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Cross-tissue organization of the fibroblast 
lineage

Matthew B. Buechler1,2, Rachana N. Pradhan1,2, Akshay T. Krishnamurty1, Christian Cox1, 
Aslihan Karabacak Calviello1, Amber W. Wang1, Yeqing Angela Yang1, Lucinda Tam1, 
Roger Caothien1, Merone Roose-Girma1, Zora Modrusan1, Joseph R. Arron1, Richard Bourgon1 ✉,  
Sören Müller1 ✉ & Shannon. J. Turley1 ✉

Fibroblasts are non-haematopoietic structural cells that define the architecture of 
organs, support the homeostasis of tissue-resident cells and have key roles in 
fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described 
fibroblast heterogeneity within individual tissues1. However, the field lacks a 
characterization of fibroblasts at single-cell resolution across tissues in healthy and 
diseased organs. Here we constructed fibroblast atlases by integrating single-cell 
transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 
disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in 
mouse identified two universal fibroblast transcriptional subtypes across tissues. 
Our analysis suggests that these cells can serve as a reservoir that can yield 
specialized fibroblasts across a broad range of steady-state tissues and activated 
fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed 
states showed that fibroblast transcriptional states are conserved between mice and 
humans, including universal fibroblasts and activated phenotypes associated with 
pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a 
cross-species and pan-tissue approach to transcriptomics at single-cell resolution 
has identified key organizing principles of the fibroblast lineage in health and 
disease.

Fibroblasts populate all tissues, delineate the topography of organs by 
producing and remodelling extracellular matrix proteins (ECMs)2 and 
support other tissue-resident cell types1,3. Fibroblasts perform func-
tions associated with their lineage and specialized programs suited to 
the needs of specific tissue contexts to maintain organ homeostasis. 
Macrophages achieve generalized function and specialization via a 
lineage-wide core transcriptomic signature and tissue-specific pro-
gramming driven by microenvironmental cues4–6. It is unclear how 
fibroblasts execute functions both common to their lineage and 
required by their organ of residence.

Technologies such as single-cell RNA-sequencing (scRNA-seq) 
have revealed intra-tissue fibroblast heterogeneity1. Elucidating the 
inter-tissue population structure of fibroblasts has clinical relevance, as 
subtypes of fibroblasts drive disease in arthritis7–9, cancer10–12 and fibrotic 
indications such as idiopathic pulmonary fibrosis (IPF)2. Emerging para-
digms7,10,13,14 suggest that discrete fibroblast subtypes within tissues 
govern distinct aspects of tissue homeostasis and disease. Understanding 
whether fibroblast phenotypes across indications are context-specific 
or more broadly conserved may inform therapeutic approaches. We 
hypothesized that fibroblast heterogeneity was promoted by tissue type 
in the steady-state and disease context during perturbation.

Fibroblasts in steady-state mouse tissues
To investigate this hypothesis, we first performed bulk RNA-seq and 
assay for transposase-accessible chromatin with sequencing (ATAC–
seq) on fluorescence-activated cell sorting (FACS)-sorted fibroblasts 
from multiple mouse tissues15. These data identified regions of open 
chromatin and transcriptional networks driven by tissue type, similar to 
recent reports15,16 (Extended Data Figs. 1, 2, Supplementary Tables 1, 2).  
However, bulk sequencing cannot discriminate gene signatures that 
represent a single, homogeneous cell population from those that reflect 
the average of heterogeneous populations. To resolve this issue, we 
collected mouse scRNA-seq datasets enriched for non-haematopoietic 
cells from our laboratory and from public repositories. We removed 
non-fibroblast cells and corrected for cross-laboratory batch effects to 
produce a fibroblast-specific single-cell atlas composed of 28 datasets 
across 16 unperturbed tissues (n = 120,583 cells; Fig. 1a, b, Extended 
Data Fig. 3a–c, Supplementary Table 3). An interactive data browser 
for the atlases is publicly available (see ‘Data availability’). Notably, 
our bulk RNA-seq and single-cell data were highly concordant, which 
indicates that our single-cell analytical approach did not introduce 
technical bias (Extended Data Fig. 3d).
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In the steady-state atlas, ten clusters were identified on the basis of 
differential gene expression (Fig. 1b, c). The exact number of clusters in 
analyses of this type is data-driven but still somewhat subjective; some 
clusters were well-separated from others, while in other instances it is 
likely that an expression continuum, with intermediate states, exists. 
We identified more than 200 differentially expressed genes (DEGs) 
for each cluster and annotated clusters according to the dominant 
cluster-specific gene: Pi16+, Col15a1+, Ccl19+, Coch+, Comp+, Cxcl12+, 
Fbln1+, Bmp4+, Npnt+ and Hhip+ (Supplementary Table 4, Extended Data 
Fig. 3e). Known fibroblast-associated genes showed distinct expression 
across the clusters, confirming heterogeneity within the fibroblast 
lineage (Extended Data Fig. 3f). We were able to use tissue-distribution 
patterns and hallmark genes to ascribe functional identities to most 
clusters, including Ccl19+ fibroblastic reticular cells (FRCs)3, Coch+ red 
pulp fibroblasts17, Cxcl12+ mesenchymal stromal cells and osteolineage 
cells18, Fbln1+ and Bmp4+ intestinal fibroblasts19, Comp+ fibroblasts20, 
Npnt+ alveolar fibroblasts and Hhip+ peribronchial fibroblasts21 (Fig. 1c, 
Extended Data Figs. 3g, 4a–p). The specialization of these clusters was 
reflected in differential enrichment of gene expression in core signal-
ling pathways, including NFκB and TNF in the Ccl19+ cluster and WNT 
signalling in the Fbln1+ and Bmp4+ clusters19 (Extended Data Fig. 3h).

Notably, nearly all tissues contributed to the Pi16+ and Col15a1+ clus-
ters, which suggests that these clusters are universal (Fig. 1c, Extended 
Data Fig. 3g). Genes that defined these two clusters differentiated fibro-
blasts from mesothelial cells in bulk RNA-seq data (Extended Data 
Fig. 4r–t). DEGs in the Pi16+ cluster (Pi16, Dpp4 and Ly6c1) suggested 
an identity similar to adventitial stromal cells22, which are found in 

vascular niches and can produce ECMs and acquire gene expression 
profiles consistent with specialized fibroblasts23,24. The Col15a1+ cluster 
exhibited an association with the basement membrane, evidenced by 
expression of Col4a1, Hspg2 and Col15a1 (Extended Data Fig. 3i, Sup-
plementary Table 4). The ubiquity of the universal Pi16+ and Col15a1+ 
subtypes across tissues and the elevated level of stemness-associated 
genes (Cd34 and Ly6a (which encodes SCA1), Extended Data Fig. 3j), 
led us to investigate the potential for a developmental relationship 
among clusters. Slingshot lineage inference identified trajectories that 
emerged from the Pi16+ cluster, passed through the Col15a1+ cluster, 
and ended at specialized clusters (Fig. 1d).

Collectively, our analysis showed that in steady-state mouse tissues, 
universal (Pi16+ and Col15a1+) and specialized fibroblast subtypes exist, 
and that these may be developmentally linked. The roles of universal 
fibroblasts include ECM secretion, with Col15a1+ universal fibroblasts 
exhibiting the capacity to secrete basement membrane proteins and 
the Pi16+ subtype potentially serving as a resource cell that can develop 
into specialized fibroblasts.

DptIRESCreERT2 mouse validates scRNA-seq
To validate our scRNA-seq analysis, we used the surface markers SCA1 
and LY6C (encoded by Ly6c1) to distinguish Pi16+ (LY6C+SCA1+) and 
Col15a1+ (LY6C−SCA1+) universal fibroblasts from specialized fibroblasts 
(LY6C−SCA1−; Extended Data Figs. 5a, 6a). Flow cytometry revealed that 
PDGFRα+ fibroblasts could be sorted into these three groups across 11 
tissues (Extended Data Fig. 6b, c). This approach confirmed the exist-
ence of bona fide universal and specialized phenotypes: expression of 
Pi16 was enriched in LY6C+SCA1+ fibroblasts, whereas markers of more 
specialized fibroblasts such as Ccl19 (lymph node) and Npnt (lung) were 
enriched in LY6C− fibroblasts. Expression of dermatopontin (Dpt) was 
inversely correlated with specialization (Extended Data Fig. 6d, e). Dpt 
was diffusely expressed across the steady-state fibroblast atlas but was 
significantly enriched in Pi16+ and Col15a1+ universal fibroblasts, with 
highest expression in the Pi16+ cluster. The intestine-specific Fbln1+ 
cluster also showed Dpt expression at a level similar to the Col15a1+ 
cluster (Extended Data Fig. 6e, Supplementary Table 4). Expression of 
Dpt and Pi16 RNA in lung and small intestine was assayed histologically 
using RNAscope. Dpt+Pi16+ cells were enriched near vascular structures 
in both tissues, as expected22. Dpt+Pi16− cells were observed in the lung 
parenchyma, in alignment with our predicted distribution of Col15a1+ 
cells, and at the base of the villi in the small intestine, consistent with a 
lack of functional specialization19 (Extended Data Fig. 6f).

We generated a genetically modified mouse model for track-
ing Dpt-expressing cells to test whether Dpt preferentially marked 
universal fibroblasts. An IresCreERT2 cassette, which requires the 
oestrogen receptor modulator tamoxifen for activity, was inserted 
downstream of the stop codon in exon 4 of Dpt. We crossed this strain 
with the Rosa26LSLYFP mouse line. The resulting DptIresCreERT2Rosa26LSLYFP 
mouse irreversibly marks DptIresCreERT2-positive cells and their progeny 
with yellow fluorescent protein (YFP) after tamoxifen administration 
(Extended Data Fig. 6g).

