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Fibroblasts are non-haematopoietic structural cells that define the architecture of
organs, support the homeostasis of tissue-resident cells and have key roles in
fibrosis, cancer, autoimmunity and wound healing’. Recent studies have described
fibroblast heterogeneity within individual tissues'. However, the field lacks a
characterization of fibroblasts at single-cell resolution across tissues in healthy and
diseased organs. Here we constructed fibroblast atlases by integrating single-cell
transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11
disease states and 2 species. Mouse fibroblast atlases and a Dpt®*=¥2 knock-in
mouse identified two universal fibroblast transcriptional subtypes across tissues.
Our analysis suggests that these cells can serve as areservoir that can yield
specialized fibroblasts across abroad range of steady-state tissues and activated
fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed
states showed that fibroblast transcriptional states are conserved between mice and
humans, including universal fibroblasts and activated phenotypes associated with

pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a
cross-species and pan-tissue approach to transcriptomics at single-cell resolution
hasidentified key organizing principles of the fibroblast lineage in health and

disease.

Fibroblasts populate all tissues, delineate the topography of organs by
producing and remodelling extracellular matrix proteins (ECMs)?and
support other tissue-resident cell types'. Fibroblasts perform func-
tions associated with their lineage and specialized programs suited to
the needs of specific tissue contexts to maintain organ homeostasis.
Macrophages achieve generalized function and specialization viaa
lineage-wide core transcriptomic signature and tissue-specific pro-
gramming driven by microenvironmental cues*®. It is unclear how
fibroblasts execute functions both common to their lineage and
required by their organ of residence.

Technologies such as single-cell RNA-sequencing (scRNA-seq)
have revealed intra-tissue fibroblast heterogeneity'. Elucidating the
inter-tissue population structure of fibroblasts has clinical relevance, as
subtypes of fibroblasts drive disease inarthritis”°, cancer’® and fibrotic
indications such asidiopathic pulmonary fibrosis (IPF)’. Emerging para-
digms”*** suggest that discrete fibroblast subtypes within tissues
governdistinctaspects of tissue homeostasis and disease. Understanding
whether fibroblast phenotypes across indications are context-specific
or more broadly conserved may inform therapeutic approaches. We
hypothesized that fibroblast heterogeneity was promoted by tissue type
inthe steady-state and disease context during perturbation.

Fibroblasts in steady-state mouse tissues

To investigate this hypothesis, we first performed bulk RNA-seq and
assay for transposase-accessible chromatin with sequencing (ATAC-
seq) on fluorescence-activated cell sorting (FACS)-sorted fibroblasts
from multiple mouse tissues®. These data identified regions of open
chromatin and transcriptional networks driven by tissue type, similar to
recent reports™'® (Extended DataFigs. 1,2, Supplementary Tables1,2).
However, bulk sequencing cannot discriminate gene signatures that
representasingle, homogeneous cell population from those that reflect
the average of heterogeneous populations. To resolve this issue, we
collected mouse scRNA-seq datasets enriched for non-haematopoietic
cells from our laboratory and from public repositories. We removed
non-fibroblast cells and corrected for cross-laboratory batch effects to
produce afibroblast-specific single-cell atlas composed of 28 datasets
across 16 unperturbed tissues (n =120,583 cells; Fig. 1a, b, Extended
Data Fig. 3a-c, Supplementary Table 3). An interactive data browser
for the atlases is publicly available (see ‘Data availability’). Notably,
our bulk RNA-seq and single-cell data were highly concordant, which
indicates that our single-cell analytical approach did not introduce
technical bias (Extended Data Fig. 3d).
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Fig.1|Steady-state mouse fibroblast atlas. a, Twenty-eight datasets for
steady-state fibroblast atlas from 16 mouse tissues. b, Uniform manifold
approximation and projection (UMAP) embedding 0f120,583 single cellsin the
steady-state atlas. Ten clustersidentified through graph-based clustering are
indicated by colour. ¢, Heat map of the relative average expression of the most
strongly enriched genes for each cluster (log(fold change) of one cluster versus
allothers, z-score by row) with key genes, functional annotation and tissue
distributions listed. MSC, mesenchymal lineage cell; OLC, osteolineage cell.

d, Pseudotime(s) visualized using principal curves representing trajectories of
fibroblast differentiation across steady-state atlas with Pi16* cluster setas root.

Inthe steady-state atlas, ten clusters were identified on the basis of
differential gene expression (Fig. 1b, ¢). The exact number of clustersin
analyses of this typeis data-driven but still somewhat subjective; some
clusters were well-separated from others, whilein otherinstancesitis
likely that an expression continuum, with intermediate states, exists.
We identified more than 200 differentially expressed genes (DEGs)
for each cluster and annotated clusters according to the dominant
cluster-specific gene: Pi16*, Col15al’, Ccl19*, Coch®, Comp®*, Cxcl12*,
FbinI', Bmp4', Npnt' and Hhip* (Supplementary Table 4, Extended Data
Fig.3e).Known fibroblast-associated genes showed distinct expression
across the clusters, confirming heterogeneity within the fibroblast
lineage (Extended DataFig. 3f). We were able to use tissue-distribution
patterns and hallmark genes to ascribe functional identities to most
clusters, including Ccl19" fibroblastic reticular cells (FRCs)?, Coch* red
pulp fibroblasts”, Cxcl12* mesenchymal stromal cells and osteolineage
cells', FbinI" and Bmp4' intestinal fibroblasts'®, Comp* fibroblasts?,
Npnt* alveolar fibroblasts and Hhip* peribronchial fibroblasts? (Fig. 1c,
Extended Data Figs.3g, 4a-p). The specialization of these clusters was
reflected in differential enrichment of gene expression in core signal-
ling pathways, including NFkB and TNF in the Ccl19* cluster and WNT
signalling in the FbinI* and Bmp4' clusters” (Extended Data Fig. 3h).

Notably, nearly all tissues contributed to the Pi16" and Col15al’ clus-
ters, which suggests that these clusters are universal (Fig. 1c, Extended
DataFig.3g). Genes that defined these two clusters differentiated fibro-
blasts from mesothelial cells in bulk RNA-seq data (Extended Data
Fig. 4r-t). DEGs in the Pi16" cluster (Pi16, Dpp4 and Ly6cI) suggested
an identity similar to adventitial stromal cells??, which are found in
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vascular niches and can produce ECMs and acquire gene expression
profiles consistent with specialized fibroblasts?*?*, The Col15al’ cluster
exhibited an association with the basement membrane, evidenced by
expression of Col4al, Hspg2 and Col15al (Extended Data Fig. 3i, Sup-
plementary Table 4). The ubiquity of the universal Pi16* and Col15a1*
subtypesacrosstissues and the elevated level of stemness-associated
genes (Cd34 and Ly6a (which encodes SCAL1), Extended Data Fig. 3j),
led us to investigate the potential for a developmental relationship
among clusters. Slingshot lineage inference identified trajectories that
emerged from the Pi16" cluster, passed through the CollSal’ cluster,
and ended at specialized clusters (Fig. 1d).

Collectively, our analysis showed thatin steady-state mouse tissues,
universal (Pi16" and Col15aI") and specialized fibroblast subtypes exist,
and that these may be developmentally linked. The roles of universal
fibroblastsinclude ECM secretion, with Col15aI" universal fibroblasts
exhibiting the capacity to secrete basement membrane proteins and
the Pi16" subtype potentially serving asaresource cell that can develop
into specialized fibroblasts.

DptREreERZ mouse validates scRNA-seq

Tovalidate our scRNA-seq analysis, we used the surface markers SCA1
and LY6C (encoded by LyécI) to distinguish Pi16* (LY6C'SCAL") and
Coll5al* (LY6C SCAL") universalfibroblasts fromspecialized fibroblasts
(LY6C SCAT; Extended DataFigs. 5a, 6a). Flow cytometry revealed that
PDGFRa fibroblasts could be sorted into these three groups across 11
tissues (Extended Data Fig. 6b, c). This approach confirmed the exist-
enceof bonafide universal and specialized phenotypes: expression of
Pil6 was enriched inLY6C'SCAL" fibroblasts, whereas markers of more
specialized fibroblasts such as Ccl19 (lymph node) and Npnt (lung) were
enrichedinLY6C  fibroblasts. Expression of dermatopontin (Dpt) was
inversely correlated with specialization (Extended DataFig. 6d, e). Dpt
was diffusely expressed across the steady-state fibroblast atlas but was
significantly enriched in Pi16" and Coll5al" universal fibroblasts, with
highest expression in the Pi16" cluster. The intestine-specific FblnI*
cluster also showed Dpt expression at a level similar to the Col15a1*
cluster (Extended DataFig. 6e, Supplementary Table 4). Expression of
Dptand Pil6 RNA inlung and smallintestine was assayed histologically
using RNAscope. Dpt'Pil6" cells were enriched near vascular structures
inbothtissues, as expected®. Dpt'Pil6  cells were observedinthe lung
parenchyma, inalignment with our predicted distribution of Col15a1*
cells,and at the base of the villi in the small intestine, consistent with a
lack of functional specialization” (Extended Data Fig. 6f).

We generated a genetically modified mouse model for track-
ing Dpt-expressing cells to test whether Dpt preferentially marked
universal fibroblasts. An IresCreERT2 cassette, which requires the
oestrogen receptor modulator tamoxifen for activity, was inserted
downstream of the stop codonin exon 4 of Dpt. We crossed this strain
with the Rosa26-"" mouse line. The resulting Dpt"™““*f"?Rosa26""**
mouse irreversibly marks Dpt™f 2. positive cells and their progeny
with yellow fluorescent protein (YFP) after tamoxifen administration
(Extended DataFig. 6g).

