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Ostrich eggshell beads reveal 
50,000-year-old social network in Africa

Jennifer M. Miller1,2 ✉ & Yiming V. Wang1 ✉

Humans evolved in a patchwork of semi-connected populations across Africa1,2; 
understanding when and how these groups connected is critical to interpreting our 
present-day biological and cultural diversity. Genetic analyses reveal that eastern and 
southern African lineages diverged sometime in the Pleistocene epoch, 
approximately 350–70 thousand years ago (ka)3,4; however, little is known about the 
exact timing of these interactions, the cultural context of these exchanges or the 
mechanisms that drove their separation. Here we compare ostrich eggshell bead 
variations between eastern and southern Africa to explore population dynamics over 
the past 50,000 years. We found that ostrich eggshell bead technology probably 
originated in eastern Africa and spread southward approximately 50–33 ka via a 
regional network. This connection breaks down approximately 33 ka, with 
populations remaining isolated until herders entered southern Africa after 2 ka.  
The timing of this disconnection broadly corresponds with the southward shift of the 
Intertropical Convergence Zone, which caused periodic flooding of the Zambezi River 
catchment (an area that connects eastern and southern Africa). This suggests that 
climate exerted some influence in shaping human social contact. Our study implies a 
later regional divergence than predicted by genetic analyses, identifies an 
approximately 3,000-kilometre stylistic connection and offers important new 
insights into the social dimension of ancient interactions.

Unresolved questions in human evolution concern the ancient distribu-
tion and diversification of our species (Homo sapiens) across Africa2,5. 
The metapopulation model suggests that anatomical modernity and 
behavioural complexity arose within a pan-African patchwork of popu-
lations who experienced pulses of connection and isolation6, possibly 
in response to environmental circumstances1,7. Research into these 
shifting connections is increasingly derived from DNA and ancient 
DNA analyses, which reveal that present-day African hunter–gatherer 
populations diverged into regional lineages sometime in the Pleisto-
cene, including a deep division between southern and eastern groups 
approximately 350–70 ka3,4,8. Although ancient DNA is a powerful tool 
for acquiring information about biological exchange, it is unable to 
address the cultural context of ancient interactions. Many questions 
about these ancient interactions remain, such as where and when did 
ancient populations connect, what social exchanges took place and 
what mechanisms provoked their eventual isolation.

Beginning in Marine Isotope Stage 3 (approximately 57  ka),  
African populations underwent substantial social reorganization9–11. 
Numerous advancements appear around this time, but an important 
new feature is the manufacture of beads12 (Supplementary Discus-
sion 1). The systematic production of beads is a considerable labour 
investment, and signals the increasing scale and importance of social 
interactions in Marine Isotope Stage 3 (ref. 13), perhaps relating to 
the growing population size and social systems evident around this 
time11. These societal reforms signal that the African Late Pleistocene 

is a crucial period for understanding the development of complex 
social networks.

Ostrich eggshell (OES) beads are the oldest fully manufactured 
beads and could be key to revealing Late Pleistocene social dynam-
ics in Africa. They emerged in eastern Africa by 52 ka12, in southern 
Africa by 42 ka14 and are still produced in some areas today. Modern 
ethnographic research in Africa indicates that a finished piece of OES 
beadwork (for example, a beaded skirt) carries symbolic meaning15. 
However, individual beads can also preserve social information, as 
every step in their production is a deliberate choice that intensifies 
morphological differences16 (Supplementary Discussion 2). These 
manufacturing decisions are cultural norms that are commonly shared 
between neighbouring groups, while long distances reduce transmis-
sion opportunities leading to cultural variation or drift17–20. Therefore, 
the characteristics of OES beads can be used as a means to reconstruct 
population interaction. Previous studies linked the introduction of 
herding into southern Africa (approximately 2 ka) with the appear-
ance of larger-diameter OES beads21,22, indicating possible connections 
with eastern African populations, as supported by archaeological and 
genetic evidence4,21,23. Some recent studies have reported stylistic varia-
tion within Late Pleistocene sites24–27; however, to our knowledge, there 
has been no attempt to use similar variation to explore population 
contact in the Pleistocene.