DptIresCreERT2Rosa26LSLYFP mice were given tamoxifen in their chow 
for 14 days. In the 11 tissues examined, PDGFRα+ fibroblasts robustly 
expressed YFP (Fig. 2a, Extended Data Fig. 6h). Recombination effi-
ciency varied across tissues: lymph nodes exhibited the lowest propor-
tion of YFP+ fibroblasts (28.7 ± 5.5% (mean ± s.e.m.)) whereas the heart 
exhibited the highest (83.7 ± 3.1%; Fig. 2b). Other cell types expressed 
little or no YFP (Extended Data Fig. 6i, j). FACS-sorted YFP-positive 
fibroblasts (sorted 14 days after DptIresCreERT2 recombination) expressed 
higher levels of Pi16 and Col15a1 and lower levels of Ccl19 and Npnt in 
the lymph node and lung, respectively, than YFP-negative fibroblasts. 
This suggests that Dpt-expressing cells are transcriptionally distinct 
from lymph node FRCs and lung alveolar fibroblasts (Extended Data 
Fig. 6k). YFP+ and YFP− fibroblasts expressed equivalent levels of Csf1, 
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Fig. 1 | Steady-state mouse fibroblast atlas. a, Twenty-eight datasets for 
steady-state fibroblast atlas from 16 mouse tissues. b, Uniform manifold 
approximation and projection (UMAP) embedding of 120,583 single cells in the 
steady-state atlas. Ten clusters identified through graph-based clustering are 
indicated by colour. c, Heat map of the relative average expression of the most 
strongly enriched genes for each cluster (log(fold change) of one cluster versus 
all others, z-score by row) with key genes, functional annotation and tissue 
distributions listed. MSC, mesenchymal lineage cell; OLC, osteolineage cell.  
d, Pseudotime(s) visualized using principal curves representing trajectories of 
fibroblast differentiation across steady-state atlas with Pi16+ cluster set as root.
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suggesting that both Dpt+ and Dpt− fibroblasts are involved in mac-
rophage homeostasis25 (Extended Data Fig. 6l).

The distinction between universal and specialized fibroblasts 
was also observed at the protein level via YFP expression in Ccl19YFP 
(ref. 26) and Gremlin1CreERT2Rosa26LSLYFP mice27. Here, the fraction of 
YFP-expressing cells (denoting an FRC phenotype) increased from 
LY6C+SCA1+ (Pi16+) fibroblasts to LY6C−SCA1+ (Col15a1+) fibroblasts 
and further to SCA1− (specialized) fibroblasts (Fig. 2c, d, Extended 
Data Fig. 5b, c). YFP expression in DptIresCreERT2;Rosa26LSLYFP mice showed 
the opposite trend in lymph node, lung, and other tissues (Fig. 2e, 
Extended Data Fig. 5d). This evidence suggested that Dpt expression 

encompassed both of the universal fibroblast subtypes identified by 
scRNA-seq; therefore, we refer to these as Dpt+Pi16+ and Dpt+Col15a1+ 
universal fibroblasts.

Fibroblasts in perturbed mouse tissues
We next investigated how fibroblasts are affected by infection, injury, 
cancer, fibrosis, metabolic changes and arthritis (Fig. 3a). We inte-
grated 17 publicly available scRNA-seq datasets across 13 tissues to 
generate a perturbed-state fibroblast atlas (n = 99,596 cells; Fig. 3b, 
c, Extended Data Fig. 7a–c, Supplementary Table 3). This approach 
showed ten clusters: Pi16+, Col15a1+, Ccl19+, Cxcl12+, Comp+, Npnt+, 
Hhip+, Adamdec1+, Cxcl5+ and Lrrc15+ (Fig. 3b, c, Extended Data Fig. 7d, 
Supplementary Table 5). Clusters in the perturbed-state atlas dis-
played heterogeneous expression of common fibroblast-associated 
genes (Extended Data Fig. 7e). In nearly all perturbed tissues and for all 
types of inflammation, some fibroblasts occupied the universal Pi16+ 
and Col15a1+ clusters, and these clusters expressed the highest levels 
of Dpt (Extended Data Figs. 7f, 8a–o, r). The Cxcl12+, Ccl19+, Comp+, 
Npnt+, and Hhip+ clusters were similar to the analogous steady-state 
clusters with respect to gene expression and tissue distribution 
(Fig. 3b, c, Extended Data Fig. 7g). Conversely, the Cxcl5+, Adamdec1+ 
and Lrrc15+ clusters appeared to represent perturbation-specific, 
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activated fibroblast states that were not observed in the steady-state 
atlas.

Fibroblasts from early muscle injury contributed the majority of cells 
to the Cxcl5+ cluster and expressed chemokine genes such as Ccl2 and 
Ccl7 (Fig. 3c, Extended Data Fig. 8j, p). Analysis of co-regulated genes 
suggested that this cluster was driven by PI3K, TNF and NFκB signalling 
(Extended Data Fig. 8v). Cells in the Adamdec1+ cluster were from colitis 
and showed upregulation of Il11 and Grem1 (Extended Data Figs. 7f, 8e, q).  
Gene expression in these cells was associated with MAPK signalling 
(Extended Data Fig. 8v). We subjected mice to DSS-induced colitis 
and found increased expression of Grem1 in lesions as compared to 
healthy areas of the colon by RNAscope, validating the colitis-specific 
expression of Grem1 in the mouse perturbed-state atlas (Extended 
Data Fig. 8w). The Lrrc15+ cluster was composed of cells from arthritis, 
skin wound, fibrosis and small and large pancreatic ductal adenocarci-
noma (PDAC; Extended Data Figs. 7f, 8a–o). This cluster showed high 
expression of Cthrc1, Acta2, Postn and Adam12, and of collagens, which 
suggests that these cells represented myofibroblasts (Extended Data 
Fig. 8p–u). The increase in collagens and TGFβ signalling is consistent 
with previous reports10 (Extended Data Fig. 8v).

In perturbed tissues, universal Dpt+Pi16+ fibroblasts maintained 
the highest expression of stemness-associated genes (Extended Data 
Fig. 8x). Lineage inference identified trajectories from Dpt+Pi16+ through 
Dpt+Col15a1+ and then on to perturbation-specific, activated Cxcl5+ and 
Lrrc15+ clusters or the Adamdec1+ cluster (Extended Data Fig. 8y). We 
tested whether universal fibroblasts give rise to LRRC15+ myofibroblasts 
using a subcutaneous tumour model in the DptIresCreERT2;Rosa26LSLYFP 
mouse. We found that 52 ± 7% of LRRC15+ myofibroblasts were YFP+ in 
DptIresCreERT2ki/ki mice (Fig. 3d, Extended Data Fig. 8z–b′). This indicates 
that Dpt-expressing cells marked before tumour implantation can 
differentiate into LRRC15+ myofibroblasts.

Single-cell RNA-seq of human fibroblasts
We hypothesized that mice may exhibit some parity to humans in terms 
of steady- and perturbed-state fibroblast subtypes. We performed 
scRNA-seq on tumour and normal adjacent tissue (NAT) samples from 
three patients with pancreatic cancer and identified two subsets of 
fibroblasts (n = 21,262 cells; Extended Data Fig. 9a–c, Supplementary 
Tables 6, 7). Clusters c3 and c8 were annotated as cancer-associated 
fibroblasts (CAFs) and normal fibroblasts, respectively. Twelve of 
the 20 most upregulated genes in c8 were significantly upregulated 
in mouse steady-state Dpt+Pi16+ (DPT, IGFBP5, IGFBP6, C3, APOD) or 
Dpt+Col15a1+ (CXCL12, SMOC2, C7, FBLN5, MFAP4, LUM, FMO2) clusters 
(Supplementary Tables 4, 7). These 20 upregulated genes defined our 
human universal fibroblast expression module. To test whether c8 rep-
resented universal fibroblasts in humans, we inferred the abundance 
of these cells across tissues from the GTEx database (n = 5,961 samples, 
Extended Data Fig. 9d, e). We found strong (r > 0.5) co-expression of 
universal module genes in 12 human tissues, including normal pancreas 
(Extended Data Fig. 9f, g). At the single-cell level, the human univer-
sal module was observed in c8 pancreas and human adipose tissue 
(Extended Data Fig. 9h, i). We next scored samples from 122 patients 
with pancreatic cancer28 for the human universal module as well as a 
human fibroblast activation program (20 most enriched genes in c3 ver-
sus c8; Extended Data Fig. 10a). There was a strong negative correlation 
between the universal and activated gene programs (r = −0.54), which 
suggests that activation in human fibroblasts may be associated with 
loss of universal fibroblast gene expression (Extended Data Fig. 10b), 
reminiscent of the lineage relationship we observed in mice.

We investigated whether the transcriptional fibroblast subtypes we 
observed in humans had mouse orthologues and observed that the 
human c3 signature was enriched in the mouse Lrrc15+ myofibroblast 
cluster (Extended Data Fig. 10c). This was not restricted to pancre-
atic cancer14: fibroblast signatures from human rheumatoid arthritis 

(RA)7,9, interstitial lung diseases29, IPF30 and ulcerative colitis31 also 
showed localized gene expression in the mouse Lrrc15+ myofibroblast 
cluster (Extended Data Fig. 10c, Supplementary Table 8). We found 
evidence of universal fibroblasts in samples from patients with inter-
stitial lung disease29 and ulcerative colitis31 (Extended Data Fig. 10d). 
Cells described as inflammatory fibroblasts across human samples 
and indications predominantly aligned with the universal clusters of 
the mouse perturbed-state atlas7,9,11 (Extended Data Fig. 10e). We also 
observed that mouse IL-1+ CAFs10 localized to universal clusters in the 
mouse perturbed-state atlas (Extended Data Fig. 10f), suggesting that 
cells described as inflammatory fibroblasts may represent universal 
fibroblasts that have not undergone sufficient transcriptional change 
to constitute a new cell state.

