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Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2
infection'?, but the host response at the lung tissue level is poorly understood. Here
we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs
of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven
controlindividuals. Integrated analyses identified substantial alterations in cellular
composition, transcriptional cell states, and cell-to-cell interactions, thereby
providing insight into the biology of lethal COVID-19. The lungs from individuals with
COVID-19 were highly inflamed, with dense infiltration of aberrantly activated
monocyte-derived macrophages and alveolar macrophages, but had impaired T cell
responses. Monocyte/macrophage-derived interleukin-1p and epithelial cell-derived
interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral
and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-
associated transient progenitor cell state and failed to undergo full transition into
alveolar type1cells, resulting inimpaired lung regeneration. Furthermore, we
identified expansion of recently described CTHRCI" pathological fibroblasts?
contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein
activity and ligand-receptor interactions identified putative drug targets to disrupt
deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform
our understanding of long-term complications of COVID-19 survivors, and provides
animportant resource for therapeutic development.

Globally, the pandemic of COVID-19, which results from infection
with SARS-CoV-2, has led to more than 145 million cases (32 million
in the USA) and 3.1 million deaths (570,000 in the USA; figures as of
26 April 2021)". Approximately 15% of infected individuals develop
severe disease, which can manifest as acute respiratory distress
syndrome (ARDS) and is associated with substantial morbidity and
mortality>*.

Previously, single-cell RNA sequencing (scRNA-seq) analyses
of healthy individuals have revealed the tissue distribution of host
receptors that are required for SARS-CoV-2 entry*”, and examination
ofbronchoalveolar lavage fluid and blood from patients with COVID-19
of varying severity has identified the effects of SARS-CoV-2 infection
onimmune responses and cytokine dysregulation® 2. However, owing
to the practical limitations of accessing patient tissues, the effects of

SARS-CoV-2 at the level of the lung tissue remain unclear. A series of
autopsy studies that examined formalin-fixed, paraffin-embedded
(FFPE) tissue sections from individuals who died of COVID-19 extended
our understanding of virus organotropism, but these studies were
limited in their discovery potential by low-plex assays (for example,
immunohistochemistry) and/or prolonged post-mortem intervals
(PMiIs), which adversely affect RNA quality™™.

We established a rapid autopsy program and, under Institutional
Review Board approved protocols, collected snap-frozen organ speci-
mens from individuals with COVID-19 within hours of death. We per-
formed single-nucleus RNA-seq (snRNA-seq) on lung samples from
individuals who died from COVID-19 and control individuals to build
an atlas that provides insight into the pathophysiology of COVID-19
and provides a key resource for further investigation.

A list of affiliations appears at the end of the paper.
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Fig.1|Study design and cellularlandscape. a, Overview of study design.
b, Major clusters and respective cell-type assignmentsin UMAP. ¢, Origins of
cellswithsame embeddingasinb. d, Fraction of major cell types in control

The lung cellular landscape in COVID-19

The COVID-19 cohort consisted of 19 patients (12 males and 7 females)
who died at amedian age of 72 years (range, 58 to more than 89) (Sup-
plementary Table1, Extended DataFig. 1a) and underwent rapid autopsy
with a median post-mortem interval (PMI) of 4 h (range, 2-9 h). All
had underlying co-morbidities that are associated with increased risk
of severe COVID-19% (Supplementary Table 1). The control cohort
comprised 7 individuals (4 males and 3 females) with a median age of
70years (range, 67 to 79 years) who underwent lung resection or biopsy
inthe pre-COVID-19 era (Supplementary Table 1).

Using snRNA-seq” and an integrated quality control pipeline
(see Methods), we generated a lung atlas that profiled 116,314 nuclei,
including 79,636 from COVID-19-infected lungs and 36,678 from con-
trol lungs (Fig. 1a). We used a three-pronged approach for cell-type
identification: unbiased identification of cluster markers, discovery
of cell types using signatures from reported atlases, and manual
curation to sub-stratify cell populations and cell states using expert
knowledge (see Methods). We report cell-type assignment with three
levels of granularity: major cell types, intermediate granularity, and
fine granularity (Supplementary Table 2). We visualized data with
dimensionality reduction using uniform manifold approximation and
projection (UMAP) (Fig. 1b, ¢, Extended Data Fig.1b-d). We identified
nine major cell types: epithelial cells (n = 30,070 cells), myeloid cells
(n=29,632), fibroblasts (n=22,909), endothelial cells (n=5,386), T and
naturalkiller (NK) lymphocytes (n=16,751), Blymphocytes and plasma
cells (n=7,236), neuronal cells (n =2,017), mast cells (n=1,464), and
antigen-presenting cells (APCs; primarily dendritic cells) (n=849).
At the most granular level, we identified 41 different cell types
(Supplementary Table 2).

(n=7)and COVID-19 lungs (n=19). Middle line, median; box edges, 25th and
75th percentiles; whiskers, most extreme points that donotexceed +1.5 x the
interquartile range (IQR). Wilcoxon rank-sum test.

We found significant differencesin cell fractions between COVID-19
and control lungs both globally (Fig. 1d) and within the immune and
non-immune compartments (Extended Data Fig. 2a-c). There was a
reductioninthe epithelial cell compartment, due to loss of both alveo-
lar type Il (AT2) and type | (AT1) cells, and an increase in monocytes/
macrophages, fibroblasts, and neuronal cells; these observations were
independent of donor sex (Extended Data Fig. 3a, b).

We found no major differences in the expression of ACE2, CD147 (also
known as BSG), NPR1, TMPRSS2, FURIN or CTSL between COVID-19 and
control lungs (Extended DataFig. 3c-f). This indicates that changesin
cell-type proportions were unrelated to the expression of receptors
or putative proteases that are important for viral entry, although we
cannot exclude the possibility that virus-mediated cell death selec-
tively depletes cells with high expression of these genes. We detected
SARS-CoV-2 reads in two patients (Supplementary Table 3), one of
whom had HIV/AIDS (CD4" T cell count 29 per mm?®on hospital admis-
sion; 662 unique molecular identifiers detected in 28 cells), which
suggests that viral reads can, in principle, be captured.

Aberrant activation of myeloid cells

Myeloid cells represented a major cellular constituent in COVID-19
lungs and were more prevalent there than in control lungs (Fig. 1d,
Extended Data Figs. 2a, c, 4a). We identified monocytes (n =3,176),
monocyte-derived macrophages (MDMs; n = 9,534), transitioning
MDMs (n=4,203), and resident alveolar macrophages (AMs; n=12,511),
whichwere recovered as distinct trajectories in diffusion component
(DC) analysis and were more frequent in COVID-19 lungs (Fig. 2a-c,
Extended Data Fig. 4b-i, Supplementary Tables 2, 4, 5). Myeloid cells
fromindividuals with COVID-19 were highly and aberrantly activated.
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Fig.2|Immuneresponsesin COVID-19.a, UMAP projection highlighting
immune cell clusters. b, Visualization of myeloid cells using the first three DCs.
Insetindicates group assignment. ¢, Fraction of myeloid cellsin control (n=7)
and COVID-19 lungs (n=19). Middle line, median; box edges, 25th and 75th
percentiles; whiskers: most extreme points that donot exceed +1.5 x IQR.
Wilcoxon rank-sum test. d. Representative immunofluorescence staining for
CD169, AXL and DAPI (largeimage) in control and COVID-19 lung tissue; top,

For example, MDMs in COVID-19 lungs differentially expressed genes
of activation (for example, CTSB, CTSD, CTSZ, PSAP) and two long
non-coding RNAs, NEATI and MALATI, that are associated with aber-
rant macrophage activation and impaired T cellimmunity'® (Extended
Data Fig. 5a, Supplementary Table 5). AMs, which arise from fetal
monocytes and can self-renew’, were enriched and highly activated
in COVID-19 lungs (Fig. 2¢, Extended Data Fig. 5a). Notably, COVID-
19 AMs showed strongly decreased mRNA and protein expression of
the tumour-associated macrophage receptor AXL (Fig. 2d, Extended
Data Fig. 5b, c), areceptor tyrosine kinase that is important for coor-
dinated clearance of apoptotic cells (efferocytosis) and subsequent
anti-inflammatory regulation during tissue regeneration®. These data
suggest that myeloid cells are a major source of dysregulated inflam-
mation in COVID-19.

Plasmaand T cell responses

To gaininsightsinto humoralimmunity against SARS-CoV-2 infection
in the lung, we identified plasma cells (Extended Data Fig. 6a—c) and
reconstructed immunoglobulins by determining mRNA co-expression
of the variable heavy (/IGHV) and light (/GLV) chains and isotypes on a
per cell basis (see Methods; Extended Data Fig. 6d-k, Supplementary
Table 6)./GHVI-18-1GLV3-20, which gives rise to a neutralizing antibody
(S309)* against the receptor binding domain (RBD) of the SARS-CoV-2
spike protein, was among the commonly identified IGHV-IGLV combi-
nations, which suggests that a coordinated antibody response occurred
(Fig. 2e, f, Extended Data Fig. 61, m). In the T/NK cell compartment
(Fig. 2g), we distinguished CD8" T cells (n=3,561), T regulatory (T,.,)
cells (n=649), other CD4" T cells (n=7,586),and NK cells (n=2,141). We
found no significantincrease in T cell abundances in COVID-19 lungs,
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and only modest upregulation of cytokines and programs associated
withactivationandtissueresidency of T cells (Fig. 2g-i, Extended Data
Fig. 7a-i). Although immune response patterns were highly variable
(Extended Data Fig. 7j, k), these data suggest that an impaired T cell
response might contribute to lethal outcomes in COVID-19 in the con-
text of a principally preserved humoralimmune response.

