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Quantum error correction with silicon spin 
qubits

Kenta Takeda1 ✉, Akito Noiri1, Takashi Nakajima1, Takashi Kobayashi2 & Seigo Tarucha1,2 ✉

Future large-scale quantum computers will rely on quantum error correction (QEC) to 
protect the fragile quantum information during computation1,2. Among the possible 
candidate platforms for realizing quantum computing devices, the compatibility with 
mature nanofabrication technologies of silicon-based spin qubits offers promise to 
overcome the challenges in scaling up device sizes from the prototypes of today to 
large-scale computers3–5. Recent advances in silicon-based qubits have enabled the 
implementations of high-quality one-qubit and two-qubit systems6–8. However, the 
demonstration of QEC, which requires three or more coupled qubits1, and involves a 
three-qubit gate9–11 or measurement-based feedback, remains an open challenge. 
Here we demonstrate a three-qubit phase-correcting code in silicon, in which an 
encoded three-qubit state is protected against any phase-flip error on one of the three 
qubits. The correction to this encoded state is performed by a three-qubit conditional 
rotation, which we implement by an efficient single-step resonantly driven iToffoli 
gate. As expected, the error correction mitigates the errors owing to one-qubit 
phase-flip, as well as the intrinsic dephasing mainly owing to quasi-static phase noise. 
These results show successful implementation of QEC and the potential of a 
silicon-based platform for large-scale quantum computing.

Quantum computing takes advantage of quantum superposition and 
entanglement to accelerate the computational tasks12,13. However, 
these quantum properties are sensitive to decoherence errors owing 
to energy relaxation and dephasing. As the number of qubits increases 
and/or the computational tasks become more complex, the errors cause 
exponential reduction of the accuracy of computational results. QEC 
is a protocol to circumvent this problem by distributing the quantum 
information across a larger multiqubit entangled state so that the errors 
can be detected and corrected14. Its basic concept has been demon-
strated in various platforms, such as nuclear magnetic resonance9,15, 
trapped ions10,16, nitrogen vacancy centres17 and superconducting 
circuits11,18,19, and has served as an important benchmark of the qubit 
systems. Silicon-based spin qubits have emerged as a qubit platform in 
the past decade, and there has been rapid progress in long coherence 
times20,21, high-fidelity universal quantum gates6–8, high-temperature 
operation22,23 and generation of three-qubit entanglement24,25.

Our three-qubit system (Fig. 1a) comprises one data qubit (Q2) to 
be corrected and two ancilla qubits (Q1 and Q3). The sequence starts 
from encoding the data qubit state to a three-qubit entangled state. 
Then the phase-flip errors that occurred in the encoded state are 
mapped to the ancilla qubit states by the decoding. The original data 
qubit state can finally be restored by a correcting logic gate based on 
the ancilla qubit states. Most commonly, this correction can be per-
formed by a projective measurement of ancilla qubits followed by a 
feedback quantum gate on the data qubit. However, this requires a 
capability to perform high-fidelity qubit measurement much faster 
than the coherence time, which is still challenging with spins in silicon. 
Although this measurement-based operation is a key component for 

fault tolerance, in the case of three-qubit QEC, it can alternatively be 
performed by a multiqubit conditional qubit rotation. In this Article, 
we take this approach by using a three-qubit iToffoli gate, which coher-
ently rotates the data qubit conditioned on the ancilla spin polarization. 
We synthesize a three-qubit phase-flip code and demonstrate that 
one-qubit phase-flip error can be corrected and the intrinsic ensemble 
spin dephasing can be mitigated.

Our sample is a gate-defined triple quantum dot in an isotopically 
natural silicon/silicon-germanium (Si/SiGe) heterostructure. Three lay-
ers of overlapping aluminium gates26 are used to control the triple-dot 
confinement. A micro-magnet is fabricated on top of the aluminium 
gates to provide a local magnetic field gradient27. As schematically 
shown in Fig. 1b, we configure the gate voltages so that only one elec-
tron is confined under each of the plunger gates (P1, P2 and P3) and the 
inter-dot tunnel coupling is controlled by the barrier gates (B2 and B3).  
Measurement of the triple-dot charge configuration is performed by 
monitoring the conductance of the nearby charge sensor quantum dot 
using the radio-frequency reflectometry technique28,29. An in-plane 
external magnetic field of Bext = 0.607 T is applied using a supercon-
ducting magnet. We use the Zeeman-split spin-1/2 states of the single 
electrons as our spin qubits (labelled Q1, Q2 and Q3 in Fig. 1b,c). The 
Zeeman energy splitting (about 20 GHz) much larger than the thermal 
excitation energy (about 0.8 GHz or 40 mK) enables initialization and 
readout of the three-spin state by the combination of energy-selective 
tunnelling30, shuttling31 and controlled rotation (see Methods and 
Extended Data Fig. 1 for the full details of the sequence).

