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Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 
infection1,2, but the host response at the lung tissue level is poorly understood. Here 
we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs 
of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven 
control individuals. Integrated analyses identified substantial alterations in cellular 
composition, transcriptional cell states, and cell-to-cell interactions, thereby 
providing insight into the biology of lethal COVID-19. The lungs from individuals with 
COVID-19 were highly inflamed, with dense infiltration of aberrantly activated 
monocyte-derived macrophages and alveolar macrophages, but had impaired T cell 
responses. Monocyte/macrophage-derived interleukin-1β and epithelial cell-derived 
interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral 
and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation- 
associated transient progenitor cell state and failed to undergo full transition into 
alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we 
identified expansion of recently described CTHRC1+ pathological fibroblasts3 
contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein 
activity and ligand–receptor interactions identified putative drug targets to disrupt 
deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform 
our understanding of long-term complications of COVID-19 survivors, and provides 
an important resource for therapeutic development.

Globally, the pandemic of COVID-19, which results from infection 
with SARS-CoV-2, has led to more than 145 million cases (32 million 
in the USA) and 3.1 million deaths (570,000 in the USA; figures as of 
26 April 2021)1. Approximately 15% of infected individuals develop 
severe disease, which can manifest as acute respiratory distress 
syndrome (ARDS) and is associated with substantial morbidity and  
mortality2,4.

Previously, single-cell RNA sequencing (scRNA-seq) analyses 
of healthy individuals have revealed the tissue distribution of host 
receptors that are required for SARS-CoV-2 entry5–7, and examination 
of bronchoalveolar lavage fluid and blood from patients with COVID-19 
of varying severity has identified the effects of SARS-CoV-2 infection 
on immune responses and cytokine dysregulation8–12. However, owing 
to the practical limitations of accessing patient tissues, the effects of 

SARS-CoV-2 at the level of the lung tissue remain unclear. A series of 
autopsy studies that examined formalin-fixed, paraffin-embedded 
(FFPE) tissue sections from individuals who died of COVID-19 extended 
our understanding of virus organotropism, but these studies were 
limited in their discovery potential by low-plex assays (for example, 
immunohistochemistry) and/or prolonged post-mortem intervals 
(PMIs), which adversely affect RNA quality13–15.

We established a rapid autopsy program and, under Institutional 
Review Board approved protocols, collected snap-frozen organ speci-
mens from individuals with COVID-19 within hours of death. We per-
formed single-nucleus RNA-seq (snRNA-seq) on lung samples from 
individuals who died from COVID-19 and control individuals to build 
an atlas that provides insight into the pathophysiology of COVID-19 
and provides a key resource for further investigation.
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The lung cellular landscape in COVID-19
The COVID-19 cohort consisted of 19 patients (12 males and 7 females) 
who died at a median age of 72 years (range, 58 to more than 89) (Sup-
plementary Table 1, Extended Data Fig. 1a) and underwent rapid autopsy 
with a median post-mortem interval (PMI) of 4 h (range, 2–9 h). All 
had underlying co-morbidities that are associated with increased risk 
of severe COVID-1916 (Supplementary Table 1). The control cohort 
comprised 7 individuals (4 males and 3 females) with a median age of 
70 years (range, 67 to 79 years) who underwent lung resection or biopsy 
in the pre-COVID-19 era (Supplementary Table 1).

Using snRNA-seq17 and an integrated quality control pipeline 
(see Methods), we generated a lung atlas that profiled 116,314 nuclei, 
including 79,636 from COVID-19-infected lungs and 36,678 from con-
trol lungs (Fig. 1a). We used a three-pronged approach for cell-type 
identification: unbiased identification of cluster markers, discovery 
of cell types using signatures from reported atlases, and manual 
curation to sub-stratify cell populations and cell states using expert 
knowledge (see Methods). We report cell-type assignment with three 
levels of granularity: major cell types, intermediate granularity, and 
fine granularity (Supplementary Table 2). We visualized data with 
dimensionality reduction using uniform manifold approximation and 
projection (UMAP) (Fig. 1b, c, Extended Data Fig. 1b–d). We identified 
nine major cell types: epithelial cells (n = 30,070 cells), myeloid cells 
(n = 29,632), fibroblasts (n = 22,909), endothelial cells (n = 5,386), T and 
natural killer (NK) lymphocytes (n = 16,751), B lymphocytes and plasma 
cells (n = 7,236), neuronal cells (n = 2,017), mast cells (n = 1,464), and 
antigen-presenting cells (APCs; primarily dendritic cells) (n = 849). 
At the most granular level, we identified 41 different cell types  
(Supplementary Table 2).

We found significant differences in cell fractions between COVID-19 
and control lungs both globally (Fig. 1d) and within the immune and 
non-immune compartments (Extended Data Fig. 2a-c). There was a 
reduction in the epithelial cell compartment, due to loss of both alveo-
lar type II (AT2) and type I (AT1) cells, and an increase in monocytes/
macrophages, fibroblasts, and neuronal cells; these observations were 
independent of donor sex (Extended Data Fig. 3a, b).

We found no major differences in the expression of ACE2, CD147 (also 
known as BSG), NPR1, TMPRSS2, FURIN or CTSL between COVID-19 and 
control lungs (Extended Data Fig. 3c–f). This indicates that changes in 
cell-type proportions were unrelated to the expression of receptors 
or putative proteases that are important for viral entry, although we 
cannot exclude the possibility that virus-mediated cell death selec-
tively depletes cells with high expression of these genes. We detected 
SARS-CoV-2 reads in two patients (Supplementary Table 3), one of 
whom had HIV/AIDS (CD4+ T cell count 29 per mm3 on hospital admis-
sion; 662 unique molecular identifiers detected in 28 cells), which 
suggests that viral reads can, in principle, be captured.

Aberrant activation of myeloid cells
Myeloid cells represented a major cellular constituent in COVID-19 
lungs and were more prevalent there than in control lungs (Fig. 1d, 
Extended Data Figs. 2a, c, 4a). We identified monocytes (n = 3,176), 
monocyte-derived macrophages (MDMs; n = 9,534), transitioning 
MDMs (n = 4,203), and resident alveolar macrophages (AMs; n = 12,511), 
which were recovered as distinct trajectories in diffusion component 
(DC) analysis and were more frequent in COVID-19 lungs (Fig. 2a–c, 
Extended Data Fig. 4b–i, Supplementary Tables 2, 4, 5). Myeloid cells 
from individuals with COVID-19 were highly and aberrantly activated. 
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For example, MDMs in COVID-19 lungs differentially expressed genes 
of activation (for example, CTSB, CTSD, CTSZ, PSAP) and two long 
non-coding RNAs, NEAT1 and MALAT1, that are associated with aber-
rant macrophage activation and impaired T cell immunity18 (Extended 
Data Fig. 5a, Supplementary Table 5). AMs, which arise from fetal 
monocytes and can self-renew19, were enriched and highly activated 
in COVID-19 lungs (Fig. 2c, Extended Data Fig. 5a). Notably, COVID-
19 AMs showed strongly decreased mRNA and protein expression of 
the tumour-associated macrophage receptor AXL (Fig. 2d, Extended 
Data Fig. 5b, c), a receptor tyrosine kinase that is important for coor-
dinated clearance of apoptotic cells (efferocytosis) and subsequent 
anti-inflammatory regulation during tissue regeneration20. These data 
suggest that myeloid cells are a major source of dysregulated inflam-
mation in COVID-19.

Plasma and T cell responses
To gain insights into humoral immunity against SARS-CoV-2 infection 
in the lung, we identified plasma cells (Extended Data Fig. 6a–c) and 
reconstructed immunoglobulins by determining mRNA co-expression 
of the variable heavy (IGHV) and light (IGLV) chains and isotypes on a 
per cell basis (see Methods; Extended Data Fig. 6d–k, Supplementary 
Table 6). IGHV1-18–IGLV3-20, which gives rise to a neutralizing antibody 
(S309)21 against the receptor binding domain (RBD) of the SARS-CoV-2 
spike protein, was among the commonly identified IGHV–IGLV combi-
nations, which suggests that a coordinated antibody response occurred 
(Fig. 2e, f, Extended Data Fig. 6l, m). In the T/NK cell compartment 
(Fig. 2g), we distinguished CD8+ T cells (n = 3,561), T regulatory (Treg) 
cells (n = 649), other CD4+ T cells (n = 7,586), and NK cells (n = 2,141). We 
found no significant increase in T cell abundances in COVID-19 lungs, 

and only modest upregulation of cytokines and programs associated 
with activation and tissue residency of T cells (Fig. 2g–i, Extended Data 
Fig. 7a–i). Although immune response patterns were highly variable 
(Extended Data Fig. 7j, k), these data suggest that an impaired T cell 
response might contribute to lethal outcomes in COVID-19 in the con-
text of a principally preserved humoral immune response.

Impaired alveolar epithelial regeneration
Within the epithelial compartment, we identified alveolar epithelial 
cells (AT1 and AT2 cells; n = 20,949), airway epithelial cells (basal, cili-
ated, club, goblet, and mucous cells; n = 7,223), a cluster characterized 
by the expression of inflammatory and cell cycle genes, including IRF8, 
B2M, MKI67 and TOP2A (‘cycling epithelium’; n = 609), and a cluster 
showing high expression of the extracellular matrix (ECM) components 
COL6A3, COL1A2, and COL3A1 (‘ECMhigh epithelium’; n = 1,179) (Fig. 3a, 
b, Extended Data Fig. 8a–c, Supplementary Tables 2, 7).