Impaired alveolar epithelial regeneration

Within the epithelial compartment, we identified alveolar epithelial
cells (AT1and AT2 cells; n=20,949), airway epithelial cells (basal, cili-
ated, club, goblet, and mucous cells; n=7,223), a cluster characterized
by the expression of inflammatory and cell cycle genes, including /RFS8,
B2M, MK167 and TOP2A (‘cycling epithelium’; n = 609), and a cluster
showing high expression of the extracellular matrix (ECM) components
COL6A3,COLIA2, and COL3A1 (‘ECM""epithelium’; n=1,179) (Fig. 3a,
b, Extended Data Fig. 8a-c, Supplementary Tables 2, 7).
AT2cellsserve as progenitors for AT1 cells during lung regeneration®.
AT2and T1cellsin control lungs formed distinct clusters (Fig. 3a, b) and
demonstrated the expected changes in differential gene expression
(DGE) analysis, including expression of the lineage markers SFTPC
and SFTPBin AT2 cells, and CLIC5 and AGER in AT1 cells (Fig. 3¢, Sup-
plementary Table 7). By contrast, clustering of AT2 and AT1 cells in
COVID-19 lungs was less discrete, with a substantial portion of cells
notoverlapping with their control counterparts (Fig.3b). Both AT2 and
ATl cells from COVID-19 lungs showed decreased overall expression
of defining markers (Fig. 3c). COVID-19 AT2 cells displayed decreased
expression of ETV5 (Fig. 3d), atranscription factor thatis required for
maintaining AT2 cell identity. Decreased ETVS5 expression is associated
with differentiation towards AT1 cells®, indicating that AT2 cells had
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Fig.3|Impairedlung regeneration and sources ofinflammation. a, b, UMAP
ofinvestigated alveolar and airway epithelial cells (a) and corresponding group
assignments (b). ¢, Differential gene expression (log-normalized, scaled;

see Methods) of AT1and AT2 cells from COVID-19 and control lungs. Columns,
single cells; rows, expression of top-regulated genes. Left bar, lineage markers
for AT1 (purple) and AT2 (pink) cells. Colour-coded top lanes indicate
expressionstrength of signatures (log-normalized; see Methods) and group
assignment asindicated on theright. exp., expression.d, e, Violin plots of ETVS
and CAVI mRNA expression (log-normalized) in AT2 and AT1 cells, respectively;
Wilcoxon rank-sum test with Bonferroni correction. f, UMAP embedding of AT1
and AT2 cellsand identified DATPs; insetindicates group assignments.

g, Violin plots of DATP signature expression (log-normalized) in AT1and AT2
cells. Wilcoxon rank-sumtest. h, First three DCs showing main trajectories of

initiated aregeneration program (Fig.3d, Extended DataFig. 8d). CAVI,
amarker of late ATl maturation®, was expressed at significantly lower
levels in AT1 cells from COVID-19 lungs (Fig. 3e). Overall, these data
suggest incomplete transition of AT2 to AT1 cells in COVID-19 lungs.
Recent studies have shown thatinflammation caninduce acell state
thatis characterized by failure to fully transition to AT1 cells; this has
beentermed ‘damage-associated transient progenitors’ (DATPs), ‘alveo-
lar differentiation intermediate’ (ADI), or ‘pre-AT1 transitional cell state’
(PATS)® % (hereafter referred to as DATPs). We used expression of the
DATP marker genes (KRTS, CLDN4 and CDKNIA)* to develop a DATP sig-
nature (see Methods; Extended Data Fig. 8e-h, Supplementary Table 8)
and found that alveolar epithelial cells from COVID-19 lungs scored
significantly higher for expression of this signature than those from
controllungs (Fig. 3f, g, Extended Data Fig. 8i). DC analysis separated a
maintrajectory from AT2 to AT1cells, while DATPs were primarily local-
ized between AT2 and AT1 cells (Fig. 3h, Extended DataFig. 8j-n). Gene
set enrichment analysis (GSEA) of DATPs compared to differentiated
AT2 or AT1 cells showed enrichment for TNFa and p53 signalling, and

ARDS @ Pneumonia ® COVID-19

® Healthy ® Flu ® ARDS @ Pneumonia @ COVID-19

AT2and AT1cellsand DATPs, expression of DATP signature and group
assignment (inset). i, Fractions of DATP and AT cellsin control (n=7) and
COVID-19 lungs (n=19). Middle line, median; box edges, 25thand 75th
percentiles; whiskers, most extreme points that donot exceed +1.5 x IQR.
Wilcoxon rank-sum test. j, Representative immunofluorescence staining for
pro-SPC,KRT8 and DAPIin control and COVID-19 lung tissue; top,
representative area with overlay; bottom, smallimages with individual
channels of selected area.Scale bar, 50 pm.k, I, Tissue mass cytometric
quantification of IL-1 (k) and IL-6 (I) in healthy lung tissue and samples from
donors with differentinfectious aetiologies. Each dot represents
quantification of IL-1B and IL-6 in aregion of interest (ROI); two-sided Mann—
Whitney U-test with Benjamini-Hochberg false discovery rate (FDR)
adjustment.

for the hypoxiaresponse via HIF-1a (Extended Data Fig. 80), consistent
with pathways that have been implicated in DATP in mouse models”.
Consistent with overrepresentation of p53 signalling, the majority of
DATPs did not undergo cell division (Extended DataFig. 8p), suggesting
that they arrestin the DATP cell state.

DATPs were more frequent in COVID-19 than control lungs (Fig. 3i).
Immunofluorescence staining of corresponding tissues showed that
the frequency of KRT8" and CLDN4* DATPs was higher in COVID-19
lungs (Fig. 3j, Extended Data Fig. 8r, s), and we observed progressive
loss of AT1 cell abundance with increasing time from symptom onset to
death (Extended DataFig. 8t). Overall, these data suggest that, in addi-
tion todirect destruction of the alveolar epithelium by viral infection,
lung-regenerative processes are impaired inindividuals with COVID-19.

We next determined the sources of inflammation that contribute
to the DATP cell state, and more generally, to the hyperinflammatory
environmentin COVID-19 lungs. Capture of theinflammatory cytokine
interleukin (IL)-1$ (and others) atan mRNA level may be limited, as the
bioactive form of IL-1B, which has a major role in triggering DATPs%, is
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generated by cleavage from pro-IL-1p upon inflammasome activation;
thus, protein-level assessment provides complementary information.
For this purpose, we leveraged a recently released high-plex imaging
mass-cytometry dataset that profiled 237 tissue regions from 23 individ-
uals, including healthy controls; patients with influenza pneumonia, bac-
terial pneumonia, or ARDS; and ten patients who died from COVID-19%,
IL-1B was more strongly expressed inmonocytes and macrophages from
individuals with COVID-19 than from healthy individuals or patientsin
the other disease groups (Fig. 3k, Extended Data Fig. 9a-c).IL-6, another
keyinflammatory cytokineinvoked in the pathophysiology of COVID-19,
was more abundantin epithelial cells from patients with COVID-19, but
was not differentially expressed in macrophages from these patients
compared to patients in other disease groups (Fig. 31, Extended Data
Fig. 9d-f). Finally, we found that the expression of type l interferons
andinterferonresponse genesinvarious cell types, including AT2 cells,
monocytes, and macrophages, was stronger in patients with COVID-19
thanincontrol donors (Extended Data Fig. 9g, h). Together, these data
suggest that myeloid-derived IL-13 might be a distinguishing feature of
COVID-19 compared to other viral or bacterial pneumonias and may
contribute to the induction and maintenance of the DATP cell state.

Ectopic tuft-like cellsin COVID-19

Among captured airway epithelial cells, we recovered four distinct
trajectories: KRTS' TP63" basal (n=534), club (n=1,232),and goblet cells
(n=1,757),and one trajectory with fewer cells (n=110) that was primarily
found in COVID-19 lungs, which we identify as putative tuft-like cells
(Extended DataFig.10a-e). Tuft cells areinvolved in airway inflamma-
tionand intestinal tissue regeneration®’, but their role in viral pneumo-
niaremains unclear. The numbers of tuft cells (CHAT" or POU2F3") were
increased threefold in the upper airways of individuals with COVID-19,
and they were ectopically present in the lung parenchyma of COVID-19
but not control lungs (Extended Data Fig.10f-k). To beginto elucidatea
putative role of tuft cellsin viral pneumonia, we infected both wild-type
and Pou2f3”" mice, whichlack tuft cells, with PR8, alaboratory-adapted
strain of HIN1influenza virus (see Methods). Compared to controls, the
lungs of Pou2f3”~ mice showed decreased infiltration of macrophages
and decreased expression of chemotaxis genes (including Ccl3 and
Ccl8) that are also involved in the recruitment of myeloid cells to the
lungs of individuals who died of COVID-19 (Extended Data Figs. 9g, h,
11a-1). Although their role needs to be further examined, these ectopic
tuft-like cells may contribute to the pathophysiology of COVID-19 (Sup-
plementary Discussion).
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Pathological fibroblasts and lung fibrosis

There were significantly more fibroblasts in COVID-19 lungs than in
control lungs (Fig.1d); immunohistochemistry staining for a-smooth
muscle actin (x-SMA) validated this finding (Extended Data Fig. 12a-
d). The degree of fibrosis (determined by a Sirius red fibrosis score,
see Methods) was correlated with disease duration (Fig. 4a), indicat-
ing that lung fibrosis increases over time in COVID-19. We identified
five fibroblast subtypes: alveolar (n = 4,670), adventitial (n=3,773),
pathological (n =2,322), intermediate pathological (n=8,779), and
other (n=1,099) (Fig. 4b, Extended Data Fig. 12e). The main driver of
differences in the fibroblast cluster was the increased frequency of
pathological or intermediate pathological fibroblasts (henceforth
collectively referred to as pFBs) in COVID-19 lungs compared to control
lungs (Fig.4c, Extended Data Fig. 12f). pFBs strongly expressed CTHRCI,
arecently described hallmark gene that defines these cells, and genes
of pathological ECM?, including COL1A1 and COL3A1 (Extended Data
Fig.12e, Supplementary Table 9). pFBs are key drivers of lung fibrosis
in mouse models and in patients with idiopathic pulmonary fibrosis
(IPF) or scleroderma?. Their increased frequency suggests that pFBs
promote rapidly evolving lung fibrosis in individuals with COVID-19.