The single-qubit rotations are performed by applying resonant 
microwave pulses (see  Methods and Extended Data Fig.  2). The 
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microwave pulse displaces the quantum dot position, effectively cre-
ating an oscillating transverse magnetic field that induces 
electric-dipole spin resonance27. The two-qubit controlled phase (CZ) 
gate is implemented by adiabatically pulsing the exchange couplings 
J12 and J23 by the barrier gates B2 and B3, respectively (see Methods and 
Extended Data Fig. 3). To operate the qubit close to the charge-symmetry 
point, the effect of capacitive crosstalk between the plunger and barrier 
gates is suppressed by the virtual gate technique (see Methods). The 
spin qubits herein have an average T1 relaxation time of 22 ms, inho-
mogeneous dephasing time T *2 of 1.8 μs and Hahn echo dephasing time 
T 2

H of 43 μs (Extended Data Fig. 4). Because electron spins have orders 
of magnitude longer T1 times compared with the dephasing times T *2 
and T 2

H, we focus on the implementation of a phase-flip correction code 
in this work, whereas a bit-flip correction code can easily be assembled 
by introducing further single-qubit rotations.

First we demonstrate the ability to encode and decode the data  
qubit state. For simplicity, here we perform encoding of an input  
state on the equator of the Bloch sphere, Q = ( ↓ + e ↑ )/ 2ϕ

2
i  (Fig. 2a, 

ϕ is an azimuthal angle), which is encoded to a maximally entangled 
three-qubit Greenberger–Horne–Zeilinger (GHZ) state GHZ ⟩ =ϕ∣  
( ↓↓↓ + e ↑↑↑ )/ 2ϕi . The controlled NOT (CNOT) gates used in the 
encoding are decomposed to native CZ gates combined with the decou-
pling pulses to mitigate the local quasi-static phase noise. For the QEC 
implementation, a crucial property is that the encoded state is a genu-
ine three-qubit GHZ-class state. We confirm this by characterizing  
the generated state using three-qubit quantum state tomography 
(Methods). In Fig. 2b (2c), the real part of the measured experimental 
density matrix ρ for ϕ = 0 (π) is plotted. We evaluate the state fidelities 
F ρ= ⟨GHZ GHZ ⟩ϕ ϕ∣ ∣  for various ϕ (Fig. 2d) and confirm that all the states 
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Fig. 1 | Three-qubit QEC and silicon-based three-qubit device. a, Outline of 
the three-qubit phase-flip quantum error correcting code. The two-qubit 
CNOT gates entangle the three qubits, then the Hadamard (H) gates rotate the 
qubit basis for phase-flip errors. The decoding is the inverse of the encoding. 
Finally, the correction is performed by a three-qubit Toffoli gate. b, Scanning 
electron microscope image of the device. Scale bar, 100 nm. The screening 
gates (brown) are used to restrict the electric field of the plunger (green) and 
barrier (purple) gates. The three circles (red, green and blue) indicate the 
position of the triple-quantum-dot array. A further quantum dot shown as the 
grey circle is used as a charge sensor. The gates P1, P2, P3, B2 and B3 are 
connected to an arbitrary waveform generator to apply fast voltage pulses.  
The microwave control pulse for electric-dipole spin resonance is applied to 
the lower screening gate. c, Schematic cross section of the device. The line in 
the silicon quantum well shows the schematic triple-dot confinement 
potential. J12 ( J23) represents the nearest-neighbour exchange coupling 
between Q1 and Q2 (Q2 and Q3).
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have fidelities above 0.75, the threshold to witness genuine GHZ-class 
states.

For correcting the decoded state, we implement a Toffoli-class three-
qubit gate. The standard three-qubit Toffoli gate can be synthesized 
from 12 CNOT and two single-qubit gates32,33 (excluding T gates that 
can be implemented in software), albeit that decoherence in our device 
does not allow this implementation with a reasonable fidelity. Alter-
natively, we use a single-step, resonantly driven iToffoli gate imple-
mented by a resonant π pulse in the presence of simultaneous 
nearest-neighbour exchange couplings (Fig. 2e). Without the exchange 
couplings (left side of Fig. 2e), the four transitions associated with the 
Q2 rotation are degenerate with a resonance frequency of f0. The finite 
exchange couplings shift downward the energy levels of the antiparal-
lel spin configurations. As a result, the resonance frequency of Q2 is 
modulated as f0 + s1 J12 + s3 J23, in which si = ±1/2 is the spin number of Qi. 
Under the condition of J12 = J23 required for conditional phase synchro-
nization (see Methods), a rotation of Q2 with ∣ ∣Q Q = ↓↓⟩ or ↑↑⟩1 3  cor-
responds to a controlled-controlled-rotation.