Last, we composed a human perturbed-state fibroblast atlas by 
integrating c3 PDAC CAFs, colon fibroblasts from patients with coli-
tis and lung fibroblasts from individuals with non-small cell lung can-
cer (NSCLC), IPF or COVID-19 (Fig. 4a). This human perturbed-state 
atlas (n = 10,355 cells) exhibited six clusters (Fig. 4b, c, Supplementary 
Table 9). We observed expected clusters, including NPNT+ alveolar 
fibroblasts21 derived from individuals with lung disease, ADAMDEC1+ 
and CCL19+31 clusters primarily from colitis samples, and a PI16+ cluster, 
in which the human universal signature was most enriched (Fig. 4b, c,  
Extended Data Fig. 10g). We observed two myofibroblast clusters 
defined by LRRC15+ and COL3A1+ expression. LRRC15+ myofibroblasts 
were enriched in cells from individuals with pancreatic and lung cancer, 
whereas the COL3A1+ cluster was enriched in cells from patients with 
COVID-19 (Fig. 4d). Both myofibroblast subsets expressed high levels 
of collagens and ECM-modifying genes, including CTHRC1 (Extended 
Data Fig. 10h, i). The human perturbed-state atlas validated aspects 
of the mouse perturbed-state atlas, including LRRC15+ myofibroblasts 
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and ADAMDEC1+ fibroblasts, but also suggested that indication-specific 
stimuli or signal duration may drive additional myofibroblast popula-
tions in humans that were not seen in our mouse atlas.

Discussion
Fibroblasts have emerged as nexus cells that define the architecture 
of tissues, augment the function and positioning of other cell types, 
and have key roles in many diseases. We initially hypothesized that 
fibroblasts accomplish these diverse tasks through tissue-specific tran-
scriptional programming. While our initial hypothesis was supported 
by bulk sequencing modalities, scRNA-seq across mouse tissues and 
perturbations led to a different conclusion—that the fibroblast lineage 
was compartmentalized into universal and specialized (steady-state) 
or activated (perturbed-state) subtypes. It is possible that fibroblast 
subsets may exhibit additional imprinting by their tissue of residence. 
Our scRNA-seq observations were supported experimentally by the 
DptIresCreERT2 knock-in mouse. Our data suggest a paradigm in which Dpt+ 
universal fibroblasts give rise to distinct subsets of fibroblasts across 
tissues, enabling this cell lineage to give rise to phenotypes that can 
execute the myriad functions ascribed to fibroblasts in the steady-state 
and in disease. In this paradigm, diverse tissues harbour Dpt+ univer-
sal fibroblasts that can differentiate into activated fibroblasts during 
inflammation and, we speculate, into specialized fibroblasts during 
development. In this way, Dpt+ universal fibroblasts operate as resource 
cells, providing functional plasticity to the fibroblast lineage.

Our data suggest concordance between fibroblast phenotypes in 
mice and humans. We confirmed that a subset of fibroblasts in human 
tissues has transcriptional similarities to mouse universal fibroblasts. 
Examination of human datasets representing an array of diseases 
identified mouse fibroblast orthologues, suggesting that our mouse 
perturbed-state atlas provides a basis for understanding fibroblast 
subtypes in human disease states. However, we observed a unique 
myofibroblast population that was enriched in patients with COVID-19, 
relative to the other human indications we analysed, which suggests 
that important inter-species or perturbation-specific differences may 
exist as well.

Our approach to understanding fibroblasts across tissues has iden-
tified both broad similarities and essential differences. Exposing the 
contours of fibroblast gene expression across tissues and activation 
states may help to clarify fibroblast subtyping and nomenclature. Open 
questions still remain about the spatial dynamics among fibroblast 
subtypes, the existence of other subtypes not captured in these data-
sets, and the structural or immune cells that promote specialization in 
the steady-state or activation during inflammation. It remains unclear 
why two universal Dpt+ fibroblast subtypes exist, though we speculate 
that this may represent a necessary division of labour within the line-
age. Overall, the organizing principles described here may enable a 
deeper understanding of the development, evolution and behaviour 
of universal, specialized and activated fibroblasts, which may in turn 
yield dividends for human medicine.
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Methods

Mice
Wild-type mice were obtained from Jackson Laboratory ( JAX; colony 
00064) and maintained at Genentech. Ccl19YFP (ref. 32), Grem1CreERT2  
(ref. 27) and Rosa26LSLYFP mice were bred at Genentech. DptIresCreERT2 mice 
were designed, generated and bred at Genentech. Male and female mice 
aged 6–12 weeks were used for all studies. For tamoxifen-induced cre 
expression, mice were injected with 2 mg tamoxifen (Sigma, cat. T5648) 
diluted in sunflower seed oil (Sigma, cat. 88921) for 5 consecutive days 
intraperitoneally or were fed chow containing tamoxifen (Envigo, cat. 
TD.130859). All experiments were performed under protocols approved 
by the Institutional Animal Care and Use Committee at Genentech. 
Other genotypes listed in Supplementary Table 3 were not bred in 
our facility but used in the integrated single-cell RNA-seq fibroblast 
atlases. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Mouse tissue digestion and stromal cell isolation or 
identification by FACS
Tissues were isolated and fibroblasts and mesothelial cells were isolated 
as previously described15. In brief, tissues were obtained and minced, 
aside from the LN, omentum (neither minced) and bone (decapped, 
marrow removed and crushed). To isolate flank skin, hair was shaved, 
adipose tissue was removed and tissue was minced. Next, tissues were 
placed in a 15-ml conical tube with 5 ml digestion medium (RPMI + 2% 
FBS with 100 mg/ml Dispase (Life Tech., cat. 17105041), 100–200 mg/ml  
collagenase P (Roche, cat. 11249002001), and 50 mg/ml DNase I 
(Roche, cat. 10104159001)) and agitated. Tubes were placed in a 37 °C 
water bath for 15 min, and 5-ml fractions were removed and filtered  
(70 μm) into RPMI supplemented with 2% FCS (VWR) three times. 
For skin fibroblast scRNA-seq, skin was minced and digested in the 
enzymatic cocktail described above for 60 min. We used 200mg/ml 
collagenase P to isolate cells from dense tissues such as the spleen, 
liver, inguinal adipose, brown adipose and pancreas. After a single-cell 
suspension was obtained, the cells were layered on top of a 26% opti-
prep (Sigma, cat. D1556; diluted in phosphate buffered saline (PBS)) 
gradient in 15-ml conical tubes and spun at 1,500g for 15 min with slow 
acceleration and the brake off. Cells in suspension were isolated with 
a transfer pipette. After digestion, the preparations were incubated 
with Ack for 2–5 min to remove red blood cells.

Cells were labelled with the following monoclonal antibodies pur-
chased from eBioscience, BioLegend, or BD Biosciences at 1:200 for 
20–30 min, unless otherwise noted. Prior to cell surface staining with 
the following fluorescently labelled antibodies, cells were blocked 
with Fc block (2.4G2; 1:500–1:1,000, cat #553142). Surface staining for 
experiments was performed as below, unless otherwise noted: CD45 
(30-F11, cat. 564279), EPCAM (G8.8, cat. 118216), CD31 (390, cat. 612802 
or 102524), PDGFRα (AP5, cat. 135906), PDPN (8.1.1; 1:800, cat. 127410), 
LY6C (HK1.4; 1:200, cat. 45-5932-82), SCA1 (D7; 1:200, cat. 108131), CD24 
(M1/69; 1:200, cat. 612832) or LRRC1510 (1:200, in-house). Live cells were 
identified by washing after Fc block and incubation with Fixable Viabil-
ity Dye Violet (Invitrogen, cat. L34955, 1:1,000) before surface staining 
or incubation with calcein blue (Invitrogen, cat. C1429, 1:1,000) after 
surface staining. Data were acquired on a Fortessa, Symphony or LSRII 
(BD Biosciences) and analysed using FlowJo (Tree Star, v9.9.6) or cells 
were sorted on a Fusion or Aria (BD Biosciences). Data were presented 
using Prism (Graphpad, v9).

qPCR, RNA extraction and cDNA synthesis
For each qPCR experiment, organs from 3–5 mice were pooled, digested 
and sorted by FACS. Total RNA was extracted from FACS-sorted cells 
using a QIACube HT with the RNeasy Plus Mini Kit (QIAGEN, cat. 
74134). cDNA were synthesized using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, cat. 4368814) with an RNase 
Inhibitor (Applied Biosystems, cat. N8080119). Each cDNA sample 
was diluted 1:200–1:300 in RNase-free water before use in qPCR. 
qPCR was conducted using TaqMan Gene Expression Assay Probes 
for the genes Pi16 (Mm00470084_m1), Col15a1 (Mm00456551_m1), Dpt 
(Mm01273496_m1), Npnt (Mm00473794_m1), Ccl19 (Mm00839967_g1), 
Csf1 (Mm00432686_m1) and Gapdh (Mm99999915_g1). Each TaqMan 
probe was diluted 1:10 in TaqMan Fast Advanced Master Mix (Ther-
moFisher, cat. 4444557) to create a TaqMan probe working solution. 
All qPCR reactions were carried out in a MicroAmp optical 384-well 
reaction plate. qPCR was performed using the QuantStudio 5 (Applied 
Biosystems) under the following cycling conditions: 1 cycle of 50 °C for 
2 min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 
60 °C for 1 min. The relative expression values were determined by: 
1) subtracting the average Ct value of the gene of interest (GOI) from 
Gapdh (Gapdh − GOI) for each sample and 2) raising 2 to the power 
of (Gapdh − GOI). Data were presented using Prism (Graphpad, v9). 
Data points were called non-detectable if Ct values were over 36 or if 
replicates had a standard deviation greater than 1.