AT2 cells serve as progenitors for AT1 cells during lung regeneration22. 
AT2 and T1 cells in control lungs formed distinct clusters (Fig. 3a, b) and 
demonstrated the expected changes in differential gene expression 
(DGE) analysis, including expression of the lineage markers SFTPC 
and SFTPB in AT2 cells, and CLIC5 and AGER in AT1 cells (Fig. 3c, Sup-
plementary Table 7). By contrast, clustering of AT2 and AT1 cells in 
COVID-19 lungs was less discrete, with a substantial portion of cells 
not overlapping with their control counterparts (Fig. 3b). Both AT2 and 
AT1 cells from COVID-19 lungs showed decreased overall expression 
of defining markers (Fig. 3c). COVID-19 AT2 cells displayed decreased 
expression of ETV5 (Fig. 3d), a transcription factor that is required for 
maintaining AT2 cell identity. Decreased ETV5 expression is associated 
with differentiation towards AT1 cells23, indicating that AT2 cells had 
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initiated a regeneration program (Fig. 3d, Extended Data Fig. 8d). CAV1, 
a marker of late AT1 maturation24, was expressed at significantly lower 
levels in AT1 cells from COVID-19 lungs (Fig. 3e). Overall, these data 
suggest incomplete transition of AT2 to AT1 cells in COVID-19 lungs.

Recent studies have shown that inflammation can induce a cell state 
that is characterized by failure to fully transition to AT1 cells; this has 
been termed ‘damage-associated transient progenitors’ (DATPs), ‘alveo-
lar differentiation intermediate’ (ADI), or ‘pre-AT1 transitional cell state’ 
(PATS)25–27 (hereafter referred to as DATPs). We used expression of the 
DATP marker genes (KRT8, CLDN4 and CDKN1A)25 to develop a DATP sig-
nature (see Methods; Extended Data Fig. 8e–h, Supplementary Table 8) 
and found that alveolar epithelial cells from COVID-19 lungs scored 
significantly higher for expression of this signature than those from 
control lungs (Fig. 3f, g, Extended Data Fig. 8i). DC analysis separated a 
main trajectory from AT2 to AT1 cells, while DATPs were primarily local-
ized between AT2 and AT1 cells (Fig. 3h, Extended Data Fig. 8j–n). Gene 
set enrichment analysis (GSEA) of DATPs compared to differentiated 
AT2 or AT1 cells showed enrichment for TNFα and p53 signalling, and 

for the hypoxia response via HIF-1α (Extended Data Fig. 8o), consistent 
with pathways that have been implicated in DATP in mouse models27. 
Consistent with overrepresentation of p53 signalling, the majority of 
DATPs did not undergo cell division (Extended Data Fig. 8p), suggesting 
that they arrest in the DATP cell state.

DATPs were more frequent in COVID-19 than control lungs (Fig. 3i). 
Immunofluorescence staining of corresponding tissues showed that 
the frequency of KRT8+ and CLDN4+ DATPs was higher in COVID-19 
lungs (Fig. 3j, Extended Data Fig. 8r, s), and we observed progressive 
loss of AT1 cell abundance with increasing time from symptom onset to 
death (Extended Data Fig. 8t). Overall, these data suggest that, in addi-
tion to direct destruction of the alveolar epithelium by viral infection, 
lung-regenerative processes are impaired in individuals with COVID-19.

We next determined the sources of inflammation that contribute 
to the DATP cell state, and more generally, to the hyperinflammatory 
environment in COVID-19 lungs. Capture of the inflammatory cytokine 
interleukin (IL)-1β (and others) at an mRNA level may be limited, as the 
bioactive form of IL-1β, which has a major role in triggering DATPs25, is 
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Fig. 3 | Impaired lung regeneration and sources of inflammation. a, b, UMAP 
of investigated alveolar and airway epithelial cells (a) and corresponding group 
assignments (b). c, Differential gene expression (log-normalized, scaled; 
see Methods) of AT1 and AT2 cells from COVID-19 and control lungs. Columns, 
single cells; rows, expression of top-regulated genes. Left bar, lineage markers 
for AT1 (purple) and AT2 (pink) cells. Colour-coded top lanes indicate 
expression strength of signatures (log-normalized; see Methods) and group 
assignment as indicated on the right. exp., expression. d, e, Violin plots of ETV5 
and CAV1 mRNA expression (log-normalized) in AT2 and AT1 cells, respectively; 
Wilcoxon rank-sum test with Bonferroni correction. f, UMAP embedding of AT1 
and AT2 cells and identified DATPs; inset indicates group assignments.  
g, Violin plots of DATP signature expression (log-normalized) in AT1 and AT2 
cells. Wilcoxon rank-sum test. h, First three DCs showing main trajectories of 

AT2 and AT1 cells and DATPs, expression of DATP signature and group 
assignment (inset). i, Fractions of DATP and AT cells in control (n = 7) and 
COVID-19 lungs (n = 19). Middle line, median; box edges, 25th and 75th 
percentiles; whiskers, most extreme points that do not exceed ±1.5 × IQR. 
Wilcoxon rank-sum test. j, Representative immunofluorescence staining for 
pro-SPC, KRT8 and DAPI in control and COVID-19 lung tissue; top, 
representative area with overlay; bottom, small images with individual 
channels of selected area. Scale bar, 50 μm. k, l, Tissue mass cytometric 
quantification of IL-1β (k) and IL-6 (l) in healthy lung tissue and samples from 
donors with different infectious aetiologies. Each dot represents 
quantification of IL-1β and IL-6 in a region of interest (ROI); two-sided Mann–
Whitney U-test with Benjamini–Hochberg false discovery rate (FDR) 
adjustment.
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generated by cleavage from pro-IL-1β upon inflammasome activation; 
thus, protein-level assessment provides complementary information. 
For this purpose, we leveraged a recently released high-plex imaging 
mass-cytometry dataset that profiled 237 tissue regions from 23 individ-
uals, including healthy controls; patients with influenza pneumonia, bac-
terial pneumonia, or ARDS; and ten patients who died from COVID-1928. 
IL-1β was more strongly expressed in monocytes and macrophages from 
individuals with COVID-19 than from healthy individuals or patients in 
the other disease groups (Fig. 3k, Extended Data Fig. 9a–c). IL-6, another 
key inflammatory cytokine invoked in the pathophysiology of COVID-19, 
was more abundant in epithelial cells from patients with COVID-19, but 
was not differentially expressed in macrophages from these patients 
compared to patients in other disease groups (Fig. 3l, Extended Data 
Fig. 9d–f). Finally, we found that the expression of type I interferons 
and interferon response genes in various cell types, including AT2 cells, 
monocytes, and macrophages, was stronger in patients with COVID-19 
than in control donors (Extended Data Fig. 9g, h). Together, these data 
suggest that myeloid-derived IL-1β might be a distinguishing feature of 
COVID-19 compared to other viral or bacterial pneumonias and may 
contribute to the induction and maintenance of the DATP cell state.

Ectopic tuft-like cells in COVID-19
Among captured airway epithelial cells, we recovered four distinct 
trajectories: KRT5+TP63+ basal (n = 534), club (n = 1,232), and goblet cells 
(n = 1,757), and one trajectory with fewer cells (n = 110) that was primarily 
found in COVID-19 lungs, which we identify as putative tuft-like cells 
(Extended Data Fig. 10a–e). Tuft cells are involved in airway inflamma-
tion and intestinal tissue regeneration29, but their role in viral pneumo-
nia remains unclear. The numbers of tuft cells (CHAT+ or POU2F3+) were 
increased threefold in the upper airways of individuals with COVID-19, 
and they were ectopically present in the lung parenchyma of COVID-19 
but not control lungs (Extended Data Fig. 10f–k). To begin to elucidate a 
putative role of tuft cells in viral pneumonia, we infected both wild-type 
and Pou2f3−/− mice, which lack tuft cells, with PR8, a laboratory-adapted 
strain of H1N1 influenza virus (see Methods). Compared to controls, the 
lungs of Pou2f3−/− mice showed decreased infiltration of macrophages 
and decreased expression of chemotaxis genes (including Ccl3 and 
Ccl8) that are also involved in the recruitment of myeloid cells to the 
lungs of individuals who died of COVID-19 (Extended Data Figs. 9g, h, 
11a–l). Although their role needs to be further examined, these ectopic 
tuft-like cells may contribute to the pathophysiology of COVID-19 (Sup-
plementary Discussion).