Dpt"sreERZRosa26"""P mice were given tamoxifen in their chow
for 14 days. In the 11 tissues examined, PDGFRa" fibroblasts robustly
expressed YFP (Fig. 2a, Extended Data Fig. 6h). Recombination effi-
ciency varied acrosstissues: lymph nodes exhibited the lowest propor-
tion of YFP* fibroblasts (28.7 + 5.5% (mean + s.e.m.)) whereas the heart
exhibited the highest (83.7 £ 3.1%; Fig. 2b). Other cell types expressed
little or no YFP (Extended Data Fig. 6i, j). FACS-sorted YFP-positive
fibroblasts (sorted 14 days after Dpt"“**"? recombination) expressed
higher levels of Pi16 and Col15al and lower levels of Ccl19 and Npntin
thelymphnode and lung, respectively, than YFP-negative fibroblasts.
This suggests that Dpt-expressing cells are transcriptionally distinct
from lymph node FRCs and lung alveolar fibroblasts (Extended Data
Fig. 6k). YFP*and YFP~ fibroblasts expressed equivalent levels of Csf1,
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suggesting that both Dpt* and Dpt fibroblasts are involved in mac-
rophage homeostasis® (Extended Data Fig. 6l).

The distinction between universal and specialized fibroblasts
was also observed at the protein level via YFP expression in Ccl19""
(ref. %) and Gremlin1““**?Rosa26**"""" mice?. Here, the fraction of
YFP-expressing cells (denoting an FRC phenotype) increased from
LY6C'SCAL" (Pi16") fibroblasts to LY6C'SCAL* (Col15al’) fibroblasts
and further to SCA1 (specialized) fibroblasts (Fig. 2c, d, Extended
DataFig. 5b, ). YFP expression in Dpt"“**2:Rosa26"*"""* mice showed
the opposite trend in lymph node, lung, and other tissues (Fig. 2e,
Extended Data Fig. 5d). This evidence suggested that Dpt expression
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encompassed both of the universal fibroblast subtypes identified by
scRNA-seq; therefore, we refer to these as Dpt'Pi16* and Dpt*Coll5al*
universal fibroblasts.

Fibroblasts in perturbed mouse tissues

We nextinvestigated how fibroblasts are affected by infection, injury,
cancer, fibrosis, metabolic changes and arthritis (Fig. 3a). We inte-
grated 17 publicly available scRNA-seq datasets across 13 tissues to
generate a perturbed-state fibroblast atlas (n=99,596 cells; Fig. 3b,
¢, Extended Data Fig. 7a-c, Supplementary Table 3). This approach
showed ten clusters: Pi16*, Coll5al’, Ccl19", Cxcli2*, Comp®, Npnt',
Hhip*, Adamdecl’, Cxcl5* and Lrrc15* (Fig.3b, ¢, Extended Data Fig. 7d,
Supplementary Table 5). Clusters in the perturbed-state atlas dis-
played heterogeneous expression of common fibroblast-associated
genes (Extended DataFig. 7e). Innearly all perturbed tissues and for all
types of inflammation, some fibroblasts occupied the universal Pi16*
and Col15al’ clusters, and these clusters expressed the highest levels
of Dpt (Extended Data Figs. 7f, 8a-o, r). The Cxcl12*, Ccl19*, Comp®,
Npnt', and Hhip* clusters were similar to the analogous steady-state
clusters with respect to gene expression and tissue distribution
(Fig.3b, ¢, Extended Data Fig. 7g). Conversely, the Cxcl5*, Adamdecl*
and Lrrc15* clusters appeared to represent perturbation-specific,
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activated fibroblast states that were not observed in the steady-state
atlas.

Fibroblasts from early muscle injury contributed the majority of cells
to the Cxcl5* cluster and expressed chemokine genes such as Ccl2and
Ccl7 (Fig. 3c, Extended Data Fig. 8], p). Analysis of co-regulated genes
suggested that this cluster was driven by PI3K, TNF and NFkB signalling
(Extended DataFig. 8v). Cellsin the AdamdecI’ cluster were from colitis
andshowed upregulation of /[11and GremI (Extended DataFigs. 7f,8e, q).
Gene expression in these cells was associated with MAPK signalling
(Extended Data Fig. 8v). We subjected mice to DSS-induced colitis
and found increased expression of GremlI in lesions as compared to
healthy areas of the colon by RNAscope, validating the colitis-specific
expression of Greml in the mouse perturbed-state atlas (Extended
DataFig.8w). TheLrrcI5' cluster was composed of cells from arthritis,
skinwound, fibrosis and small and large pancreatic ductal adenocarci-
noma (PDAC; Extended Data Figs. 7f, 8a-o0). This cluster showed high
expression of Cthrcl, Acta2, Postn and Adam12, and of collagens, which
suggests that these cells represented myofibroblasts (Extended Data
Fig.8p-u). Theincreasein collagens and TGFf3 signalling is consistent
with previous reports'® (Extended Data Fig. 8v).

In perturbed tissues, universal Dpt'Pil6" fibroblasts maintained
the highest expression of stemness-associated genes (Extended Data
Fig.8x).Lineageinferenceidentified trajectories from Dpt'Pi16" through
Dpt'Coll5al" and then onto perturbation-specific, activated Cxcl5" and
Lrrc15* clusters or the Adamdecl’ cluster (Extended Data Fig. 8y). We
tested whether universal fibroblasts give rise to LRRC15" myofibroblasts
using a subcutaneous tumour model in the Dpt™“**2:Rosa 26"
mouse. We found that 52 + 7% of LRRC15" myofibroblasts were YFP* in
DptrescreERI2kk mjce (Fig. 3d, Extended Data Fig. 8z-b’). This indicates
that Dpt-expressing cells marked before tumour implantation can
differentiate into LRRC15* myofibroblasts.

Single-cell RNA-seq of human fibroblasts

We hypothesized that mice may exhibit some parity to humansinterms
of steady- and perturbed-state fibroblast subtypes. We performed
scRNA-seqontumour and normal adjacent tissue (NAT) samples from
three patients with pancreatic cancer and identified two subsets of
fibroblasts (n=21,262 cells; Extended Data Fig. 9a-c, Supplementary
Tables 6, 7). Clusters c3 and c8 were annotated as cancer-associated
fibroblasts (CAFs) and normal fibroblasts, respectively. Twelve of
the 20 most upregulated genes in c8 were significantly upregulated
in mouse steady-state Dpt*Pi16" (DPT, IGFBPS, IGFBP6, C3, APOD) or
Dpt*Coll5al" (CXCLI2,SMOC2,C7, FBLNS, MFAP4, LUM, FMO2) clusters
(Supplementary Tables 4, 7). These 20 upregulated genes defined our
human universal fibroblast expression module. To test whether c8 rep-
resented universal fibroblasts in humans, we inferred the abundance
ofthese cellsacross tissues fromthe GTEx database (n=5,961samples,
Extended Data Fig. 9d, e). We found strong (r > 0.5) co-expression of
universalmodule genesin12 human tissues, including normal pancreas
(Extended Data Fig. 9f, g). At the single-cell level, the human univer-
sal module was observed in c8 pancreas and human adipose tissue
(Extended Data Fig. 9h, i). We next scored samples from 122 patients
with pancreatic cancer® for the human universal module as well as a
human fibroblast activation program (20 most enriched genesin c3 ver-
sus c8; Extended Data Fig.10a). There was astrong negative correlation
betweenthe universal and activated gene programs (r=-0.54), which
suggests that activation in human fibroblasts may be associated with
loss of universal fibroblast gene expression (Extended Data Fig. 10b),
reminiscent of the lineage relationship we observed in mice.
Weinvestigated whether the transcriptional fibroblast subtypes we
observed in humans had mouse orthologues and observed that the
human c3 signature was enriched in the mouse Lrrc15" myofibroblast
cluster (Extended Data Fig. 10c). This was not restricted to pancre-
atic cancer™: fibroblast signatures from human rheumatoid arthritis
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(RA)”, interstitial lung diseases?, IPF*° and ulcerative colitis* also
showed localized gene expressionin the mouse Lrrc15" myofibroblast
cluster (Extended Data Fig. 10c, Supplementary Table 8). We found
evidence of universal fibroblasts in samples from patients with inter-
stitial lung disease® and ulcerative colitis* (Extended Data Fig. 10d).
Cells described as inflammatory fibroblasts across human samples
and indications predominantly aligned with the universal clusters of
the mouse perturbed-state atlas”®" (Extended Data Fig. 10e). We also
observed that mouse IL-1* CAFs' localized to universal clusters in the
mouse perturbed-state atlas (Extended Data Fig. 10f), suggesting that
cells described as inflammatory fibroblasts may represent universal
fibroblasts that have not undergone sufficient transcriptional change
to constitute a new cell state.

Last, we composed a human perturbed-state fibroblast atlas by
integrating c3 PDAC CAFs, colon fibroblasts from patients with coli-
tis and lung fibroblasts from individuals with non-small cell lung can-
cer (NSCLC), IPF or COVID-19 (Fig. 4a). This human perturbed-state
atlas (n=10,355 cells) exhibited six clusters (Fig. 4b, c, Supplementary
Table 9). We observed expected clusters, including NPNT" alveolar
fibroblasts® derived from individuals with lung disease, ADAMDECI*
and CCL19"* clusters primarily from colitis samples, and a PI16" cluster,
inwhich the human universal signature was most enriched (Fig. 4b, c,
Extended Data Fig. 10g). We observed two myofibroblast clusters
defined by LRRC15" and COL3AI" expression. LRRCI1S" myofibroblasts
were enriched in cells fromindividuals with pancreatic and lung cancer,
whereas the COL3AI" cluster was enriched in cells from patients with
COVID-19 (Fig. 4d). Both myofibroblast subsets expressed high levels
of collagens and ECM-modifying genes, including CTHRCI (Extended
Data Fig. 10h, i). The human perturbed-state atlas validated aspects
ofthe mouse perturbed-state atlas, including LRRC15" myofibroblasts



and ADAMDECT fibroblasts, but also suggested that indication-specific
stimuli or signal duration may drive additional myofibroblast popula-
tions in humans that were not seen in our mouse atlas.