Mouse scRNA-seq and cell hashing
Cells hashtagged with unique barcoded antibodies (Biolegend) were 
processed using Chromium Single Cell Gene Expression 3′ v3 Library 
and Gel Bead Kit following the manufacturer’s instructions (10X Genom-
ics, Cat. PN-1000075). Cells were counted and checked for viability 
using Vi-CELL XR cell counter (Beckman Coulter), and then injected 
into microfluidic chips to form Gel Beads-in-Emulsion (GEMs) in the 
10X Chromium instrument. Reverse transcription (RT) was performed 
on the GEMs, and RT products were purified and amplified. DNA from 
antibody-derived tags (ADTs) was separated from cDNA based on size 
selection using SPRIselect beads (Beckman Coulter, cat. B23318). 
Expression libraries and ADT libraries were generated and profiled 
using the Bioanalyzer High Sensitivity DNA kit (Agilent Technologies, 
cat. 5067-4626) and quantified with Kapa Library Quantification Kit 
(Roche, cat. 07960255001). Illumina HiSeq and NovaSeq (Illumina) 
were used to sequence the libraries.

Tissue processing for histology
The small intestine or colon was removed, flushed with 10% neutral 
buffered formalin, and then cut into 1-inch-long strips from the duo-
denum, jejunum, ileum, and colon. The lung was removed and flushed 
with 10% neutral buffered formalin to inflate the tissue. A suture was 
then tied to the trachea to ensure the tissue stayed inflated while fix-
ing in 10% neutral buffered formalin for 24 h. After fixation, the sam-
ples were transferred to 70% ethanol for 24 h and then processed for 
paraffin embedding. Once embedded, the blocks were trimmed on 
a Leica RM-2245 microtome until the centre of tissue was reached. 
Five-micrometre-thick sections were then collected for downstream 
analysis.

RNAscope in situ hybridization
In situ hybridization (ISH) was performed using reagents and protocols 
from Advanced Cell Diagnostics (ACD). After sectioning, the slides 
were allowed to dry for 24 h before baking in an oven at 60 °C for 1 h. 
Sections were then rehydrated in two washes of xylene for 5 min each 
followed by two washes in 100% ethanol for 1 min each. After rehydra-
tion, endogenous peroxidase activity was quenched with hydrogen 
peroxide before the sections were boiled in antigen retrieval buffer 
(ACD, cat. 322500) for 15 min. After antigen retrieval, the sections were 
digested with proteinase (ACD, cat. 322330) for 25 min at 40 °C. After 
digestion, slides were washed twice for 1 min with ISH wash buffer 
(ACD, cat. 310091) then hybridized with probes of interest (Grem1-C1, 
cat. 314741; Dpt-C1 probe, 451311; Pi16-C1 and C2 probe; 451311 (C1) 
and 451318 (C2)) for 2 h at 40 °C. After hybridization, amplification 
steps were completed according to the ACD protocol. After the final 



amplification incubation, signal was detected with HRP-conjugated 
DAB (ACD, cat. 322360 and 322500), counterstained with haematoxylin 
for 30 s, then baked in an oven at 60 °C for 15 min before mounting with 
non-aqueous mounting medium.

DSS-induced colitis
We added 3% (w/w) colitis-grade DSS (MP Biosciences, cat. 9011-18-1) to 
the drinking water for 7 days and then euthanized the animals and pro-
cessed tissues for histology. The water was weighed daily to determine 
the average water consumption per cage. Mouse bodyweights were 
recorded daily and mice that lost 20% or more of their body weights 
were euthanized following IACUC standards

Generation of DptIresCreERT2 knock-in mouse
Homologous recombination and mouse embryonic stem (ES) cell tech-
nology33–35 were used to generate a genetically modified mouse strain 
with a DptIresCreERT2 knock-in. A gene-targeting vector was constructed 
with a 1,928-bp 5′ arm of homology corresponding to GRCm38/mm10 
chr1: 164,821,309–164,823,236 and a 1,810-bp arm of 3′ homology 
corresponding to chr1: 164,823,237–164,825,046. IRES-CREERT2-SV
40-FRT-pgk-neo-FRT was inserted immediately after the STOP codon 
(TAG) of exon 4. The final vector was confirmed by DNA sequencing, 
linearized and used to target C2 (C57BL/6N) ES cells using standard 
methods (G418 positive and ganciclovir negative selection)36.

C57BL/6N C2 ES cells37 were electroporated with 20 μg linearized 
targeting vector DNA and cultured under drug selection essentially 
as described38. Positive clones were identified using long-range PCR 
followed by sequence confirmation. Correctly targeted ES cells were 
subjected to karyotyping. Euploid gene-targeted ES cell clones were 
treated with Adeno-FLP to remove PGK neomycin, ES cell clones were 
tested to identify clones with no copies of the PGK neomycin cassette, 
and the correct sequence of the targeted allele was verified. The pres-
ence of the Y chromosome was verified before microinjection into 
albino BALB/c embryos. Germline transmission was obtained after 
crossing the resulting chimaeras with C57BL/6N females. Genomic 
DNA from pups born was screened by long-range PCR to verify the 
desired gene targeted structure before mouse colony expansion. For 
genotyping, the following primers were used: 5′-CGCCAGTGGAAGTTCA 
-3′, 5′-TATAGGAACTTCGCTCGC -3′ and 5′-GTGCTGTGCAAGGAAG-3′ 
amplified 329-bp wild-type and 278-bp knock-in DNA fragments.

Tumour inoculation
Age-matched 6–10-week-old DptIresCreERT2wt/wtRosa26LSLYFP and DptIresCreERT2ki/ki 
Rosa26LSLYFP mice received tamoxifen injections for 5 days, rested for 
13–14 days and were inoculated subcutaneously in the right unilateral 
flank with 1 × 105 KPR3070 tumour cells suspended in Hanks’s buffered 
saline solution and phenol-red-free Matrigel (Corning, cat. 356237). 
Tumours were removed 21 days after implantation.

Human patient information
Pancreatic cancer sample collection was approved by the Ethics Com-
mittee of Beijing Cancer Hospital. All patients in this study provided 
written informed consent.

Human tissue digestion and stromal cell isolation
Samples were obtained and sequenced by Analytical Biosciences. Single 
cells were dissociated from tumour and adjacent non-cancer tissues as 
described previously39. In brief, tumours and adjacent non-cancer tis-
sues were cut into approximately 1–2-mm3 pieces in RPMI-1640 medium 
(Gibco) and enzymatically digested with gentleMACS (Miltenyi) for 60 
min on a rotor at 37 °C, according to the manufacturer’s instructions. 
The dissociated cells were subsequently passed through a 100-μm 
SmartStrainer and centrifuged at 400g for 5 min. After the supernatant 
was removed, the pelleted cells were suspended in red blood cell lysis 
buffer (TIANDZ) and incubated on ice for 1–2 min to lyse red blood 

cells. After being washed twice with 1 × PBS (Gibco), the cell pellets 
were re-suspended in sorting buffer (PBS supplemented with 1% fetal 
bovine serum (FBS, Gibco)).

Single-cell suspensions were stained with antibodies against CD45 
and 7AAD for FACS sorting, performed on a BD Aria SORP instrument. 
Based on FACS analysis, single cells were sorted into 1.5-ml tubes 
(Eppendorf) and counted manually under the microscope. The con-
centration of single cell suspensions was adjusted to 500–1,200 cells 
per μl. Cells were loaded at between 7,000 and 15,000 cells per chip 
position using the 10X Chromium Single cell 5′ Library, Gel Bead & 
Multiplex Kit and Chip Kit (10X Genomics, V1.0 barcoding chemistry) 
according to the manufacturer’s instructions. All the subsequent steps 
were performed following the standard manufacturer’s protocols. Puri-
fied libraries were analysed using an Illumina Hiseq X Ten sequencer 
with 150-bp paired-end reads.

Mouse bulk RNA-seq analysis
For ex vivo bulk RNA-seq, cells were isolated and stained as described 
above. Each tissue was represented by 2–3 individual replicates that 
were each derived by pooling tissues from 3–5 mice and FACS sorting 
cells directly into Trizol (Invitrogen, cat. 15596026). In some cases, lysed 
cells from at least three independent experiments were pooled for one 
replicate. In total, RNA was generated from an average of 35,195 ± 7,357 
(mean ± s.e.m.) fibroblasts and 17,318 ± 7,618 mesothelial cells. RNA was 
isolated as described40 or at Expression Analysis, Inc.