Pathological fibroblasts and lung fibrosis
There were significantly more fibroblasts in COVID-19 lungs than in 
control lungs (Fig. 1d); immunohistochemistry staining for α-smooth 
muscle actin (α-SMA) validated this finding (Extended Data Fig. 12a–
d). The degree of fibrosis (determined by a Sirius red fibrosis score, 
see Methods) was correlated with disease duration (Fig. 4a), indicat-
ing that lung fibrosis increases over time in COVID-19. We identified 
five fibroblast subtypes: alveolar (n = 4,670), adventitial (n = 3,773), 
pathological (n = 2,322), intermediate pathological (n = 8,779), and 
other (n = 1,099) (Fig. 4b, Extended Data Fig. 12e). The main driver of 
differences in the fibroblast cluster was the increased frequency of 
pathological or intermediate pathological fibroblasts (henceforth 
collectively referred to as pFBs) in COVID-19 lungs compared to control 
lungs (Fig. 4c, Extended Data Fig. 12f). pFBs strongly expressed CTHRC1, 
a recently described hallmark gene that defines these cells, and genes 
of pathological ECM3, including COL1A1 and COL3A1 (Extended Data 
Fig. 12e, Supplementary Table 9). pFBs are key drivers of lung fibrosis 
in mouse models and in patients with idiopathic pulmonary fibrosis 
(IPF) or scleroderma3. Their increased frequency suggests that pFBs 
promote rapidly evolving lung fibrosis in individuals with COVID-19.

Given the importance of fibroblasts in remodelling of the lung 
ecosystem, we next investigated ligand–receptor interactions across 
all major cell types, including fibroblasts (see Methods). Among the 
enriched inferred ligand–receptor interactions across all cells were 
TGFβ1–TGFβ receptor 2 and BMP6–ACVR1 (Extended Data Fig. 12g–i, 
Supplementary Table 10), which belong to the TGFβ family and super-
family, respectively. TGFβ signalling has an important role in promoting 
lung fibrosis and has been implicated in fibroblast-mediated mainte-
nance of the ADI27, which is closely related to the DATP cell state. To 
investigate potential therapeutic strategies directed against pFBs, we 
inferred protein activity from single-nucleus transcriptomes followed 
by comparison of pFBs with other fibroblasts. This analysis predicted 
that pFBs would show increased activity of JunB and JunD (Extended 
Data Fig. 12j, Supplementary Table 11), which induce lung fibrosis in 
mouse models via enhanced TGFβ and STAT3 signalling and are associ-
ated with increased production of IL-1β30. Finally, we inferred drugga-
ble targets in pFBs (see Methods) and identified MMP14 and STAT3 as 
potential targets to abrogate detrimental programs in pFBs (Extended 
Data Fig. 12j, Supplementary Table 11).

Discussion
We generated a single-cell transcriptome lung atlas of COVID-19 using 
short-PMI autopsy specimens and control lung samples. Our analysis 
provides a broad census of the cellular landscape, cell programs, and 
cell circuits of lethal COVID-19. The additional inference of protein activ-
ity and cell-to-cell interactions, and analysis of inflammatory cytokines 
across various cell types using imaging mass cytometry data, provide a 
granular perspective of the detrimental consequences of SARS-CoV-2 
infection in the lung.

Our analyses suggest interactions among aberrantly activated 
monocytes/macrophages that produce IL-1β, inflammation-induced 
impairment of alveolar epithelial regeneration, and expansion of patho-
logical fibroblasts that promote fibrosis and may impair regeneration 
(Extended Data Fig. 12f, k, Supplementary Discussion). In addition to 
these deleterious events, our data suggest that despite a potentially 
sufficient humoral immune response (Supplementary Discussion), 
there was an inadequate T cell response in the lungs of individuals who 
died of COVID-19. A recent study showed that impaired B cell function 
in patients with cancer who contracted COVID-19 was not associated 
with increased mortality31, but that lack of an adequate CD8+ T cell 
response (even in the presence of adequate humoral immunity) was 
associated with worse viral control and increased mortality31. Although 
our COVID-19 cohort did not include patients with cancer, these data 
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a, Coefficient of determination (R2) of days from symptom onset to death  
and fibrosis score in COVID-19 samples (n = 16, see Methods). Error bands,  
95% s.e. interval on the Pearson correlation. b, UMAP of fibroblast (FB) 
sub-populations; inset indicates group assignments. path., pathological.  
c, Fractions of pathological fibroblasts among all fibroblasts in control (n = 7) 
and COVID-19 lungs (n = 19). Middle line, median; box edges, 25th and 75th 
percentiles; whiskers, most extreme points that do not exceed ±1.5 × IQR. 
Wilcoxon rank-sum test.



Nature  |  Vol 595  |  1 July 2021  |  119

suggest that whereas humoral immunity may be dispensable in the 
context of adequate T cell immunity against SARS-CoV-2, a lack of 
appropriate T cell responses in our patients is likely to have contrib-
uted to fatal outcomes.

Although our study provides insight into host responses to lethal 
SARS-CoV-2 infection, it is limited by a small sample size. However, 
through coordinated efforts, our work will contribute to a collection 
of studies, including the companion paper by T. M. Delorey et al.32, with 
streamlined protocols and harmonized metadata to enable integra-
tion and combined analyses, and will help to account for important 
co-variables. Furthermore, because our analysis is focused on lung 
tissue from patients who died of COVID-19, we have examined only a 
subset of potential disease phenotypes. Nonetheless, several observa-
tions, such as the rapid development of pulmonary fibrosis (Supple-
mentary Discussion), are likely to be relevant for patients who survive 
severe COVID-19, and may inform our understanding of the long-term 
complications seen in these individuals33.

In conclusion, we have generated a molecular single-cell lung atlas 
from short-PMI tissue specimens and identified pathological circuits of 
lethal COVID-19. This atlas establishes an important resource for inves-
tigating host responses to SARS-CoV-2 and understanding potential 
long-term pulmonary sequelae resulting from COVID-19, and provides 
a basis for therapeutic development for severe disease.
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Methods

Tissue collection
All tissue specimens from individuals with lethal COVID-19 (with 
SARS-CoV-2 infection confirmed by reverse transcription polymerase 
chain reaction (RT–PCR)) and control individuals were collected at New 
York Presbyterian Hospital or Columbia University Medical Center 
under IRB approved protocols (AAAB2667, AAAT0785, AAAS7370). 
Appropriate consent was obtained from patients or their next of kin. 
All procedures performed on patient samples were in accordance with 
the ethical standards of the IRB and the Helsinki Declaration and its 
later amendments. Samples were selected on the basis of pathologi-
cal review of corresponding haematoxylin and eosin (H&E)-stained 
FFPE tissue slides showing pathological involvement of the selected 
biopsy region from donors with a post-mortem incision time of less 
than 10 h. The donor age was 59 to more than 89 years. Tissue samples 
of ~1 cm3 were snap-frozen embedded in Tissue-Tek optimal cutting 
temperature (OCT) compound (Sakura Finetek USA Inc., Torrance, 
CA) and stored at −80 °C until processing. For all decedents included 
in this study, affected lung tissues were removed, and additionally, for 
a subset of individuals, matching tissues from kidney and heart were 
collected32. Seven control lung samples were collected from patients 
without COVID-19. The dataset analysed and presented here focuses 
on lung specimens from 19 individuals who died of COVID-19 (profiled 
in 20 experiments) and 7 control (non-COVID-19) individuals.

Sample processing and preparation of single-nucleus suspensions
All samples were processed in a biosafety cabinet equipped to comply 
with Columbia University safety measures established for working with 
COVID-19 specimens. Samples were processed as described previously17 
with the following specifications and modifications. For tissue dissociation 
we used Tween with salts and Tris (TST) buffer. For all wash steps we used 
salt and Tris (ST) buffer, and all buffers were supplemented with 40 U/ml 
RNase inhibitor (Thermo Fisher Scientific, Waltham, MA). All buffers were 
pre-chilled on ice and samples were kept on ice throughout the process to 
further prevent RNA degradation. In brief, a fraction of the OCT-embedded 
snap-frozen tissue was broken off and put into a pre-cooled 50-ml tube 
(Corning, NY) in a large volume of ice-cold phosphate buffered saline (PBS) 
and inverted until the OCT was fully dissolve. Tissue was then collected by 
centrifuging at 300g for 2 min at 4 °C. PBS was decanted, and the tissue was 
resuspended in 2 ml cold TST buffer, mechanically dissociated using fine 
scissors and pipettes with decreasing orifice size, and incubated on ice for 
5–10 min. The TST was quenched with 8 ml ST buffer, and the suspension 
was filtered through a 70-μm cell strainer. The tissue/nucleus suspension 
was pelleted by centrifuging at 500g for 5 min at 4 °C. The supernatant was 
decanted, and the nuclei were resuspended in 200–1,000 μl ST buffer, 
filtered through a 40-μm cell strainer attached to a fluorescence-activated 
cell sorting (FACS) tube (Corning, NY), counted, and immediately pro-
cessed for single-nucleus RNA sequencing.

Single-nucleus RNA library preparation and sequencing
Single-nucleus suspensions were counted using disposable counting 
chambers (Bulldog Bio, Portsmouth, NH) on a Leica DMi 1 microscope 
by a second investigator not involved in tissue processing. A total of 
15,000–20,000 nuclei were loaded per channel on a Chromium control-
ler using Chromium Next GEM Single Cell 3ʹ v3.1 reagents (10X Genomics, 
Pleasanton, CA) placed inside the bio-safety cabinet, and single-nucleus 
RNA-seq libraries were prepared per the manufacturer’s instructions 
(increasing the recommended initial cDNA amplification cycles by one 
to account for lower amounts of RNA from nuclei compared to whole 
cells). Single-nucleus RNA libraries were analysed and quantified using 
TapeStation D1000 screening tapes (Agilent, Santa Clara, CA) and Qubit 
HS DNA quantification kit (Thermo Fisher Scientific). Libraries were 
pooled equimolarly and quantified using quantitative PCR. Librar-
ies were sequenced on a NovaSeq 6000 with S4 flow cell (Illumina,  

San Diego, CA) using paired-end, single-index sequencing with 28 cycles 
for read 1, 8 cycles for i7 index, and 91 cycles for read 2.