Episodes of population connection and isolation have been linked 
with environmental shifts1,2, and over the past 50,000 years (kyr), 
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climatic events have triggered temperature fluctuations and hydrocli-
matic reorganization in Africa28–30. These shifts could have fragmented 
habitable areas, in turn affecting where and when regional populations 
could interact. Therefore, it is critical to explore how intergroup con-
nectivity may correspond with climatic and environmental changes 
in the Late Pleistocene.

In this study, we analysed OES bead characteristics from the past 
50 kyr in search of patterns that reveal population connections, and 
their association with hydroclimate shifts in Africa. We compiled 
data from 31 sites in eastern (22.5–40° E, 9° N to 9° S) and southern 
Africa (8–35° E, 20–35° S), totalling 1,516 individual beads (Fig. 1, 
Supplementary Table 1), with 1,238 of these being fully reported for 
the first time. We recorded three metric variables wherever possible 
(bead diameter, aperture diameter and shell thickness). Our database 
comprises securely dated Pleistocene sites with available data, and 
well-dated sequences in each region, with age estimates drawn from 
direct radiocarbon dates, dated archaeological layers or bracketing 
layers. To understand the potential effects of climate on these patterns, 
we divided the past 50–2 kyr into four periods based on major glacial 
and interglacial shifts (Supplementary Discussion 3): phase I: 50–33 ka 
(Marine Isotope Stage 3 to the reinvigoration of ice-sheet growth); 
phase II: 33–19 ka (ice-sheet growth to the end of Last Glacial Maximum); 
phase III: 19–11.6 ka (last deglaciation); and phase IV: 11.6–2 ka (Early 
Holocene epoch to before the spread of herding into southern Africa). 
Phase V (2 ka to present) marks the previously identified shift in bead 
sizes that emerges as herding spreads into southern Africa. We expect 
to see population connections indicated by similar bead characteristics, 
and that periods of isolation may parallel climatic shifts.

Regional and chronological bead metrics
Our results reveal that eastern and southern African OES beads take 
unique stylistic trajectories through time (Fig. 2a). Phases and regions 
are both important factors driving the variation in OES bead character-
istics (Pillai’s trace = 0.60, F3,1319 = 664.8, P < 0.001 for region and Pillai’s 
trace = 0. 18, F12,3963 = 21.34, P < 0.001 for phase), although interaction 
between phases and regions do not appear to significantly influence 

OES bead characteristics (Pillai’s trace = 0.02, F9,3963 = 2.22, P = 0.02; 
Supplementary Table 2).

In eastern Africa, the range of bead and aperture diameters remain 
consistent over 50 kyr, with only minor fluctuations. Eastern beads 
average 6.9 ± 1.2 mm in diameter and 2.6 ± 0.6 mm in aperture diameter 
(Fig. 2a), with a wide range of variation. By contrast, southern bead char-
acteristics have changed through time, with larger bead and aperture 
diameters in phase I (50–33 ka) and significantly smaller characteristics 
in the younger phases (Pillai’s trace = 0.113, F9,3147 = 13.4, P < 0.001; Fig. 2a, 
Supplementary Table 3). While southern beads virtually disappear 
from the archaeological record in phase II (33–19 ka), they re-emerged 
around the onset of deglaciation (approximately 19 ka) with consist-
ently smaller sizes. From phases III–V (19 ka to present), southern bead 
diameters and aperture diameters are smaller with narrower ranges 
(4.5 ± 0.9 mm and 1.8 ± 0.4 mm, respectively) than their eastern coun-
terparts. They remained in this consistently smaller style until after 
2 ka when larger bead characteristics, associated with the movement of 
pastoral communities, appeared in southern Africa (multivariate analy-
sis of variance (MANOVA) Pillai’s trace = 0.004, F3,700 = 1.05, P = 0.371; 
Supplementary Table 4) (Figs. 2b, 3).