Paired-end RNA-seq libraries were constructed from at least 747 pg 
of RNA using the SMART-Seq v4 ULTRA Low Input RNA Kit for Sequenc-
ing (Takara, cat. 634891) and NexteraXT kits (Illumina, cats. FC-131-
1096 and FC-131-2001) for Low Input RNA Kits. Libraries were then 
sequenced on an Illumina HiSeq yielding, on average, 35 million read 
pairs (2 × 50 bp) per sample. Reads were aligned to the GENCODE basic 
mouse transcriptome index (M14) and transcript levels quantified using 
salmon with parameters --type quasi -k 25. Subsequently, counts were 
transformed into gene-level counts in R using the tximport (https://
bioconductor.org/packages/release/bioc/html/tximport.html) pack-
age. Differential expression analysis taking batches into account was 
carried out on the gene by sample count matrix with DESeq241, using 
a design of ~0 + condition + batch having a coefficient for each level of 
condition. For principal component analysis (PCA), log-transformed 
normalized counts (lengthScaledTPM) were batch corrected using 
Combat42 and PCA was performed in the space of variable genes (coef-
ficient of variation >0.3). Gene set enrichment analysis (GSEA) using 
the fgsea method43 was performed on genes ranked by their principal 
component 1 loadings using the top 20 marker genes for Pi16+ and 
Col15a1+ clusters from the steady-state fibroblast atlas.

Mouse bulk ATAC–seq analysis
For ex vivo bulk ATAC–seq, cells were isolated and stained as described 
above. Each tissue was represented by 2–4 individual replicates that 
were each derived by pooling tissues from 3–5 mice and FACS-sorting 
fibroblasts. On average, 28,455 cells (± 5,325 (s.e.m.)) were sorted per 
tissue. These cells were then frozen in Gibco Recovery Cell Culture 
Freezing Medium (ThermoFisher, cat. 12648010). The cells were then 
thawed in a 37 °C water bath, pelleted, washed with cold PBS, and tag-
mented as previously described44, with some modifications45. In brief, 
cell pellets were resuspended in lysis buffer, pelleted, and tagmented 
using the enzyme and buffer provided in the Nextera Library Prep Kit 
(Illumina, cat. FC-121-1031). Tagmented DNA was then purified using 
the MinElute PCR purification kit (Qiagen, cat. 28004), amplified with 
10 cycles of PCR, and purified using Agencourt AMPure SPRI beads 
(Beckman Coulter, cat. A63882). The resulting material was quanti-
fied using the KAPA Library Quantification Kit for Illumina platforms 
(Roche, 07960255001), and sequenced with PE42 sequencing on the 
NextSeq 500 sequencer (Illumina), with 42-bp paired-end reads. Library 
preparation and sequencing was performed by ActiveMotif, Inc.

https://bioconductor.org/packages/release/bioc/html/tximport.html
https://bioconductor.org/packages/release/bioc/html/tximport.html
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Reads were aligned to the GRCm38/mm10 build of the mouse genome 

using GSNAP46 with parameters -M 2 -n 10 -B 2 -i 1 --pairmax-dna = 1000 
--terminal-threshold = 1000 --gmap-mode = none --clip-overlap. Read 
pairs that aligned concordantly and uniquely to a single genomic 
location were retained for downstream analysis. PCR duplicates were 
removed using Picard MarkDuplicates (http://broadinstitute.github. 
io/picard/). Library depth-corrected coverage bigwig files were 
obtained to visualize the regions of interest.

OCR identification
Open chromatin regions (OCRs) were identified as peaks on individual 
replicates and pooled samples combining the replicates of a given tissue 
using MACS247, with parameters macs2 callpeak -f BAM --call-summits 
--nomodel–shift -95 --extsize 199 --keep-dup all -p 0.1 --call-summits 
(these choices of the shift and extsize parameters correct for the 
+5/−4 bp transposase insertion offset). The irreproducible discovery 
rate (IDR) pipeline48 was used to assess peak concordance between the 
individual replicates of a given tissue, and these IDR estimates were 
subsequently appended to the associated pooled peaks. Robust peaks 
per tissue were defined as pooled peaks that overlapped at least 50% 
of a peak from at least two individual replicates and that passed an IDR 
threshold of 0.1. All robust peaks across all tissues were first centred 
on their summits (summit ± 199 bp) and then those that overlapped 
mitochondrial and noncanonical chromosomes were removed. Finally, 
all remaining peaks were merged to obtain the final set of all accessible 
regions (n = 207,803). Per sample, reads that overlapped each region in 
the atlas were counted using the bedtools command multiBamCov49. 
To find tissue-specific OCRs, differential accessibility analysis was 
conducted on the count matrix using DESeq241, where the accessibil-
ity (that is, overlapping read count) of a given region in each tissue 
was compared against the count for that region in all other tissues. In 
this setting, the tissue-specific OCRs were defined according to the 
following criteria: log2(fold change) ≥ 2, adjusted P value ≤ 0.01. In 
addition, for each tissue a nondifferential/insignificant OCR set was 
defined according to: −0.585 ≤ log2(fold change) ≤ 0.585, q value > 0.05.

Motif enrichment analysis
For motif enrichment analysis, for each tissue-specific OCR set, an 
equally sized matched background set was selected on the basis of 
region length and GC content from among the nondifferential/insig-
nificant OCRs, using MatchIt50. AME51 from the MEME suite was used 
with default settings to assess the enrichment of a set of 321 position 
weight matrices (PWMs) from Homer (http://homer.ucsd.edu/homer/) 
in the tissue-specific OCR sets versus the background sets. Specifi-
cally, Fisher’s exact test was used to compare the number of matches 
to a given PWM in the specific set versus the background set, and to 
assess statistical significance. Enriched PWMs were reported based on 
an adjusted P value threshold of 0.05.

ATAC–seq and RNA-seq concordance
To compute the correlation of log2(fold changes) inferred from the 
ATAC–seq and RNA-seq differential analyses, the ATAC–seq final atlas 
peaks were assigned to the gene with the closest transcription start site 
(TSS), using Gencode mouse M14 annotations and a distance threshold 
of 50 kb. Following the assignment, genes and atlas peaks with absolute 
log2(fold change) ≥ 1 and q value ≤ 0.05 in a given tissue were used in 
the correlation calculation.

An additional analysis to infer concordance between ATAC–seq and 
RNA-seq datasets was the BETA52 analysis, which takes a set of peaks 
(tissue-specific OCRs from ATAC–seq) and differential gene expression 
results from RNA-seq. In short, BETA calculates a regulatory poten-
tial score based on the number of peaks in a fixed window (100 kb by 
default) around each gene TSS and ranks the genes on the basis of this 
score. For each top gene set based on that rank, it calculates the percent-
age of the total up- and downregulated genes, as well as unregulated 

background genes, to provide P values for the overall up- or downregu-
lation potential of the whole peak set. BETA was used with parameters 
-k BSF -g mm10 -n basic --df 0.1, for all pairwise tissue combinations, so 
for both matching and non-matching tissues.

Mouse scRNA-seq meta-analysis
The steady-state fibroblast atlas was composed of 28 datasets10,18–21,31,53–70 
and the perturbed-state fibroblast atlas was composed of 17 data-
sets10,18,21,31,53–58,61,69–71. Integrated fibroblast atlases at steady and per-
turbed states were generated and analysed using the following steps: 
(1) processing and filtering individual scRNA-seq datasets from healthy 
and diseased tissues; (2) integrating healthy and diseased datasets 
separately to generate steady- and perturbed-state atlases; (3) cluster-
ing and annotation; and (4) trajectory inference. The aforementioned 
steps are described in detail in the following sections.

(1) Processing and filtering individual scRNA-seq datasets. Single 
cell transcriptomics datasets, enriched in non-haematopoietic cells, 
generated using 10X Genomics and available as processed CellRanger 
files, were collected from public repositories and in-house lab datasets 
(Supplementary Table 3). For public datasets where processed files 
were not made available, we analysed raw data using cellranger count 
(CellRanger 2.1.0, 10X Genomics) using a custom reference package 
based on mouse reference genome GRCm38. A total of 32 scRNA-seq 
datasets representing multiple tissues and perturbations were analysed 
individually. In order to ensure comparability, for every individual 
dataset, we retained genes found in the Ensembl mouse (GRCm38) 
gene model, followed by implementing the Seurat single-cell analysis 
pipeline (version 3.9.9.9010)72,73 in R (version 4.0.0). Specifically, for 
each dataset we filtered low quality cells with <500 measured genes and 
a high percentage of mitochondrial contamination (>~5–20%, depend-
ing on the dataset). After filtering, data in each cell were normalized to 
log(CPM/100+1), the 2,000 most variable genes were identified, and 
the expression levels of these genes were scaled before performing 
PCA in variable gene space. Next, 20 principal components were used 
for graph-based clustering (resolution = 0.1) and UMAP dimensionality 
reduction was computed. All steps were performed using functions 
implemented in the Seurat package (NormalizeData, FindVariableFea-
tures, ScaleData, RunPCA, FindNeighbours, FindClusters, RunUMAP) 
with default parameters, except where mentioned. Cell clusters marked 
by the canonical marker gene for immune cells, Ptprc (Cd45), were 
discarded. All individual datasets devoid of Cd45+ cells were then used 
for integration to create two main atlases: (1) a steady-state fibroblast 
atlas comprising data from healthy tissues; and (2) a perturbed-state 
fibroblast atlas comprising data from diseased and inflamed tissues.

(2) Dataset integration for steady- and perturbed-state atlases. 
Before dataset integration, we imported the aforementioned filtered, 
non-processed Seurat objects (not scaled) of healthy and diseased 
datasets, and determined a common gene space by retaining only 
those genes that were measured across all datasets (21,087 genes). 
Next, individual healthy and diseased Seurat objects were merged 
separately into two different steady- and perturbed-state objects, re-
spectively. Each of these merged objects was normalized (function 
NormalizeData, method = ‘LogNormalize’, scale.factor = 10,000), and 
scaled to regress out the stress gene signature (computed using Seurat’s 
AddModuleScore) of subpopulations affected by tissue dissociation 
methods74 before we performed PCA for the most variable genes. These 
processed, merged objects were next used for batch effect correction 
and integration using Harmony75 (version 1.0). We adjusted the diversity 
clustering penalty parameter, theta, to 1. We then provided the top 20 
harmony dimensions as an input for UMAP and visualized the first two 
UMAP dimensions at a clustering resolution of 0.1 for the Cd45− atlases. 
Next, we identified distinct cell types using canonical marker genes 
such as Sparc, Col3a1, Dcn (fibroblasts), Epcam (epithelial cells), Alb 
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(hepatocytes), Pecam1 (endothelial cells), Msln (mesothelial cells), Rgs5 
(mural cells: pericytes), Myh11 (mural cells: smooth muscle cells), Top2a 
and Mki67 (proliferating cells), and Cd24a (remnant immune cell popu-
lations) (Extended Data Figs. 3a–c, 7a–c). The computational pipeline 
for integration was iterated twice to generate the fibroblast atlases.