Generating single-nucleus gene expression matrices
Raw 3′ snRNA-seq data were demultiplexed using Cell Ranger (v5.0) 
‘mkfastq’ followed by ‘count’ to align the sequencing reads and gener-
ate a counts matrix. Transcripts were aligned to the human GRCh38 
reference genome, which was appended with the entire SARS-CoV-2 
genome (severe acute respiratory syndrome coronavirus 2 isolate 
Wuhan-Hu-1, complete genome, GenBank MN908947.3) as an addi-
tional chromosome to the human reference genome. Subsequently, 
the customized ‘GRCh38_SARSCoV2’ reference genome was indexed 
using ‘cellranger_mkref’.

Removal of background noise in gene expression matrices
We used the ‘remove-background’ function of CellBender (v.0.2.0) 
to remove technical ambient RNA counts and empty droplets from 
the gene expression matrices34. Cell Ranger-generated ‘raw_feature_
bc_matrix.h5’ files served as input for CellBender. The parameter 
‘expected-cells’ was obtained from the Cell Ranger metric ‘Estimated 
Number of Cells’, while the parameter ‘total-droplets-included’ was set 
to a value between 18,000 and 24,000 to represent a point within the 
plateau of the barcode rank plot in all samples.

Quality control and filtering
The resulting expression matrices were processed individually in R 
(v.4.0.2) using Seurat (v.3.2.3)35. Filters were applied to keep nuclei with 
200–7,500 genes, 400–40,000 unique molecular identifiers (UMIs), 
and less than 10% mitochondrial reads. In addition, Scrublet was applied 
to identify and remove doublets with an expected doublet rate ranging 
from 4 to 9.6% based on the loading rate36. Samples containing fewer 
than 1,000 nuclei after filtering were excluded from further analyses. 
Filtered gene–barcode matrices were normalized with the ‘Normalize-
Data’ function using ‘LogNormalize’ and the top 2,000 variable genes 
were identified using the ‘vst’ method in ‘FindVariableFeatures’. Gene 
expression matrices were scaled and centred using the ‘ScaleData’ 
function. Next, we performed principal component analysis (PCA) 
as well as UMAP using the first 30 principal components. UMAPs of 
individual samples were inspected before integration.

Integration of individual samples
Individual samples were integrated in Seurat using the reciprocal PCA 
(RPCA) pipeline to remove batch effects in large datasets. The ‘SelectIn-
tegrationFeatures’ function was applied to choose the features ranked 
by the number of datasets they were detected in. Next, the ‘FindInte-
grationAnchors’ function selected a set of anchors between different 
samples using the top 50 dimensions from the RPCA to specify the 
neighbour search space. Six samples were specified as a reference, 
including three controls (C51ctr, C52ctr, C53ctr) and three COVID-19 
(L01cov, L12cov, L16cov) samples. ‘IntegrateData’ was then applied to 
integrate the datasets using the pre-computed anchors and the inte-
grated dataset was scaled using ‘ScaleData’. PCA and UMAP dimension 
reduction based on the top 30 principal components were performed. 
Nearest-neighbour graphs using the top 30 dimensions of the PCA 
reduction were calculated and clustering was applied with a resolu-
tion of 0.8. Harmony37 was run on the PCA matrix above using default 
parameters with patient ID as the batch key and 10 iterations.

Cell-type identification
The main cell types were identified by manual annotation of differ-
ential gene expression (DGE) between clusters. The ‘FindAllMarkers’ 
function identified positive markers for each cluster with a minimal 
fraction of 25% and a log-transformed fold change threshold of 0.25. 
This initial labelling resulted in the identification of epithelial, endothe-
lial, fibroblast, neuronal, myeloid, APC, mast, T/NK and B/plasma cell 



populations as well as one low-quality cluster, which we removed. Next, 
we split the Seurat object into subsets of the main labels and reran scal-
ing, PCA, UMAP dimension reduction, clustering and DGE analysis on 
each subset. The resulting clusters were annotated manually or by using 
cell-type-specific single-cell signatures from respective cell atlases, and 
labels were added to the main object. In addition, cell cycle phases were 
scored in the subsets using the ‘CellCycleScoring’ function, adjusted 
for individual cut-offs and added to the main object. Within the mye-
loid subpopulation, two low-quality clusters (characterized by higher 
expression of mitochondrial reads) were observed and removed, leaving 
a total of 116,314 cells for downstream analyses (of 119,535 initial cells 
after QC). Signatures and canonical markers (Supplementary Table 4) 
to identify airway basal, club, ciliated, goblet, mucous, AT1, and AT2 
cells were obtained from Travaglini et al.38. Alveolar macrophages were 
scored using a signature based on DGE obtained from Travaglini et al.38 
and identified as AMs39 with a module score >0.15. A tuft-cell signature 
was obtained from Deprez et al.40. To further characterize the fibro-
blast population, fibroblast cells were selected using Seurat’s ‘subset’ 
function and reanalysed to identify the different fibroblast subtypes. 
The reanalysis included the standard Seurat workflow with ‘RunPCA,’ 
‘FindNeighbours,’ ‘FindClusters,’ and ‘RunUMAP’ performed on the 
‘integrated’ assay. The number of PCA dimensions used was 15, with a 
resolution parameter of 0.5. After the fibroblast cell clusters had been 
obtained, the DGE in each cluster was computed with ‘FindAllMarkers’ 
on ‘RNA’ assay (Supplementary Table 9). The fibroblast subtypes were 
identified by manually curating the cluster DGE with the reported litera-
ture, such as the single-cell lung atlas38, lung fibroblast atlas3, single-cell 
database PanglaoDB41, and Human Protein Atlas42–44. However, these 
resources were based on scRNA-seq or bulk studies. Therefore, the few 
reported fibroblast subtype markers were usually not specific or had low 
expression in snRNA-seq data. Therefore, we compared our subcluster 
DGE with the literature reported subtype DGE with shared high expres-
sion in snRNA-seq or scRNA-seq data. These manually curated lists of 
fibroblast-subtype-specific marker genes were used to identify fibro-
blast subtypes in our dataset (Supplementary Table 4). This procedure 
was used to identify alveolar fibroblasts, adventitial fibroblasts, peri-
cytes, airway smooth muscle, vascular smooth muscle, and mesothelial 
fibroblasts. Cell clusters with high expression of COL1A1 and CTHRC1 
were annotated as ‘pathological fibroblasts’ because they have been 
reported to contribute to the leading edge of fibrosis3. Clusters with 
lower expression of COL1A1 and CTHRC1 compared to pathological 
fibroblasts, but without any markers for other fibroblast subtypes in 
their DGE, were annotated as ‘intermediate pathological fibroblasts’. 
One cell cluster without distinct DGE was annotated as ‘other fibroblasts’. 
For visualization purposes, expression scores were plotted in UMAP 
embeddings or violin plots as log-normalized values (natural logarithm 
ln(1 + x)), and in dot plots as log-normalized values (natural logarithm 
ln(1 + x)) that were furthermore centred on 0 with a variance of 1 (scaled).

Cell-type frequency comparison
Unless otherwise noted, we calculated frequencies of cell types in each 
sample from COVID-19 and control lungs, and compared the medians 
of the two groups to identify differences in frequency. Significance 
was assessed using a Wilcoxon rank-sum test.

Module scores for feature expression
The ‘AddModuleScore’ function was applied to calculate the average 
expression levels of gene signatures on a single-cell level. Mouse-based 
signatures to identify DATPs and primed and cycling AT2 cells were 
obtained from Choi et al.25 and converted to human homologue genes. 
Three genes (CLDN4, KRT8, CDKN1A) comprised the initial DATP signa-
ture thus derived. AT1 and AT2 cells were subset from the main Seurat 
object and reintegrated using the Seurat standard integration with 
30 dimensions and a k-neighbours filter of 60 in the ‘FindIntegratio-
nAnchors’ function. First, all AT1 and AT2 cells were scored for the 

three-gene signature and cells with a module score >0.7 were prelimi-
narily labelled as DATPs. Next, we used DGE to identify additional mark-
ers that define the DATP program. We then scored our resulting DATP 
signature, including 163 genes, to the AT1 and AT2 cells and labelled all 
cells with a module score of >0.4 as DATPs. T cell scores were obtained 
by using the Seurat implementation of gene set scoring with 50 bins 
and a control size equal to the number of genes in the set. Upregulation 
and downregulation programs (TRM, Tact, Tmem Texh), defined by 
K. S. P. Devi et al. (unpublished), were used to infer T cell phenotypes. 
The upregulation and downregulation signatures were scored sepa-
rately, and the downregulation score was subtracted cell-wise from 
the upregulation score to obtain the composite score. Effect size was 
calculated using Cohen’s D (that is, the difference of means divided by 
the pooled standard deviation).