We found distinct regional clusters with varying degrees of overlap 
throughout phases III–V (19 ka to present) using principal component 
analysis for specimens with all three metric parameters (n = 1,333) 
(Fig. 3a). PC1 and PC2 explain 92%, 91% and 93% of variations between 
southern Africa and eastern Africa for phase III (19–11.6 ka), phase IV 
(11.6–2 ka) and phase V (2 ka to present), respectively (Fig. 3a). The 
univariate analysis of variance (ANOVA) performed on the MANOVA 
outputs showed that all three parameters have a role in driving the 
regional differences in phases III–V (ANOVA P < 0.001 for all tests; Sup-
plementary Tables 5–7). We further explored these regional differences 
using the two most commonly reported variables (bead diameter and 
aperture diameter), which slightly increased sample size to 1,445 beads 
(Fig. 3b). Our MANOVA results using only these two variables confirmed 
that bead characteristics are significantly different between the two 
regions during phases III–V (19 ka to present) (Fig. 3b, Supplementary 
Tables 8–10). Compared with the more distinct regional bead clusters 
in phase III (19–11.6 ka) and phase IV (11.6–2 ka), the beads in phase V 
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(2 ka to present) show increased overlap between eastern and south-
ern Africa. Despite this overlap, most southern beads in phase V (2 ka 
to present) remain smaller, consistent with phase III (19–11.6 ka) and 
phase IV (11.6–2 ka) (Figs. 2b, 3b).

Bead characteristics in phase I are nearly identical for eastern and 
southern Africa (Pillai’s trace = 0.15, F2,36 = 3.2, P = 0.052; Figs. 2b, 3b, 
Supplementary Table 11), with similarities driven by bead diameter and 
aperture diameter (ANOVA P = 0.08 and 0.02, respectively; Supple-
mentary Table 11). The average OES bead diameters in southern Africa 
are larger in phase I (6.7 mm) than those in other time periods by more 
than 2 mm, making them more similar to sizes in eastern Africa (average 
diameters of more than 6.9 mm) (Fig. 3b). The majority of southern 
beads (12 out of 14) derive from a single site—Border Cave—which has 
a wide range of diameters (4.3–8.1 mm). The remaining beads are one 
each from VR003 and White Paintings Shelter. Both sites are located 
significantly further west, but each bead is 5.7 mm in diameter, which 
falls within the range of diameters from Border Cave.

Shell thickness is not a stylistic trait, but instead may reflect a com-
plex relationship between environment and ostrich. Both regions main-
tain consistent shell thickness over the entire 50 kyr period, with eastern 
African shells averaging 1.7 ± 0.2 mm, and southern shells averaging 
1.5 ± 0.2 mm (Fig. 2b). This appears to contradict previous suggestions 
that shell thickness varies in response to temperature and aridity31. 
While thickness does not vary within each region through time, it is 
significantly different between the two regions (P < 0.004 for phases 
III–V; Supplementary Tables 5–7), and may represent different ostrich 
sub-species32,33. The thinner southern African shell may have encour-
aged the production of smaller beads, and future studies should test 
this hypothesis, although this would not account for larger beads in 
southern African phase I (50–33 ka) and phase V (2 ka to present).
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Discussion
Stylistic connection at 50–33 ka
Despite the substantial distance (more than 3,000 km) between eastern 
and southern Africa, the available OES beads from phase I (50–33 ka) 
share stylistic similarities. This is the oldest (and only) time period that 
the two regions have the same bead diameter range, strongly suggest-
ing some form of socially mediated exchange during this time, mark-
ing the furthest Pleistocene stylistic connection ever documented. 
On the basis of age, site locations and bead characteristics, OES bead 
technology appears to have originated in eastern Africa. The oldest 
directly dated eastern beads are approximately 10 kyr older than those 
from southern Africa12,14,34. Most southern beads in this phase come 
from Border Cave, which is located towards eastern Africa (Fig. 1a); 
however, none of the three phase I sites from southern Africa have 
signs of in situ bead production. This apparent spread of beadmaking 

technology, evident mainly from the traits at Border Cave, corresponds 
with the relatively wet climatic conditions in eastern Africa during 
phase I (50–33 ka) (Fig. 4).