Specifically, at each of the following steps non-relevant or 
unwanted cell types were filtered followed by recalculation of the 
variable gene space, batch-effect correction and clustering to gener-
ate fibroblast-specific atlas for steady- and perturbed state: (1) a Cd45− 
steady- and perturbed-state atlas comprising 180,922 and 182,609 cells, 
respectively, and (2) a fibroblast-specific steady- and perturbed-state 
atlas comprising 120,697 and 99,596 cells, respectively, after selecting 
for Dpt+Pdgfra+ fibroblast clusters from Cd45− atlases and discarding 
other stromal cells including endothelial and mesothelial cells, peri-
cytes, smooth muscle cells and clusters with <1,000 cells.

(3) Clustering and annotation of steady- and perturbed-state  
fibroblast atlases. Each fibroblast atlas was constructed from its Cd45− 
counterpart, in which the top 40 harmony dimensions were provided 
as an input for UMAP and visualized at a clustering resolution of 0.2. 
Differential gene expression was computed using the Seurat function 
FindAllMarkers using a Wilcoxon rank sum test and corrected for mul-
tiple testing using the Bonferroni method.

Gene expression scores were computed using Seurat’s AddModuleS-
core function, visualized using VlnPlot or DotPlot. To determine mark-
ers for specialized or activated clusters relative to universal fibroblasts 
we used the Seurat function FindMarkers with default parameters. Next, 
we scored bulk tissue-specific signatures in the steady-state atlas, com-
puted average scores per tissue signature across tissues represented in 
the steady-state atlas and visualized them using the ComplexHeatmap 
function Heatmap. We implemented the ClusterMap76 algorithm using 
default parameters to identify matching steady- and perturbed-state 
clusters. ClusterMap compares clusters among two or more datasets 
via hierarchical clustering based on the binary expression patterns of 
marker genes. Next, similarity scores of matched clusters are deter-
mined from the clustering results.

To infer the activity of signalling pathways that govern different fibro-
blastic cells at steady state and after perturbation, we implemented the 
Bioconductor package PROGENy (1.10.0)77. For both fibroblast atlases, 
we implemented the same strategy. First, we down-sampled each atlas 
using the Seurat function subset with parameters ‘WhichCells(object, 
downsample, seed = 1)’ followed by implementing the function progeny 
with default parameters ‘scale = TRUE, organism = “Mouse”, top = 100, 
perm = 1, return.assay = TRUE’. We then summarized the progeny scores 
by cell population and visualized them as a heatmap using the func-
tion pheatmap.

(4) Pseudotime reconstruction and trajectory inference. Single-cell 
pseudotime trajectories for both steady and perturbed state maps 
were computed using the algorithm slingshot (version 1.6.1), which 
enables computation of lineage structures in a low-dimensional space78. 
Specifically, slingshot was implemented in the analysis pipeline after 
dimensionality reduction and clustering of the integrated object. Each 
fibroblast object was first downsampled before trajectory inference. 
Pre-computed cell embeddings and clusters from the Seurat pipeline 
served as an input to the function slingshot (reducedDim = ‘UMAP’, 
clusterlabels = object$ RNA_snn_res.0.2, start.clus = “Pi16”, extend = 'n', 
stretch = 0). The start cluster was chosen using prior biological knowl-
edge and the expression of genes such as Cd34 and Ly6a, known markers 
of progenitor-like cells. The wrapper function slingshot then performed 
lineage inference by treating clusters as nodes and constructing a mini-
mum spanning tree (MST) between the nodes. Next, lineages or trajec-
tories were defined by ordering clusters via tracing paths through the 
MST. Finally, individual pseudotime(s) were visualized using principal 
curves on the full fibroblast object.

Human scRNA-seq meta-analysis
A human perturbed-state fibroblast atlas was constructed using 
scRNA-seq datasets generated with the 10X technology, from dis-
ease indications such as PDAC, idiopathic pulmonary fibrosis(IPF)29, 
COVID-1979 and ulcerative colitis31 or SMART-seq2 technology in 
non-small cell lung carcinoma (NSCLC)80. Individual datasets were 
processed according to the description provided in ‘(1) Processing 
and filtering individual scRNA-seq datasets’, with the exception that 
LUM+ fibroblasts were retained per dataset before final integration. 
Specifically, for COVID-19 we used data from individuals who had died 
from severe COVID-19-associated pneumonia. Next, we down-sampled 
the COVID-19 dataset to 2,500 cells, in order to mitigate the effects of 
over-representation of a dataset due to high cell number contribu-
tion. We then aggregated all the datasets, chose a common gene space 
(~17,000) and implemented the same pipeline as described in the sec-
tion ‘(2) Dataset integration for steady- and perturbed-state atlases’. 
We adjusted the diversity clustering penalty parameter, theta, to 1, 
provided the top 30 harmony dimensions as an input for UMAP, and 
visualized the first two UMAP dimensions at a clustering resolution of 
0.2. Differential gene expression analyses and visualization of markers 
were performed using Seurat functions described above. Note, in this 
meta-analysis we used datasets generated using 10X and SMART-seq2 
technologies across a common cell type, fibroblasts. This is because 
a benchmarking study demonstrated the superior performance of 
Harmony batch-effect correction using single-cell data generated on 
different platforms for an identical cell type81.

Bioinformatics data processing of human data
For the human pancreatic cancer single-cell data generated in our 
laboratory, raw sequencing data were transformed into FASTQ for-
mat with CellRanger’s (v2.1) mkfastq command, mapped to the human 
genome (GRCh38), and quantified with CellRanger count using default 
parameters. Quantified UMI count matrices from each patient were 
merged in R and analysed with the Seurat package (v 3.1.4). First, cells 
with <500 measured genes, or <2,700 UMIs, or >10% mitochondrial 
counts were removed from the dataset. In the resulting filtered data-
set, data in each cell were normalized to log(CPM/100 + 1), the 2,000 
most variable genes were identified, and the expression levels of these 
genes were scaled before PCA in the space of the most variable genes. 
Subsequently, 30 principal components were used for graph-based 
clustering (resolution = 0.1) and UMAP dimensionality reduction. All 
steps were performed with the methods implemented in the Seurat 
package (NormalizeData, FindVariableFeatures, ScaleData, RunPCA, 
FindNeighbours, FindClusters, RunUMAP) and default parameters, 
except for parameters mentioned above. Markers for each cluster 
were identified using the FindAllMarkers function, limiting the maxi-
mum number of cells per cluster to 1,000 for runtime improvement. 
Genes that were differentially expressed between clusters 3 and 8 were 
detected using the FindMarkers function and default parameters. To 
map human expression signatures onto the mouse perturbed state 
map, human gene symbols were translated to their mouse orthologues 
and an enrichment score for the gene signature was calculated using 
Seurat’s AddModuleScore function. Gene sets were identified within 
referenced papers (Supplementary Table 8).

Pseudo-bulk samples for co-expression analysis were generated from 
the human single-cell dataset using the following strategy: we randomly 
sampled 10% of cells from the pancreatic cancer single-cell dataset and 
pooled their reads into a bulk profile, which was subsequently normal-
ized to log2(CPM). Using this strategy, we generated 100 bulk RNA-seq 
profiles with known proportions of cells from individual single-cell clus-
ters. This allowed us to compare the expression of individual cluster  
8 marker genes across pseudo-bulk samples both pairwise between genes 
and to the known cell type proportion of cluster 8 in the pseudo-bulks. 
Next, we generated similar bulk samples, but this time excluding cells 
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from cluster 8 in the sampling process. On these samples we again cal-
culated gene-by-gene correlation coefficients for C8 marker genes and 
compared the distributions of pairwise correlation coefficients to the 
distributions in the pseudo-bulk containing cells from cluster 8.

GTEx bulk RNA-seq data for normal tissues were obtained as 
batch-corrected, log-normalized counts from the UCSC Xenabrowser82. 
Pairwise correlations were visualized with the corrplot (https://
cran.r-project.org/web/packages/corrplot/) package. For cross-tissue 
correlation analyses, only tissues with a median DPT expression >7.5 
were considered. In this analysis, the top 20 marker genes for cluster 8 
of the single-cell dataset ordered by log(fold change), which were found 
in fewer than 15% of other cells, were used. For deconvolution of micro-
dissected PDAC stromal samples, raw expression counts per sample 
(n = 122) were downloaded from GEO (GSE93326). Data were normalized 
to log2(CPM + 1). Scores for cluster 8- and cluster 3-derived expression 
signatures (described above) in these bulk samples were calculated 
based on the average expression of the 20 most upregulated genes 
from the respective single-cell cluster (ordered by log(fold change), 
only genes expressed in at most 30% of other cells were considered).