Diffusion component analysis
We applied diffusion maps as a nonlinear dimensionality reduction 
technique to examine the major components of variation across subsets 
of cells. We computed DCs using the ‘DiffusionMap’ function of the 
Destiny R-package (v3.3.0) with the top 30 principal components used 
in the k-nearest neighbours algorithm (k-NN)45. The epithelial subset 
consisting of airway basal, club, and goblet cells was reintegrated for 
the DC analysis using the Seurat standard integration with 30 dimen-
sions and a k-neighbours filter of 50 in the ‘FindIntegrationAnchors’ 
function. Samples with <50 cells were excluded from reintegration, 
which removed a total of 10 samples (one control sample and nine 
COVID-19 samples). Tuft-like cells were identified as cells with DC1 
values >0.015 based on an overlap with the tuft-cell signature in the 
diffusion trajectory that dominated the first DC.

Differential gene expression
DGE was identified by using the Seurat function ‘FindAllMarkers’ on 
normalized count data to identify positive (overexpressed) markers 
in each population. The Wilcoxon rank-sum test (two-sided) was used 
to identify differentially expressed genes between two groups of cells 
and the log-transformed fold change was set to 0.25. The parameter 
‘min.pct’ was set to 0.25 to assure that genes were detected at a mini-
mum fraction of 25% of cells in either of the populations. P values were 
adjusted using Bonferroni correction unless otherwise stated. Differen-
tially expressed genes were plotted in violin plots using log-normalized 
expression values (natural logarithm ln(1 + x)). For heatmaps and dot 
plots, expression values were log-normalized (natural logarithm 
ln(1 + x)) and furthermore centred on 0 with a variance of 1 (scaled).

Differential expression of signature scores
To test differential expression of three immune pathway signatures 
(type I interferon abbreviated, inflammasome receptors, and chemot-
axis, Supplementary Table 4), we obtained log-normalized expression 
values (ln(1 + x)) for each gene in the signatures, and summed them 
for each signature. We then used a two-sided Wilcoxon rank-sum test 
to test for differential expression of signatures in each cell type, and 
calculated log2(fold change).

Geneset enrichment
Geneset enrichment analyses were performed using the hypeR 
R-package46. The background population of genes was set to all 
detected genes. Geneset over-representation was determined by 
hypergeometric test.

B cell chain analysis
To analyse the distribution of heavy and light chains in B cells, the dataset 
was subset to include only B cells. For the identification of variable chain 
regions, we selected the highest expressed heavy and light chain gene 
of each cell that expressed both heavy (starting with IGHV) and light 
(starting with IGLV or IGKV) chain-encoding genes. Next, we identified 
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the highest expressed constant chain region among expressed genes 
following the pattern ‘IGH[G, M, A, or E][number]’. The resulting pairs 
of heavy and light chains were visualized as a heatmap using average 
linkage for hierarchical clustering analysis and cross-referenced with 
previously described recurrently observed combinations47.

Master regulator analysis and drug target identification
The fibroblast regulatory network in this study was reverse-engineered 
from snRNA-seq data using the ARACNe-AP48,49 algorithm. We generated 
networks for each sub-cluster and integrated the networks by taking a 
union of the predictions of all networks. P values of Master regulator 
(MR)–target interactions predicted by the networks were integrated 
using Fisher’s method. The final fibroblast network contained pre-
dictions for 1,341 transcription factors regulating 9,770 target genes 
through 295,546 interactions. The relative activity of each transcrip-
tion factor represented in the fibroblast network was inferred using 
the VIPER50,51 algorithm, available as a package through Bioconduc-
tor. Conceptually, the VIPER algorithm is similar to the master regu-
lator inference algorithm (MARINA)49,52, which uses the MR targets 
inferred by the ARACNe48,49 algorithm to predict drivers of changes 
in cellular phenotypes. In addition to calculating the enrichment of 
ARACNe-predicted targets in the signature of interest, VIPER also con-
siders the regulator mode of action, regulator–target gene interaction 
confidence, and the pleiotropic nature of each target gene’s regulation. 
Statistical significance, including P value and normalized enrichment 
score (NES), was estimated by comparison to a null model generated by 
permuting the samples uniformly at random 1,000 times. Druggable 
proteins with VIPER-predicted50,51,53 aberrant increases in activity were 
ranked by their −log10(Bonferroni adjusted P value).

Ligand–receptor interaction inference in individual samples
CellPhoneDB54 is a curated repository of ligand–receptor interactions 
along with their subunit architectures, integrated in a statistical frame-
work to infer cell-type-enriched ligand–receptor interactions between 
cell types in single-cell or single-nucleus transcriptomics data. We used 
CellPhoneDB to identify ligand–receptor interactions between cell types 
in each individual control (n = 7) and COVID-19 (n = 19) snRNA-seq dataset. 
The ligand–receptor interactions were inferred in each patient sepa-
rately, as by definition cell-to-cell interactions are biologically mean-
ingful only within an individual. Moreover, separate inference also 
prevents spurious interactions from being inferred between patients 
with heterogeneous disease or health statuses. After identifying and 
annotating different cell types in our snRNA-seq datasets, we followed 
the recommended procedures for the preparation of input files for local 
implementation of CellPhoneDB v.2.0.054. In brief, for each individual 
sample, QC-filtered raw counts matrices were normalized to counts per 
10,000 and metadata files were obtained from the respective cell-type 
annotations. CellPhoneDB analysis was performed with the ‘cellphonedb 
method statistical_analysis’ command with default parameters.

Cell–cell interaction differences between COVID-19 and control 
samples
CellPhoneDB analysis of each sample identified the number of ligand–
receptor interactions between all nine major cell-types in that sample. 
We analysed these cell–cell interaction counts between control donors 
(n = 7) and individuals with COVID-19 (19 individuals, 20 samples) to iden-
tify the differences in cellular cross-talk between COVID-19 and control 
lungs. The median cell–cell interaction values from all the control samples 
formed the overall control lung cell–cell interaction counts. Similarly, 
the overall COVID-19 lung cell–cell interaction counts were the median 
from all the COVID-19 samples. The overall control and COVID-19 lung 
interaction counts were visualized as an interactome using the ‘igraph’ R 
package with circle layout, where the edge width between two cell types 
was proportional to the number of interactions between them and the size 
of a cell-type circle was proportional to its frequency in the snRNA-seq.

Differential enrichment of ligand–receptor interactions 
between COVID-19 and control samples
CellPhoneDB analysis of each sample identified the significantly 
enriched ligand–receptor interactions in that sample by computing 
a mean of the ligand and receptor gene expression for each ligand–
receptor interaction together with a corresponding P value. To find 
ligand–receptor interactions that were differentially regulated between 
COVID and control conditions, we first identified the common inter-
actions across all samples. In brief, we consolidated ligand–receptor 
expression for controls and COVID-19 separately by taking the median 
of ligand–receptor mean expressions from 7 control samples or 20 
COVID-19 samples (from 19 donors). The minimum value of consoli-
dated ligand–receptor expression in COVID-19 and control samples was 
set to 0.001 to prevent noise in low expression values from affecting 
the log(fold change) calculations. log2(control median expression) 
was subtracted from log2(COVID-19 median expression) to obtain 
the log2(fold change) of ligand–receptor expression in COVID-19. To 
compute the P value of the log2(fold change) for each interaction, we 
used an unpaired two-sided Wilcoxon rank-sum test for each interac-
tion between COVID-19 and control samples. Adjusted P values were 
obtained using th eBenjamini–Hochberg procedure. Interactions with 
log2(fold change) ≥ |2| and FDR P < 0.1 were reported as the top differ-
entially enriched interactions in COVID-19.

Tissue preparation and processing for imaging
Lung tissues (human and mouse) were fixed with 4% paraformaldehyde 
(PFA) at 4 °C overnight with rotation. For paraffin sections, tissues were 
dehydrated through a 70–100% ethanol gradient and then embedded 
in paraffin. For cryosections, tissues were sequentially incubated with 
20% and 30% sucrose and subsequently embedded in OCT compound. 
We obtaind 8–10-μm-thick cryosections using a cryostat.