Given the importance of fibroblasts in remodelling of the lung
ecosystem, we next investigated ligand-receptor interactions across
all major cell types, including fibroblasts (see Methods). Among the
enriched inferred ligand-receptor interactions across all cells were
TGFPB1-TGFp receptor 2 and BMP6-ACVRI (Extended Data Fig. 12g-i,
Supplementary Table10), which belongto the TGFf3 family and super-
family, respectively. TGFf signalling has animportantrole in promoting
lung fibrosis and has been implicated in fibroblast-mediated mainte-
nance of the ADI?, which is closely related to the DATP cell state. To
investigate potential therapeutic strategies directed against pFBs, we
inferred protein activity fromsingle-nucleus transcriptomes followed
by comparison of pFBs with other fibroblasts. This analysis predicted
that pFBs would show increased activity of JunB and JunD (Extended
DataFig. 12j, Supplementary Table 11), which induce lung fibrosis in
mouse models viaenhanced TGF3 and STAT3 signalling and are associ-
ated with increased production of IL-13%. Finally, we inferred drugga-
ble targets in pFBs (see Methods) and identified MMP14 and STAT3 as
potential targets to abrogate detrimental programsin pFBs (Extended
Data Fig. 12j, Supplementary Table 11).

Discussion

We generated asingle-cell transcriptome lung atlas of COVID-19 using
short-PMl autopsy specimens and control lung samples. Our analysis
provides a broad census of the cellular landscape, cell programs, and
cellcircuits of lethal COVID-19. The additional inference of protein activ-
ity and cell-to-cell interactions, and analysis of inflammatory cytokines
across various cell types usingimaging mass cytometry data, provide a
granular perspective of the detrimental consequences of SARS-CoV-2
infectionin the lung.

Our analyses suggest interactions among aberrantly activated
monocytes/macrophages that produce IL-1B, inflammation-induced
impairment of alveolar epithelial regeneration, and expansion of patho-
logical fibroblasts that promote fibrosis and may impair regeneration
(Extended Data Fig. 12f, k, Supplementary Discussion). In addition to
these deleterious events, our data suggest that despite a potentially
sufficient humoral immune response (Supplementary Discussion),
therewasaninadequate T cell response in the lungs of individuals who
died of COVID-19. Arecent study showed thatimpaired B cell function
in patients with cancer who contracted COVID-19 was not associated
with increased mortality®, but that lack of an adequate CD8* T cell
response (even in the presence of adequate humoral immunity) was
associated withworse viral control and increased mortality®. Although
our COVID-19 cohort did not include patients with cancer, these data



suggest that whereas humoral immunity may be dispensable in the
context of adequate T cell immunity against SARS-CoV-2, a lack of
appropriate T cell responses in our patients is likely to have contrib-
uted to fatal outcomes.

Although our study provides insight into host responses to lethal
SARS-CoV-2 infection, it is limited by a small sample size. However,
through coordinated efforts, our work will contribute to a collection
of studies, including the companion paper by T.M. Delorey et al.??, with
streamlined protocols and harmonized metadata to enable integra-
tion and combined analyses, and will help to account for important
co-variables. Furthermore, because our analysis is focused on lung
tissue from patients who died of COVID-19, we have examined only a
subset of potential disease phenotypes. Nonetheless, several observa-
tions, such as the rapid development of pulmonary fibrosis (Supple-
mentary Discussion), are likely to be relevant for patients who survive
severe COVID-19,and may inform our understanding of the long-term
complications seen in these individuals®.

In conclusion, we have generated a molecular single-cell lung atlas
from short-PMltissue specimens and identified pathological circuits of
lethal COVID-19. This atlas establishes animportant resource for inves-
tigating host responses to SARS-CoV-2 and understanding potential
long-term pulmonary sequelae resulting from COVID-19, and provides
abasis for therapeutic development for severe disease.
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Methods

Tissue collection

All tissue specimens from individuals with lethal COVID-19 (with
SARS-CoV-2infection confirmed by reverse transcription polymerase
chainreaction (RT-PCR)) and controlindividuals were collected at New
York Presbyterian Hospital or Columbia University Medical Center
under IRB approved protocols (AAAB2667, AAAT0785, AAAS7370).
Appropriate consent was obtained from patients or their next of kin.
Allprocedures performed on patient samples were inaccordance with
the ethical standards of the IRB and the Helsinki Declaration and its
later amendments. Samples were selected on the basis of pathologi-
cal review of corresponding haematoxylin and eosin (H&E)-stained
FFPE tissue slides showing pathological involvement of the selected
biopsy region from donors with a post-mortem incision time of less
than10 h. The donor age was 59 to more than 89 years. Tissue samples
of -1 cm?®were snap-frozen embedded in Tissue-Tek optimal cutting
temperature (OCT) compound (Sakura Finetek USA Inc., Torrance,
CA) and stored at -80 °C until processing. For all decedents included
inthis study, affected lung tissues were removed, and additionally, for
asubset of individuals, matching tissues from kidney and heart were
collected®. Seven control lung samples were collected from patients
without COVID-19. The dataset analysed and presented here focuses
onlungspecimens from19 individuals who died of COVID-19 (profiled
in 20 experiments) and 7 control (non-COVID-19) individuals.

Sample processing and preparation of single-nucleus suspensions
All samples were processed in a biosafety cabinet equipped to comply
with Columbia University safety measures established for working with
COVID-19 specimens. Samples were processed as described previously”
withthe following specifications and modifications. For tissue dissociation
we used Tween with salts and Tris (TST) buffer. For allwash steps we used
saltand Tris (ST) buffer, and all buffers were supplemented with 40 U/ml
RNaseinhibitor (ThermoFisher Scientific, Waltham, MA). All bufferswere
pre-chilled onice and samples were kept onice throughout the process to
further prevent RNA degradation. In brief, afraction ofthe OCT-embedded
snap-frozen tissue was broken off and put into a pre-cooled 50-ml tube
(Corning,NY)inalarge volume ofice-cold phosphate buffered saline (PBS)
andinverted until the OCT was fully dissolve. Tissue was then collected by
centrifugingat300gfor2minat4 °C.PBSwasdecanted, and the tissue was
resuspendedin2ml cold TST buffer, mechanically dissociated using fine
scissorsand pipettes with decreasing orifice size,and incubated onice for
5-10 min. The TST was quenched with 8 mI ST buffer, and the suspension
wasfiltered through a70-um cell strainer. The tissue/nucleus suspension
was pelleted by centrifuging at 500gfor Sminat4 °C. The supernatant was
decanted, and the nuclei were resuspended in 200-1,000 pl ST buffer,
filtered through a40-pumcellstrainer attached toafluorescence-activated
cell sorting (FACS) tube (Corning, NY), counted, and immediately pro-
cessed for single-nucleus RNA sequencing.

Single-nucleus RNA library preparation and sequencing

Single-nucleus suspensions were counted using disposable counting
chambers (Bulldog Bio, Portsmouth, NH) on a Leica DMi 1 microscope
by a second investigator not involved in tissue processing. A total of
15,000-20,000 nucleiwere loaded per channel on a Chromium control-
ler using Chromium Next GEM Single Cell 3'v3.1reagents (10X Genomics,
Pleasanton, CA) placedinside the bio-safety cabinet, and single-nucleus
RNA-seq libraries were prepared per the manufacturer’s instructions
(increasing the recommended initial cDNA amplification cycles by one
to account for lower amounts of RNA from nuclei compared to whole
cells). Single-nucleus RNA libraries were analysed and quantified using
TapeStation D1000 screening tapes (Agilent, Santa Clara, CA) and Qubit
HS DNA quantification kit (Thermo Fisher Scientific). Libraries were
pooled equimolarly and quantified using quantitative PCR. Librar-
ies were sequenced on a NovaSeq 6000 with S4 flow cell (Illumina,

SanDiego, CA) using paired-end, single-index sequencing with 28 cycles
forread1, 8 cycles fori7 index, and 91 cycles for read 2.

Generating single-nucleus gene expression matrices

Raw 3’ snRNA-seq data were demultiplexed using Cell Ranger (v5.0)
‘mkfastq’ followed by ‘count’ to align the sequencing reads and gener-
ate a counts matrix. Transcripts were aligned to the human GRCh38
reference genome, which was appended with the entire SARS-CoV-2
genome (severe acute respiratory syndrome coronavirus 2 isolate
Wuhan-Hu-1, complete genome, GenBank MN908947.3) as an addi-
tional chromosome to the human reference genome. Subsequently,
the customized ‘GRCh38_SARSCoV2’ reference genome was indexed
using ‘cellranger_mkref”.

Removal of background noise in gene expression matrices

We used the ‘remove-background’ function of CellBender (v.0.2.0)
to remove technical ambient RNA counts and empty droplets from
the gene expression matrices®. Cell Ranger-generated ‘raw_feature_
bc_matrix.h5’ files served as input for CellBender. The parameter
‘expected-cells’ was obtained from the Cell Ranger metric ‘Estimated
Number of Cells’, while the parameter ‘total-droplets-included’ was set
toavalue between 18,000 and 24,000 to represent a point within the
plateau of the barcode rank plot in all samples.

Quality control and filtering

The resulting expression matrices were processed individually in R
(v.4.0.2) using Seurat (v.3.2.3)*. Filters were applied to keep nuclei with
200-7,500 genes, 400-40,000 unique molecular identifiers (UMIs),
andless than10% mitochondrial reads. In addition, Scrublet was applied
toidentify and remove doublets with anexpected doublet rate ranging
from 4 to 9.6% based on the loading rate*®. Samples containing fewer
than1,000 nuclei after filtering were excluded from further analyses.
Filtered gene-barcode matrices were normalized with the ‘Normalize-
Data’ function using ‘LogNormalize’ and the top 2,000 variable genes
wereidentified using the ‘vst’ method in ‘FindVariableFeatures’. Gene
expression matrices were scaled and centred using the ‘ScaleData’
function. Next, we performed principal component analysis (PCA)
as well as UMAP using the first 30 principal components. UMAPs of
individual samples were inspected before integration.