Pseudo-bulk analytical strategy
We first generated 100 pseudo-bulk RNA-seq profiles from our single-cell 
dataset with varying numbers of cells from individual single-cell clusters 
(Extended Data Fig. 9d, top). We observed that the expression of marker 
genes for fibroblast cluster 8 co-varied depending on the number of cells 
from cluster 8 in the bulks. As a consequence, their expression profiles 
were strongly correlated, but only if cells from cluster 8 were added to 
the pseudo-bulk. Leaving cells from cluster 8 out resulted in an extensive 
drop in gene-wise correlations to close to 0. Therefore, co-expression of 
a single-cell-derived marker gene set can be used to infer the presence 
or absence of a particular cell population in bulk RNA-seq.

Projection of human gene sets onto mouse perturbed-state atlas
Gene expression signatures from human scRNA-seq datasets (Sup-
plementary Table 7) corresponding to different fibroblast types were 
scored on the perturbed state atlas using the Seurat function AddMod-
uleScore. The density of cells with the highest activation score (top 
25th percentile for all clusters except in the Comp cluster (where we 
visualized the top 5th percentile)) was visualized using the function 
LSD::Heatscatter.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw and processed RNA-seq, ATAC–seq and mouse healthy skin 
scRNA-seq datasets are available from the ArrayExpress repository 
under the accession numbers E-MTAB-10324, E-MTAB-10316 and 
E-MTAB-10315, respectively. Supplementary Table 3 lists the studies 
used to generate the Cd45− maps and fibroblast atlases. These inte-
grated scRNA-seq objects used for analysis are provided in an online 
resource that can be accessed at https://fibroXplorer.com. Human 
pancreatic cancer single-cell data are available in the EGA database 
under accession EGAD00001005365. Source data are provided with 
this paper.

Code availability
No new algorithms were developed for this manuscript. All code gener-
ated for analysis is available from the authors upon request.
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Extended Data Fig. 1 | Mouse fibroblast bulk RNA-seq and ATAC–seq.  
a, Diagram of tissues isolated for bulk RNA-seq and ATAC–seq (adipose tissue 
(brown, subcutaneous, epididymal), bone, liver, lung, lymph node, mesentery, 
omentum and pancreas) and experimental scheme. b, Correlation plot of bulk 
RNA sequencing samples based on top 1,000 most differentially expressed 
genes. c, Fraction of ATAC–seq reads identified as PCR duplicates, 
mitochondrial DNA, or unique non-duplicate non-mitochondrial DNA based on 

genomic mapping. d, Fragment lengths of ATAC–seq samples. e, Number of 
called peaks across ATAC–seq samples. Atlas describes the universe of all 
peaks. f, Distribution of ATAC–seq peaks across genomic regions. g, Aggregate 
signal around the TSS. SLN_2 samples shown, representative of all other 
samples. h, Heatmap of pairwise correlation coefficients of ATAC–seq 
samples. Ing, subcutaneous adipose; Epi, epididymal adipose; Panc, pancreas; 
Om, omentum; SLN, lymph node.



Extended Data Fig. 2 | Bulk gene expression and open chromatin. a, Heat 
map depicting enriched genes per tissue by bulk RNA-seq. Adjusted P ≤ 0.05, 
log2(fold change) ≥ 2 (DESeq2, two-sided). Row z-scored. Top, bar plot 
depicting number of signature genes per tissue. b, Heat map depicting regions 
of open chromatin per tissue by bulk ATAC–seq. Adjusted P ≤ 0.01, log2(fold 
change) ≥ 2 (DESeq2, two-sided). Row z-scored. Top, bar plot depicting number 
of open chromatin regions per tissue. c, Correlation (top) and BETA analysis 

(bottom) of bulk RNA-seq and ATAC–seq samples. d, BETA analysis of SLN 
evaluating enriched gene expression compared to enriched SLN OCRs. These 
data are representative of the rest of the dataset. e, Number of transcription 
factor binding motifs in signature OCRs per tissue. f, Statistical inference of 
transcription factor motif enrichment in fibroblasts. Bar colours denote RNA 
expression of transcription factor. Subcut., subcutaneous adipose; LN, lymph 
node.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Steady-state fibroblast and Cd45− atlases. a, UMAP 
embedding of 180,922 single cells in steady-state Cd45− atlas. Fourteen clusters 
identified through graph-based clustering are indicated by colour. b, Relative 
abundance of each tissue in steady-state Cd45− UMAP clusters. The sizes of 
bubbles indicate the contributions of cells from each tissue to a cluster, and 
grey bubbles indicate lack of contribution (number of cells <0.02% of tissue)  
of that tissue to the corresponding cluster. Graph to be read column-wise.  
c, Fibroblast- and other lineage-associated genes (in grey) in steady-state Cd45− 
atlas. The sizes of circles denote the percentages of cells from each cluster, and 
colour encodes the average expression across all cells within a cluster. The 
colour scale shows the expression level based on row z-score. d, Average bulk 
tissue-specific fibroblast gene signature scores across tissues represented in 
the steady-state atlas. Mean-centred values shown. e, Expression of cluster 
hallmark genes in steady-state fibroblast atlas. The sizes of circles denote the 
percentages of cells from each cluster, and colour encodes the average 
expression across all cells within a cluster. The colour scale shows the 

expression level based on row z-score. f, Expression of fibroblast- and other 
lineage-associated genes (in grey). Circle sizes denote percentages of cells 
from each cluster, and colour encodes average expression across all cells 
within cluster. Colour scale shows expression level (z-score by row). g, Relative 
abundance of each tissue in steady-state fibroblast UMAP clusters. The sizes of 
bubbles indicate the contributions of cells from each tissue to a cluster, and 
grey bubbles indicate lack of contribution (number of cells <0.02% of tissue)  
of that tissue to the corresponding cluster. Graph to be read column-wise.  
h, Expression of pathway-responsive genes in perturbed-state atlas clusters as 
assessed by PROGEN(y) analysis (z-scored per row). i, Volcano plot comparing 
genes enriched in Pi16+ cluster (left; blue) to Col15a1+ cluster (right; red). Select 
genes are labelled. Dots labelled in red or blue were determined as having a 
log2(fold change) of greater than 1 or less than −1 and an adjusted P value less 
than or equal to 0.05 (Bonferroni correction). j, Expression of Ly6a and Cd34 in 
steady-state clusters. Wilcoxon’s rank sum test P < 0.05.
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Extended Data Fig. 4 | Bulk sequencing validates single-cell atlas.  
a–p, UMAPs highlighting distribution of cells from individual tissues in the 
steady-state fibroblast atlas. q, PCA of FACS-sorted bulk RNA-seq of fibroblasts 
and mesothelial cells, calculated for the 1,000 genes with the highest 
interquartile range. Circles represent fibroblasts and triangles are mesothelial 
cells. Each colour denotes a different tissue. r, Heatmap depicting top 20 Pi16+ 
(fibroblast) and Col15a1+ genes from steady-state fibroblast atlas in bulk 

RNA-seq data. Rows are z-scored. s, Gene enrichment analysis of top genes 
(log(fold change) > 0.5) from Pi16+ cluster and Col15a1+ cluster in loadings of 
PC1, which discriminates between mesothelial cells and fibroblasts (test: 
FGSEA, Benjamini–Hochberg correction). t, ATAC–seq traces of select genes 
from Pi16+ and Col15a1+ clusters genes, Ptprc (encoding CD45) and Hprt at ±2 kb 
of the TSS.



Extended Data Fig. 5 | Supplementary FACS gating. a, Representative FACS 
gating of live EpCAM−CD45−CD31−PDPN+PDGFRα+ fibroblasts in Figs. 2, 3, 
Extended Data Figs. 8, 9. b, c, Representative FACS gating on LY6C+SCA1+ (red), 
LY6C+SCA1− (blue) and LY6C−SCA1− (green) PDGFRα+ cells (as gated in Extended 
Data Fig. 7a) in lymph node of Ccl19YFP mice (b) and lymph node of Grem1creERT2 
Rosa26LSLYFP mice (c). Grem1creERT2Rosa26LSLYFP mice received tamoxifen via 

intraperitoneal injection for five consecutive days and were analysed on days 
14–16 after first injection. d, Representative FACS gating on LY6C+SCA1+ (red), 
LY6C+SCA1− (blue) and LY6C−SCA1− (green) PDGFRα+ cells (as gated in Extended 
Data Fig. 7a) in tissues from DptIRESCreERT2Rosa26LSLYFP mice. Mice received 
tamoxifen chow for 14 days and were analysed on days 14–16. n = representative 
of 3 or more biologically independent experiments.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | DptIRESCreERT2 marks universal fibroblasts.  
a, Expression of Ly6c and Ly6a in the mouse steady-state fibroblast atlas.  
b, Representative gating for LY6C+SCA1+, LY6C−SCA1+ and SCA1− fibroblasts 
across indicated tissues. c, Quantification of LY6C+SCA1+, LY6C−SCA1+ and 
SCA1− fibroblasts across indicated tissues. Frequency (top), cell number per mg 
of tissue (bottom). d, Abundance of Pi16, Ccl19, Npnt, and Dpt transcripts in 
LY6C+SCA1+, LY6C−SCA1+ and SCA1− fibroblasts from lymph node (black) and 
lung (red). e, Expression of Pi16, Ccl19, Npnt and Dpt in mouse steady-state 
fibroblast atlas. f, RNAscope for Dpt (blue) and Pi16 (red) on lung (left) and 
small intestine (right). Scale bar, 50 μm. g, Schematic of generation of 
DptIRESCreERT2Rosa26LSLYFP mouse. YFP expression is achieved in Dpt-expressing 
cells following cre-mediated excision of a loxP-flanked transcriptional stop 
sequence. h, Representative gating for YFP (Dpt) in fibroblasts (live, 
EpCAM−CD45−CD31−PDPN+PDGFRα+) across indicated tissues. Red, shaded 
histogram is DptIRESCreERT2ki/kiRosa26LSLYFPwt/loxP and black is DptIRESCreERT2wt/

wtRosa26LSLYFPwt/loxP. i, Representative gating for YFP (Dpt) in CD45+ cells (live, 
EpCAM−CD45+), EpCAM+ cells (live, EpCAM+), and endothelial cells (live, 