Microscopic imaging and quantification
Paraffin sections were dewaxed and rehydrated. Antigen retrieval 
was performed by high-pressure heating with a commercial antigen 
unmasking retrieval solution followed by blocking with 5% normal 
donkey serum. For immunofluorescence staining, the sections were 
then incubated with the primary antibodies listed in Supplementary 
Table 12 at 4 °C overnight. Cryosections were washed twice with PBS, 
and blocked with 5% normal donkey serum, followed by incubation 
with primary antibodies shown in Supplementary Table 12 at 4 °C 
overnight. Conjugated secondary antibodies (1:500) were added to 
the sections and incubated for 2 h at room temperature. Nucleus were 
stained with DAPI, and images were captured with a Zeiss LSM T-PMT 
confocal laser-scanning microscope (Carl Zeiss) and Zen 2012 SP1 
(black edition) software (Zeiss). Immunohistochemistry for C4d was 
performed on a Leica Bond 3 automated staining platform. In brief, 
paraffin sections including both healthy control lung and COVID-19 
lung tissues were treated with BOND Epitope Retrieval Solution 2 (Leica) 
for 20 min and they were incubated with a C4d antibody for 30 min. 
Immunohistochemistry signals were developed with the Bone Polymer 
Refine Detection kit (Leica) with treatment with post primary polymer 
for 20 min and DAB chromogen for 10 min. For quantification, cells 
were counted by a blinded investigator using tiled stitched 20× images 
from more than five sections per mouse and included at least three 
individual lobes or were from representative areas of at least three 
human control lungs and COVID-19 lungs. Images were processed and 
analysed using ZEN blue 2.3 (Zeiss) and Adobe Photoshop Creative 
Suite 6 (Adobe) software in a blinded fashion. DATPs were detected 
with co-immunostaining for pro-SPC and KRT8 or HTII-280 and CLDN4. 
DATP percentages were determined by counting KTR8hi pro-SPC+ cells 
over pro-SPC+ cells or CLDN4+ cells over HTII-280+ cells. Macrophages 
were quantified by counting the total number of CD45+CD64+ cells 
over CD45+ cells. CHAT+ tuft cells were quantified by counting the total 



number of CHAT+ cells over DAPI+ airway nuclei (for airway tuft cells) 
or per mm2 of lung parenchyma.

Multiplexed immunofluorescence
Multiplexed immunofluorescence staining of lung tissue from patients 
who died of COVID-19 and control individuals was performed using 
CD4, CD8, CD19, CD103, CD163 and granzyme B (GZMB) antibodies 
(Supplementary Table 12) with the Opal 7-colour IHC kit (Akoya Biosci-
ence) on a Leica Bond RX automated stainer (Leica Biosystems). FFPE 
tissue sections (5 μm) were baked for 2 h at 60 °C, followed by automatic 
deparaffinization, rehydration, and antigen retrieval in BOND Epitope 
Retrieval Solution 2, pH 9 (Leica Biosystems) for 30 min at 95 °C. Immu-
nofluorescence staining with Opal and tyramide signal amplification 
(TSA) were performed in six cycles. In each cycle, the tissue was incu-
bated sequentially with a primary antibody for 30 min at room tem-
perature, the secondary antibody conjugated to polymeric horseradish 
peroxidase (HRP), an Opal fluorophore in TSA buffer, and BOND Epitope 
Retrieval Solution 1, pH 6 (Leica Biosystems) for 20 min at 95 °C to strip 
the tissue-bound primary–secondary antibody complexes before the 
next staining cycle. After nuclear counterstaining with DAPI, slides were 
coverslipped with Vectrashield HardSet Antifade mounting medium 
(Vector Laboratories) and 12–15 areas per slide were imaged using the 
Vectra 3 automated multispectral microscope (Akoya/PerkinElmer) with 
Vectra 3.0.5 software. Regions of interest were chosen by the patholo-
gist for multispectral imaging (MSI) at 20× magnification and spectral 
unmixing using the InForm v2.4.6 software (Akoya). Demultiplexed 
images were exported as 32-bit TIFF files for further analysis.

Multiplexed image analysis
All images were analysed and visualized using QuPath55. We used the 
highest resolution for all described steps. The QuPath project files 
and additional scripts are available at https://github.com/IzarLab/
CUIMC-NYP_COVID_autopsy_lung/tree/main/code/Vectra_image_
analysis. First, images were loaded, renamed and segmented using 
‘WatershedCellDetection’ based on DAPI intensity with a cell expansion 
of 4 μm. Further parameter settings for these steps can be found in 
the ‘Load_and_segmentation.groovy’ script. Next, we created classes 
and the corresponding classifiers for each of the six markers of inter-
est: CD4, CD19, GZMB, CD103, CD8 and CD163. The thresholds for 
the individual classifiers (‘ClassifyByMeasurementFunction’) were 
automatically calculated and adjusted for each patient on the basis of 
visual inspection of the mean marker expression. If no patient-specific 
classifier was created, the classifier with the ending ‘_04_A6.json’ was 
used. All classifiers can be found in the object classifiers folder as json 
files. Once performed for all images, the individual assignments for 
each single cell were exported to a CSV file for downstream analysis 
and boxplot visualization.

Imaging mass cytometry
Imaging mass cytometry data from post-mortem lung tissue of patients 
with lung infections and otherwise healthy donors was used28. The data-
set comprised 237 images from 23 donors, containing 664,006 single 
cells for which cell-type identities were derived from the intensity of 36 
markers. All analyses were conducted in Python v3.8.2 with the follow-
ing programs: numpy v1.18.5, scipy v1.4.1, Tifffile 2020.6.3, Networkx 
v2.5, Scikit-image v0.17.2, Pingouin v0.3.7, and Scanpy v1.6.0. Single 
cells were labelled as positive for IL-6 or IL-1β based on their z-score 
of intensity using Gaussian mixture models (scikit-learn56, version 
0.23.0) using model selection based on the Davies–Bouldin index57. 
The number of cells positive for a marker in each ablated region of 
interest (ROI) was normalized by its area, and mean values per disease 
group and cell type across all ROIs were visualized as bar charts. To 
assess the significance of changes across both disease groups and cell 
types, we used a two-sided Mann–Whitney U-test and adjusted P values 
with the Benjamini–Hochberg FDR adjustment using the pingouin 

package (version 0.3.9)58. Representative regions within the ROIs were 
displayed as false-colour images by normalizing the signal intensity 
to the unit scale after clipping the signal below and above the 3rd and 
98th percentiles, respectively. Finally, a Gaussian filter with sigma of 
one pixel (one micrometre) was applied to the images.

Sirius red staining and fibrosis scoring
Paraffin-embedded lung sections were dewaxed, rehydrated and stained 
for 1.5 h with a picrosirius red solution (1.3% picric acid, 1% fast red and 
1% fast green). Four or five fields at 4× magnification were taken using 
a polarized light filter on an Olympus IX71S1F-3 microscope with QCap-
ture Suite Plus (v3.1.3.10) software. Images were quantified (percentage 
of Sirius red area/total area) using Adobe Photoshop (v 11.0). Pearson 
correlations between fibrosis score and days from symptom onset to 
death were calculated for 16 of 19 patients with COVID-19 for whom sam-
ples were available and time from symptom onset to death was reported.

αSMA immunohistochemistry
Antigen retrieval of dewaxed and rehydrated paraffin-embedded lung 
sections was performed with citrate pH 6, blocked with 3% BSA and incu-
bated with anti-αSMA-FITC (Sigma, F3777) overnight at 4 °C. After incu-
bation with a biotin-anti-FITC antibody (Abcam, ab6655), detection was 
performed using the Vectastatin Elite ABC-HRP kit (Vector Laboratories, 
SP-2001) with the DAB Peroxidase Substrate kit (Vector Laboratories, 
SK-4100), followed by counterstaining with haematoxylin. All reagents 
and dilutions are listed in Supplementary Table 12. All 7 control slides 
and 17 available slides from COVID-19 lungs were included in the analysis. 
Slides were scanned using a Leica SCN400 slide scanner with Leica Scanner 
Console software (v102.0.7.5) and quantified using the Leica Aperio Imag-
eScope software (v12.4.3.5008) on at least five fields at 10× magnification.

Mice
Mouse studies were approved by the Columbia University Medical 
Center (CUMC) Institutional Animal Care and Use Committees (IACUC). 
The Pou2f3−/− mouse strain was described previously59. All mice were 
maintained on a C57BL/6 and 129SvEv mixed background and housed 
in the mouse facility at Columbia University according to institutional 
guidelines. The facility provides a 12-h light–dark cycle, 18–23 °C room 
temperature and 40–60% humidity. All animal studies used a minimum 
of three mice per group and sample size was based on pilot experiments 
and previous experience. Mice were randomized to experiments and 
8–12-week-old animals of both sexes were used in equal proportions. 
The investigators were not blinded to allocation during experiments.

Influenza infection mouse model
A total of 260 plaque forming units (pfu) of influenza A/Puerto 
Rico/8/1934 H1N1 (PR8) virus (a gift from Dr. Jie Sun at Mayo Clinics, 
Cleveland) dissolved in 40 μl RPMI medium was pipetted onto the 
nostrils of anaesthetized mice, whereupon mice aspirated the fluid 
directly into their lungs. For all procedures, administration of the same 
volumes of vehicle (RPMI medium) was used as control.

Flow cytometry analysis
Fourteen days after infection, mice were euthanized and transcardially 
perfused with 10 ml cold PBS. The lungs were then perfused with 1 ml 
PBS with 2 mg/ml Dispase I and 0.5 mg/ml DNase I and incubated in 
5 ml of the above buffer for digestion with gentle shaking for 60 min  
at room temperature. Lung lobes were removed and physically dis-
sociated, followed by filtering through a 40-μm cell strainer. Cells 
were pelleted and resuspended in 1 ml lyse RBC buffer followed by 
incubation on ice for 5 min to remove red blood cells. After washing 
with FACS buffer (5% FBS, 0.2 mM EDTA in PBS), single cells were col-
lected and immunostained with Fc blocking antibody (5 μg/ml) and a 
live/dead cell stain kit at room temperature for 10 min. Cells were then 
washed and incubated with the following antibodies for one hour: PE/

https://github.com/IzarLab/CUIMC-NYP_COVID_autopsy_lung/tree/main/code/Vectra_image_analysis
https://github.com/IzarLab/CUIMC-NYP_COVID_autopsy_lung/tree/main/code/Vectra_image_analysis
https://github.com/IzarLab/CUIMC-NYP_COVID_autopsy_lung/tree/main/code/Vectra_image_analysis
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cyanine7 anti-mouse CD45 (1:100), FITC anti-mouse CD64 (1:100), and 
APC anti-mouse F4/80 (1:100). Samples were analysed on LSR II (BD, 
Biosciences) with four lasers (405 nm, 488 nm, 561 nm, and 635 nm). 
Data were analysed using FlowJo software (Treestar).