Disconnection and climatic links
The regional network seems to break down sometime in phase II  
(33–19 ka), raising questions about the influence of climate on social 
connections (Fig. 4a). By 33 ka, precipitation in eastern Africa decreased 
(Fig. 4b), modulated by the Indian Winter Monsoon and decreasing 
sea surface temperature of the Indian Ocean29. These drier conditions 
persisted until approximately 16 ka29,35, resulting in the lowest net pri-
mary production values over the past 50 kyr, according to climate 
model simulations (Supplementary Figs. 2, 3). This reduction of net 
primary production would have altered the distribution of vegetation 
and fauna on the landscape7 (Supplementary Fig. 4), requiring humans 
to adjust mobility and foraging strategies36–38. This in turn could have 
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reorganized the distribution of people on the landscape, depopulating 
areas, and rendering some previous social networks unsustainable1,39,40. 
The breakdown between phase I and phase II also coincides with the 
lowest effective population size in Africa predicted by ref. 41, and may 
suggest that shrinking population sizes contributed to regional discon-
nection. By contrast, the Zambezi River catchment (the large region 
connecting eastern and southern Africa) became wetter from 30 to 
16 ka, according to climate proxy data (Fig. 4b). This enhanced rainfall 
was due to the southward migration of the Intertropical Convergence 
Zone to 10–20° S, largely controlled by Heinrich Event III in the North 
Atlantic where massive iceberg melting occurred approximately 30 ka42 
(Supplementary Discussion 4). The increased precipitation resulted in 
periodic flooding of Zambezi River and its tributaries43, which could 
have formed a geographical barrier to connections between eastern 
and southern Africa (Supplementary Discussion 4, Fig. 4b). The drying 
trend in eastern Africa and the flooded Zambezi River catchment may 
have instigated the regional disconnection that appeared by phase II 
(33–19 ka), suggesting that climate induced behavioural responses 
could be an important mechanism for driving cultural isolation in the 
Late Pleistocene (Fig. 4c).

Southern OES beads became rare, even seeming to disappear by 
33 ka, and did not re-emerge until after 19 ka (Supplementary Discus-
sion 5). Their absence coincides with the lowest net primary produc-
tion and the coolest glacial temperatures in southern Africa, which 
may have limited the population size in the Late Pleistocene. If social 
group sizes are small, the mass production of standardized beads can 
be more costly than beneficial (Supplementary Discussion 1). This could 
explain why OES beadmaking did not become part of the cultural rep-
ertoire, even after the technology was introduced in phase I (50–33 ka). 
When southern beads do re-emerge (approximately 19 ka), they are 
in an exclusively smaller style. This regionalization of styles reflects a 
prolonged period of social isolation, and corresponds with a gradual 
increase in precipitation and temperature in southern Africa (Fig. 4b, 
Supplementary Fig. 1). Finally, bead styles document another episode of 
connection after 2 ka when mobile pastoralists enter southern Africa21.

Human resilience and regional adaptions
The distinct trajectories of bead characteristics suggest that popula-
tions in each region responded to environmental changes with differ-
ent social strategies. The eastern bead tradition is continuous, and 
its characteristics remain steady, regardless of any climatic shifts.  
This consistency hints at the presence of resilient intraregional social 
networks that remain intact even throughout 50 kyr of environmental 
uncertainty. Owing to the overall higher net primary production and 
carrying capacity, populations in eastern Africa may have sustained 
larger sizes or more robust social networks as a strategy to mitigate 
climate change. By contrast, southern African OES bead characteristics 
vary widely, and bead use was rare from 30 to 19 ka. This may reflect 
a strategy where populations lived in smaller, disconnected groups, 
with less need for symbolic behaviour (Supplementary Discussion 1). 
Other archaeological evidence from this time seems to support this, 
showing a staggered technological transition in Marine Isotope Stage 
2–3 with possible coexisting but culturally unique sub-populations 
in southern Africa44,45. The proliferation of consistently sized beads 
after 19 ka suggests an increasing reliance on symbolic behaviour after 
climate conditions improved. These regional differences highlight the 
flexibility of human social behaviour and illustrate variable strategies 
for coping with environmental challenges in the Late Pleistocene.

