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Longitudinal analyses reveal immunological 
misfiring in severe COVID-19

Carolina Lucas1,17, Patrick Wong1,17, Jon Klein1,17, Tiago B. R. Castro2,17, Julio Silva1,  
Maria Sundaram3, Mallory K. Ellingson3, Tianyang Mao1, Ji Eun Oh1, Benjamin Israelow1,4, 
Takehiro Takahashi1, Maria Tokuyama1, Peiwen Lu1, Arvind Venkataraman1, Annsea Park1, 
Subhasis Mohanty4, Haowei Wang4, Anne L. Wyllie3, Chantal B. F. Vogels3, Rebecca Earnest3, 
Sarah Lapidus3, Isabel M. Ott3, Adam J. Moore3, M. Catherine Muenker3, John B. Fournier4, 
Melissa Campbell4, Camila D. Odio4, Arnau Casanovas-Massana3, Yale IMPACT Team*,  
Roy Herbst5, Albert C. Shaw4, Ruslan Medzhitov1,6, Wade L. Schulz7,8, Nathan D. Grubaugh3, 
Charles Dela Cruz9, Shelli Farhadian4, Albert I. Ko3,4, Saad B. Omer3,4,10 & Akiko Iwasaki1,6 ✉

Recent studies have provided insights into the pathogenesis of coronavirus disease 
2019 (COVID-19)1–4. However, the longitudinal immunological correlates of disease 
outcome remain unclear. Here we serially analysed immune responses in 113 patients 
with moderate or severe COVID-19. Immune profiling revealed an overall increase in 
innate cell lineages, with a concomitant reduction in T cell number. An early elevation 
in cytokine levels was associated with worse disease outcomes. Following an early 
increase in cytokines, patients with moderate COVID-19 displayed a progressive 
reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients 
with severe COVID-19 maintained these elevated responses throughout the course of 
the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple 
type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E  
and eosinophils. Unsupervised clustering analysis identified four immune signatures,  
representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines 
(C), and chemokines (D) that correlated with three distinct disease trajectories. The 
immune profiles of patients who recovered from moderate COVID-19 were enriched 
in tissue reparative growth factor signature A, whereas the profiles of those with who 
developed severe disease had elevated levels of all four signatures. Thus, we have 
identified a maladapted immune response profile associated with severe COVID-19 
and poor clinical outcome, as well as early immune signatures that correlate with 
divergent disease trajectories.

COVID-19 is caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), a highly infectious virus that exploits 
angiotensin-converting enzyme 2 (ACE2)5,6 as a cell entry receptor. The 
clinical presentation of COVID-19 involves a broad range of symptoms 
and disease trajectories. Understanding the nature of the immune 
response that leads to recovery over severe disease is key to devel-
oping effective treatments for COVID-19. Coronaviruses, including 
Severe Acute Respiratory Syndrome (SARS-CoV) and Middle Eastern 
Respiratory Syndrome (MERS), typically induce strong inflammatory 
responses and associated lymphopenia7,8. Studies of patients with 
COVID-19 have reported increases in inflammatory monocytes and 
neutrophils, and a sharp decrease in lymphocytes1–4, and an inflamma-
tory milieu containing IL-1β, IL-6, and TNF (previously known as TNFα) 
in severe disease1,2,4,9,10. Despite these analyses, the dynamics of the 

immune response during the course of SARS-CoV-2 infection and its 
association with clinical trajectory remain unclear.

Immune responses against pathogens are divided roughly into three 
types11–13. Type 1 immunity, characterized by responses that depend on 
the transcription factor T-bet (also known as TBX21) and expression of 
interferon-γ (IFNγ), is generated against intracellular pathogens such 
as viruses. In type 1 immunity, pathogen clearance is mediated through 
effector cells including group 1 innate lymphocytes (ILC1), natural killer 
(NK) cells, cytotoxic T lymphocytes, and T helper 1 (TH1) cells. Type 2 
immunity, which relies on the GATA3 transcription factor, mediates 
defence against helminths through effector molecules such as IL-4, IL-5, 
IL-13, and IgE that work to expel these pathogens through the concerted 
action of epithelial cells, mast cells, eosinophils, and basophils. Type 3 
immunity, which is orchestrated by the RORγt-induced cytokines IL-17 
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and IL-22 secreted by ILC3 and TH17 cells, is mounted against fungi and 
extracellular bacteria to elicit neutrophil-dependent clearance. We have 
focused on the longitudinal analysis of these three types of immune 
response in patients with COVID-19 and identified correlations between 
distinct immune phenotypes and disease course.

Immunological features of COVID-19
One hundred and thirteen patients with COVID-19 who were admitted 
to Yale New Haven Hospital (YNHH) between 18 March 2020 and 27 
May 2020 were recruited to the Yale IMPACT (Implementing Medical 
and Public Health Action Against Coronavirus CT) study. We assessed 
viral RNA load (quantified by quantitative PCR with reverse tran-
scription (RT–qPCR) using nasopharyngeal swabs); levels of plasma 
cytokines and chemokines; and leukocyte profiles (by flow cytometry 
using freshly isolated peripheral blood mononuclear cells; PBMCs). 
We performed 253 collections and follow-up measurements on the 
patient cohort with a range of one to seven longitudinal time-points that 
occurred 3–51 days after the onset of symptoms. In parallel, we enrolled 
108 volunteer healthcare workers (HCWs), whose samples served as 
healthy controls (SARS-CoV-2-negative by RT–qPCR and serology).