Quantitative RT–PCR (qRT–PCR)
To quantitively measure the indicated cytokines, human lung tissue 
samples (three donors for both healthy and COVID-19 samples) or 
mouse lungs (a minimum of three mice per genotype) were individually 
homogenized in Trizol and total RNA was extracted using an RNeasy 
Plus Mini Kit (Qiagen) following the manufacturer’s instructions. cDNA 
was synthesized using the Superscript-IV First-Strand Synthesis System 
(Invitrogen) and the gene-specific primers were mixed with cDNA tem-
plates and iTaq Universal SYBRR Green supermix (Bio-Rad). qPCR was 
carried out on a CFX Connect real-time PCR detection system (Bio-Rad) 
in a total volume of 20 μl. Three technical and biological replicates were 
performed. Relative fold change was determined by normalizing to 
Actb mRNA for mouse or to GAPDH mRNA for human. The primers for 
qPCR are listed in Supplementary Table 13.

Statistical analysis of imaging and qRT–PCR data
Imaging and qPCR data are presented as means with s.d. of meas-
urements unless stated otherwise. Individual values are plotted and 
represent independent biological samples unless stated otherwise. 
Statistical differences between samples were assessed with unpaired 
Student’s t-test using GraphPad Prism 9.0 (GraphPad Software Inc.,  
San Diego, CA). P values below 0.05 are considered significant.

For multiplexed immunofluorescent images, cell fractions (percent-
age of total or percentage of parental population) were computed 
for each field of view individually using Excel 16.45 (Microsoft). After 
calculating the mean on a per sample basis, we plotted values using 
GraphPad Prism 9.0 (GraphPad Inc. San Diego, CA) and presented them 
as means with s.d. of measurements. Statistical differences between 
samples were assessed with unpaired Student’s t-test using GraphPad 
Prism 9.0 (GraphPad Software Inc., San Diego, CA). P values below 0.05 
are considered significant.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Processed data are available via the single-cell portal: https://singlecell.
broadinstitute.org/single_cell/study/SCP1219. Processed data are also 
deposited in GEO with accession number GSE171524. Raw data are 
available on the Broad Data Use and Oversight System: https://duos.
broadinstitute.org (study ID DUOS-000130). Source data are provided 
with this paper.

Code availability
Code is publicly available at https://github.com/IzarLab/CUIMC-NYP_
COVID_autopsy_lung.
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Extended Data Fig. 1 | Patient information and alternative batch 
correction. a, Basic demographics of patients with COVID-19 and control 
donors. *Decedents with concurrently profiled heart and/or kidney tissue in 
companion study32. †Decedent with two independent lung specimens profiled. 

b, Effect of PMI on clustering. c, Cell-type labels overlaid on UMAP embedding 
resulting from the batch-corrected PCA matrix using Harmony (see Methods). 
d, Same embedding as in c with annotation of COVID-19 and control groups.
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Extended Data Fig. 2 | Changes in cellular composition. a, Fraction of cell 
types in COVID-19 and control lungs across all cells (intermediate granularity). 
b, Fraction of cell types in COVID-19 and control lungs among non-immune cells 
only. c, Fraction of cell types in COVID-19 and control lungs among immune 

cells only. Control, n = 7 donors; COVID-19, n = 19 donors examined over 20 
experiments. Middle line, median; box edges, 25th and 75th percentiles; 
whiskers, most extreme points that do not exceed ±1.5 × IQR. Wilcoxon 
rank-sum test.



Extended Data Fig. 3 | Effect of sex on cellular composition and host 
receptor expression. a, b, Cell fractions in female and male individuals for 
control (a; n = 7 donors) and COVID-19 lungs (b; n = 19 donors examined over 20 
experiments). Middle line, median; box edges, 25th and 75th percentiles; 
whiskers, most extreme points that do not exceed ±1.5 × IQR. Wilcoxon 

rank-sum test. c, d, log-normalized and scaled expression (see Methods) of 
selected receptors or putative receptors and proteases or putative proteases 
involved in SARS-CoV-2 entry in different cell types in control samples from 
female and male donors. Dot size indicates fraction of cells and colour 
indicates expression level. e, f, As in c, d for from COVID-19 lungs.
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Extended Data Fig. 4 | Global changes in myeloid cells. a, Quantification of 
cells with CD163+ staining as percentage of all cells in a subset of control and 
COVID-19 samples (n = 4 donors per group). Mean ± s.d., t-test. b, c, UMAP 
embedding with myeloid cell-type assignment (b) and group assignment (c). 
d–f, Expression scores (log-normalized) for monocyte, macrophage and 
alveolar macrophage signatures in same UMAP embedding as b, c. g, First three 

DCs with annotation of control and COVID-19 lung samples. h, First three DCs 
with expression of the alveolar macrophage signature. i, Heatmap of top 
differentially regulated genes among indicated myeloid sub-populations. Left 
bar indicates genes that were differentially regulated in the respective cell 
types. Top lanes indicate cell type and group. Rows indicate log-normalized 
and scaled expression of genes (see Methods).



Extended Data Fig. 5 | Differential gene expression in alveolar 
macrophages. a, Heatmap of top differentially regulated genes 
(log-normalized and centred, see Methods) among indicated alveolar 
macrophages in COVID-19 and control samples. Top lane indicates cell type and 
group. Rows indicate expression of genes. b, Violin plot of AXL expression 

(log-normalized) in alveolar macrophages from controls and COVID-19 tissues. 
Wilcoxon rank-sum test with Bonferroni adjusted P value indicated on top.  
c, Expression of AXL (log-normalized) among major cell types. Expression of 
this gene was nearly exclusive to fibroblasts and myeloid and epithelial cells.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Inferred immunoglobulins in plasma cells. a, b, UMAP 
embedding of cells within the B/plasma cell cluster (a) and corresponding 
group assignment (b). c, Selected genes that define cells within the B/plasma 
cell cluster. Dot size indicates fraction of cells and colour indicates log-
normalized and scaled expression level (see Methods). d, Heatmap illustrating 
the number of cells with combinations of variable heavy (x-axis) and light  
( y-axis) chains recovered in plasma cells across all patients. Average linkage 
was used for hierarchical clustering analysis. The colour of each square 
indicates the number of cells detected for each specific pair (colour key). e, As 
in d, but indicating the number of control samples with each combination 
detected (Supplementary Table 6). f, As in e, but indicating isotype usage in 

control donors alone (Supplementary Table 6). g, As in e, but demonstrating 
isotype usage in patients with COVID-19 (corresponding to Fig. 3e, f; shown are 
the top 20 commbinations; complete list in Supplementary Table 6).  
h, Frequency ( y-axis) of variable heavy chains (x-axis) in COVID-19 and control 
samples. i, As in h, but for variable light chain usage. j, Frequency ( y-axis) of 
variable heavy chains (x-axis) on a per-donor basis. k, As in j, but for variable 
light chain usage. l, Exemplary H&E-stained image (n = 19 donors evaluated) 
with coloured outlines indicating different immune cell types. Scale 
bar, 100 μm. m, C4d immunohistochemistry in representative control (left) 
and COVID-19 (right) samples (n = 6 donors per group). Scale bar, 100 μm.
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Extended Data Fig. 7 | Activation, residency and dysfunction cell states in 
T cells. a, Expression of selected genes in cells of the T/NK cell compartment. 
Dot size indicates fraction of cells and colour indicates expression level.  
b, Quantification of cells with CD4+ staining as percentage of all cells ( y-axis) in 
control and COVID-19 lungs (n = 4 donors per group). c, As in b, but for CD8+ 
T cells. Mean ± s.d., t-test. d–g, Expression of different program scores (tissue 
residency memory program, activation score, memory score and exhaustion 
score, all from K. S. P. Devi et al. (unpublished); see Methods) in CD4+ T cells 
(left) and CD8+ T cells (right) among control donors and individuals with 