Figure 2f shows the spectra of Q2 with four different ancilla qubit 
states ∣ ∣ ∣ ∣Q Q = ↓↓⟩, ↓↑⟩, ↑↓⟩ and ↑↑⟩1 3  at J12 = J23 = 4.5 MHz, in which 
we observe the peak positions as expected from the exchange cou-
plings. We use a resonant π pulse at ∣f f= (Q Q = ↓↓⟩)MW 1 1 3  to imple
ment our iToffoli gate, as this transition yields the highest visibility34. 
The iToffoli gate is a three-qubit gate equivalent to a Toffoli gate with 
an extra phase factor of i on the ancilla qubits. To characterize its prop-
erty, we prepare the eight possible three-spin eigenstates, apply the 
iToffoli gate and perform three-spin projective measurement 
(Fig. 2g,h). The readout errors are removed from the data based on the 
measured readout fidelities (see Methods). The Rabi frequency is cho-
sen so that the off-resonant rotations for the ∣ ∣Q Q = ↓↑⟩/ ↑↓⟩1 3  sub-
spaces are synchronized (see Methods). In Fig. 2h, as expected, the 
populations of ↓↓↓  and ↓↑↓  states are swapped, whereas the other 
states are essentially unaffected. From this result, we obtain a popula-
tion transfer fidelity of our iToffoli gate as Tr(UexptUideal)/8 = 0.96,  
in which Uexpt (Uideal) represents the experimental (ideal) gate action on 
the eigenstates (see Methods and Extended Data Fig. 5e–g for the result 
of the full quantum process tomography). In addition, we perform a 
calibration of the pulse duration and timing to eliminate unwanted 
phase accumulation on Q2 (see Methods). Note that the dephasing and 
phase accumulation on the ancilla qubits do not affect the error  
correction outcome.

We then turn to the implementation of the phase-flip correcting 
code. Figure 3a shows the quantum circuit diagram. The three-qubit 
operation U serves to encode the data qubit state ψ  to the three- 
qubit entangled state. The exact implementation of U is shown in the 
bottom half of the figure, and it is equivalent to the two CNOT gates 
shown in Fig. 2a, except for the single-qubit gates that do not affect  
the function of the QEC. Here the data qubit state ψ α β= ↓ + ↑   
is encoded to a phase-sensitive three-qubit state α β+ + + + − − − ,  
in which ± = ( ↓ ± ↑ )/ 2 are the eigenstates of the Pauli X operator. 
For a phase-flip error with a flip rate of p on Q2, the decoded state is 

p α β p β α1 − ↓ ( ↓ + ↑ ) ↓ + ↑ ( ↓ + ↑ ) ↑  (see Extended Data 
Table 1 for the cases with an error on ancilla). The correcting procedure 

is implemented so that Q2 is flipped only when ∣Q Q = ↑↑⟩1 3  by applying 
π pulses on the ancilla qubits followed by the iToffoli gate, resulting  
in a product state of α βQ = ↓⟩ + ↑⟩2 ∣ ∣  and pQ Q = 1 − ↑↑⟩ +1 3 ∣  pi |↓↓⟩. 
Now the data qubit state is the same as the input state regardless of p. 
This is demonstrated in Fig. 3b, in which we estimate the process fidel-
ity of the data qubit for various intentional one-qubit errors (see  
Methods for details of the quantum process tomography). We imple-
ment the one-qubit error as a phase rotation with a known rotation 
angle θ, which is equivalent to a phase-flip error with p = sin2(θ/2). 
Therefore, without the correction, the process fidelity oscillates as a 
function of θ, shown as the black points. With the correction, the oscil-
lation vanishes, and it confirms the basic function of the phase-flip 
correcting code (corrected Qi error means that a phase-flip error is 
applied to only Qi and the correction is performed). When there is no 
error (θ = 0), the process fidelity slightly decreases after the correction. 
This can be attributed to the infidelity of the iToffoli gate projected to 
the data qubit subspace. Furthermore, we show that the state of ancilla 

Fig. 2 | Encoding of three-qubit GHZ states and resonantly driven iToffoli 
gate. a, Quantum circuit to generate three-qubit GHZ-class states. X (Y, Z) 
represents a π rotation about the x ( y, z) axis and X/2 (Y/2, Z/2) represents a π/2 
rotation about the x ( y, z) axis. The two CNOT gates acting on the neighbouring 
qubits are implemented by the combination of single-qubit and two-qubit 
gates, as shown in the bottom half. The Y pulses in the middle of the sequence 
(surrounded by the purple box) are used to suppress the low-frequency 
single-qubit phase noise. b,c, Real parts of the measured density matrices of 
the three-qubit GHZ states (ϕ = 0 in b and ϕ = π in c). d, Result of the GHZ state 
generation for various input states. The solid black line shows the average of 

GHZ state fidelities, that is 0.866. The range above the threshold value 0.75 
(0.5) to distinguish the GHZ-class states from the W-class (biseparable) states40 
is shown as the coloured band. e, Schematic energy diagram of the three-spin 
state. f, Resonance peaks of Q2 for four different control qubit states at the 
exchange couplings J12 = J23 = 4.5 MHz. Here we define δf = 0 as the resonance 
condition when Q Q = ↓↓1 3 . The circles show the measured Q2 spin-up 
probabilities for the four different control qubit configurations. The solid lines 
show fitting with Gaussian functions. The traces are offset by 1 from each other 
for clarity. g, Schematic sequence of the measurement of the iToffoli gate truth 
table. h, Measurement result of the iToffoli gate truth table.
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qubits reflects the error on the encoded qubit state (error detection). 
We measure the joint probability of the ancilla qubits Q1 and Q3 for the 
four possible cases with no error or a full π flip error. We observe that 
the measured ancilla states correctly reflect the error occurring on the 
encoded three-qubit state (Fig. 3c).

