost
ofthebest prior results for each category. Please see the Methods subsection
“Comparison toother untethered exoskeletons” for acomplete explanation of
the methods used toselect amongst prior exoskeleton experiments.
Real-world Optimized assistance from the untethered exoskeletonresulted in
large improvementsin energy cost.
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Extended DataFig. 6| Additional untethered exoskeleton treadmill
condition evaluations. For one pilot participant (n=1), walking with
Real-world Optimized assistance reduced the metabolic cost of walking
compared to Normal Shoes during several additional treadmill conditions.
Theseresults suggest that Real-world Optimized assistance may perform well
during awide range of common walking activities. The conditions were walking
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minute. Theseresultsarenotincluded in the main text due to their preliminary
nature compared to the primary study outcomes.



Extended Data Table 1| Randomized condition ordering for the outdoor evaluations in the real-world exoskeleton

optimization experiment

Subject

Condition 1

Condition 2

Condition 3

10

Real-world Optimized
Generic Speed-adaptive
Normal Shoes
Real-world Optimized
Normal Shoes

Generic Speed-adaptive
Real-world Optimized
Normal Shoes

Normal Shoes

Generic Speed-adaptive

Generic Speed-adaptive
Normal Shoes

Generic Speed-adaptive
Normal Shoes
Real-world Optimized
Real-world Optimized
Generic Speed-adaptive
Real-world Optimized
Real-world Optimized

Normal Shoes

Normal Shoes
Real-world Optimized
Real-world Optimized
Generic Speed-adaptive
Generic Speed-adaptive
Normal Shoes

Normal Shoes

Generic Speed-adaptive
Generic Speed-adaptive

Real-world Optimized

Participants completed a quiet standing condition followed by Normal Shoes, Generic Speed-adaptive exoskeleton assistance, and Real-world Optimized exoskeleton assistance conditions,

presented in random order.
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Extended Data Table 2 | Randomized condition ordering for the indoor evaluations in the real-world exoskeleton

optimization experiment

Subject Condition 1 Condition 2 Condition 3 Condition 4  Condition S  Condition 6
1 Incl. Exo 1.25 Exo 1.5 Exo 1.5 NW 1.25 NW Incl. NW
2 1.25NW 1.5 Exo Incl. Exo 1.25 Exo Incl. NW 1.5 NW
3 1.25 Exo Incl. Exo 1.5 Exo 1.25 NW 1.5NW Incl. NW
4 1.5 NW Incl. NW 1.25 NW Incl. Exo 1.25 Exo 1.5 Exo
5 Incl. Exo 1.25 Exo 1.5 Exo 1.25 NW Incl. NW 1.5 NW
6 L.5SNW Incl. NW 1.25NW Incl. Exo 1.5 Exo 1.25 Exo
7 1.5 Exo Incl. Exo 1.25 Exo 1.5 NW 1.25 NW Incl. NW
8 Incl. NW 1.5 NW Incl. Exo 1.5 Exo 1.25 Exo 1.25 NW
9 1.25 Exo 1.5 Exo Incl. NW 1.25 NW 1.5 NW Incl. Exo
10 1.5 NW Incl. NW 1.25 NW 1.5 Exo Incl. Exo 1.25 Exo

The labels “1.25', 1.5, and ‘Incl. represent the treadmill conditions of walking at 1.25ms™, walking at 1.5ms™, and walking on a 10° incline at 1.25ms™". The labels ‘Exo’ and ‘NW’ represent the
Real-world Optimized assistance and Normal Shoes conditions. Conditions were presented in random order, with a constraint that the exoskeleton would only be donned and doffed once to

reduce experiment time.



Extended Data Table 3 | Usability survey results for exoskeleton participants

Question text (4 = Strongly Agree, 3 = Somewhat Agree, Untethered

2 = Neither Agree nor Disagree, 1 = Somewhat Disagree, 0 = Strongly Disagree) Exoskeleton

(Mean £ SD)
I think that I would like to use this system frequently. 2.8+1.2
I found the system unnecessarily complex. 0.5+0.5
I thought the system was easy to use. 32+0.6
I think that I would need the support of a technical person to be able to use this system. 14+13
I found the various functions in this system were well integrated. 3.0+0.5
I thought there was too much inconsistency in this system. 1.9+0.7
I would imagine that most people would learn to use this system very quickly. 2.6+1.0
I found the system very cumbersome to use. 1.1+1.0
I felt very confident using the system. 29+09
I needed to learn a lot of things before I could get going with this system. 0.6+0.7

Total usability score (out of 100) 72.5 +£14.5

The System Usability Scale®, which uses a Likert scale, was used to evaluate the usability of the untethered exoskeleton. Participants (n=10) completed this survey after completing all walking
experiments. The untethered exoskeleton was in the 65th percentile of a distribution of 5000 devices previously evaluated with the System Usability Scale®2.
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Extended Data Table 4 | Survey results on the comfort of the untethered exoskeleton