Integration of individual samples

Individual samples were integrated in Seurat using the reciprocal PCA
(RPCA) pipeline toremove batch effectsinlarge datasets. The ‘SelectIn-
tegrationFeatures’ function was applied to choose the features ranked
by the number of datasets they were detected in. Next, the ‘FindInte-
grationAnchors’ function selected a set of anchors between different
samples using the top 50 dimensions from the RPCA to specify the
neighbour search space. Six samples were specified as a reference,
including three controls (C51ctr, C52ctr, C53ctr) and three COVID-19
(LO1cov, L12cov, L16cov) samples. ‘IntegrateData’ was then applied to
integrate the datasets using the pre-computed anchors and the inte-
grated dataset was scaled using ‘ScaleData’. PCA and UMAP dimension
reduction based onthe top 30 principal components were performed.
Nearest-neighbour graphs using the top 30 dimensions of the PCA
reduction were calculated and clustering was applied with a resolu-
tion of 0.8. Harmony* was run on the PCA matrix above using default
parameters with patient ID as the batch key and 10 iterations.

Cell-typeidentification

The main cell types were identified by manual annotation of differ-
ential gene expression (DGE) between clusters. The ‘FindAllMarkers’
function identified positive markers for each cluster with a minimal
fraction of 25% and a log-transformed fold change threshold of 0.25.
Thisinitial labelling resulted in the identification of epithelial, endothe-
lial, fibroblast, neuronal, myeloid, APC, mast, T/NK and B/plasma cell



populations as well as one low-quality cluster, which we removed. Next,
we splitthe Seurat objectinto subsets of the main labels and reranscal-
ing, PCA, UMAP dimension reduction, clustering and DGE analysis on
eachsubset. The resulting clusters were annotated manually or by using
cell-type-specific single-cell signatures from respective cell atlases, and
labels were added to the main object. Inaddition, cell cycle phases were
scored in the subsets using the ‘CellCycleScoring’ function, adjusted
for individual cut-offs and added to the main object. Within the mye-
loid subpopulation, two low-quality clusters (characterized by higher
expression of mitochondrial reads) were observed and removed, leaving
atotal of 116,314 cells for downstream analyses (of 119,535 initial cells
after QC). Signatures and canonical markers (Supplementary Table 4)
to identify airway basal, club, ciliated, goblet, mucous, AT1, and AT2
cells were obtained from Travagliniet al.*, Alveolar macrophages were
scored using asignature based on DGE obtained from Travaglini et al.*®
andidentified as AMs* withamodule score >0.15. A tuft-cell signature
was obtained from Deprez et al.*. To further characterize the fibro-
blast population, fibroblast cells were selected using Seurat’s ‘subset’
function and reanalysed to identify the different fibroblast subtypes.
The reanalysis included the standard Seurat workflow with ‘RunPCA;
‘FindNeighbours, ‘FindClusters, and ‘RunUMAP’ performed on the
‘integrated’ assay. The number of PCA dimensions used was 15, with a
resolution parameter of 0.5. After the fibroblast cell clusters had been
obtained, the DGE in each cluster was computed with ‘FindAlIMarkers’
on‘RNA’assay (Supplementary Table 9). The fibroblast subtypes were
identified by manually curating the cluster DGE with the reported litera-
ture, such as the single-cell lung atlas®, lung fibroblast atlas?, single-cell
database PanglaoDB*, and Human Protein Atlas****. However, these
resources were based onscRNA-seq or bulk studies. Therefore, the few
reported fibroblast subtype markers were usually not specific or had low
expressionin snRNA-seq data. Therefore, we compared our subcluster
DGE with theliterature reported subtype DGE with shared high expres-
sion in snRNA-seq or scRNA-seq data. These manually curated lists of
fibroblast-subtype-specific marker genes were used to identify fibro-
blast subtypesin our dataset (Supplementary Table 4). This procedure
was used to identify alveolar fibroblasts, adventitial fibroblasts, peri-
cytes, airway smooth muscle, vascular smooth muscle, and mesothelial
fibroblasts. Cell clusters with high expression of COL1IA1 and CTHRC1
were annotated as ‘pathological fibroblasts’ because they have been
reported to contribute to the leading edge of fibrosis®. Clusters with
lower expression of COL1AI and CTHRCI compared to pathological
fibroblasts, but without any markers for other fibroblast subtypes in
their DGE, were annotated as ‘intermediate pathological fibroblasts’.
One cell cluster without distinct DGE was annotated as ‘other fibroblasts’.
For visualization purposes, expression scores were plotted in UMAP
embeddings or violin plots as log-normalized values (natural logarithm
In(1+x)), and in dot plots as log-normalized values (natural logarithm
In(1+x)) that were furthermore centred on O with a variance of 1 (scaled).

Cell-type frequency comparison

Unless otherwise noted, we calculated frequencies of cell typesineach
sample from COVID-19 and control lungs, and compared the medians
of the two groups to identify differences in frequency. Significance
was assessed using a Wilcoxon rank-sum test.

Module scores for feature expression

The ‘AddModuleScore’ function was applied to calculate the average
expression levels of gene signatures onasingle-cell level. Mouse-based
signatures to identify DATPs and primed and cycling AT2 cells were
obtained from Choi et al.® and converted to human homologue genes.
Three genes (CLDN4, KRT8, CDKNIA) comprised theinitial DATP signa-
ture thus derived. AT1and AT2 cells were subset from the main Seurat
object and reintegrated using the Seurat standard integration with
30 dimensions and a k-neighbours filter of 60 in the ‘FindIntegratio-
nAnchors’ function. First, all AT1 and AT2 cells were scored for the

three-gene signature and cells with a module score >0.7 were prelimi-
narily labelled as DATPs. Next, we used DGE to identify additional mark-
ers that define the DATP program. We then scored our resulting DATP
signature, including 163 genes, to the AT1and AT2 cells and labelled all
cellswithamodule score of >0.4 as DATPs. T cell scores were obtained
by using the Seurat implementation of gene set scoring with 50 bins
and a control size equal to the number of genesin the set. Upregulation
and downregulation programs (TRM, Tact, Tmem Texh), defined by
K.S.P.Devietal. (unpublished), were used to infer T cell phenotypes.
The upregulation and downregulation signatures were scored sepa-
rately, and the downregulation score was subtracted cell-wise from
the upregulation score to obtain the composite score. Effect size was
calculated using Cohen’s D (that s, the difference of means divided by
the pooled standard deviation).

Diffusion component analysis

We applied diffusion maps as a nonlinear dimensionality reduction
technique to examine the major components of variation across subsets
of cells. We computed DCs using the ‘DiffusionMap’ function of the
Destiny R-package (v3.3.0) with the top 30 principal components used
in the k-nearest neighbours algorithm (k-NN)*. The epithelial subset
consisting of airway basal, club, and goblet cells was reintegrated for
the DC analysis using the Seurat standard integration with 30 dimen-
sions and a k-neighbours filter of 50 in the ‘FindIntegrationAnchors’
function. Samples with <50 cells were excluded from reintegration,
which removed a total of 10 samples (one control sample and nine
COVID-19 samples). Tuft-like cells were identified as cells with DC1
values >0.015 based on an overlap with the tuft-cell signature in the
diffusion trajectory that dominated the first DC.

Differential gene expression

DGE was identified by using the Seurat function ‘FindAllMarkers’ on
normalized count data to identify positive (overexpressed) markers
ineach population. The Wilcoxon rank-sum test (two-sided) was used
toidentify differentially expressed genes between two groups of cells
and the log-transformed fold change was set to 0.25. The parameter
‘min.pct’ was set to 0.25 to assure that genes were detected at a mini-
mum fraction of 25% of cells in either of the populations. Pvalues were
adjusted using Bonferroni correction unless otherwise stated. Differen-
tially expressed genes were plotted in violin plots using log-normalized
expression values (natural logarithm In(1 +x)). For heatmaps and dot
plots, expression values were log-normalized (natural logarithm
In(1+x)) and furthermore centred on O with a variance of 1 (scaled).

Differential expression of signature scores

To test differential expression of three immune pathway signatures
(typelinterferonabbreviated, inflammasomereceptors, and chemot-
axis, Supplementary Table 4), we obtained log-normalized expression
values (In(1+x)) for each gene in the signatures, and summed them
for each signature. We then used a two-sided Wilcoxon rank-sum test
to test for differential expression of signatures in each cell type, and
calculated log,(fold change).

Geneset enrichment
Geneset enrichment analyses were performed using the hypeR
R-package*®. The background population of genes was set to all
detected genes. Geneset over-representation was determined by
hypergeometric test.

B cell chain analysis

Toanalysethe distribution of heavy and light chainsin B cells, the dataset
was subset toinclude only B cells. For theidentification of variable chain
regions, we selected the highest expressed heavy and light chain gene
of each cell that expressed both heavy (starting with /GHV) and light
(starting with /GLV or IGKV) chain-encoding genes. Next, we identified
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the highest expressed constant chain region among expressed genes
following the pattern ‘/GH[G, M, A, or E][number]. The resulting pairs
of heavy and light chains were visualized as a heatmap using average
linkage for hierarchical clustering analysis and cross-referenced with
previously described recurrently observed combinations®.