Discussion

Fibroblasts have emerged as nexus cells that define the architecture
of tissues, augment the function and positioning of other cell types,
and have key roles in many diseases. We initially hypothesized that
fibroblasts accomplish these diverse tasks through tissue-specific tran-
scriptional programming. While our initial hypothesis was supported
by bulk sequencing modalities, sScRNA-seq across mouse tissues and
perturbationsled to adifferent conclusion—that the fibroblast lineage
was compartmentalized into universal and specialized (steady-state)
or activated (perturbed-state) subtypes. It is possible that fibroblast
subsets may exhibit additional imprinting by their tissue of residence.
Our scRNA-seq observations were supported experimentally by the
Dpt"ceER2knock-in mouse. Our data suggest a paradigm in which Dpt*
universal fibroblasts give rise to distinct subsets of fibroblasts across
tissues, enabling this cell lineage to give rise to phenotypes that can
execute the myriad functions ascribed to fibroblasts in the steady-state
and in disease. In this paradigm, diverse tissues harbour Dpt* univer-
sal fibroblasts that can differentiate into activated fibroblasts during
inflammation and, we speculate, into specialized fibroblasts during
development. In thisway, Dpt" universal fibroblasts operate as resource
cells, providing functional plasticity to the fibroblast lineage.

Our data suggest concordance between fibroblast phenotypes in
mice and humans. We confirmed thata subset of fibroblastsin human
tissues has transcriptional similarities to mouse universal fibroblasts.
Examination of human datasets representing an array of diseases
identified mouse fibroblast orthologues, suggesting that our mouse
perturbed-state atlas provides a basis for understanding fibroblast
subtypes in human disease states. However, we observed a unique
myofibroblast population that was enriched in patients with COVID-19,
relative to the other human indications we analysed, which suggests
thatimportantinter-species or perturbation-specific differences may
exist as well.

Our approachto understanding fibroblasts across tissues has iden-
tified both broad similarities and essential differences. Exposing the
contours of fibroblast gene expression across tissues and activation
states may help to clarify fibroblast subtyping and nomenclature. Open
questions still remain about the spatial dynamics among fibroblast
subtypes, the existence of other subtypes not captured in these data-
sets, and the structural orimmune cells that promote specializationin
the steady-state or activation during inflammation. It remains unclear
why two universal Dpt* fibroblast subtypes exist, though we speculate
that this may represent a necessary division of [abour within the line-
age. Overall, the organizing principles described here may enable a
deeper understanding of the development, evolution and behaviour
of universal, specialized and activated fibroblasts, which may in turn
yield dividends for human medicine.
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Methods

Mice

Wild-type mice were obtained from Jackson Laboratory (JAX; colony
00064) and maintained at Genentech. Ccl19" (ref.*?), Grem1“**™
(ref.?’) and Rosa26"""" mice were bred at Genentech. Dpt"™““**™ mice
were designed, generated and bred at Genentech. Male and female mice
aged 6-12 weeks were used for all studies. For tamoxifen-induced cre
expression, mice were injected with 2 mgtamoxifen (Sigma, cat. T5648)
dilutedin sunflower seed oil (Sigma, cat. 88921) for 5 consecutive days
intraperitoneally or were fed chow containing tamoxifen (Envigo, cat.
TD.130859). All experiments were performed under protocols approved
by the Institutional Animal Care and Use Committee at Genentech.
Other genotypes listed in Supplementary Table 3 were not bred in
our facility but used in the integrated single-cell RNA-seq fibroblast
atlases. No statistical methods were used to predetermine sample size.
The experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Mouse tissue digestion and stromal cell isolation or
identification by FACS

Tissues wereisolated and fibroblasts and mesothelial cells were isolated
as previously described®. In brief, tissues were obtained and minced,
aside from the LN, omentum (neither minced) and bone (decapped,
marrow removed and crushed). To isolate flank skin, hair was shaved,
adipose tissue was removed and tissue was minced. Next, tissues were
placed in a15-ml conical tube with 5 ml digestion medium (RPMI +2%
FBS with 100 mg/ml Dispase (Life Tech., cat.17105041),100-200 mg/ml
collagenase P (Roche, cat. 11249002001), and 50 mg/ml DNase |
(Roche, cat.10104159001)) and agitated. Tubes were placedina37 °C
water bath for 15 min, and 5-ml fractions were removed and filtered
(70 pm) into RPMI supplemented with 2% FCS (VWR) three times.
For skin fibroblast scRNA-seq, skin was minced and digested in the
enzymatic cocktail described above for 60 min. We used 200mg/ml
collagenase P to isolate cells from dense tissues such as the spleen,
liver,inguinal adipose, brown adipose and pancreas. After asingle-cell
suspension was obtained, the cells were layered on top of a 26% opti-
prep (Sigma, cat. D1556; diluted in phosphate buffered saline (PBS))
gradientin15-ml conical tubes and spunat1,500gfor 15 min with slow
acceleration and the brake off. Cells in suspension were isolated with
atransfer pipette. After digestion, the preparations were incubated
with Ack for 2-5 min to remove red blood cells.

Cells were labelled with the following monoclonal antibodies pur-
chased from eBioscience, BioLegend, or BD Biosciences at 1:200 for
20-30 min, unless otherwise noted. Prior to cell surface staining with
the following fluorescently labelled antibodies, cells were blocked
with Fcblock (2.4G2;1:500-1:1,000, cat #553142). Surface staining for
experiments was performed as below, unless otherwise noted: CD45
(30-F11, cat. 564279), EPCAM (G8.8, cat.118216), CD31 (390, cat. 612802
or102524), PDGFRa (AP5, cat.135906), PDPN (8.1.1;1:800, cat.127410),
LY6C (HK1.4;1:200, cat. 45-5932-82),SCA1(D7;1:200, cat.108131), CD24
(M1/69;1:200, cat. 612832) or LRRC15™ (1:200, in-house). Live cells were
identified by washing after Fcblock and incubation with Fixable Viabil-
ity Dye Violet (Invitrogen, cat. L34955,1:1,000) before surface staining
or incubation with calcein blue (Invitrogen, cat. C1429, 1:1,000) after
surface staining. Datawere acquired onaFortessa, Symphony or LSRII
(BD Biosciences) and analysed using FlowJo (Tree Star, v9.9.6) or cells
were sorted onaFusion or Aria (BD Biosciences). Datawere presented
using Prism (Graphpad, v9).

qPCR, RNA extraction and cDNA synthesis

Foreach qPCR experiment, organs from 3-5 mice were pooled, digested
and sorted by FACS. Total RNA was extracted from FACS-sorted cells
using a QIACube HT with the RNeasy Plus Mini Kit (QIAGEN, cat.
74134).cDNA were synthesized using the High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, cat. 4368814) with an RNase
Inhibitor (Applied Biosystems, cat. N8080119). Each cDNA sample
was diluted 1:200-1:300 in RNase-free water before use in qPCR.
qPCR was conducted using TagMan Gene Expression Assay Probes
forthe genes Pi16 (Mm00470084_m1), Col15a1 (MmO00456551_m1), Dpt
(MmO01273496_m1), Npnt (Mm00473794_m1), Ccl19(Mm00839967_gl),
Csf1(Mm00432686_m1) and Gapdh (Mm99999915_gl1). Each TagMan
probe was diluted 1:10 in TagMan Fast Advanced Master Mix (Ther-
moFisher, cat. 4444557) to create a TagMan probe working solution.
All gPCR reactions were carried out in a MicroAmp optical 384-well
reaction plate. qPCR was performed using the QuantStudio 5 (Applied
Biosystems) under the following cycling conditions:1cycle of 50 °C for
2min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and
60 °C for 1 min. The relative expression values were determined by:
1) subtracting the average C, value of the gene of interest (GOI) from
Gapdh (Gapdh - GOI) for each sample and 2) raising 2 to the power
of (Gapdh - GOI). Data were presented using Prism (Graphpad, v9).
Data points were called non-detectable if C, values were over 36 or if
replicates had astandard deviation greater than 1.

Mouse scRNA-seq and cell hashing

Cells hashtagged with unique barcoded antibodies (Biolegend) were
processed using Chromium Single Cell Gene Expression 3’ v3 Library
and Gel Bead Kit following the manufacturer’sinstructions (10X Genom-
ics, Cat. PN-1000075). Cells were counted and checked for viability
using Vi-CELL XR cell counter (Beckman Coulter), and then injected
into microfluidic chips to form Gel Beads-in-Emulsion (GEMs) in the
10X Chromiuminstrument. Reverse transcription (RT) was performed
onthe GEMs, and RT products were purified and amplified. DNA from
antibody-derived tags (ADTs) was separated from cDNA based on size
selection using SPRIselect beads (Beckman Coulter, cat. B23318).
Expression libraries and ADT libraries were generated and profiled
using the Bioanalyzer High Sensitivity DNA kit (Agilent Technologies,
cat. 5067-4626) and quantified with Kapa Library Quantification Kit
(Roche, cat. 07960255001). Illumina HiSeq and NovaSeq (Illumina)
were used to sequence the libraries.

Tissue processing for histology

The small intestine or colon was removed, flushed with 10% neutral
buffered formalin, and then cut into 1-inch-long strips from the duo-
denum, jejunum, ileum, and colon. The lung was removed and flushed
with 10% neutral buffered formalin to inflate the tissue. A suture was
then tied to the trachea to ensure the tissue stayed inflated while fix-
ing in 10% neutral buffered formalin for 24 h. After fixation, the sam-
ples were transferred to 70% ethanol for 24 h and then processed for
paraffin embedding. Once embedded, the blocks were trimmed on
a Leica RM-2245 microtome until the centre of tissue was reached.
Five-micrometre-thick sections were then collected for downstream
analysis.