COVID-19. Middle line, median; box edges, 25th and 75th percentiles; whiskers, 
most extreme points that do not exceed ±1.5 × IQR. Wilcoxon rank-sum test. 
Cohen’s D is indicated between the whiskers for each comparison (COVID-19 
versus control). h, Quantification of CD4+GZMB+ T cells as percentage of CD4+ 
T cells ( y-axis) in control and COVID-19 lungs (n = 4 donors per group). i, As in h, 
but for CD8+ T cells. Mean ± s.d., t-test. j, k, Representative multiplexed 
immunofluorescence of lung tissue from a patient with COVID-19 with a pure 
myeloid infiltrate ( j) or with a mixed myeloid and lymphoid infiltrate (k; n = 4 
donors per group). Scale bars, 200 μm.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | DATPs and lung regeneration. a, Expression of 
selected, previously established cell-type-specific signatures ( y-axis) in cell 
types defined in this study (x-axis). Dot size indicates fraction of cells and 
colour indicates expression level. b, c, Expression of selected genes ( y-axis) in 
different cell types (x-axis), highlighting high expression of B2M in cycling 
epithelial cells (b) and collagen genes in ECMhigh epithelial cells (c). d, Fraction 
of KI67+ cells among pro-SPC+ cells in structurally preserved versus damaged 
areas (n = 3 distinct areas each) from a COVID-19 lung. Mean ± s.d., t-test.  
e–g, UMAP embedding of alveolar epithelium and expression of selected genes 
that define the DATP signature. h, Composite expression of the three-gene 
DATP signature. i, Expression of the refined DATP signature (see Methods).  
j–n, First three DCs showing group assignment ( j), cell or cell-state assignment 
(k), expression of AT2 signature (l), AT1 signature (m; log-normalized, 

see Methods), and effect of PMI (n). o, Gene set enrichment analysis in DATPs 
(compared to AT1 and AT2 cells). Rows indicate pathways in descending order 
of enrichment or significance (see key); x-axis indicates FDR. p, Inference of 
G2/M and S phase of individual DATPs (dots) (see Methods). q, Representative 
immunofluorescence staining (DATP marker CLDN4 and AT2 cell marker 
HTII-280) in control and COVID-19 lung tissue sections. Dashed boxes indicate 
areas highlighted to the right of each image. Scale bar, 50 μm. r, s, Quantification  
of KRT8+ (r) and CLDN4+ (s) cells in a subset of tissue sections from control and 
COVID-19 lungs. Mean ± s.d., t-test. q–s, Control, n = 3 donors; COVID-19, n = 4 
donors. t, Coefficient of determination (R2) of days from symptom onset to 
death and AT2/AT1 ratio. Error bands, 95% standard error interval on the 
Pearson correlation (n = 18 donors).



Extended Data Fig. 9 | See next page for caption.



Article
Extended Data Fig. 9 | Cellular sources of inflammatory cytokines.  
a, Average frequency of cell types expressing IL-1β across healthy and disease 
conditions. b, Quantification of IL-1β across cell types in healthy and disease 
conditions. Each dot represents a single region of interest (ROI).  
c, Quantification of IL-1β across healthy and disease conditions and cell types, 
including separation of patients with early death (within 14 days of onset of 
COVID-19 symptoms) and late death (within 30 days of onset of COVID-19 
symptoms). d, Average frequency of cell types expressing IL-6 across healthy 
and disease conditions. e, Quantification of IL-6 across cell types in healthy and 
disease conditions. Each dot represents a single region of interest (ROI).  

f, Quantification of IL-6 across across healthy and disease conditions and cell 
types, including separation of patients with early death (within 14 days of onset 
of COVID-19 symptoms) and late death (within 30 days of onset of COVID-19 
symptoms). g, Expression of selected manually curated gene sets of 
chemotaxis, inflammasome receptors and type I interferon (response) genes 
across different cell types ( y-axis). Dot size indicates significance and colour 
indicates expression level (log2(fold change)). h, qRT–PCR comparing IFNA1, 
IFNA2, IFNB1, and IL-6 mRNA levels in COVID-19 and control lungs (n = 3 donors 
for each group). Mean ± s.d., t-test.



Extended Data Fig. 10 | Identification of ectopic tuft-like cells. a–c, First 
three DCs of airway epithelial cells with group annotation with cell-type 
assignment (a), group assignment (b) and indicating expression of tuft cell 
signature (c) in the same projections. d, Expression of previously established 
signatures identifying cell types in cell types assigned in this study. Dot size 
indicates fraction of cells and colour indicates expression level 
(log-normalized and scaled, see Methods). e, Expression of selected 
cell-type-specific signatures of airway and alveolar epithelium from previous 
studies in cells identified as tuft-like cells in this study. Signatures in 
descending order of enrichment or significance. Colour indicates significance. 

f, g, Representative immunofluorescence staining of control lungs (f; two 
areas) and COVID-19 (g; airway and parenchyma) for KRT5 and CHAT. Arrows 
indicate CHAT+ cells. Scale bar, 50 μm. h, Quantification of CHAT+ cells in the 
upper airway epithelium of control and COVID-19 lungs. Mean ± s.d., t-test.  
i, Quantification of CHAT+ cells in the alveolar epithelium of control and 
COVID-19 lungs. Mean ± s.d., t-test. j, k, Immunofluorescence staining for KRT5 
and POU2F3 of control lungs ( j) and COVID-19 lungs (k), including upper airway 
(left) and parenchyma (right). White arrows indicate POU2F3+ cells. Scale 
bars, 50 μm. f–k, n = 3 donors per group.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Role of tuft cells in macrophage infiltration in 
mouse viral pneumonia model. a, Immunofluorescence staining for SCGB1A1 
and DCLK1 of proximal (left) and distal (right) airway from wild-type (WT) mice 
at baseline. n = 3 mice per group. Arrow, DCLK1+ cell. Scale bar, 50 μm. b, As in a, 
but in wild-type (left) and Pou2f3−/− mice 14 days after infection with H1N1 (PR8). 
c, Quantification of tuft cells as percentage of DCLK1+ cells in Pou2f3−/− 
compared to wild-type mice. Mean ± s.d., t-test. b, c, n = 4 mice per group.  
d, Immunofluorescence staining for CD45 and CD64 of lung parenchyma from 
wild-type (left) and Pou2f3−/− (right) mice 14 days after infection with H1N1 
(PR8). Arrows indicate CD45+CD64+ macrophages. Scale bar, 50 μm.  
e, Quantification (CD45+CD64+ cells among CD45+ cells) as percentage in 
Pou2f3−/− mice compared to wild-type mice 14 days after infection with H1N1. 
Mean ± s.d., t-test. d, e, n = 3 mice per group. f, Gating strategy to identify 

CD45+CD64+F4/80+ cells. g, Identification of CD64+F4/80+ cells (based on 
gating strategy in f) in wild-type (left) and Pou2f3−/− mice (right) 14 days after 
infection with H1N1. h, Quantification of flow-cytometric determination of 
CD45+CD64+F4/80+ cells as percentage of CD45+ cells in Pou2f3−/− relative to 
wild-type mice (n = 3 per group). Mean ± s.d., t-test. i, qRT–PCR comparing 
relative mRNA expression of indicated chemokines and cytokines in Pou2f3−/− 
and wild-type mice 14 days after infection with H1N1 (n = 3 per group). 
Mean ± s.d., t-test. j, As in i, but 44 days after infection with H1N1 (n = 3 per 
group). k, Exemplary immunofluorescence staining (n = 3 mice per group) for 
KRT5 and DCLK1 in wild-type mouse 90 days after infection. Arrows indicate 
DCLK1+ cells. Scale bar, 50 μm. l, As in i, j, but comparing expression of 
indicated chemokines and cytokines in control donors and patients with 
COVID-19 (n = 3 donors per group). Mean ± s.d., t-test.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Role of fibroblasts, potential drug targets and 
model of lethal COVID-19. a, b, Exemplary αSMA immunohistochemical 
staining of tissue from control (a; sample C56; n = 7 donors) and COVID-19 
samples (b; samples L05cov and L06cov; n = 17 donors). Scale bars, 500 μm.  
c, Percentage of α-SMA+ cells per total area (n as in a, b). Mean ± s.d., t-test.  
d, Exemplary Sirius red staining of control (left, n as in a) and COVID-19 (right, n 
as in b) samples. Scale bar, 600 μm. e, Detailed annotation of fibroblasts in this 
study and selected marker genes. Dot size indicates fraction of cells and colour 
indicates expression level (log-normalized and scaled). f, Fractions of cell types 
among all cells in COVID-19 (n = 19 donors examined over 20 experiments) and 
control lungs (n = 7 donors). Middle line, median; box edges, 25th and 75th 
percentiles; whiskers, most extreme points that do not exceed ±1.5 × IQR. 
Wilcoxon rank-sum test. g, h, Inferred cell-to-cell interactions among major cell 
types (indicated as circles connected by lines) in control (g) and COVID-19 (h) 

lung samples. The size of the circle corresponds to the frequency of the 
respective cell type and the thickness of the lines connecting circles indicates 
the absolute number of interactions. i, Differential enrichment (COVID-19 
versus control samples) of specific ligand–receptor interactions (rows) 
between two different cell types (columns). Dot colour indicates 
log2(fold change) of inferred ligand–receptor expression in COVID-19 
compared to control lungs (unpaired two-sided Wilcoxon rank-sum test); dot 
size is inversely correlated with Benjamini–Hochberg adjusted P 
(see Methods). j, Inferred protein activity (rows) among cells corresponding to 
pathological fibroblasts, intermediate pathological fibroblasts, and non-
pathological fibroblasts (columns). Proteins with high activity in pathological 
fibroblasts are highlighted. k, Model summarizing potential mechanisms that 
contribute to morbidity and mortality in patients with COVID-19, focusing on 
impaired cellular regeneration and rapidly ensuing fibrosis.
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