Errors in actual quantum computers probably occur on all qubits 
simultaneously rather than on only one of the qubits. We verify the per-
formance of our error correcting code in such a case in which all errors 
have the same effective error rate of p as per the common assumption 
in QEC14 (Fig. 4a). Without the correction, the data qubit process fidel-
ity linearly decreases as p is increased. When the error correction is 
applied, errors on two and three qubits remain uncorrected, resulting in 
a process fidelity insensitive to p up to the first order, F(p) = 1 − 3p2 + 2p3 
(ref. 14) (see Fig. 4b inset). The quadratic dependence on p is a crucial 
property of QEC and it ideally results in an improvement of the fidel-
ity for p < 0.5. We confirm this crucial property in Fig. 4b, in which the 
measured process fidelity with the correction is plotted as the cyan 
curve. A quadratic function fits well to the data (see Extended Data 
Fig. 6 for a comparison between different fitting models). If we allow 
the first-order term in the fit, it is 0.0 ± 0.1 (the error is 1σ), representing 
a marked reduction of the first-order sensitivity as compared with the 
uncorrected case. As for the fidelity enhancement, the corrected qubit 
shows improvements in the range p < 0.429 ± 0.003 (the threshold is 
obtained by comparing the two fitted curves in Fig. 4b, the error is 1σ). 
Although the corrected fidelities are always lower than those of the 
ideal uncorrected qubit in the present experiment (dashed grey line in 

Fig. 4b), improvement of the coherence times and thereby the fidelity 
of the iToffoli gate, which primarily limits the performance in the cor-
rected case, would ameliorate the situation. In silicon spin qubits, the 
intrinsic phase error is more like a quasi-static phase shift rather than 
a sudden phase flip. In our device, the phase shift is mainly caused by 
the fluctuating spins of surrounding 29Si nuclei. To demonstrate the 
effectiveness of our error correcting code to this type of phase error, 
we measure the dephasing of the encoded three-qubit state (Fig. 4c,d). 
As predicted from the ability to correct small phase errors in Fig. 4b, the 
initial slope of the fidelity decay is suppressed as compared with that of 
an uncorrected encoded qubit. Overall, these results show a success-
ful implementation of three-qubit phase-correcting code in silicon.

In conclusion, we have demonstrated the generation of the vari-
ous three-qubit entangled states, the effective single-step resonantly 
driven iToffoli gate and the fundamental properties of three-qubit QEC 
in silicon. Extending the experiment to a larger scale would require a 
more flexible feedback-based correcting rotation. This would be limited 
by the slow spin measurement and initialization by energy-selective 
tunnelling, which also pose a challenge to complete the error correc-
tion (or detection) before the phase coherence is completely lost. 
Substantial improvements should be possible by switching to the 
singlet-triplet readout, in which high-fidelity spin measurements in a 
few μs (refs. 35,36), orders of magnitude shorter than the phase coherence 
time with dynamical decoupling21, are routinely achieved. Along with 
the recent advances in scalable device design37, electronics38 and gate 
fidelities6–8, we anticipate that it will become possible to demonstrate 
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more sophisticated quantum error correcting codes in a large-scale 
silicon-based quantum processor.
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Methods

Quantum dot device
The triple-quantum-dot device is identical to the one characterized in 
ref. 24. The device is fabricated using an isotopically natural, undoped 
Si/SiGe heterostructure. The ohmic contacts are made by phosphorus 
ion implantation. Standard electron-beam lithography and lift-off 
techniques are used to fabricate the overlapping aluminium gates 
and the micro-magnet.

Experimental setup
The GHZ state tomography and the iToffoli gate characterization (Fig. 2) 
are performed using the experimental setup as described in ref. 24. In what 
follows, we detail the modified experimental setup used for the QEC 
experiments in Figs. 3 and 4. The sample is cooled down in a dry dilution 
refrigerator (Oxford Instruments Triton 300) to a base electron tempera-
ture of around 40 mK. The configuration of d.c. lines is the same as in the 
previous report24. Control pulses are generated by four Keysight M3201A 
arbitrary waveform generator modules in a Keysight M9019A PXIe chassis 
(16 channels running at 500 MSa s−1). The plunger (P1, P2 and P3), barrier 
(B2 and B3) and sensor plunger gates are connected to the outputs of the 
arbitrary waveform generator, each of which is filtered by a Mini Circuits 
SBLP-39+ Bessel low-pass filter. The filtering results in a minimum pulse 
rise/fall time of approximately 15 ns. Microwave signals are generated by 
three vector microwave signal generators (two Keysight E8267D and a 
Rohde & Schwarz SGS100A with an SGU100A upconverter). Each micro-
wave signal is single sideband I/Q modulated to prevent unintentional 
spin rotations owing to microwave carrier leakage. Furthermore, we use 
pulse modulation to further suppress the bleed-through signal during 
the initialization and readout stages. The outputs of the three signal 
generators are combined at room temperature and connected to the 
lower screening gate. Radio-frequency reflectometry is used for fast 
measurement of the charge sensor conductance. The right reservoir of 
the charge sensor quantum dot in Fig. 1b is connected to a tank circuit 
with an inductance of 1.2 μH and a resonance frequency of 181 MHz. The 
reflected signal is amplified and demodulated, then digitized using an 
AlazarTech ATS9440 digitizer card.