RNAscope insitu hybridization

Insitu hybridization (ISH) was performed using reagents and protocols
from Advanced Cell Diagnostics (ACD). After sectioning, the slides
were allowed to dry for 24 h before baking in an oven at 60 °C for 1 h.
Sections were then rehydrated in two washes of xylene for 5 min each
followed by two washesin100% ethanol for 1 min each. After rehydra-
tion, endogenous peroxidase activity was quenched with hydrogen
peroxide before the sections were boiled in antigen retrieval buffer
(ACD, cat.322500) for 15min. After antigen retrieval, the sections were
digested with proteinase (ACD, cat. 322330) for 25 min at 40 °C. After
digestion, slides were washed twice for 1 min with ISH wash buffer
(ACD, cat.310091) then hybridized with probes of interest (GremI-C1,
cat. 314741; Dpt-Cl probe, 451311; Pi16-C1 and C2 probe; 451311 (C1)
and 451318 (C2)) for 2 h at 40 °C. After hybridization, amplification
steps were completed according to the ACD protocol. After the final



amplification incubation, signal was detected with HRP-conjugated
DAB (ACD, cat. 322360 and 322500), counterstained with haematoxylin
for30s,thenbakedinanovenat 60 °C for 15min before mounting with
non-aqueous mounting medium.

DSS-induced colitis

We added 3% (w/w) colitis-grade DSS (MP Biosciences, cat. 9011-18-1) to
the drinking water for 7 days and then euthanized the animals and pro-
cessed tissues for histology. The water was weighed daily to determine
the average water consumption per cage. Mouse bodyweights were
recorded daily and mice that lost 20% or more of their body weights
were euthanized following IACUC standards

Generation of Dpt"*“***?knock-in mouse
Homologous recombination and mouse embryonic stem (ES) cell tech-
nology> **were used to generate agenetically modified mouse strain
with a Dpt™“ER2 knock-in. A gene-targeting vector was constructed
witha1,928-bp 5’ arm of homology corresponding to GRCm38/mm10
chrl: 164,821,309-164,823,236 and a 1,810-bp arm of 3’ homology
corresponding to chrl: 164,823,237-164,825,046. IRES-CREERT2-SV
40-FRT-pgk-neo-FRT was inserted immediately after the STOP codon
(TAG) of exon 4. The final vector was confirmed by DNA sequencing,
linearized and used to target C2 (C57BL/6N) ES cells using standard
methods (G418 positive and ganciclovir negative selection)®.
C57BL/6N C2ES cells®” were electroporated with 20 pg linearized
targeting vector DNA and cultured under drug selection essentially
as described*®. Positive clones were identified using long-range PCR
followed by sequence confirmation. Correctly targeted ES cells were
subjected to karyotyping. Euploid gene-targeted ES cell clones were
treated with Adeno-FLP to remove PGK neomycin, ES cell clones were
tested toidentify clones with no copies of the PGK neomycin cassette,
andthe correct sequence of the targeted allele was verified. The pres-
ence of the Y chromosome was verified before microinjection into
albino BALB/c embryos. Germline transmission was obtained after
crossing the resulting chimaeras with C57BL/6N females. Genomic
DNA from pups born was screened by long-range PCR to verify the
desired gene targeted structure before mouse colony expansion. For
genotyping, the following primers were used: 5-CGCCAGTGGAAGTTCA
-3/, 5-TATAGGAACTTCGCTCGC -3’ and 5-GTGCTGTGCAAGGAAG-3’
amplified 329-bp wild-type and 278-bp knock-in DNA fragments.

Tumour inoculation

Age-matched 6-10-week-old DptretR2v i Ro sq 26 and DptlrescretrT2kiki
Rosa26""" mice received tamoxifen injections for 5 days, rested for
13-14 days and were inoculated subcutaneously in the right unilateral
flank with1x10°KPR3070 tumour cells suspended in Hanks’s buffered
saline solution and phenol-red-free Matrigel (Corning, cat. 356237).
Tumours were removed 21 days after implantation.

Human patientinformation

Pancreatic cancer sample collection was approved by the Ethics Com-
mittee of Beijing Cancer Hospital. All patients in this study provided
written informed consent.

Human tissue digestion and stromal cellisolation

Samples were obtained and sequenced by Analytical Biosciences. Single
cellswere dissociated from tumour and adjacent non-cancer tissues as
described previously®. In brief, tumours and adjacent non-cancer tis-
sues were cut into approximately 1-2-mm? pieces in RPMI-1640 medium
(Gibco) and enzymatically digested with gentleMACS (Miltenyi) for 60
minonarotor at37 °C, according to the manufacturer’s instructions.
The dissociated cells were subsequently passed through a 100-pum
SmartStrainer and centrifuged at 400gfor 5min. After the supernatant
was removed, the pelleted cells were suspended in red blood cell lysis
buffer (TIANDZ) and incubated on ice for 1-2 min to lyse red blood

cells. After being washed twice with 1 x PBS (Gibco), the cell pellets
were re-suspended in sorting buffer (PBS supplemented with 1% fetal
bovine serum (FBS, Gibco)).

Single-cell suspensions were stained with antibodies against CD45
and 7AAD for FACS sorting, performed on a BD Aria SORP instrument.
Based on FACS analysis, single cells were sorted into 1.5-ml tubes
(Eppendorf) and counted manually under the microscope. The con-
centration of single cell suspensions was adjusted to 500-1,200 cells
per pl. Cells were loaded at between 7,000 and 15,000 cells per chip
position using the 10X Chromium Single cell 5" Library, Gel Bead &
Multiplex Kit and Chip Kit (10X Genomics, V1.0 barcoding chemistry)
according tothe manufacturer’sinstructions. All the subsequent steps
were performed following the standard manufacturer’s protocols. Puri-
fied libraries were analysed using an Illumina Hiseq X Ten sequencer
with 150-bp paired-end reads.

Mouse bulk RNA-seq analysis

For ex vivo bulk RNA-seq, cells were isolated and stained as described
above. Each tissue was represented by 2-3 individual replicates that
were each derived by pooling tissues from 3-5 mice and FACS sorting
cellsdirectly into Trizol (Invitrogen, cat.15596026). In some cases, lysed
cellsfromatleast threeindependent experiments were pooled for one
replicate. Intotal, RNA was generated from an average of 35,195 + 7,357
(meants.e.m.)fibroblastsand 17,318 + 7,618 mesothelial cells. RNA was
isolated as described*° or at Expression Analysis, Inc.

Paired-end RNA-seq libraries were constructed from at least 747 pg
of RNA using the SMART-Seq v4 ULTRA Low Input RNA Kit for Sequenc-
ing (Takara, cat. 634891) and NexteraXT kits (Illumina, cats. FC-131-
1096 and FC-131-2001) for Low Input RNA Kits. Libraries were then
sequenced on an lllumina HiSeq yielding, on average, 35 million read
pairs (2x50bp) per sample. Reads were aligned to the GENCODE basic
mouse transcriptome index (M14) and transcript levels quantified using
salmon with parameters--type quasi-k 25. Subsequently, counts were
transformed into gene-level counts in R using the tximport (https://
bioconductor.org/packages/release/bioc/html/tximport.html) pack-
age. Differential expression analysis taking batches into account was
carried out on the gene by sample count matrix with DESeq2*, using
adesign of -0 + condition + batch having a coefficient for each level of
condition. For principal component analysis (PCA), log-transformed
normalized counts (lengthScaledTPM) were batch corrected using
Combat*and PCA was performed in the space of variable genes (coef-
ficient of variation >0.3). Gene set enrichment analysis (GSEA) using
the fgseamethod* was performed on genes ranked by their principal
component 1loadings using the top 20 marker genes for Pi16" and
CollSal’ clusters from the steady-state fibroblast atlas.

Mouse bulk ATAC-seq analysis

Forexvivobulk ATAC-seq, cells wereisolated and stained as described
above. Each tissue was represented by 2-4 individual replicates that
were each derived by pooling tissues from 3-5 mice and FACS-sorting
fibroblasts. On average, 28,455 cells (+ 5,325 (s.e.m.)) were sorted per
tissue. These cells were then frozen in Gibco Recovery Cell Culture
Freezing Medium (ThermoFisher, cat.12648010). The cells were then
thawed ina 37 °C water bath, pelleted, washed with cold PBS, and tag-
mented as previously described**, with some modifications®. In brief,
cell pellets were resuspended in lysis buffer, pelleted, and tagmented
using the enzyme and buffer provided in the Nextera Library Prep Kit
(Illumina, cat. FC-121-1031). Tagmented DNA was then purified using
the MinElute PCR purification kit (Qiagen, cat.28004), amplified with
10 cycles of PCR, and purified using Agencourt AMPure SPRI beads
(Beckman Coulter, cat. A63882). The resulting material was quanti-
fied using the KAPA Library Quantification Kit for lllumina platforms
(Roche, 07960255001), and sequenced with PE42 sequencing on the
NextSeq 500 sequencer (Illumina), with 42-bp paired-end reads. Library
preparation and sequencing was performed by ActiveMotif, Inc.
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Reads were aligned to the GRCm38/mm10 build of the mouse genome
using GSNAP*¢with parameters-M2-n10-B2-i1--pairmax-dna=1000
--terminal-threshold=1000 --gmap-mode =none --clip-overlap. Read
pairs that aligned concordantly and uniquely to a single genomic
location were retained for downstream analysis. PCR duplicates were
removed using Picard MarkDuplicates (http://broadinstitute.github.
io/picard/). Library depth-corrected coverage bigwig files were
obtained to visualize the regions of interest.

OCRidentification

Open chromatinregions (OCRs) were identified as peaks onindividual
replicates and pooled samples combining thereplicates of agiventissue
using MACS2*, with parameters macs2 callpeak -f BAM --call-summits
--nomodel-shift -95 --extsize 199 --keep-dup all -p 0.1 --call-summits
(these choices of the shift and extsize parameters correct for the
+5/-4 bp transposase insertion offset). The irreproducible discovery
rate (IDR) pipeline*® was used to assess peak concordance between the
individual replicates of a given tissue, and these IDR estimates were
subsequently appended to the associated pooled peaks. Robust peaks
per tissue were defined as pooled peaks that overlapped at least 50%
ofapeakfromatleast twoindividual replicates and that passed anIDR
threshold of 0.1. All robust peaks across all tissues were first centred
on their summits (summit + 199 bp) and then those that overlapped
mitochondrial and noncanonical chromosomes were removed. Finally,
allremaining peaks were merged to obtain the final set of all accessible
regions (n=207,803).Per sample, reads that overlapped eachregionin
the atlas were counted using the bedtools command multiBamCov*.
To find tissue-specific OCRs, differential accessibility analysis was
conducted on the count matrix using DESeq2*, where the accessibil-
ity (thatis, overlapping read count) of a given region in each tissue
was compared against the count for that region in all other tissues. In
this setting, the tissue-specific OCRs were defined according to the
following criteria: log,(fold change) > 2, adjusted P value < 0.01. In
addition, for each tissue a nondifferential/insignificant OCR set was
defined accordingto: -0.585 <log,(fold change) < 0.585, g value > 0.05.