Perspective
Our research presents a new line of evidence to help to disentangle 
complex interactions between ancient populations that are difficult to 
understand through genetic data alone. The stylistic variation of OES 
beads reveals intermittent connections between eastern and southern 
African populations over the past 50 kyr, including the oldest regional 

stylistic connection ever identified. Furthermore, our findings suggest 
that cultural contact persisted long after the genetic divergence esti-
mate of 70 ka. This raises interesting questions about whether these 
social connections existed independently from population admixture 
or coexisted with biological introgression. Future research is warranted 
to explore these scenarios. In addition, we find it plausible that climatic 
variability and human behavioural responses affected interregional 
social networks by conditioning where and when people could meet. 
Researchers can build on this foundation by incorporating OES bead 
data from site-based studies to refine the broader regional comparisons 
(Supplementary Discussion 6).
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Article
Methods

Data collection
This study reports data from 1,516 OES beads from 31 sites across 
sub-Saharan Africa (Fig. 1). Of these, 1,238 beads from 11 sites are 
described, while previously published data includes 290 beads from 
21 sites (Supplementary Table 1). We used all relevant data with no sta-
tistical methods used to predetermine sample size. We selected com-
pleted beads, based on the criteria by Orton48: ground to a circular shape, 
presence of use-wear, or were completed and broken with more than 
50% remaining. The majority of the specimens were analysed in-person 
(n = 1,148), under low-power magnification, and photographed with a 
digital microscope. We recorded three metric variables (bead diameter, 
aperture diameter and thickness) wherever possible. These are the most 
frequently reported, standardized characteristics in published literature. 
Bead colour and shape are less commonly reported and may be more sub-
ject to interobserver error, so these and other qualitative variables have 
been excluded from this study. Bead diameter and aperture diameter both 
result from cultural behaviour, whereas shell thickness instead may reflect 
a complex relationship between pore density, environmental aridity31 
and ostrich sub-species32. To obtain diameter values in-person, multiple 
measurements were taken around the perimeter of the bead using digital 
calipers. Beads measured from photos with a visible scale were processed 
in ImageJ to obtain diameter and aperture diameter measurements.  
As not all beads or apertures are perfectly round, minimum and maximum 
measurements were used to generate an average, and this value was used 
in the analysis. Published measurements could not be assessed in the same 
manner, and in these cases, the reported average diameter of completed 
beads was used. We only included beads that have estimated age (either 
by direct dates, dating of an excavation layer or by averaging bracketing 
dates from surrounding layers). Wherever possible, we calibrated the 
original radiocarbon age with either Intcal1349 or Intcal2050. All phase 
V data were calibrated with Intcal20, and randomly selected ages from 
other phases were also calibrated with Intcal2050. Differences between 
the two were minor enough that recalibration of the entire dataset was 
unwarranted. No blinding or randomization were required for this study.

Statistical analyses
All statistical analyses were performed in R version 4.0.151 with RStudio 
interface version 1.3.959. We grouped the last 50 kyr into five periods: 
phase I: 50–33 ka (Marine Isotope Stage 3 to time of renewed ice-sheet 
growth); phase II: 33–19 ka (the onset of global ice sheet growth to the 
Last Glacial Maximum); phase III: 19–11.6 ka (last deglaciation); phase 
IV: 11.6–2 ka (Early Holocene to the spread of herding into southern 
Africa); and phase V: 2 ka to present (spread of herding into southern 
Africa to present). Phase I and phase II contain the majority of data 
points, whereas phase V has the least, and southern Africa only has 
one point for phase IV.