Three-spin initialization and measurement
The three-spin initialization and measurement are performed as fol-
lows. The numbers (n1n2n3) indicate the respective number of electrons 
in the left, centre and right quantum dots. We collect 400 to 3,000 
single-shot outcomes to obtain the measured probabilities. The labels 
A–E represent the gate voltage configurations depicted in Extended 
Data Fig. 1c.
1.	 Unload electrons in the left and centre quantum dots by biasing gate 

voltages so that the ground state charge configuration is (001) (A). 
The duration is 100 μs.

2.	Initialize Q1 by means of spin-selective tunnelling by biasing the 
voltages so that the charge configuration is near the (101)–(001) 
boundary (B). The duration is 750 μs.

3.	Shuttle the electron in the left quantum dot to the centre quantum 
dot by biasing the voltages so that the ground charge configuration is 
(011) (C). No intentional gate voltage ramp is used. The typical pulse 
rise time is 15 ns owing to the low-pass filter. We wait for 1 μs in the 
(011) configuration.

4.	Initialize Q1 by means of spin-selective tunnelling by biasing the  
voltages so that the charge configuration is near the (011)–(111) 
boundary (D). The duration is 750 μs.

5.	 Initialize Q3 by means of spin-selective tunnelling by biasing the  
voltages so that the charge configuration is near the (110)–(111) 
boundary (E). The duration is 750 μs.

6.	Qubit manipulation in the (111) configuration (F). The typical duration 
is 5 μs. There is an extra waiting time of 50 μs to reduce the effect of 
heating by the microwave pulses.

7. � Read out Q1 by means of spin-selective tunnelling by biasing the 
voltages so that the charge configuration is near the (011)–(111) 
boundary (D). The total duration is 600 μs. The data for readout 
is collected for the first 200 μs. The extra waiting time of 400-μs 
duration facilitates the initialization of Q1.

8. � Perform controlled rotation between Q1 and Q2 to project the Q2 
state to Q1 in (111). Here we pulse the virtual B2 gate to turn on J12 at 
the charge-symmetry point. Because Q1 is initialized to a spin-down 
state during the previous readout stage, for a Q2 input state 

βα ↑ + ↓ , the resulting Q1Q2 state is α β|↑↓⟩ + e |↓↑⟩θi , in which 
e θi  is a phase factor that does not affect the readout. The duration 
is 1 μs. There is an extra waiting time of 50 μs to reduce the effect 
of heating by the microwave pulse.

9. � Read out Q2 by means of spin-selective tunnelling of Q1 by biasing 
the voltages so that the charge configuration is near the (011)–(111) 
boundary (D). The duration is 200 μs.

10. � Read out Q3 by means of spin-selective tunnelling by biasing the 
voltages so that the charge configuration is near the (110)–(111) 
boundary (E). The duration is 500 μs.

Virtual gate
The effect of capacitive couplings between the gates is suppressed 
by the virtual gate technique. We measure the capacitive couplings 
between the gates and construct the virtual gate as follows. The cross-
talk between the exchange couplings is not taken into account. The 
virtual gate voltages vB2 and vB3 are used to control the exchange 
couplings.
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Single-qubit and two-qubit gates
The single-qubit rotations about the x and y axes are performed by 
applying microwave voltage pulses resonant with the Zeeman split-
ting of each spin qubit. The microwave voltage results in an effective 
out-of-plane a.c. magnetic field by the micro-magnet, which induces 
electric-dipole spin resonance. The spin qubits have typical resonance fre-
quencies of 19,942.6 MHz (Q1), 20,372.6 MHz (Q2) and 20,923.2 MHz (Q3).  
We use a shaped raised-cosine pulse with a duration of 124 (62) ns 
to implement a single-qubit π (π/2) pulse. For the spectroscopy 
measurements in Fig. 2f, we use a Gaussian pulse (truncated at ±2σ).  
The phase rotation is virtually implemented by shifting the refer-
ence phase of the I/Q modulation waveform. Wherever possible, the 
single-qubit gates are applied in parallel. The two-qubit CZ gate is 
implemented by adiabatically pulsing the exchange coupling by the 
barrier gates. To guarantee the adiabaticity, we use a shaped cosine 
pulse6 with a duration of 50 ns to implement the CZ/2 gates, which 
results in a nominal peak exchange coupling of 10 MHz. During the 
experiments in the main text, the coupling strengths are fine-tuned to 
account for the conditional phase accumulation owing to the residual 
couplings of about 0.2 MHz (Extended Data Fig. 3d–f). We set the mini-
mum interval between pulses to 20 ns to avoid the pulse interference 
owing to reflection.