Master regulator analysis and drug target identification
Thefibroblast regulatory networkin this study was reverse-engineered
from snRNA-seq data using the ARACNe-AP***° algorithm. We generated
networks for each sub-cluster and integrated the networks by taking a
union of the predictions of all networks. P values of Master regulator
(MR)-target interactions predicted by the networks were integrated
using Fisher’s method. The final fibroblast network contained pre-
dictions for 1,341 transcription factors regulating 9,770 target genes
through 295,546 interactions. The relative activity of each transcrip-
tion factor represented in the fibroblast network was inferred using
the VIPER***! algorithm, available as a package through Bioconduc-
tor. Conceptually, the VIPER algorithm is similar to the master regu-
lator inference algorithm (MARINA)***?, which uses the MR targets
inferred by the ARACNe*®* algorithm to predict drivers of changes
in cellular phenotypes. In addition to calculating the enrichment of
ARACNe-predictedtargetsinthe signature of interest, VIPER also con-
siders the regulator mode of action, regulator-target gene interaction
confidence, and the pleiotropic nature of each target gene’s regulation.
Statistical significance, including Pvalue and normalized enrichment
score (NES), was estimated by comparison to a nullmodel generated by
permuting the samples uniformly at random 1,000 times. Druggable
proteins with VIPER-predicted®***3 aberrant increases in activity were
ranked by their -log,,(Bonferroni adjusted Pvalue).

Ligand-receptor interactioninference in individual samples
CellPhoneDB* is a curated repository of ligand-receptor interactions
along with their subunit architectures, integrated in astatistical frame-
work toinfer cell-type-enriched ligand-receptor interactions between
celltypesinsingle-cell or single-nucleus transcriptomics data. We used
CellPhoneDB toidentify ligand-receptorinteractions between cell types
ineachindividual control (n=7) and COVID-19 (n=19) snRNA-seq dataset.
The ligand-receptor interactions were inferred in each patient sepa-
rately, as by definition cell-to-cell interactions are biologically mean-
ingful only within an individual. Moreover, separate inference also
prevents spurious interactions from being inferred between patients
with heterogeneous disease or health statuses. After identifying and
annotating different cell types in our snRNA-seq datasets, we followed
therecommended procedures for the preparation of input files for local
implementation of CellPhoneDB v.2.0.0%*. In brief, for each individual
sample, QC-filtered raw counts matrices were normalized to counts per
10,000 and metadata files were obtained from the respective cell-type
annotations. CellPhoneDB analysis was performed with the ‘cellphonedb
method statistical_analysis’ command with default parameters.

Cell-cellinteraction differences between COVID-19 and control
samples

CellPhoneDB analysis of each sample identified the number of ligand-
receptor interactions between all nine major cell-types in that sample.
We analysed these cell-cell interaction counts between control donors
(n=7)andindividuals with COVID-19 (19 individuals, 20 samples) toiden-
tify the differences in cellular cross-talk between COVID-19 and control
lungs. The median cell-cell interaction values fromall the control samples
formed the overall control lung cell-cell interaction counts. Similarly,
the overall COVID-19 lung cell-cell interaction counts were the median
from all the COVID-19 samples. The overall control and COVID-19 lung
interaction counts were visualized as aninteractome using the ‘igraph’R
package with circle layout, where the edge width between two cell types
was proportional to the number of interactions between them and the size
ofacell-type circle was proportional to its frequency in the snRNA-seq.

Differential enrichment of ligand-receptor interactions
between COVID-19 and control samples

CellPhoneDB analysis of each sample identified the significantly
enriched ligand-receptor interactions in that sample by computing
amean of the ligand and receptor gene expression for each ligand-
receptor interaction together with a corresponding P value. To find
ligand-receptorinteractions that were differentially regulated between
COVID and control conditions, we first identified the common inter-
actions across all samples. In brief, we consolidated ligand-receptor
expression for controls and COVID-19 separately by taking the median
of ligand-receptor mean expressions from 7 control samples or 20
COVID-19 samples (from 19 donors). The minimum value of consoli-
dated ligand-receptor expressionin COVID-19 and control samples was
set to 0.001 to prevent noise in low expression values from affecting
the log(fold change) calculations. log,(control median expression)
was subtracted from log,(COVID-19 median expression) to obtain
the log,(fold change) of ligand-receptor expression in COVID-19. To
compute the Pvalue of the log,(fold change) for each interaction, we
used an unpaired two-sided Wilcoxon rank-sum test for each interac-
tion between COVID-19 and control samples. Adjusted P values were
obtained using theBenjamini-Hochberg procedure. Interactions with
log,(fold change) > 12| and FDR P< 0.1 were reported as the top differ-
entially enriched interactions in COVID-19.

Tissue preparation and processing forimaging

Lungtissues (human and mouse) were fixed with 4% paraformaldehyde
(PFA) at4 °Covernight withrotation. For paraffin sections, tissues were
dehydrated through a70-100% ethanol gradient and then embedded
in paraffin. For cryosections, tissues were sequentially incubated with
20% and 30% sucrose and subsequently embedded in OCT compound.
We obtaind 8-10-um-thick cryosections using a cryostat.

Microscopicimaging and quantification

Paraffin sections were dewaxed and rehydrated. Antigen retrieval
was performed by high-pressure heating with a commercial antigen
unmasking retrieval solution followed by blocking with 5% normal
donkey serum. Forimmunofluorescence staining, the sections were
then incubated with the primary antibodies listed in Supplementary
Table 12 at 4 °C overnight. Cryosections were washed twice with PBS,
and blocked with 5% normal donkey serum, followed by incubation
with primary antibodies shown in Supplementary Table 12 at 4 °C
overnight. Conjugated secondary antibodies (1:500) were added to
thesectionsandincubated for 2 hatroom temperature. Nucleus were
stained with DAPI, and images were captured with a Zeiss LSM T-PMT
confocal laser-scanning microscope (Carl Zeiss) and Zen 2012 SP1
(black edition) software (Zeiss). Immunohistochemistry for C4d was
performed on a Leica Bond 3 automated staining platform. In brief,
paraffin sections including both healthy control lung and COVID-19
lungtissues were treated with BOND Epitope Retrieval Solution 2 (Leica)
for 20 min and they were incubated with a C4d antibody for 30 min.
Immunohistochemistry signals were developed with the Bone Polymer
Refine Detection kit (Leica) with treatment with post primary polymer
for 20 min and DAB chromogen for 10 min. For quantification, cells
were counted by ablinded investigator using tiled stitched 20x images
from more than five sections per mouse and included at least three
individual lobes or were from representative areas of at least three
human control lungs and COVID-19 lungs. Images were processed and
analysed using ZEN blue 2.3 (Zeiss) and Adobe Photoshop Creative
Suite 6 (Adobe) software in a blinded fashion. DATPs were detected
with co-immunostaining for pro-SPC and KRT8 or HTII-280 and CLDN4.
DATP percentages were determined by counting KTR8" pro-SPC* cells
over pro-SPC" cells or CLDN4" cells over HTII-280" cells. Macrophages
were quantified by counting the total number of CD45°CD64" cells
over CD45" cells. CHAT tuft cells were quantified by counting the total



number of CHAT" cells over DAPI" airway nuclei (for airway tuft cells)
or per mm?of lung parenchyma.

Multiplexed immunofluorescence

Multiplexed immunofluorescence staining of lung tissue from patients
who died of COVID-19 and control individuals was performed using
CD4, CDS8, CD19, CD103, CD163 and granzyme B (GZMB) antibodies
(Supplementary Table 12) with the Opal 7-colour IHC kit (Akoya Biosci-
ence) on a Leica Bond RX automated stainer (Leica Biosystems). FFPE
tissue sections (5 pm) were baked for2hat 60 °C, followed by automatic
deparaffinization, rehydration, and antigen retrieval in BOND Epitope
Retrieval Solution 2, pH9 (Leica Biosystems) for 30 min at 95 °C.Immu-
nofluorescence staining with Opal and tyramide signal amplification
(TSA) were performed in six cycles. In each cycle, the tissue was incu-
bated sequentially with a primary antibody for 30 min at room tem-
perature, the secondary antibody conjugated to polymeric horseradish
peroxidase (HRP), an Opal fluorophore in TSA buffer,and BOND Epitope
Retrieval Solution1, pH 6 (Leica Biosystems) for 20 min at 95 °C to strip
the tissue-bound primary-secondary antibody complexes before the
nextstaining cycle. After nuclear counterstaining with DAPI, slides were
coverslipped with Vectrashield HardSet Antifade mounting medium
(Vector Laboratories) and 12-15 areas per slide were imaged using the
Vectra 3 automated multispectral microscope (Akoya/PerkinElmer) with
Vectra 3.0.5 software. Regions of interest were chosen by the patholo-
gist for multispectralimaging (MSI) at 20x magnification and spectral
unmixing using the InForm v2.4.6 software (Akoya). Demultiplexed
images were exported as 32-bit TIFF files for further analysis.

Multiplexed image analysis

Allimages were analysed and visualized using QuPath®. We used the
highest resolution for all described steps. The QuPath project files
and additional scripts are available at https://github.com/IzarLab/
CUIMC-NYP_COVID_autopsy_lung/tree/main/code/Vectra_image_
analysis. First, images were loaded, renamed and segmented using
‘WatershedCellDetection’ based on DAPlintensity with a cell expansion
of 4 um. Further parameter settings for these steps can be found in
the ‘Load_and_segmentation.groovy’ script. Next, we created classes
and the corresponding classifiers for each of the six markers of inter-
est: CD4, CD19, GZMB, CD103, CD8 and CD163. The thresholds for
the individual classifiers (‘ClassifyByMeasurementFunction’) were
automatically calculated and adjusted for each patient on the basis of
visualinspection of the mean marker expression. If no patient-specific
classifier was created, the classifier with the ending ‘_04_A6.json’ was
used. All classifiers can be found in the object classifiers folder asjson
files. Once performed for all images, the individual assignments for
each single cell were exported to a CSV file for downstream analysis
and boxplot visualization.