EpCAM−CD45−CD31+) from the pancreas. Red line is DptIRESCreERT2ki/ki 
Rosa26LSLYFPwt/loxP and grey, shaded histogram is DptIRESCreERT2wt/wtRosa26LSLYFPwt/loxP. 
j, Quantification of YFP+ cells in DptIRESCreERT2ki/kiRosa26LSLYFPwt/loxP animals in 
indicated cell types across tissues. Percentage YFP+ was determined by 
subtracting fluorescence in DptIRESCreERT2ki/kiRosa26LSLYFPwt/loxP animals from 
DptIRESCreERT2wt/wtRosa26LSLYFPwt/loxP animals. k, Abundance of Pi16, Ccl19, Npnt, and 
Dpt transcripts in FACS-sorted YFP+ and YFP− cells from DptIRESCreERT2ki/ki 
Rosa26LSLYFPwt/loxP and DptIRESCreERT2wt/kiRosa26LSLYFPwt/loxP animals 14–16 days after 
tamoxifen chow, in lymph node (top) and lung (bottom). l, Abundance of Csf1 
transcripts in FACS-sorted YFP+ and YFP− cells from DptIRESCreERT2ki/kiRosa26LSLYFPwt/loxP  
and DptIRESCreERT2wt/kiRosa26LSLYFPwt/loxP animals 14–16 days after tamoxifen chow in 
lymph node and lung. n = 3 (c, d, k, l) or representative of 3 or more biologically 
independent experiments (b, f, h, i). Dot represents each mouse with bar at 
mean (c, j), plots show minimum and maximum (whiskers) and median (centre 
line). (d, k, l). h–l, Mice received tamoxifen chow for 14 days and were analysed 
on days 14–16.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Perturbed-state fibroblast and Cd45− atlases.  
a, UMAP embedding of 182,609 cells in perturbed-state Cd45− atlas. Twelve 
clusters identified through graph-based clustering are indicated by colour.  
b, Relative abundance of each tissue in perturbed-state Cd45− UMAP clusters. 
The sizes of bubbles indicate the contributions of cells from each tissue to a 
cluster, and grey bubbles indicate lack of contribution (number of cells <0.02% 
of tissue) of that tissue to the corresponding cluster. Graph to be read column-
wise. c, Fibroblast- and other lineage-associated genes (in grey) in Cd45− 
perturbed-state map. The sizes of circles denote the percentages of cells from 
each cluster, and colour encodes the average expression across all cells within a 
cluster. The colour scale shows the expression level based on row z-score.  
d, Expression of cluster hallmark genes in perturbed-state fibroblast atlas. The 
sizes of circles denote the percentages of cells from each cluster, and colour 
encodes the average expression across all cells within a cluster. The colour 

scale shows the expression level based on row z-score. e, Fibroblast- and other 
lineage-associated genes (in grey) in mouse perturbed-state fibroblast atlas. 
Circle sizes denote percentages of cells from each cluster; colour encodes 
average expression across all cells within cluster. Colour scale shows 
expression level (z-score by row). f, Relative abundance of each tissue in 
perturbed-state fibroblast UMAP clusters. The sizes of bubbles indicate the 
contributions of cells from each tissue to a cluster, and grey bubbles indicate 
lack of contribution (number of cells <0.02% of tissue) of that tissue to the 
corresponding cluster. Graph to be read column-wise. Clusters with analogues 
in steady state are depicted in grey, irrespective of the tissue contribution.  
g, Dendrogram representation of the hierarchical clustering of steady-state 
(blue) and perturbed-state (red) cluster marker genes. Similarity scores are 
indicated at the bottom of matching clusters from steady-state and perturbed-
state tissues.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Validation of perturbed-state atlas. a–o, UMAP 
representations of the distribution of fibroblasts across tissues and 
perturbations. p–u, Heat maps showing average relative gene expression in 
Pi16+, Col15a1+, Adamdec1+, Cxcl5+, and Lrrc15+ clusters (z-scored per row) in the 
following categories. p, Cytokines and chemokines. q, Wnt-associated genes.  
r, ECM-associated genes. s, Collagens and laminins. t, Matrix metalloproteases 
and cathepsins. u, Receptors and surface molecules. v, Expression of pathway-
responsive genes in perturbed-state atlas clusters as assessed by PROGEN(y) 
analysis (z-scored per row). w, RNAscope for Dpt (blue) and Grem1 (red) in non-
lesional colon (top) and lesional colon (bottom) on day 7 after induction of DSS 
colitis. Data are representative of three experiments. Scale bars, 50 μm (top) 
and 250 μm (bottom). x, Ly6a and Cd34 expression in perturbed-state clusters. 

Wilcoxon’s rank sum test, P < 0.05. y, Pseudotime(s) visualized using principal 
curves representing trajectories of fibroblast differentiation across 
perturbed-state fibroblast object. Blue lines show trajectory to activated 
clusters, grey lines show trajectory to clusters with a steady-state analogue. 
Pi16+ cluster set as root. z, Representative FACS strategy for subcutaneous 
tumour experiments. a′, Representative flow cytometry plots showing 
frequency of YFP+ cells in LRRC15+ fibroblasts from KPR3070 subcutaneous 
tumour at day 21 post-inoculation in DptIRESCreERT2wt/wtRosa26LSLYFPwt/loxP animals. 
b′, Quantification of FACS data (Fig. 3d, Extended Data Fig. 8z, a′). Data are from 
b′ or representative of 2 (z–a′) or 3 (w) experiments. Each dot represents one 
mouse (b′). n = 2 (b′) or representative of 2 (z–a′) or 3 (w) biologically 
independent experiments.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Human universal fibroblasts. a, Top, UMAP 
embeddings of human pancreatic cancer tumour and normal adjacent tissue 
(n = 21,626 cells). Bottom, percentage of cells in each cluster coming from 
tumour or NAT. b, UMAP as in a, coloured by expression of indicated genes.  
c, Relative average expression of top 10 marker genes (sorted by log(fold 
change)) for each cluster in the pancreatic cancer single-cell dataset. Two 
representative genes highlighted per cluster. DEGs across clusters. d, Top, 
expression level of indicated marker genes (colour, y-axis) across 100 pseudo-
bulk samples (x-axis) generated from human pancreatic cancer scRNA-seq 
data. The known percentage of cells from cluster 8 in each pseudo-bulk is 
shown by the dotted blue line. Bottom, boxplots representing the distributions 
of pairwise correlation coefficients of the top 20 marker genes for cluster 8 in 
pseudo-bulk samples containing (left) and not containing cells from cluster 8 

(right). e, Boxplots summarizing DPT expression distributions across tissues 
from the GTEx portal. Tissues with mean above horizontal black line were 
included in correlation analysis (f). n = 7,851 biologically independent samples. 
f, Co-expression as in d, results from the gene-by-gene correlation matrices are 
summarized as boxplots for each individual tissue from GTEx. n = 5,957 
biologically independent samples. g, Gene-by-gene correlation matrix of 
pairwise correlations in 205 normal pancreas bulk RNA-seq samples from 
GTEx. Blue indicates Pi16+ cluster signature gene, red indicates Col15a1+ 
signature gene. h, Human universal fibroblast score projected onto human 
pancreatic cancer samples. i, Human universal fibroblast score projected onto 
human subcutaneous adipose. d–f, Box and whisker plots show minimum and 
maximum (whiskers), interquartile range (box) and median (centre line).
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Extended Data Fig. 10 | Perturbed-state human fibroblasts. a, Volcano plot 
visualizing log(fold change) (x-axis) and adjusted P value ( y-axis) comparing 
fibroblasts from cluster 3 in Extended Data Fig. 9a compared to fibroblasts 
from cluster 8 (Wilcoxon’s rank sum test). b, Scatterplot visualizing the scores 
for a NAT (cluster 3) fibroblast expression gene set ( y-axis) compared to scores 
for a CAF (cluster 8) expression gene set (x-axis) in 122 bulk RNA-seq samples of 
microdissected PDAC tissue. Each dot represents a sample, the regression line 
is given in blue. Error band, 95% confidence interval. c–f, UMAP representation 
of cells from the mouse perturbed-state atlas, each cell coloured by their score 
for gene sets corresponding to the following. c, Lrrc15+ myofibroblasts from 

human pancreatic cancer (cluster 3 CAF, ‘MyCAF’11), rheumatoid arthritis 
(‘Human RA F2’7), lung disease (‘Myofibroblast’29), IPF30 and ulcerative colitis 
(‘S2’31). d, Universal fibroblasts from human pancreatic cancer (cluster 8 NAT), 
lung disease (‘PLIN2+ fibroblast’29) and ulcerative colitis (‘S1’31). e, Inflammatory 
fibroblasts from pancreatic cancer (‘iCAF’11) and rheumatoid arthritis (‘Human 
RA F5’7). f, UMAP of IL-1 CAF cells derived from ref. 10, projected onto perturbed- 
state fibroblast atlas. g, Expression of human universal fibroblast module 
across human perturbed-state atlas clusters. h, Abundance of LRRC15 and 
CTHRC1 expression in human perturbed-state atlas. i, Heat maps showing 
average relative gene expression in human perturbed-state atlas (z-scored by row).
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