Three-qubit iToffoli gate
The resonantly driven iToffoli gate consists of the three stages in 
Extended Data Fig. 5a. In the main text, the population transfer property 
of the iToffoli gate is shown. For that, we set f J= / 3Rabi  ( J = J12 = J23)  
so that the off-resonant rotation in the Q Q = ↑↓⟩/ ↓↑⟩1 3 ∣ ∣  subspaces  
is a 2π rotation. Furthermore, to obtain a correct quantum action,  
any unwanted phase accumulations on the three-qubit state have to 
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be calibrated out. This can be achieved by setting an appropriate  
exchange pulse duration of ttot = tdc1 + tMW + tdc2 and pulse timing of 
δt = tdc1 − tdc2 (ref. 33). In theory, by setting the optimal exchange pulse 
duration to t J= π(4 + 3 − 13 )/tot , the conditional phases between 
the Q Q = ↑↓⟩, ↓↑⟩ and ↑↑⟩1 3 ∣ ∣ ∣  subspaces can be eliminated32. For an 
exchange coupling of 4.5 MHz, it is 473 ns. In the experiment, we typi-
cally use a 460-ns-long rectangular pulse, which is shorter than the 
theoretical length owing to the finite pulse bandwidth. The microwave 
pulse timing δt is then adjusted to eliminate the conditional phase 
between the ∣Q Q = ↓↓⟩1 3  and the other subspaces. For the subspaces 
in which Q2 spin flip does not occur, shifting δt does not affect the out-
come. In the case in which Q2 flips, when δt = 0, (quasi-)static phase 
accumulation is fully cancelled out by the spin-echo effect. The con-
ditional phase in this case can be adjusted by varying δt because for 
finite δt, the echo works only partially and there is a phase accumulation 
of 2π(f1 − f0)δt. The remaining single-qubit phase offset is removed by 
a virtual single-qubit phase rotation. The phase offsets on the ancilla 
qubits are uncalibrated in the QEC experiments, although they can be 
calibrated out similarly. In Extended Data Fig. 5b, we illustrate the 
experimental sequence to calibrate the iToffoli gate phase accumula-
tion. Extended Data Fig. 5c shows an example of an uncalibrated iTof-
foli gate and Extended Data Fig. 5d shows a phase measurement after 
the calibration. In the QEC experiments, this calibration is performed 
just before the data acquisition to minimize the influence of the slow 
drift of the resonance frequencies.

Readout error removal
For each of the experiments in which the readout errors are removed, we 
perform a reference measurement to obtain the readout fidelities. The 
spin-down (spin-up) readout fidelity F i↓  (F i↑ ) is directly obtained by pre-
paring a spin-down (spin-up) state and a projective measurement of Qi. 
Using the measured readout fidelities, we correct the raw probabilities 
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−1
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and P is the corrected probabilities used for maximum likelihood 
estimation.

Measurement of the iToffoli gate truth table
To constrain all the elements of the truth table to be non-negative, we 
use a maximum likelihood procedure as follows. The input is a set of 
64 measured probabilities Pij, in which the input is the ith eigenstate 
and the measurement is projected at the jth eigenstate. The readout 
errors are removed following the procedure above. We then minimize 
a cost function C P P P P( , …, ) = ∑ ( − )i j ij ij11

MLE
88
MLE

, =1
8 MLE 2  for non-negative 

parameters Pij
MLE. We constrain Pij

MLE so that the sum of probabilities in 
one cycle of data acquisition is unity, that is, P∑ = 1j ij=1

8 MLE .

Quantum state tomography
Owing to the noise in the experiment, the density matrix obtained by 
a linear inversion is not always physical. Therefore, we use a maximum 
likelihood estimation to restrict the density matrix to be physical. We 
start from a Cholesky decomposition of a physical density matrix 
ρ T T T T= /Tr( )† † , in which T is a complex lower triangular matrix with 
real diagonal elements. T has 22D (D is the number of qubits; D = 1 in 
Fig. 4d and D = 3 in Fig. 2d) real parameters t t t= ( , …, )1 2 D2  and we 
minimize the cost function

t
t

t
∣ ∣

∣ ∣∑C
ψ ρ ψ P

ψ ρ ψ
( ) =

(⟨ ( ) ⟩ − )

2⟨ ( ) ⟩
,

ν

ν ν ν

ν ν=1

2 2D2

in which Pν is the measured probability projected at a basis ψ| ⟩ν . To 
determine the 22D parameters, the projection outcomes for linearly 
independent pre-rotations (I, X/2, Y/2, X) D⨂  are used. To remove the 

error that could be introduced by the X pre-rotation, the projection 
outcomes for the X pre-rotations are calculated from the correspond-
ing I rotation outcomes39.

Quantum process tomography
We perform quantum process tomography to verify the process matrix 
and fidelity (Figs. 3 and 4 and Extended Data Fig. 5). The input state ψ  
is prepared by a spin-down initialization followed by a single-qubit 
rotation R ∈ (I, X/2, Y/2, X)i

D⨂  (D is the number of qubits; D = 1 in Fig. 4b 
and D = 3 in Extended Data Fig. 5e). After the quantum operations, 
tomographic readout of the resulting state is performed similarly to 
the case of quantum state tomography. For a quantum operation E 
acting on an input density matrix ρk

in, the density matrix of the output 
state can be written as follows,

∑E ρ B ρ B χ( ) = , (1)k

m n
m

k
n mnin

, =1

2

in
†

D2

in which χ is the process matrix defined with respect to the Pauli  
operators B σ σ σ= (I, , , ) D

x y z
⨂ . Linear inversion of equation (1) can be 

performed to obtain a process matrix. However, the process matrix 
obtained in this way does not necessarily satisfy the physical conditions 
owing to the noise in the experiment. As in the state tomography, we 
can obtain an estimate of the physical process matrix by a maximum 
likelihood estimation. We start from a Cholesky decomposition 
χ S S S S= /Tr( )† † , in which S is a lower triangular matrix with real diago-
nal elements. S is parametrized by 24D real parameters s s s= ( , , )1 2 D4⋯  
and we use a cost function L(s) as follows,