Imaging mass cytometry

Imaging mass cytometry data from post-mortem lung tissue of patients
withlunginfections and otherwise healthy donors was used, The data-
set comprised 237 images from 23 donors, containing 664,006 single
cells for which cell-type identities were derived from the intensity of 36
markers. Allanalyses were conducted in Python v3.8.2 with the follow-
ing programs: numpy v1.18.5, scipy v1.4.1, Tifffile 2020.6.3, Networkx
v2.5, Scikit-image v0.17.2, Pingouin v0.3.7, and Scanpy v1.6.0. Single
cells were labelled as positive for IL-6 or IL-1p3 based on their z-score
of intensity using Gaussian mixture models (scikit-learn®, version
0.23.0) using model selection based on the Davies-Bouldin index®.
The number of cells positive for a marker in each ablated region of
interest (ROI) was normalized by its area, and mean values per disease
group and cell type across all ROIs were visualized as bar charts. To
assess the significance of changes across both disease groups and cell
types, we used atwo-sided Mann-Whitney U-test and adjusted Pvalues
with the Benjamini-Hochberg FDR adjustment using the pingouin

package (version 0.3.9)*, Representative regions within the ROIs were
displayed as false-colour images by normalizing the signal intensity
to the unit scale after clipping the signal below and above the 3rd and
98th percentiles, respectively. Finally, a Gaussian filter with sigma of
one pixel (one micrometre) was applied to the images.

Sirius red staining and fibrosis scoring

Paraffin-embedded lung sections were dewaxed, rehydrated and stained
for 1.5 hwithapicrosirius red solution (1.3% picric acid, 1% fast red and
1% fast green). Four or five fields at 4x magnification were taken using
apolarized light filter on an OlympusIX71S1F-3 microscope with QCap-
ture Suite Plus (v3.1.3.10) software. Images were quantified (percentage
of Sirius red area/total area) using Adobe Photoshop (v 11.0). Pearson
correlations between fibrosis score and days from symptom onset to
deathwere calculated for 16 of 19 patients with COVID-19 for whom sam-
pleswere available and time from symptom onset to death was reported.

aSMA immunohistochemistry

Antigen retrieval of dewaxed and rehydrated paraffin-embedded lung
sections was performed with citrate pH 6, blocked with 3% BSA and incu-
bated with anti-aSMA-FITC (Sigma, F3777) overnight at 4 °C. After incu-
bation with a biotin-anti-FITC antibody (Abcam, ab6655), detection was
performed using the Vectastatin Elite ABC-HRP kit (Vector Laboratories,
SP-2001) with the DAB Peroxidase Substrate kit (Vector Laboratories,
SK-4100), followed by counterstaining with haematoxylin. All reagents
and dilutions are listed in Supplementary Table 12. All 7 control slides
and17 availableslidesfrom COVID-19 lungs wereincluded in the analysis.
Slideswere scanned using aLeica SCN400 slide scanner with LeicaScanner
Consolesoftware (v102.0.7.5) and quantified using the Leica Aperio Imag-
eScopesoftware (v12.4.3.5008) on atleast five fields at 10x magpnification.

Mice

Mouse studies were approved by the Columbia University Medical
Center (CUMC) Institutional Animal Care and Use Committees (IACUC).
The Pou2f3”~ mouse strain was described previously®. All mice were
maintained ona C57BL/6 and 129SvEv mixed background and housed
inthe mouse facility at Columbia University according to institutional
guidelines. The facility provides a12-h light-dark cycle, 18-23 °Croom
temperature and 40-60% humidity. Allanimal studies used aminimum
ofthree mice per group and sample size was based on pilot experiments
and previous experience. Mice were randomized to experiments and
8-12-week-old animals of both sexes were used in equal proportions.
Theinvestigators were not blinded to allocation during experiments.

Influenzainfection mouse model

A total of 260 plaque forming units (pfu) of influenza A/Puerto
Rico/8/1934 HIN1 (PR8) virus (a gift from Dr. Jie Sun at Mayo Clinics,
Cleveland) dissolved in 40 pl RPMI medium was pipetted onto the
nostrils of anaesthetized mice, whereupon mice aspirated the fluid
directlyinto their lungs. For all procedures, administration of the same
volumes of vehicle (RPMI medium) was used as control.

Flow cytometry analysis

Fourteen days after infection, mice were euthanized and transcardially
perfused with 10 ml cold PBS. The lungs were then perfused with 1 ml
PBS with 2 mg/ml Dispase I and 0.5 mg/ml DNase I and incubated in
5 ml of the above buffer for digestion with gentle shaking for 60 min
atroom temperature. Lung lobes were removed and physically dis-
sociated, followed by filtering through a 40-pum cell strainer. Cells
were pelleted and resuspended in 1 ml lyse RBC buffer followed by
incubation onice for 5 min to remove red blood cells. After washing
with FACS buffer (5% FBS, 0.2 mM EDTA in PBS), single cells were col-
lected and immunostained with Fc blocking antibody (5 pg/ml) and a
live/dead cell stain kit at room temperature for 10 min. Cells were then
washed and incubated with the following antibodies for one hour: PE/
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cyanine?7 anti-mouse CD45 (1:100), FITC anti-mouse CD64 (1:100), and
APC anti-mouse F4/80 (1:100). Samples were analysed on LSR 11 (BD,
Biosciences) with four lasers (405 nm, 488 nm, 561 nm, and 635 nm).
Data were analysed using FlowJo software (Treestar).

Quantitative RT-PCR (QRT-PCR)

To quantitively measure the indicated cytokines, human lung tissue
samples (three donors for both healthy and COVID-19 samples) or
mouse lungs (aminimum of three mice per genotype) were individually
homogenized in Trizol and total RNA was extracted using an RNeasy
Plus MiniKit (Qiagen) following the manufacturer’sinstructions. cDNA
was synthesized using the Superscript-1V First-Strand Synthesis System
(Invitrogen) and the gene-specific primers were mixed with cDNA tem-
platesandiTaqUniversal SYBRR Green supermix (Bio-Rad). qPCR was
carriedout ona CFX Connectreal-time PCR detection system (Bio-Rad)
inatotal volume of 20 pl. Three technical and biological replicates were
performed. Relative fold change was determined by normalizing to
Actb mRNA for mouse or to GAPDHmRNA for human. The primers for
gPCRarelisted in Supplementary Table 13.

Statistical analysis of imaging and qRT-PCR data

Imaging and qPCR data are presented as means with s.d. of meas-
urements unless stated otherwise. Individual values are plotted and
represent independent biological samples unless stated otherwise.
Statistical differences between samples were assessed with unpaired
Student’s t-test using GraphPad Prism 9.0 (GraphPad Software Inc.,
San Diego, CA). Pvalues below 0.05 are considered significant.

For multiplexedimmunofluorescentimages, cell fractions (percent-
age of total or percentage of parental population) were computed
for each field of view individually using Excel 16.45 (Microsoft). After
calculating the mean on a per sample basis, we plotted values using
GraphPad Prism 9.0 (GraphPad Inc.San Diego, CA) and presented them
as means with s.d. of measurements. Statistical differences between
samples were assessed with unpaired Student’s t-test using GraphPad
Prism 9.0 (GraphPad Software Inc., San Diego, CA). Pvalues below 0.05
are considered significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Processed dataare available via the single-cell portal: https://singlecell.
broadinstitute.org/single_cell/study/SCP1219. Processed data are also
deposited in GEO with accession number GSE171524. Raw data are
available on the Broad Data Use and Oversight System: https://duos.
broadinstitute.org (study ID DUOS-000130). Source data are provided
with this paper.

Code availability

Codeis publicly available at https://github.com/IzarLab/CUIMC-NYP_
COVID_autopsy_lung.
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Extended DataFig. 2| Changesincellular composition. a, Fraction of cell
typesin COVID-19 and control lungs across all cells (intermediate granularity).
b, Fraction of cell typesin COVID-19 and control lungs among non-immune cells
only. ¢, Fraction of cell types in COVID-19 and control lungs among immune

cellsonly. Control, n=7 donors; COVID-19, n=19 donors examined over 20
experiments. Middle line, median; box edges, 25th and 75th percentiles;
whiskers, most extreme points that do not exceed +1.5 X IQR. Wilcoxon
rank-sum test.
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Extended DataFig. 3 | Effect of sex on cellular composition and host
receptorexpression. a, b, Cell fractions in female and male individuals for
control (a; n=7donors) and COVID-19 lungs (b; n=19 donors examined over 20
experiments). Middle line, median; box edges, 25th and 75th percentiles;
whiskers, most extreme points that do not exceed +1.5 x IQR. Wilcoxon

rank-sumtest.c, d, log-normalized and scaled expression (see Methods) of
selected receptors or putative receptors and proteases or putative proteases
involved in SARS-CoV-2 entry indifferent cell types in control samples from
female and male donors. Dot size indicates fraction of cellsand colour
indicates expressionlevel.e, f, Asinc,d for from COVID-19 lungs.
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Extended DataFig. 4 |Global changesinmyeloid cells. a, Quantification of
cellswith CD163" staining as percentage of all cells ina subset of controland
COVID-19 samples (n =4 donors per group). Mean ts.d., t-test.b, c, UMAP
embedding with myeloid cell-type assignment (b) and group assignment (c).
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alveolar macrophage signaturesinsame UMAP embeddingasb, c.g, First three

I!Il\, | IH |

DCswith annotation of controland COVID-19 lung samples h, Firstthree DCs
withexpression of the alveolar macrophage signature. i, Heatmap of top
differentially regulated genes amongindicated myeloid sub-populations. Left
barindicates genes that were differentially regulated in the respective cell
types. Top lanesindicate cell type and group. Rows indicate log-normalized
and scaled expression of genes (see Methods).
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Extended DataFig. 6 |See next page for caption.