We grouped the 31 sites into two geographical regions (southern 
Africa and eastern Africa) instead of examining bead characteris-
tics between sites, for two reasons. First, the number of data points 
between sites was extremely uneven. The largest dataset (Nelson Bay 
Cave, South Africa) has n = 529, whereas 15 sites have less than six data 
entries, and seven of these only have one data entry. OES bead data dis-
tributed unevenly through time with more OES beads in the later phases 
than phase I and phase II, probably due to myriad factors. Notably, 
phase I has 39, phase II has 97 and phases III–V contain 1,380 samples.  
The sampling difference between regions and time periods is an 
unavoidable outcome of archaeological data. Second, the differ-
ences between sites were negligible compared with the differences 
between regions. A two-sample t-test between southern and eastern 
Africa shows that for regional difference, the OES diameter was sig-
nificantly different (two-sample t-test, mean diameter = 6.9 mm and 
4.5 mm, respectively, t = 34.1, d.f. = 510.9, P < 0.0001). For example, the 
mean diameters from the southern African sites of Nelson Bay Cave and 

Wonderwerk Cave (both of which have more than 350 data points) are 
4.4 mm and 4.6 mm, respectively. Whereas the average diameters for 
eastern African sites Enkapune ya Muto and Mumba Rockshelter (both 
of which have approximately 80 data points) are 6.7 mm and 6.2 mm. 
Therefore, we suggest that classifying OES data by region is appropri-
ate. Furthermore, despite eastern Africa having far fewer numbers of 
beads than southern Africa, they are consistently present throughout 
all five phases. By contrast, OES beads are largely absent during phase 
II (33–19 ka), and our dataset only includes one bead from this period.

We applied principal component analysis (PCA; R-package vegan52) 
using multi-dimensional information (bead diameter, aperture diameter 
and shell thickness) to examine variation in eastern and southern Africa 
over the past 50 kyr. Out of 1,516 beads, 1,333 had all three parameters 
available, so these are included in the PCA. A covariance matrix PCA was 
used to preserve variance because the range and scale of variables are 
in the same units of measure. We also applied MANOVA to examine the 
OES bead variation in these two regions through time using the follow-
ing steps: (1) we conducted a two-way MANOVA to investigate whether 
the three bead parameters were influenced by region, phases and/or the 
interactions between region and phases. (2) We applied Pillai’s trace 
MANOVA to test the null hypothesis that there is no significant difference 
in OES characteristics between southern Africa and eastern Africa for 
phases I–III. (3) We applied Pillai’s trace MANOVA to test the null hypoth-
esis that there is no significant difference in OES characteristics through 
time for each region. We did not conduct any statistical tests for phase 
II because there are insufficient data available from southern Africa. 
(4) For phase V, we compared OES beads of two regions based on the 
diameter and aperture diameter using MANOVA, as thickness records 
from eastern Africa are incomplete (only one sample has recorded thick-
ness). (5) Finally, we used univariate ANOVA performed on the output 
from all MANOVA to assess which bead parameters are important for 
driving the differences in OES sizes in regions and through time.

Although not every specimen has all three parameters recorded, 
every entry at least has a bead diameter, so analysis by diameter pro-
vides the larger dataset. Shell thickness is the least likely to be absent 
as it cannot be accurately measured from photos and is inconsistently 
reported. Therefore, to increase sample size and visually demonstrate 
bead variability, we also created plots that include fewer variables.  
Specifically, we plotted all reported bead parameters against time, 
running a generalized additive model for each of these variables in both 
regions to show understanding of how sizes of these parameters evolve 
through time. Unless otherwise stated, statistical significance is assessed 
at P < 0.01. All PCA figures were made using ‘ggplot2’ packages53.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data generated or analysed for this study are included in this pub-
lished Article (and Supplementary Table 1). All statistical analyses were 
performed in R version 4.0.151 with RStudio interface version 1.3.959. 
All PCA figures were made using ‘ggplot2’ version 3.3.5. The data and 
R code are available from GitHub (https://github.com/alsjmonsoon/
Ostrich-egg-shell-bead-data).
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