∑ ∑L P χ M B ρ B( ) = [ − Tr( )] , (2)
k l

kl

m n
mn l m

k
n

, =1

2

, =1

2

in
† 2

D D2 2

s

in which Pkl is the measured probability projected at ↓  (D = 1) or ↓↓↓  
(D = 3) when an input state ρk

in is prepared and an observable Ml is meas-
ured. We numerically minimize the cost function to obtain the most 
probable estimate of physical χ. Then the process fidelity is calculated 
as Tr(χideal χ), in which χideal is an ideal process matrix.

Data availability
The data that support findings in this study are available from the 
Zenodo repository at https://doi.org/10.5281/zenodo.6601051.
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Extended Data Fig. 1 | Three-spin initialization and measurement. The 
numbers (n1n2n3) represent the respective electron occupations in the right, 
centre and left quantum dots. The light blue circles with labels A–F show the 
initialization, readout and manipulation bias configurations. a, Charge 
stability diagram measured as a function of the P1 and P3 gate voltages. The 
variation of the background signal is due to the Coulomb oscillation of the 

sensor quantum dot. b, Charge stability diagram measured as a function of the 
P1 and P2 gate voltages. The dashed white lines are guides to the eye for the 
position of faint charge transition lines, which could be visible by retuning of 
the sensor quantum dot. c, Schematic of the three-spin initialization and 
measurement.
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Extended Data Fig. 2 | Single-qubit rotations. All measurements are 
performed with all qubits initialized to spin-down and the exchange couplings 
turned off. a, Rabi oscillation measurement sequence. tp is the duration of the 
microwave pulse. b–d, Rabi oscillation measurement results. The microwave 
amplitude is adjusted so that the Rabi frequency is 4 MHz. e, Schematic 
sequence of the randomized benchmarking measurement. We prepare 16 
randomly generated Clifford gate sequences and average the outcomes to 
obtain the sequence fidelities. f–h, Randomized benchmarking results. The 
implementation is the same as in, for example, refs. 7,24. We perform two sets of 
benchmarking measurements, one designed to obtain an ideal spin-up 

outcome and the other designed to obtain an ideal spin-down outcome, 
wherein both cases the measurement is projected at a spin-up state. The 
sequence fidelity F(m) is then defined as F m F m F m( ) = ( ) − ( )↑ ↓ , in which F m( )↑  
(F m( )↓ ) is the measured sequence fidelity for the spin-up (spin-down) final 
state. Each dataset is fit by an exponential decay F(m) = Vpm to extract the 
depolarizing parameter p and visibility V. The primitive gate fidelity shown in 
each figure is obtained as p1 − (1 − )/(2 × 1.875), in which the factor 1.875 is the 
average number of primitive gates per Clifford gate. The errors are 1σ from the 
mean.
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Extended Data Fig. 3 | Two-qubit couplings. All measurements are performed 
with all qubits initialized to spin-down. a, Schematic sequence of the exchange 
spectroscopy measurement. To narrow the resonance peaks, the microwave 
power for the controlled rotation is decreased by 12 dB from the values used for 
single-qubit rotations. vBi (i = 2, 3) represents a virtual barrier gate voltage.  
b,c, Results of the exchange spectroscopy measurements. In each figure, the 
separation of the two peaks corresponds to the exchange coupling. The 
background slope of the resonance frequency is due to the displacement of the 
quantum dot position in the micro-magnet field gradient. The frequency offset 
from the values in Methods is due to the decay of the persistent current in the 

superconducting magnet. d, Schematic sequence of the residual 
exchange-coupling measurement. e,f, Results of the measurement of residual 
exchange couplings between neighbouring qubits. Each dataset is fit with a 
sinusoidal function P(tevol) = Vsin(πtevol Joff) to extract the residual exchange 
coupling Joff. V is the visibility of the oscillation. The errors are 1σ from the  
mean. g, Schematic sequence of the decoupled CZ oscillation measurement. 
h,i Typical decoupled CZ oscillations. The solid lines show the fit to a Gaussian 
decay. The decay times are 3.27 ± 0.08 μs (h) and 5.2 ± 0.3 μs (i). Here we adjust 
the virtual barrier gate voltages so that the exchange coupling is roughly 
10 MHz. All errors are 1σ from the mean.
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Extended Data Fig. 4 | Coherence times. All measurements are performed  
with all qubits initialized to spin-down and the exchange couplings turned off.  
All errors are 1σ from the mean. a, Schematic sequence of the T1 measurement. 
The qubit state is measured after the preparation of a spin-up excited state and 
an idle time of tw. b–d, T1 measurement results. Each dataset is fit by an 
exponential decay to extract the T1 relaxation time. e, Schematic sequence of the 
Ramsey interferometry. Instead of detuning the microwave frequency, we vary 
the phase of the second microwave pulse as θ = 2πtevol × (2 MHz) such that we 
observe an oscillation at about 2 MHz. f–h, Ramsey interferometry measurement 
results. To extract the T *2 inhomogeneous dephasing time, each dataset is fitted 