Motif enrichment analysis

For motif enrichment analysis, for each tissue-specific OCR set, an
equally sized matched background set was selected on the basis of
region length and GC content from among the nondifferential/insig-
nificant OCRs, using Matchlt*°, AME®! from the MEME suite was used
with default settings to assess the enrichment of a set of 321 position
weight matrices (PWMs) from Homer (http://homer.ucsd.edu/homer/)
in the tissue-specific OCR sets versus the background sets. Specifi-
cally, Fisher’s exact test was used to compare the number of matches
to agiven PWM in the specific set versus the background set, and to
assess statistical significance. Enriched PWMs were reported based on
an adjusted Pvalue threshold of 0.05.

ATAC-seq and RNA-seq concordance

To compute the correlation of log,(fold changes) inferred from the
ATAC-seqand RNA-seq differential analyses, the ATAC-seq final atlas
peaks were assigned to the gene with the closest transcription start site
(TSS), using Gencode mouse M14 annotations and a distance threshold
of 50 kb. Following the assignment, genes and atlas peaks with absolute
log,(fold change) >1and g value < 0.05in a given tissue were used in
the correlation calculation.

Anadditional analysis to infer concordance between ATAC-seq and
RNA-seq datasets was the BETA® analysis, which takes a set of peaks
(tissue-specific OCRs from ATAC-seq) and differential gene expression
results from RNA-seq. In short, BETA calculates a regulatory poten-
tial score based on the number of peaks in a fixed window (100 kb by
default) around each gene TSS and ranks the genes on the basis of this
score. For eachtop gene set based on that rank, it calculates the percent-
age of the total up- and downregulated genes, as well as unregulated

background genes, to provide Pvalues for the overall up- or downregu-
lation potential of the whole peak set. BETA was used with parameters
-k BSF-gmm10 -nbasic--df 0.1, for all pairwise tissue combinations, so
for both matching and non-matching tissues.

Mouse scRNA-seq meta-analysis

Thessteady-state fibroblast atlas was composed of 28 datasets
and the perturbed-state fibroblast atlas was composed of 17 data-
sets!018213153-586169°71 Inteorated fibroblast atlases at steady and per-
turbed states were generated and analysed using the following steps:
(1) processing and filtering individual scRNA-seq datasets from healthy
and diseased tissues; (2) integrating healthy and diseased datasets
separately to generate steady- and perturbed-state atlases; (3) cluster-
ingand annotation; and (4) trajectory inference. The aforementioned
steps are described in detail in the following sections.

10,18-21,31,53-70

(1) Processing and filtering individual scRNA-seq datasets. Single
cell transcriptomics datasets, enriched in non-haematopoietic cells,
generated using 10X Genomics and available as processed CellRanger
files, were collected from public repositories and in-house lab datasets
(Supplementary Table 3). For public datasets where processed files
were not made available, we analysed raw data using cellranger count
(CellRanger 2.1.0, 10X Genomics) using a custom reference package
based on mouse reference genome GRCm38. A total of 32 scRNA-seq
datasets representing multiple tissues and perturbations were analysed
individually. In order to ensure comparability, for every individual
dataset, we retained genes found in the Ensembl mouse (GRCm38)
gene model, followed by implementing the Seurat single-cell analysis
pipeline (version 3.9.9.9010)7>%in R (version 4.0.0). Specifically, for
each dataset we filtered low quality cells with <500 measured genes and
ahigh percentage of mitochondrial contamination (>-5-20%, depend-
ingonthe dataset). After filtering, datain each cell were normalized to
log(CPM/100+1), the 2,000 most variable genes were identified, and
the expression levels of these genes were scaled before performing
PCAinvariable gene space. Next, 20 principal components were used
forgraph-based clustering (resolution =0.1) and UMAP dimensionality
reduction was computed. All steps were performed using functions
implemented inthe Seurat package (NormalizeData, FindVariableFea-
tures, ScaleData, RunPCA, FindNeighbours, FindClusters, RunUMAP)
with default parameters, except where mentioned. Cell clusters marked
by the canonical marker gene forimmune cells, Ptprc (Cd45), were
discarded. Allindividual datasets devoid of Cd45" cells were then used
forintegration to create two mainatlases: (1) asteady-state fibroblast
atlas comprising data from healthy tissues; and (2) a perturbed-state
fibroblast atlas comprising data from diseased and inflamed tissues.

(2) Dataset integration for steady- and perturbed-state atlases.
Before datasetintegration, weimported the aforementioned filtered,
non-processed Seurat objects (not scaled) of healthy and diseased
datasets, and determined a common gene space by retaining only
those genes that were measured across all datasets (21,087 genes).
Next, individual healthy and diseased Seurat objects were merged
separately into two different steady- and perturbed-state objects, re-
spectively. Each of these merged objects was normalized (function
NormalizeData, method =‘LogNormalize’, scale.factor=10,000), and
scaled toregress out the stress gene signature (computed using Seurat’s
AddModuleScore) of subpopulations affected by tissue dissociation
methods™ before we performed PCA for the most variable genes. These
processed, merged objects were next used for batch effect correction
andintegration using Harmony” (version 1.0). We adjusted the diversity
clustering penalty parameter, theta, to 1. We then provided the top 20
harmony dimensions as aninput for UMAP and visualized the first two
UMAP dimensions at a clustering resolution of 0.1for the Cd45™ atlases.
Next, we identified distinct cell types using canonical marker genes
such as Sparc, Col3al, Dcn (fibroblasts), Epcam (epithelial cells), Alb
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(hepatocytes), Pecaml (endothelial cells), Msin (mesothelial cells), RgsS
(mural cells: pericytes), MyhII (mural cells: smooth muscle cells), Top2a
and Mkié67 (proliferating cells), and Cd24a (remnant immune cell popu-
lations) (Extended DataFigs. 3a-c, 7a-c). The computational pipeline
forintegration wasiterated twice to generate the fibroblast atlases.

Specifically, at each of the following steps non-relevant or
unwanted cell types were filtered followed by recalculation of the
variable gene space, batch-effect correction and clustering to gener-
ate fibroblast-specific atlas for steady- and perturbed state: (1) a Cd45~
steady-and perturbed-state atlas comprising 180,922 and 182,609 cells,
respectively, and (2) afibroblast-specific steady- and perturbed-state
atlas comprising 120,697 and 99,596 cells, respectively, after selecting
for Dpt'Pdgfra” fibroblast clusters from Cd45™ atlases and discarding
other stromal cells including endothelial and mesothelial cells, peri-
cytes, smooth muscle cells and clusters with <1,000 cells.

(3) Clustering and annotation of steady- and perturbed-state
fibroblast atlases. Each fibroblast atlas was constructed fromits Cd45
counterpart, inwhich the top 40 harmony dimensions were provided
as aninput for UMAP and visualized at a clustering resolution of 0.2.
Differential gene expression was computed using the Seurat function
FindAllMarkers using a Wilcoxon rank sumtest and corrected for mul-
tiple testing using the Bonferroni method.

Gene expression scores were computed using Seurat’s AddModuleS-
core function, visualized using VInPlot or DotPlot. To determine mark-
ersforspecialized or activated clusters relative to universal fibroblasts
we used the Seurat function FindMarkers with default parameters. Next,
we scored bulk tissue-specific signaturesin the steady-state atlas, com-
puted average scores per tissue signature across tissues represented in
the steady-state atlas and visualized them using the ComplexHeatmap
function Heatmap. We implemented the ClusterMap’ algorithm using
default parameters to identify matching steady- and perturbed-state
clusters. ClusterMap compares clusters among two or more datasets
via hierarchical clustering based on the binary expression patterns of
marker genes. Next, similarity scores of matched clusters are deter-
mined from the clustering results.

Toinfer the activity of signalling pathways that govern different fibro-
blastic cells at steady state and after perturbation, we implemented the
Bioconductor package PROGENYy (1.10.0)”. For both fibroblast atlases,
weimplemented the same strategy. First, we down-sampled each atlas
using the Seurat function subset with parameters ‘WhichCells(object,
downsample, seed =1)’ followed by implementing the function progeny
with default parameters ‘scale = TRUE, organism=“Mouse”, top =100,
perm=1, return.assay = TRUE". We then summarized the progeny scores
by cell population and visualized them as a heatmap using the func-
tion pheatmap.

(4) Pseudotime reconstruction and trajectory inference. Single-cell
pseudotime trajectories for both steady and perturbed state maps
were computed using the algorithm slingshot (version 1.6.1), which
enables computation of lineage structuresin alow-dimensional space™.
Specifically, slingshot was implemented in the analysis pipeline after
dimensionality reduction and clustering of the integrated object. Each
fibroblast object was first downsampled before trajectory inference.
Pre-computed cell embeddings and clusters from the Seurat pipeline
served as an input to the function slingshot (reducedDim = ‘UMAP’,
clusterlabels =object$ RNA_snn_res.0.2, start.clus=“Pil6”, extend="n",
stretch=0). The start cluster was chosen using prior biological knowl-
edge and the expression of genes such as Cd34and Ly6a, known markers
of progenitor-like cells. The wrapper function slingshot then performed
lineage inference by treating clusters as nodes and constructing a mini-
mumspanningtree (MST) between the nodes. Next, lineages or trajec-
tories were defined by ordering clusters via tracing paths through the
MST. Finally, individual pseudotime(s) were visualized using principal
curves on the full fibroblast object.