Question text (4 = Strongly Agree, 3 = Agree, 2 = Neutral, Untethered Exoskeleton
1 = Disagree, 0 = Strongly Disagree) (Mean + SD)
My skin is free of abrasions and irritations. 23+1.4
My exoskeleton is pain free to wear. 25+1.4
My exoskeleton is comfortable throughout the day. 1.5+1.1
My exoskeleton looks good. 23+0.9
My clothes are free of wear and tear from my exoskeleton. 3.8£04
It is easy to put on my exoskeleton. 2.9+0.6
My exoskeleton fits well. 2.8+0.6
My exoskeleton is durable. 2.1+£1.0
The weight of my exoskeleton is manageable. 29+1.0
Average Score 23.1+4.6

This survey was adapted from the Orthotics and Prosthetics Users’ Survey®, which acts as a self-report instrument for evaluating clinically useful outcomes of prosthetics and orthotics services.
Participants (n=10) completed the survey after completing all walking experiments.



Extended Data Table 5 | Survey results on the functionality of the untethered exoskeleton

Question text (4 = Very Easy, 3 = Easy, 2 = Difficult, Untethered Exoskeleton
1 = Very Difficult, 0 = Cannot Perform Activity) (Mean £ SD)

Walk up to two hours. 33+0.8
Walk up a steep ramp. 23+0.8
Stand one-half hour. 3.6+£0.7
Walk out-doors on uneven ground. 2.7+0.5
Pick up an object from the floor while standing. 24+0.7
Balance while standing. 3.8£04
Put on and take off exoskeleton. 3.0+£0.7
Walk indoors. 35405

Average Score 24.6 £5.1

This survey was adapted from the Orthotics and Prosthetics Users’ Survey®, which acts as a self-report instrument for evaluating the outcomes of prosthetics and orthotics servicesina
clinically useful manner. Participants (n=10) completed this survey after completing all walking experiments.
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mean metabolic rate between optimized (1.44 W/kg) and generic (1.64 W/kg) assistance from a prior experiment (Poggensee and Collins,
2021), and the variability in metabolic rate (standard deviation = 0.15 W/kg) from the same experiment. We collected data from nine
participants for the tethered exoskeleton experiments and ten participants for the untethered exoskeleton experiments, with additional
participants protecting against data loss due to sensor failure. All participants that were recruited completed the corresponding experiment,
and data from all participants were included in each corresponding analysis.

Data exclusions  No exclusions were made.
Replication We have made the experimental data available and provided all code used to replicate the results shown in the Figures.
Randomization  All participants completed the same set of experimental conditions which were in a randomized order.
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Population characteristics The experiment that validated the benefits of assistance from an untethered ankle exoskeleton was from a population of
adults with characteristics: n = 10, 6 men and 4 women; age = 24.2+1.8yr; body mass = 67.0+8.2kg; height = 1.72+0.07m.

Recruitment Healthy adult participants were recruited when they had no ongoing or previous leg injury in the past 6 months. All
participants were volunteers that provided written and informed consent before completing the protocol. Participants that
had at least 8 hours of previous experience walking in powered ankle exoskeletons were recruited to avoid complexities due
to learning to use the device. This restricted participants to people that were familiar to the exoskeletons, and possibly
biased towards using technology, which may have impacted survey results.

Ethics oversight Stanford University Institutional Review Board (IRB-48749)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

=
QU
=
(=
=
()
=
D
wv
(]
QU
=
@)
o
=
D
o
]
=
>
(@]
wv
e
3
QU
=
<

020¢ judy




	Personalizing exoskeleton assistance while walking in the real world

	Online content

	Fig. 1 Data-driven exoskeleton optimization.
	Fig. 2 Data-driven optimization results.
	Fig. 3 Speed-adaptive control.
	Fig. 4 Untethered ankle exoskeleton.
	Fig. 5 Real-world optimization of exoskeleton assistance.
	Extended Data Fig. 1 Weights, inputs, and effects for the data-driven classification model.
	Extended Data Fig. 2 Speed-adaptive control approach.
	Extended Data Fig. 3 Diagram of untethered exoskeleton electromechanical hardware.
	Extended Data Fig. 4 Optimizing assistance during real-world walking.
	Extended Data Fig. 5 Exoskeleton comparison for standardized walking conditions.
	Extended Data Fig. 6 Additional untethered exoskeleton treadmill condition evaluations.
	﻿Extended Data Table 1 Randomized condition ordering for the outdoor evaluations in the real-world exoskeleton optimization experiment.
	Extended Data Table 2 Randomized condition ordering for the indoor evaluations in the real-world exoskeleton optimization experiment.
	Extended Data Table 3 Usability survey results for exoskeleton participants.
	Extended Data Table 4 Survey results on the comfort of the untethered exoskeleton.
	Extended Data Table 5 Survey results on the functionality of the untethered exoskeleton.