with a Gaussian decay function ( )P t A f t ϕ B( ) = exp − cos(2π(δ ) + ) +*
t

Tevol
evol

2

evol
2







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 , 

in which A and B are the constants to account for the readout fidelities, δf is the 

oscillation frequency and ϕ is the phase offset. The integration time is about  
70 s for all traces. The larger scattering of the data points for Q2 (g) is due to the 
longer pulse cycle and less averaging. i, Schematic sequence of the Hahn echo 
measurement. j–l, Hahn echo results. For each dataset, the echo time T 2

H is 

extracted by fitting with an exponential decay function  








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in which V is the visibility and γ is the exponent. The exponents are γ = 0.98 ± 0.09 

(Q1), 1.46 ± 0.05 (Q2) and 1.83 ± 0.07 (Q3).



Extended Data Fig. 5 | iToffoli gate characterizations. a, Schematic of the 
iToffoli gate implementation. The iToffoli gate can be realized by a 
combination of an exchange pulse and a microwave pulse. The exchange 
pulse duration (tdc1 + tMW + tdc2), microwave pulse duration (tMW) and timing 
(tdc1 − tdc2) are fine-tuned to obtain a correct phase evolution. b, Quantum 
circuit used to measure the phase accumulation during the iToffoli gate 
operation. The iToffoli gate is interleaved between two π/2 pulses to realize 
Ramsey-type phase detection. Only when Q Q = ↓↓1 3  does a spin flip occur, 
which is detected as a π phase shift for a correct iToffoli gate. For the other 
ancilla qubit configurations, the phase accumulation should be zero.  
c, Example phase measurement result before the iToffoli gate phase 
calibration. The resonance frequency and microwave amplitude are 
calibrated. d, Phase measurement after the calibration of both conditional 
and unconditional phases. In the calibration procedure, we optimize the 
duration of the exchange pulse and the timing of the microwave pulse 

(see Methods). We obtain correct phase evolution for all ancilla qubit 
configurations. The phase offsets are (1.03 ± 0.01)π, (0.04 ± 0.01)π, 
(0.03 ± 0.01)π and (0.05 ± 0.01)π for Q Q = ↓↓ , ↑↓ , ↓↑ and ↑↑1 3 , 
respectively. The errors are 1σ from the mean. e, Experimental process matrix 
(χ matrix) of the iToffoli gate obtained by three-qubit quantum process 
tomography (see Methods). The labels represent three-qubit Pauli operators. 
We obtain a gate fidelity of 0.67 from the data. f, Ideal process matrix of 
iToffoli gate. g, Simulated process matrix of iToffoli gate under quasi-static 
single-qubit phase noise. Here we assume T *2 = 1.2, 1.2 and 1.3 μs for Q1, Q2 and 
Q3, respectively (ergodic T *2 measured for long integration time). The effect of 
charge-noise-induced exchange fluctuation (noise in ZZ term) is not taken 
into account. The simulation reproduces some features in the experimental 
data. The gate fidelity estimated from the simulation is 0.69, which agrees 
well with the experimental result.
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Extended Data Fig. 6 | Comparison of different models for QEC result. 
Comparison of the fitting results of quadratic (a + cp2 + dp3), third-order 
polynomial (a + bp + cp2 + dp3) and linear functions (a + bp). The coefficients a, 
b, c and d are the fitting parameters. We obtain a = 0.879 ± 0.006, 
c = −2.72 ± 0.06 and d = 1.89 ± 0.06 (quadratic function), a = 0.88 ± 0.01, 
b = 0.0 ± 0.1, c = −2.75 ± 0.24 and d = 1.91 ± 0.16 (third-order polynomial 
function), and a = 0.94 ± 0.02 and b = −1.00 ± 0.03 (linear function) from the 
fitting results. To compare the fitting results by different models, we calculate 

the Bayesian information criterion43 (BIC) and the Akaike information 
criterion44 (AIC). Models with lower BIC are preferred, whereas models with 
lower AIC provide better prediction of the experimental behaviour. The 
difference between the linear fit and the others is found to be decisive45 
(|ΔBIC| ≈ 50). In addition, although the difference is not as large (|ΔBIC| ≈ 3), the 
quadratic fit without the first-order term is more preferred than the polynomial 
function including the first-order term. The errors are 1σ from the mean.



Extended Data Table 1 | Evolution of three-qubit state during QEC

Decoded
(Q2Q1Q3)

Corrected
(Q2Q1Q3)

Error
syndrome

Encoded

Error

Q1 error Q2 error Q3 error

The Q2 input state ↓ + ↑α β  is encoded to the three-qubit state + + + + − − −α β . For the decoded and corrected states, we write Q2 first for the sake of brevity. When the error is a coherent 
phase rotation Z(θ), the error coefficient p  ( − p1 ) is replaced with –isin(θ/2) (cos(θ/2)), whereas the result remains essentially equivalent.
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