Human scRNA-seq meta-analysis

A human perturbed-state fibroblast atlas was constructed using
scRNA-seq datasets generated with the 10X technology, from dis-
ease indications such as PDAC, idiopathic pulmonary fibrosis(IPF)*,
COVID-19”° and ulcerative colitis® or SMART-seq2 technology in
non-small cell lung carcinoma (NSCLC)®°. Individual datasets were
processed according to the description provided in ‘(1) Processing
and filtering individual scRNA-seq datasets’, with the exception that
LUM" fibroblasts were retained per dataset before final integration.
Specifically, for COVID-19 we used data fromindividuals who had died
from severe COVID-19-associated pneumonia. Next, we down-sampled
the COVID-19 dataset to 2,500 cells, in order to mitigate the effects of
over-representation of a dataset due to high cell number contribu-
tion. We then aggregated all the datasets, chose acommon gene space
(~-17,000) and implemented the same pipeline as described in the sec-
tion ‘(2) Dataset integration for steady- and perturbed-state atlases’.
We adjusted the diversity clustering penalty parameter, theta, to1,
provided the top 30 harmony dimensions as an input for UMAP, and
visualized the first two UMAP dimensions at a clustering resolution of
0.2.Differential gene expression analyses and visualization of markers
were performed using Seurat functions described above. Note, in this
meta-analysis we used datasets generated using 10X and SMART-seq2
technologies across acommon cell type, fibroblasts. This is because
abenchmarking study demonstrated the superior performance of
Harmony batch-effect correction using single-cell data generated on
different platforms for an identical cell type®'.

Bioinformatics data processing of human data

For the human pancreatic cancer single-cell data generated in our
laboratory, raw sequencing data were transformed into FASTQ for-
mat with CellRanger’s (v2.1) mkfastq command, mapped to the human
genome (GRCh38), and quantified with CellRanger count using default
parameters. Quantified UMI count matrices from each patient were
merged in Rand analysed with the Seurat package (v 3.1.4). First, cells
with <500 measured genes, or <2,700 UMIs, or >10% mitochondrial
counts were removed from the dataset. In the resulting filtered data-
set, datain each cell were normalized to log(CPM/100 +1), the 2,000
mostvariable genes wereidentified, and the expression levels of these
genes were scaled before PCA in the space of the most variable genes.
Subsequently, 30 principal components were used for graph-based
clustering (resolution = 0.1) and UMAP dimensionality reduction. All
steps were performed with the methods implemented in the Seurat
package (NormalizeData, FindVariableFeatures, ScaleData, RunPCA,
FindNeighbours, FindClusters, RunUMAP) and default parameters,
except for parameters mentioned above. Markers for each cluster
were identified using the FindAlIMarkers function, limiting the maxi-
mum number of cells per cluster to 1,000 for runtime improvement.
Genes that were differentially expressed between clusters 3and 8 were
detected using the FindMarkers function and default parameters. To
map human expression signatures onto the mouse perturbed state
map, humangene symbols were translated to their mouse orthologues
and an enrichment score for the gene signature was calculated using
Seurat’s AddModuleScore function. Gene sets were identified within
referenced papers (Supplementary Table 8).

Pseudo-bulk samples for co-expression analysis were generated from
the humansingle-cell dataset using the following strategy: we randomly
sampled 10% of cells from the pancreatic cancer single-cell dataset and
pooled their reads into abulk profile, which was subsequently normal-
ized to log,(CPM). Using this strategy, we generated 100 bulk RNA-seq
profiles with known proportions of cells fromindividual single-cell clus-
ters. This allowed us to compare the expression of individual cluster
8marker genesacross pseudo-bulk samples both pairwise between genes
and to the known cell type proportion of cluster 8 in the pseudo-bulks.
Next, we generated similar bulk samples, but this time excluding cells



Article

from cluster 8 in the sampling process. On these samples we again cal-
culated gene-by-gene correlation coefficients for C8 marker genes and
compared the distributions of pairwise correlation coefficients to the
distributions in the pseudo-bulk containing cells from cluster 8.

GTEx bulk RNA-seq data for normal tissues were obtained as
batch-corrected, log-normalized counts from the UCSC Xenabrowser®.
Pairwise correlations were visualized with the corrplot (https://
cran.r-project.org/web/packages/corrplot/) package. For cross-tissue
correlation analyses, only tissues with a median DPT expression >7.5
were considered. In this analysis, the top 20 marker genes for cluster 8
of the single-cell dataset ordered by log(fold change), which were found
infewer than15% of other cells, were used. For deconvolution of micro-
dissected PDAC stromal samples, raw expression counts per sample
(n=122) were downloaded from GEO (GSE93326). Data were normalized
tolog,(CPM+1).Scores for cluster 8-and cluster 3-derived expression
signatures (described above) in these bulk samples were calculated
based on the average expression of the 20 most upregulated genes
from the respective single-cell cluster (ordered by log(fold change),
only genes expressed in at most 30% of other cells were considered).

Pseudo-bulk analytical strategy

Wefirstgenerated 100 pseudo-bulk RNA-seq profiles from our single-cell
dataset with varying numbers of cells fromindividual single-cell clusters
(Extended DataFig.9d, top). We observed that the expression of marker
genes for fibroblast cluster 8 co-varied depending on the number of cells
from cluster 8inthe bulks. As a consequence, their expression profiles
were strongly correlated, but only if cells from cluster 8 were added to
the pseudo-bulk. Leaving cells from cluster 8 out resulted inan extensive
dropingene-wise correlations to close to 0. Therefore, co-expression of
asingle-cell-derived marker gene set can be used toinfer the presence
or absence of a particular cell population in bulk RNA-seq.

Projection of human gene sets onto mouse perturbed-state atlas
Gene expression signatures from human scRNA-seq datasets (Sup-
plementary Table 7) corresponding to different fibroblast types were
scored onthe perturbed state atlas using the Seurat function AddMod-
uleScore. The density of cells with the highest activation score (top
25th percentile for all clusters except in the Comp cluster (where we
visualized the top 5th percentile)) was visualized using the function
LSD::Heatscatter.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Raw and processed RNA-seq, ATAC-seq and mouse healthy skin
scRNA-seq datasets are available from the ArrayExpress repository
under the accession numbers E-MTAB-10324, E-MTAB-10316 and
E-MTAB-10315, respectively. Supplementary Table 3 lists the studies
used to generate the Cd45 maps and fibroblast atlases. These inte-
grated scRNA-seq objects used for analysis are provided in an online
resource that can be accessed at https://fibroXplorer.com. Human
pancreatic cancer single-cell data are available in the EGA database
under accession EGAD00001005365. Source data are provided with
this paper.

Code availability

No new algorithms were developed for this manuscript. Allcode gener-
ated for analysis is available from the authors upon request.
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Extended DataFig.2|Bulk gene expressionand openchromatin. a, Heat
map depicting enriched genes per tissue by bulk RNA-seq. Adjusted P<0.05,
log,(fold change) >2 (DESeq2, two-sided). Row z-scored. Top, bar plot
depictingnumber of signature genes per tissue. b, Heat map depicting regions
of open chromatin per tissue by bulk ATAC-seq. Adjusted P<0.01, log,(fold
change) >2 (DESeq2, two-sided). Row z-scored. Top, bar plot depicting number
of open chromatinregions per tissue. ¢, Correlation (top) and BETA analysis

(-log10 pvalue)

(-log10 p value)

(bottom) of bulk RNA-seqand ATAC-seq samples.d, BETA analysis of SLN
evaluating enriched gene expression compared to enriched SLN OCRs. These
dataarerepresentative of the rest of the dataset. e, Number of transcription
factor binding motifs in signature OCRs per tissue. f, Statistical inference of
transcription factor motifenrichmentin fibroblasts. Bar colours denote RNA
expression of transcription factor. Subcut., subcutaneous adipose; LN, lymph
node.
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Extended DataFig. 3 |See next page for caption.




Extended DataFig. 3 |Steady-state fibroblastand Cd45 atlases.a, UMAP
embedding 0f 180,922 single cellsin steady-state Cd45™ atlas. Fourteen clusters
identified through graph-based clustering are indicated by colour. b, Relative
abundance of eachtissuein steady-state Cd45- UMAP clusters. The sizes of
bubblesindicate the contributions of cells from each tissue to a cluster, and
greybubblesindicate lack of contribution (number of cells <0.02% of tissue)

of that tissue to the corresponding cluster. Graph to be read column-wise.

c, Fibroblast-and other lineage-associated genes (in grey) in steady-state Cd45"
atlas. Thesizes of circles denote the percentages of cells from each cluster, and
colourencodesthe average expression across all cells within a cluster. The
colourscaleshows the expression level based on row z-score. d, Average bulk
tissue-specific fibroblast gene signature scores across tissues represented in
the steady-state atlas. Mean-centred values shown. e, Expression of cluster
hallmark genesinsteady-state fibroblast atlas. The sizes of circles denote the
percentages of cells from each cluster, and colour encodes the average
expressionacrossall cellswithinacluster. The colour scale shows the

expression level based onrow z-score. f, Expression of fibroblast-and other
lineage-associated genes (ingrey). Circle sizes denote percentages of cells
fromeachcluster, and colour encodes average expressionacross all cells
within cluster. Colour scale shows expression level (z-score by row). g, Relative
abundance of each tissue in steady-state fibroblast UMAP clusters. The sizes of
bubblesindicate the contributions of cells from each tissue to a cluster, and
grey bubblesindicate lack of contribution (number of cells <0.02% of tissue)
ofthattissue to the corresponding cluster. Graph to be read column-wise.

h, Expression of pathway-responsive genesin perturbed-state atlas clusters as
assessed by PROGEN(y) analysis (z-scored per row). i, Volcano plot comparing
genesenrichedin Pi16" cluster (left; blue) to Coll5al’ cluster (right; red). Select
genesarelabelled. Dotslabelledinred or blue were determined as havinga
log,(fold change) of greater than1orless than-1and anadjusted Pvalue less
thanorequal to 0.05 (Bonferronicorrection).j, Expression of Ly6a and Cd34in
steady-state clusters. Wilcoxon’srank sum test P< 0.05.
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Extended DataFig. 4 |Bulk sequencing validates single-cell atlas.

a-p, UMAPs highlighting distribution of cells from individual tissuesin the
steady-state fibroblast atlas. q, PCA of FACS-sorted bulk RNA-seq of fibroblasts
and mesothelial cells, calculated for the 1,000 genes with the highest
interquartilerange. Circlesrepresent fibroblasts and triangles are mesothelial
cells. Each colour denotes adifferent tissue. r, Heatmap depicting top 20 Pi16"
(fibroblast) and Col15al* genes from steady-state fibroblast atlas in bulk

RNA-seqdata.Rows arez-scored.s, Gene enrichment analysis of top genes
(log(fold change) > 0.5) from Pi16" cluster and Coll5al’ cluster inloadings of
PC1, which discriminates between mesothelial cells and fibroblasts (test:
FGSEA, Benjamini-Hochberg correction). t, ATAC-seq traces of select genes
from Pi16" and Col15al" clusters genes, Ptprc (encoding CD45) and Hprt at +2kb
ofthe TSS.
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Extended DataFig. 6 |See next page for caption.