Extended DataFig. 6 | Inferredimmunoglobulinsin plasmacells.a, b, UMAP
embedding of cells within the B/plasma cell cluster (a) and corresponding
group assignment (b). ¢, Selected genes that define cells within the B/plasma
cellcluster. Dot sizeindicates fraction of cells and colour indicates log-
normalized and scaled expression level (see Methods). d, Heatmapillustrating
the number of cells with combinations of variable heavy (x-axis) and light
(y-axis) chains recovered in plasma cells across all patients. Average linkage
was used for hierarchical clustering analysis. The colour ofeach square
indicates the number of cells detected for each specific pair (colour key). e, As
ind, butindicating the number of control samples with each combination
detected (Supplementary Table 6).f, Asin e, butindicating isotype usage in

control donorsalone (Supplementary Table 6). g, Asin e, but demonstrating
isotype usage in patients with COVID-19 (corresponding to Fig. 3e, f; shown are
the top 20 commbinations; completelistin Supplementary Table 6).

h, Frequency (y-axis) of variable heavy chains (x-axis) in COVID-19 and control
samples.i, Asinh,butfor variable light chain usage. j, Frequency (y-axis) of
variable heavy chains (x-axis) ona per-donor basis. k, Asinj, but for variable
light chainusage. 1, Exemplary H&E-stained image (n=19 donors evaluated)
with coloured outlines indicating differentimmune cell types. Scale

bar,100 pum.m, C4d immunohistochemistry in representative control (left)
and COVID-19 (right) samples (n =6 donors per group). Scale bar, 100 pm.
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immunofluorescence of lungtissue from a patient with COVID-19 witha pure
myeloid infiltrate (j) or with a mixed myeloid and lymphoid infiltrate (k; n=4
donors per group). Scale bars, 200 pm.

Extended DataFig.7|Activation, residency and dysfunction cell statesin
Tcells.a,Expression of selected genesin cells of the T/NK cell compartment.
Dotsizeindicates fraction of cells and colour indicates expression level.

b, Quantification of cells with CD4" staining as percentage of all cells (y-axis) in
controland COVID-19 lungs (n=4 donors per group). ¢, Asinb, but for CD8"
Tcells.Mean ts.d., t-test. d-g, Expression of different program scores (tissue
residency memory program, activation score, memory score and exhaustion
score, all fromK.S.P. Devietal. (unpublished); see Methods) inCD4" T cells
(left) and CD8' T cells (right) among control donors and individuals with
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Extended DataFig. 8|See next page for caption.
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Extended DataFig. 8| DATPs and lung regeneration. a, Expression of
selected, previously established cell-type-specific signatures (y-axis) in cell
typesdefinedin this study (x-axis). Dot size indicates fraction of cellsand
colourindicates expressionlevel.b, ¢, Expression of selected genes (y-axis) in
different cell types (x-axis), highlighting high expression of B2Min cycling
epithelial cells (b) and collagen genes in ECM"&" epithelial cells (c). d, Fraction
of KI67* cellsamong pro-SPC* cellsin structurally preserved versus damaged
areas (n=3distinctareas each) froma COVID-19 lung. Mean t s.d., t-test.

e-g, UMAPembedding of alveolar epithelium and expression of selected genes
that define the DATP signature. h, Composite expression of the three-gene
DATPssignature. i, Expression of the refined DATP signature (see Methods).
j—n, Firstthree DCs showing group assignment (j), cell or cell-state assignment
(k), expression of AT2 signature (1), AT1signature (m; log-normalized,

see Methods), and effect of PMI (n). 0, Gene set enrichment analysis in DATPs
(comparedto AT1and AT2 cells). Rows indicate pathwaysin descending order
of enrichment or significance (see key); x-axisindicates FDR. p, Inference of
G2/Mand S phase of individual DATPs (dots) (see Methods). q, Representative
immunofluorescence staining (DATP marker CLDN4 and AT2 cell marker
HTII-280) in control and COVID-19 lung tissue sections. Dashed boxes indicate
areas highlighted to theright of eachimage. Scale bar, 50 pum.r, s, Quantification
of KRT8" (r) and CLDN4" (s) cellsinasubset of tissue sections from control and
COVID-19 lungs.Mean s.d., t-test. q-s, Control,n=3donors; COVID-19,n=4
donors. t, Coefficient of determination (R?) of days from symptom onset to
deathand AT2/AT1ratio. Error bands, 95% standard errorintervalonthe
Pearson correlation (n=18 donors).
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Extended DataFig.9|See next page for caption.
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Extended DataFig. 9| Cellular sources ofinflammatory cytokines.

a, Average frequency of cell types expressing IL-13 across healthy and disease
conditions. b, Quantification of IL-1B across cell typesin healthy and disease
conditions. Each dotrepresents asingle region of interest (ROI).

¢, Quantification of IL-1B across healthy and disease conditions and cell types,
including separation of patients with early death (within 14 days of onset of
COVID-19 symptoms) and late death (within 30 days of onset of COVID-19
symptoms).d, Average frequency of cell types expressing IL-6 across healthy
and disease conditions. e, Quantification of IL-6 across cell typesin healthy and
disease conditions. Each dot represents asingle region of interest (ROI).

f, Quantification of IL-6 across across healthy and disease conditions and cell
types, including separation of patients with early death (within 14 days of onset
of COVID-19 symptoms) and late death (within 30 days of onset of COVID-19
symptoms). g, Expression of selected manually curated gene sets of
chemotaxis, inflammasome receptors and typelinterferon (response) genes
across different cell types (y-axis). Dot size indicates significance and colour
indicates expression level (log,(fold change)). h, QRT-PCR comparing IFNA1,
IFNA2,IFNBI, and IL-6 mRNA levelsin COVID-19 and control lungs (n=3 donors
foreachgroup). Mean +s.d., t-test.
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Extended DataFig.10|Identification of ectopic tuft-like cells. a-c, First
three DCs of airway epithelial cells with group annotation with cell-type
assignment (a), group assignment (b) and indicating expression of tuft cell
signature (c) inthe same projections. d, Expression of previously established
signatures identifying cell typesin cell types assigned in this study. Dot size
indicates fraction of cellsand colour indicates expression level
(log-normalized and scaled, see Methods). e, Expression of selected
cell-type-specific signatures of airway and alveolar epithelium from previous
studiesin cellsidentified as tuft-like cells in this study. Signaturesin
descendingorder of enrichment or significance. Colour indicates significance.
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f, g, Representative immunofluorescence staining of control lungs (f; two
areas) and COVID-19 (g; airway and parenchyma) for KRT5 and CHAT. Arrows
indicate CHAT cells. Scale bar, 50 pm. h, Quantification of CHAT" cellsin the
upper airway epithelium of controland COVID-19 lungs. Mean +s.d., t-test.

i, Quantification of CHAT cellsin the alveolar epithelium of controland
COVID-19 lungs. Mean +s.d., t-test. j, k, Immunofluorescence staining for KRT5
and POU2F3 of control lungs (j) and COVID-19 lungs (k), including upper airway
(left) and parenchyma (right). White arrows indicate POU2F3* cells. Scale

bars, 50 pm. f-k, n=3 donors per group.
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Extended DataFig.11|See next page for caption.




Extended DataFig.11|Role of tuft cellsin macrophage infiltrationin
mouse viralpneumoniamodel. a,Immunofluorescence staining for SCGB1A1
and DCLK1 of proximal (left) and distal (right) airway from wild-type (WT) mice
atbaseline.n=3 mice per group. Arrow, DCLKI" cell. Scalebar, 50 um.b, Asina,
butinwild-type (left) and Pou2f3” mice 14 days after infection with HIN1 (PR8).
¢, Quantification of tuft cells as percentage of DCLK1' cellsin Pou2f37"
compared towild-type mice.Mean ts.d., t-test.b, ¢, n=4 mice per group.

d, Immunofluorescence staining for CD45 and CD64 of lung parenchyma from
wild-type (left) and Pou2f37 (right) mice 14 days after infection with HIN1
(PR8).Arrowsindicate CD45'CD64" macrophages. Scale bar, 50 pm.

e, Quantification (CD45°CD64" cellsamong CD45" cells) as percentage in
Pou2f3”" mice compared to wild-type mice 14 days after infection with HINI.
Meants.d., t-test.d, e,n=3 mice per group.f, Gating strategy to identify

CD45'CD64°F4/80" cells. g, Identification of CD64°F4/80" cells (based on
gating strategy inf) inwild-type (left) and Pou2f3” mice (right) 14 days after
infection with HIN1. h, Quantification of flow-cytometric determination of
CD45'CD64*F4/80" cells as percentage of CD45* cells in Pou2f3™ relative to
wild-type mice (n=3 per group). Mean s.d., t-test.i, QRT-PCR comparing
relative mRNA expression of indicated chemokines and cytokines in Pou2f3
and wild-type mice 14 days after infection with HIN1 (n=3 per group).

Mean ts.d., t-test.j, Asini, but 44 days afterinfection with HIN1 (n=3 per
group). k, Exemplaryimmunofluorescence staining (n=3 mice per group) for
KRT5and DCLK1in wild-type mouse 90 days after infection. Arrows indicate
DCLK1" cells.Scalebar, 50 um. 1, Asini, j, but comparing expression of
indicated chemokines and cytokinesin control donors and patients with
COVID-19 (n=3 donors per group). Mean ts.d., t-test.
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Extended DataFig.12|See next page for caption.
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Extended DataFig.12|Role of fibroblasts, potential drug targets and
model oflethal COVID-19. a, b, Exemplary aSMA immunohistochemical
staining of tissue from control (a; sample C56; n=7 donors) and COVID-19
samples (b; samples LO5covand LO6¢cov; n=17 donors). Scale bars, 500 pm.