Extended DataFig. 6 | Dpt™ " *f""2 marks universal fibroblasts.

a, Expression of Ly6cand Ly6ain the mouse steady-state fibroblast atlas.

b, Representative gating for LY6C'SCA1",LY6C SCA1'and SCA1 fibroblasts
acrossindicated tissues. ¢, Quantification of LY6C'SCA1*, LY6C SCAI  and
SCAI fibroblastsacrossindicated tissues. Frequency (top), cellnumber per mg
oftissue (bottom).d, Abundance of Pi16, Ccl19, Npnt, and Dpt transcriptsin
LY6C'SCA1",LY6C SCA1"and SCAL fibroblasts fromlymph node (black) and
lung (red). e, Expression of Pi16, Ccl19, Npnt and Dptin mouse steady-state
fibroblastatlas. f, RNAscope for Dpt (blue) and Pi16 (red) on lung (left) and
smallintestine (right). Scale bar, 50 pm. g, Schematic of generation of
Dpt/RESCeER12Ro5a 26 mouse. YFP expression is achieved in Dpt-expressing
cells following cre-mediated excision of aloxP-flanked transcriptional stop
sequence. h, Representative gating for YFP (Dpt) in fibroblasts (live,

EpCAM CD45 CD31 PDPN'PDGFRa’) acrossindicated tissues. Red, shaded
hiStOgram iS DptIRESCreERT2ki/kiR0$a26lS[YFPM/[/onPand blaCk iS DptIRESCIcERTZII/[/
“Rosa26FPuoxP § Representative gating for YFP (Dpt) in CD45* cells (live,
EpCAM CD45"), EpCAM’ cells (live, EpCAM’), and endothelial cells (live,

EpCAM CD45°CD31") from the pancreas. Red line is Dp¢/RESCreERT2kilki
ROSa26LSLYFPwt/oxp a4 grey, shaded histogramis DpthESL‘reERTZw(/w[RosaZGLSLYFPw[/onP.
j, Quantification of YFP* cells in Dpt/RESCreERT2kilki R g q 26 SLYFPwi/loxP animals in
indicated cell typesacross tissues. Percentage YFP* was determined by
subtracting fluorescence in Dpt/RESCreERT2kilki R o g q 26HSLFPt/ioxP animals from
Dpt!RESCretRT2wtlue g g q 26 HSLYFPwi/lox animals. k, Abundance of Pil6, Ccl19, Npnt, and
Dpttranscriptsin FACS-sorted YFP*and YFP™ cells from Dpt/RESCreERT2kiki
RDSdZéLSLYFPwt/[oxP and DptIRESCreERT2wt/kiRosazéLsLVFsz/laxP animals 14-16 days after
tamoxifen chow, inlymph node (top) and lung (bottom). 1, Abundance of Csf1
transcriptsin FACS-sorted YFP*and YFP cells from Dpt/RESCreERT2ki/ki Rey s g 2t SLYPret/iox?
and Dpt/RESCreERT2wi/ki R o gq 26HSHFPU/ioxP animals 14-16 days after tamoxifen chowin
lymphnodeandlung.n=3(c,d, k,1) orrepresentative of 3 or more biologically
independent experiments (b, f, h, i). Dot represents each mouse with bar at
mean (c,j), plots show minimum and maximum (whiskers) and median (centre
line). (d, k,1). h-1, Micereceived tamoxifen chow for 14 days and were analysed
ondays14-16.
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Extended DataFig.7|See next page for caption.



Extended DataFig.7 | Perturbed-state fibroblast and Cd45 atlases.
a,UMAP embedding 0f 182,609 cellsin perturbed-state Cd45™ atlas. Twelve
clustersidentified through graph-based clustering areindicated by colour.

b, Relative abundance of each tissue in perturbed-state Cd45  UMAP clusters.
Thesizes of bubblesindicate the contributions of cells fromeach tissuetoa
cluster,and grey bubblesindicate lack of contribution (number of cells <0.02%
oftissue) of that tissue to the corresponding cluster. Graph to be read column-
wise. ¢, Fibroblast-and other lineage-associated genes (ingrey) in Cd45”
perturbed-state map. The sizes of circles denote the percentages of cells from
eachcluster,and colour encodes the average expressionacross all cellswithin a
cluster. The colour scale shows the expression level based on row z-score.

d, Expression of cluster hallmark genesin perturbed-state fibroblast atlas. The
sizes of circles denote the percentages of cells from each cluster, and colour
encodes the average expression across all cells within a cluster. The colour

scale shows the expression level based on row z-score. e, Fibroblast- and other
lineage-associated genes (ingrey) in mouse perturbed-state fibroblast atlas.
Circlesizes denote percentages of cells from each cluster; colour encodes
average expression acrossall cells within cluster. Colour scale shows
expression level (z-score by row). f, Relative abundance of each tissue in
perturbed-state fibroblast UMAP clusters. The sizes of bubbles indicate the
contributions of cells fromeach tissue to a cluster, and grey bubbles indicate
lack of contribution (number of cells <0.02% of tissue) of that tissue to the
corresponding cluster. Graph to be read column-wise. Clusters with analogues
insteady statearedepictedingrey, irrespective of the tissue contribution.
g,Dendrogramrepresentation of the hierarchical clustering of steady-state
(blue) and perturbed-state (red) cluster marker genes. Similarity scores are
indicated at the bottom of matching clusters from steady-state and perturbed-
state tissues.
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Extended DataFig. 8| Validation of perturbed-state atlas. a-o0, UMAP
representations of the distribution of fibroblasts across tissues and
perturbations. p-u, Heat maps showing average relative gene expressionin
Pi16*, Coli5al’,Adamdecl’, Cxcl5*,and Lrrc15* clusters (z-scored per row) inthe
following categories. p, Cytokines and chemokines. q, Wnt-associated genes.
r,ECM-associated genes. s, Collagens and laminins. t, Matrix metalloproteases
and cathepsins. u, Receptors and surface molecules. v, Expression of pathway-
responsive genesin perturbed-state atlas clusters as assessed by PROGEN(y)
analysis (z-scored per row). w,RNAscope for Dpt (blue) and Grem1 (red) innon-
lesional colon (top) and lesional colon (bottom) on day 7 after induction of DSS
colitis. Dataare representative of three experiments. Scale bars, 50 pm (top)
and 250 pm (bottom). x, Ly6a and Cd34 expressionin perturbed-state clusters.

Wilcoxon’s rank sumtest, P<0.05.y, Pseudotime(s) visualized using principal
curvesrepresentingtrajectories of fibroblast differentiationacross
perturbed-state fibroblast object. Blue lines show trajectory to activated
clusters, grey lines show trajectory to clusters with asteady-state analogue.
Pi16" cluster set asroot.z, Representative FACS strategy for subcutaneous
tumour experiments. a’, Representative flow cytometry plots showing
frequency of YFP* cellsin LRRC15" fibroblasts from KPR3070 subcutaneous
tumour at day 21 post-inoculation in Dpt/RESCreERT2ut/wt R g q DG LSLYFPw/loxP g nimals.,
b’, Quantification of FACS data (Fig. 3d, Extended DataFig. 8z,a’). Dataare from
b’ orrepresentative of 2 (z-a’) or 3 (w) experiments. Each dot represents one
mouse (b’).n=2(b’) orrepresentative of 2 (z-a’) or 3 (w) biologically
independent experiments.
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Extended DataFig. 9| Human universal fibroblasts. a, Top, UMAP
embeddings of human pancreatic cancer tumour and normal adjacent tissue
(n=21,626cells). Bottom, percentage of cellsineach cluster coming from
tumour or NAT. b, UMAP asina, coloured by expression of indicated genes.

c, Relative average expression of top 10 marker genes (sorted by log(fold
change)) foreach clusterinthe pancreatic cancer single-cell dataset. Two
representative genes highlighted per cluster. DEGs across clusters.d, Top,
expression level of indicated marker genes (colour, y-axis) across 100 pseudo-
bulk samples (x-axis) generated from human pancreatic cancer scRNA-seq
data. Theknown percentage of cells from cluster 8 in each pseudo-bulk s
shownby the dotted blueline. Bottom, boxplots representing the distributions
of pairwise correlation coefficients of the top 20 marker genes for cluster 8 in
pseudo-bulk samples containing (left) and not containing cells from cluster 8

(right). e, Boxplots summarizing DPT expression distributions across tissues
fromthe GTEx portal. Tissues with mean above horizontal black line were
includedin correlationanalysis (f). n=7,851biologicallyindependent samples.
f, Co-expressionasind, results from the gene-by-gene correlation matrices are
summarized as boxplots for eachindividual tissue from GTEx.n=5,957
biologicallyindependentsamples. g, Gene-by-gene correlation matrix of
pairwise correlationsin 205 normal pancreas bulk RNA-seq samples from
GTEx.Blueindicates Pi16" cluster signature gene, red indicates Coll15al*
signature gene. h, Human universal fibroblast score projected onto human
pancreatic cancer samples. i, Human universal fibroblast score projected onto
humansubcutaneous adipose. d-f, Box and whisker plots show minimum and
maximum (whiskers), interquartile range (box) and median (centre line).
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Extended DataFig.10|Perturbed-state human fibroblasts. a, Volcano plot human pancreatic cancer (cluster 3 CAF, ‘MyCAF"), rheumatoid arthritis

visualizing log(fold change) (x-axis) and adjusted Pvalue (y-axis) comparing (‘HumanRAF27), lung disease (‘Myofibroblast’?®), IPF** and ulcerative colitis
fibroblasts from cluster 3 in Extended Data Fig. 9a compared to fibroblasts (‘S2"*).d, Universal fibroblasts from human pancreatic cancer (cluster 8 NAT),
from cluster 8 (Wilcoxon’s rank sum test). b, Scatterplot visualizing the scores lung disease (‘PLIN2" fibroblast’?) and ulcerative colitis (‘S1’*). e, Inflammatory

foraNAT (cluster 3) fibroblast expression gene set (y-axis) compared to scores fibroblasts from pancreatic cancer (iCAF™) and rheumatoid arthritis (Human
fora CAF (cluster 8) expression gene set (x-axis) in122bulk RNA-seqsamplesof ~ RAF57).f,UMAP of IL-1 CAF cells derived fromref.'°, projected onto perturbed-
microdissected PDACtissue.Each dotrepresentsasample, theregressionline state fibroblast atlas. g, Expression of human universal fibroblast module
isgiveninblue. Error band, 95% confidence interval. c-f, UMAP representation across human perturbed-state atlas clusters. h, Abundance of LRRCIS and

of cells fromthe mouse perturbed-state atlas, each cell coloured by their score CTHRCI expressionin human perturbed-state atlas. i, Heat maps showing
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

0005

< The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

5 A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

[ I <

X X X
I ™

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.
GTEx bulk RNA-seq data of normal tissues was obtained as batch-corrected, log normalized counts from the UCSC Xenabrowser.
Publicly available datasets were downloaded from GEO NCBI or ArrayExpress.
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Data analysis R (4.0.0)
Seurat (3.9.9.9010, 3.1.4)
PROGENYy (1.10.0)
Slingshot (1.6.1)
ComplexHeatmap (2.4.3)
pheatmap (1.0.12)
CellRanger (2.1)
Harmony (1.0)
ClusterMap(0.1.0)
AME (4.10.2)
Bedtools (2.26)
Matchlt (3.0.2)
Homer (4.8)
IDR (2.0.3)
tximport (1.14.0)
DESeq2 (1.26.0)
MACS2 (2.1.1)
Prism, GraphPad (v9)
Flowjo (v9.9.6)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw and processed RNAseq, ATACseq and mouse healthy skin single cell RNAseq datasets are available from ArrayExpress repository under the accession numbers
E-MTAB-10324, E-MTAB-10316 and E-MTAB-10315 respectively. Supplementary Table 3 lists the studies used to generate the CD45- maps and fibroblast atlases.
These integrated single-cell RNAseq objects used for analysis are provided in an online resource that can be accessed via: [link made available upon publication]
Human pancreatic cancer single-cell data is available in EGA under accession: EGADO0001005365.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We designed our experiments to ensure that minimum number of mice are used to obtain biologically significant
results. Experiments had 1-4 mice and were repeated a minimum of 3 times. For experiments other than animal studies, no sample size
calculation was performed and as many datasets as possible were gathered for the generation of fibroblast atlases.

Data exclusions | qPCR data points were called non-detectable if Ct values were over 36 or if replicates had a standard deviation greater than 1. No other data
was excluded from analyses

Replication Experiments were successfully replicated in at least three independent experiments performed under identical conditions.

Randomization | Mice were grouped based on genotype. Randomization was not required for the experiments performed. For non-animal experiments,
randomization was not required as human patients were grouped by disease-state.

Blinding Investigators were not blinded during experiments as FACS and gqPCR samples were all analyzed equivalently within defined experimental
groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Antibodies used Cells were labeled with the following mAbs purchased from eBioscience, BioLegend, or BD Biosciences at 1:200 for 20-30 min, unless
otherwise noted. Prior to cell surface staining with the following fluorescently labeled antibodies, cells were blocked with Fc block
(2.4G2; 1:500-1:1000, cat#553142). Surface staining for experiments was performed as below, unless otherwise noted: CD45 (30-
F11, cat#f 564279) EPCAM (G8.8, cat# 118216), CD31 (390, cat#612802 or 102524), PDGFRa (AP5, cat#f 135906), PDPN (8.1.1; 1:800,
cat. 127410), LY6C (HK1.4; 1:200, cat#45-5932-82), SCAL (D7; 1:200, cat#108131), CD24 (M1/69; 1:200, cat#612832) or LRRC15
(1:200, in house). Live cells were identified by washing after Fc block and incubation with Fixable Viability Dye Violet (Invitrogen, cat.
34955, 1:1000) prior to surface staining or incubation with calcein violet (Invitrogen, cat. C34858, 1:1000) after surface staining.

Validation CD45 BUV 395: https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-mouse-
antibodies/cell-surface-antigens/buv395-rat-anti-mouse-cd45-30-f11/p/564279
EpCAM PeCy7:https://www.biolegend.com/en-us/products/pe-cyanine7-anti-mouse-cd326-ep-cam-antibody-5303
CD31 BUV737:https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-mouse-
antibodies/cell-surface-antigens/buv737-rat-anti-mouse-cd31-mec-133/p/612802
Pdgfra PE: https://www.bdbiosciences.com/us/applications/research/stem-cell-research/ectoderm-markers/mouse/apc-rat-anti-
mouse-cd140a-apa5/p/562777
PDPN APC:https://www.biolegend.com/en-us/products/apc-anti-mouse-podoplanin-antibody-6656
Ly6C PerCpCy5.5:https://www.thermofisher.com/antibody/product/Ly-6C-Antibody-clone-HK1-4-Monoclonal/45-5932-82
Scal BV711: https://www.biolegend.com/en-us/search-results/brilliant-violet-711-anti-mouse-ly-6a-e-sca-1-antibody-8632
CD24 BUV737:https://www.bdbiosciences.com/us/reagents/research/antibodies-buffers/immunology-reagents/anti-mouse-
antibodies/cell-surface-antigens/buv737-rat-anti-mouse-cd24-m169/p/612832
LRRC15: Genentech in house antibody. See Dominguez & Muller...Turley, Cancer Discovery, 2020.
Fc Block: https://www.bdbiosciences.com/us/applications/research/b-cell-research/surface-markers/mouse/purified-rat-anti-mouse-
cd16cd32-mouse-bd-fc-block-24g2/p/553142
Fixable Viability Dye: https://www.thermofisher.com/order/catalog/product/65-0863-14#/65-0863-14
Calcein violet: https://www.thermofisher.com/order/catalog/product/65-0854-39#/65-0854-39

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research
Laboratory animals Wildtype mice were obtained from Jackson Laboratory (JAX; colony 00064) and maintained at Genentech. Ccl19YFP, Grem1CreERT2
(Kapoor...Turley, In Press, Nature Immunology) and Rosa26LSLYFP mice were bred at Genentech. DptlresCreERT2 mice were
designed, generated and bred at Genentech. Male mice, aged 6-12 weeks were used for all studies. Other genotypes listed in
Supplemental Table 3 were not bred in our facility but used in the integrated single-cell RNAseq fibroblast atlases.
Wild animals The study did not involve the use of wild animals

Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All experiments were performed under protocols approved by the Institutional Animal Care and Use Committee at Genentech.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Patient information is given in Suppl. Table S6 §

~
Recruitment Patient samples were procured from Analytical BioSciences from adult patients undergoing resection surgery. f;
Ethics oversight Pancreatic cancer sample collection was approved by the Ethics Committee of Beijing Cancer Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software
Cell population abundance

Gating strategy

Tissues were isolated and fibroblasts and mesothelial cells were isolated as previously described18. Briefly, tissues were
obtained and minced, aside from the LN, omentum (neither minced) and bone (decapped, marrow removed and crushed).
To isolate flank skin, hair was shaved, adipose tissue was removed and tissue was minced. Next, tissues were placed in a
15mL conical tube with 5mL digestion media (RPMI + 2% FBS with 100mg/mL Dispase (Life Tech., cat. 17105041),
100-200mg/mL Collagenase P (Roche, cat. 11249002001), and 50mg/mL DNase | (Roche, cat. 10104159001)) and agitated.
Tubes were placed in a 37C water bath for 15 mins, and 5mL fractions were removed and filtered (70uM) into RPMI
supplemented with 2% FCS (VWR) three times. For skin fibroblast single cell RNAseq, skin was minced and digested in
enzymatic cocktail previously described for 60 minutes. 200mg/mL Collagenase P was used to isolate cells from dense tissues
such as the spleen, liver, inguinal adipose, brown adipose and pancreas and after a single cell suspension was obtained, the
cells were layered on top of a 26% optiprep (Sigma, cat. D1556; diluted in PBS) gradient in 15mL conical tubes and spun at
1500 x g for 15 minutes with slow acceleration and the brake off. Cells in suspension were isolated with a transfer pipette.
After digestion, the preparations were incubated with Ack for 2-5 minutes to remove red blood cells.

Data were acquired on a Fortessa, Symphony or LSRII (BD Biosciences) and analyzed using FlowJo (Tree Star) or cells were
sorted on a Fusion or Aria (BD Biosciences).

Flowjo (v9.9.6)
Cells were sorted at >=90% purity as assess on FACS Aria or Fusion.

Gating strategy was devised manually and appropriate to experiments. In the case of determining YFP fluorescence, YFP
positivity was assessed by using a YFP-negative mouse that received tamoxifen (Figure 2).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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