¢, Percentage of a-SMA" cells per total area(nasina, b). Mean ts.d., t-test.

d, Exemplary Sirius red staining of control (left, nasina) and COVID-19 (right, n
asinb) samples. Scale bar, 600 um. e, Detailed annotation of fibroblasts in this
study and selected marker genes. Dot size indicates fraction of cells and colour
indicates expression level (log-normalized and scaled). f, Fractions of cell types
amongall cellsin COVID-19 (n=19 donors examined over 20 experiments) and
controllungs (n=7 donors). Middle line, median; box edges, 25th and 75th
percentiles; whiskers, most extreme points that donot exceed +1.5 x IQR.
Wilcoxonrank-sumtest.g, h, Inferred cell-to-cell interactions among major cell
types (indicated as circles connected by lines) in control (g) and COVID-19 (h)

lung samples. Thesize of the circle correspondsto the frequency of the
respective cell type and the thickness of the lines connecting circlesindicates
the absolute number of interactions. i, Differential enrichment (COVID-19
versus control samples) of specific ligand-receptor interactions (rows)
between two different cell types (columns). Dot colourindicates

log,(fold change) of inferred ligand-receptor expressionin COVID-19
compared to control lungs (unpaired two-sided Wilcoxon rank-sum test); dot
sizeisinversely correlated with Benjamini-Hochberg adjusted P

(see Methods). j, Inferred protein activity (rows) among cells corresponding to
pathological fibroblasts, intermediate pathological fibroblasts, and non-
pathological fibroblasts (columns). Proteins with high activity in pathological
fibroblasts are highlighted. k, Model summarizing potential mechanisms that
contribute to morbidity and mortality in patients with COVID-19, focusing on
impaired cellular regeneration and rapidly ensuing fibrosis.
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in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|Z| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

O O OO0 0O Ol

|X| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

RPN

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Image acquisition:
Zeiss Zen 2012 SP1 (black edition)
Vectra 3.0.5
QCapture Suite Plus 3.1.3.10
Leica Scanner Console v102.0.7.5

RT-PCR:
Bio-Rad CFX Manager v3.1

Data analysis Single-nuclei RNA-seq analysis:

Cell Ranger v5.0
Rv4.0.2
Seuratv3.2.3
scrublet v0.2.1
CellBender v0.2.0
Future v1.20.1
Future.apply v1.6.0
Destiny v3.3.0
hypeR v.1.4.0
Python 3.7.9
Pytorch implementation of Harmony v0.1.5
Scanpy v1.4.4.
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SciPyv1.4.1

NumPy v1.18.1

CellPhoneDB v2.0.0
SingleCellExperiment v1.10.1
Viper v1.24.0

ARACNe-AP

Image analysis:

Zeiss Zen blue v2.3

Aperio ImageScope software (v12.4.3.5008)
InForm 2.4.6 (spectral unmixing)

Qpath 0.2.3

Adobe Photoshop v11.0

CY-TOFF data analysis:

Python v3.8.2
numpy v1.18.5
scipy v1.4.1
Scikit-image v0.17.2
Tifffile 2020.6.3
Networks v2.5
Scikit-learn v0.23.2
Pingouin v0.3.7
Scanpy v1.6.0

Other:

Bio-Rad CFX Manager v3.1
Microsoft Excel v16.45
GraphPad Prism v9.0

Custom Code:

All custom Code is publicly available via: https://github.com/IzarLab/CUIMC-NYP_COVID_autopsy_lung.:

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Processed data are made available via the single-cell portal: https://singlecell.broadinstitute.org/single_cell/study/SCP1219.
Processed data has been deposited in GEO under GSE171524: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171524
Raw data will be available on the Broad Data Use and Oversight System, study ID: DUOS-000130: https://duos.broadinstitute.org.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The single nuclei RNA sequencing (snRNA-seq) cohort included n=27 samples from n=26 individuals with 116,314 snRNA-seq transcriptomes
(nuclei) included in this study. The COVID-19 cohort included n=20 samples from n=19 individuals (79,636 nuclei) and the control cohort
included n=7 samples from n=7 individuals (36,636). There was no sample size calculation performed, because this was not an interventional
study; in this presented study, we included all patients who underwent autopsy within < 10 hours of death from COVID-19. There were no
additional inclusion or exclusion criteria defined. We attempted to include the largest possible number of donors in this study.
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Data exclusions  Data was processed using CellRanger V5.0 followed by CellBender v0.2.0 to remove technical ambient RNA counts and empty droplets. The
resulting matrix was processed on a per sample basis in R (v4.0.2) using Seurat (v3.2.3) Filters were applied to include cells with 200-7,500
genes, 400-40,000 UMls, and less than 10% of mitochondrial reads. Additionally, Scrublet was applied to identify and remove doublets with
an expected doublet rate ranging from 4-9.6% based on the loading rate. Samples containing less than 1,000 cells after filtering were
excluded from further analyses. After data integration and clustering one low quality cluster (defined by low feature count and high
mitochondrial reads) was removed and the data was subclustered based on major cell types. Among the myeloid cells we excluded two low
quality clusters (defined by low feature count and high mitochondrial reads). A total of 116,314 cells (from 119,535 passing the initial QC)
were included in the final analysis.

Replication No dedicated replicates were performed for single nuclei RNA-seq.
For imaging and quantitative PCR analysis >3 biological replicates were randomly selected from the snRNA-seq cohort for each group. For
experiments involving mice each group contained 3 or more animals. All attempts at replication were successful.

Randomization  For snRNA-seq no randomization was performed. This study was performed on archival tissue from COVID-19 decedents or control donors,
and no intervention was performed, hence, no randomization was applied. COVID-19 specimens were included based on criteria outlined
below. Controls were selected form the CUIMC bio-bank to match median age and gender of COVID-19 cases. Samples for imaging and PCR
were picked at random from all samples profiled by snRNA-seq.

Mice were selected by their respective genotype and randomly allocated into experimental groups with both sexes.

Blinding No blinding was performed for snRNA-seq processing and analysis, and RT-PCR as the data and analysis is quantitative and not qualitative in
nature. Blinding was performed for quantification of imaging experiments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Antibodies

Antibodies used Primary:
Anti-Dclk1, Abcam-ab37994

Anti-Scgblal, Santa Cruz-sc-365992
Anti-Krt5, BioLegend -905901

Anti-ProSPC, Seven Hills Bioreagents -WRAB-9337
Anti-Ki67, Invitrogen-14-5698-82

Anti-KRT8, DSHB-TROMA-

Anti-CLAUDIN4, Invitrogen -36-4800
Anti-HTII-280, Terrace Biotech-TB-27AHT2-280
Anti-ChAT, Millipore-AB144P

Anti-Pou2f3, Sigma -HPA019652

Anti-CD45, BD-553078

Anti-mouse CD45 - PE/Cy7, BioLegend-103114
Anti-mouse CD64 - FITC, BioLegend-139316
Anti-mouse F4/80 - APC, BioLegend-123116
Fc blocking antibody, BD-553142

Anti-hAXL, R&D Systems-AF154

Anti-CD169, Novus-NB600-534

Anti-C4D, Cell Marque-PA0792
Anti-aSMA-FITC, Sigma -F3777

Anti-CD19, BT51E, Leica-NCL-L-CD19-163
Anti-CD8, 4B11, Leica-PA0183

Anti-CD163, 10D6, Leica-PAO090

Anti-CD4, EPR6855, Abcam-ab133616
Anti-GzmB, 11F1, Leica-PA0291

Anti-CD103, EPR4166(2), Abcam-ab129202

Secondary:
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Validation

Alexa Fluor 488 Donkey Anti-Chicken , Jackson Immuno Research -703-546-155
Alexa Fluor 488 Donkey Anti-Mouse , Jackson Immuno Research -715-545-151
Cy5 Donkey Anti-Goat , Jackson Immuno Research-705-175-147

Cy3 Donkey Anti-Rat , Jackson Immuno Research-712-165-150

Cy3 Goat Anti-Rabbit , Jackson Immuno Research-111-165-045
Biotin-anti-FITC, Abcam-ab6655

Opal 7-color IHC staining kit , Akoya Bioscience-NEL821001KT

All antibodies with their respective dilutions are listed in Supplementary table 12.
All antibodies were validated for their specific application by the manufacturer and validation data is available on the manufacturer’s

website(s). Antibodies were in-house validated for their species-specific on typical staining pattern (e.g. subcellular localization or co-
staining with other markers). Antibodies for multiplexed imaging were validated individually before using in the multiplexed assay.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

8-12 week old Pou2f3-/- KO and WT mice on C57BL/6 and 129SvEv mixed background (both male and female) were used in the
experiments. Mice were housed with a 12h light/dark cycle at 18-23C and 40-60% humidity.

No wild animals were used in this study.
No field-collected samples were used in this study.

Mouse studies were approved by Columbia University Medical Center (CUMC) Institutional Animal Care and Use Committees (IACUC-
AC-AAAW1474 ).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Patient characteristics reflect the age, gender, and race representation of patients admitted to New York Presbyterian
Hospital/Columbia University Medical Center with COVID-19. Control samples were selected to reflect median age
distribution of COVID-19 cases included in the study and match the gender distribution.

Patients were cared for at New York Preshyterian Hospital/Columbia University Medical Center. COVID-19 cases were
collected between March and June, 2020. Inclusion criteria included real-time reverse transcription polymerase chain
reaction (RT-PCR) confirmed infection, consent to perform rapid autopsy and post mortem intervals <10 hours.

Frozen control tissues were assessed by a pulmonary pathologist and represent “uninvolved” regions of biobanked tumor
resections.

Tissues were collected under New York Presbyterian Hospital/Columbia University Medical Center IRB approved protocols
IRB-AAATO0785, IRB-AAAB2667, and IRB-AAAS7370.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

14 days post infection with PR8, mice were euthanized and trancardially perfused with 10ml cold PBS. The lungs were
perfused with 1 ml PBS with 2mg/ml Dispase | and 0.5 mg/ml DNAse | and incubated for 60 minutes with agitation. Lobes
were physically disscociated and filtered with a 40 uM strainer. Cells were pelleted, RBCs were lysed and cells were stained
for 10 min at RT using FC blocking antibody and LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit (Thermofisher, ref:L34964).
After one wash cells were stained with surface antibodies and samples were acquired after two additional washes.

LSR-II (BD) equipped with four lasers (405nm, 488nm, 561nm, 635nm)

BD FACSDiva v9.0, FlowJo V10.6.2
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Cell population abundance F4/80 cells were ~15% of all CD45+ cells

Gating strategy Cells were gated by SSC/FSC. Single cells were identified by FSC-W/FSC-A and FSC-H/FSC-A. Viable cells were identified using
the violet cell stain. Gating on CD45 followed by gating on F4/80 and CD64 double positive cells identified the population for
quantification.

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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