Basic demographic information stratified by disease severity is pro-
vided in Extended Data Table 1 and detailed in Supplementary Table 1. 
Patients who had been admitted to YNHH were stratified into moder-
ate and severe disease groups on the basis of supplemental oxygen 
requirements and admission to the intensive care unit (ICU) (Fig. 1a). 
Among our cohort, patients who developed moderate or severe dis-
ease did not differ significantly with respect to age or sex. Body mass 
index (BMI) was generally higher among patients with severe disease, 
and extremes in BMI correlated with an increased relative risk (RR) of 
mortality (RR BMI ≥ 35: 1.62 (95% confidence interval (CI) 0.81–3.22)) 
(Extended Data Table 1, Extended Data Fig. 1a, b). Exposure to select 
therapeutic regimens of interest was assessed in patients with moderate 
or severe disease (Extended Data Fig. 1c.) Initial presenting symptoms 
demonstrated a preponderance of headache (54.55%), fever (64.47%), 
cough (74.03%), and dyspnoea (67.09%) with no significant difference 
in symptom presentation between patients with moderate disease and 
those who developed severe disease. Finally, mortality was significantly 
higher in patients who were admitted to the ICU than in those who were 
not (27.27% versus 3.75%; P < 0.001) (Extended Data Table 1).

We analysed PBMC and plasma samples from patients with moderate 
or severe COVID-19 and healthy HCW donors (Fig. 1a, gating strategy in 
Extended Data Fig. 9) by flow cytometry and ELISA to quantify leuko-
cytes and soluble mediators, respectively. An unsupervised heat map 
constructed from the main innate and adaptive circulating immune cell 
types revealed marked changes in patients with COVID-19 compared 
to uninfected HCWs (Fig. 1b). As reported1–4, patients with COVID-19 
presented with marked reductions in the number and frequency of 
both CD4+ and CD8+ T cells, even after normalizing for age as a possible 
confounder (Extended Data Fig. 1d). Granulocytes, such as neutrophils 
and eosinophils, are normally excluded from the PBMC fraction follow-
ing density gradient separation. However, low-density granulocytes are 
found in the PBMC layer of peripheral blood collected from patients 
with inflammatory diseases14. In patients with COVID-19, increases 
in monocytes, low-density neutrophils and eosinophils correlated 
with the severity of disease (Fig. 2c, Extended Data Fig. 2a, b). In addi-
tion, patients showed increased activation of T cells and a reduction 
in expression of the human leukocyte antigen DR isotype (HLA-DR) by 
circulating monocytes1 (Extended Data Fig. 2c). A complete overview 
of PBMC subsets is presented in Extended Data Fig. 2.

To gain insights into key differences in cytokines, chemokines, and 
additional immune markers between patients with moderate and 
severe disease, we correlated the measurements of these soluble pro-
teins across all sample collection time-points. (Fig. 1d). We observed 
a ‘core COVID-19 signature’ that was shared by both moderate and 

severe disease groups and was defined by the following inflammatory 
cytokines, which correlated positively with each other: IL-1α, IL-1β, 
IL-17A, IL-12 p70, and IFNα (Fig. 1d). In patients with severe disease, we 
observed an additional inflammatory cluster defined by thrombopoietin 
(TPO), IL-33, IL-16, IL-21, IL-23, IFNλ, eotaxin and eotaxin 3 (Fig. 1d). Most 
of the cytokines linked to cytokine release syndrome (CRS), such as IL-1α, 
IL-1β, IL-6, IL-10, IL-18 and TNF, showed increased positive associations in 
patients with severe disease (Fig. 1d–f, Extended Data Fig. 3). These data 
highlight broad inflammatory changes, involving concomitant release 
of type 1, type 2 and type 3 cytokines, in patients with severe COVID-19.

Longitudinal immune profiling of COVID-19
Our data presented above, as well as previous single-cell transcriptome 
and flow-cytometry-based studies2,4,15–17, depicted overt innate and 
adaptive immune activation in patients with severe COVID-19. Longitu-
dinal cytokine correlations, measured in terms of days from symptom 
onset (DfSO), indicated that major differences in immune phenotypes 
between moderate and severe disease were apparent after day 10 of 
infection (Fig. 2a). In the first 10 DfSO, patients with severe or moderate 
disease displayed similar correlation intensity and markers, including 
the overall core COVID-19 signature described above (Fig. 2a). After day 
10 these markers declined steadily in patients with moderate disease. By 
contrast, patients with severe COVID-19 maintained elevated levels of 
these core signature makers. Notably, additional correlations between 
cytokines emerged in patients with severe disease following day 10 
(Fig. 2a). These analyses strongly support the observation (Fig. 1) that 
TPO and IFNα associate strongly with IFNλ, IL-9, IL-18, IL-21, IL-23, and 
IL-33 (Fig. 2a). These observations indicate sharp differences in the 
expression of inflammatory markers along disease progression between 
patients who exhibit moderate versus severe symptoms of COVID-19.

Temporal analyses of PBMCs and soluble proteins in plasma, either 
by linear regression or grouped intervals, supported distinct courses 
in disease. IFNα levels were sustained at higher levels in patients with 
severe disease, but these declined in patients with moderate disease 
(Fig. 2b). Plasma levels of IFNλ increased during the first week of symp-
toms in patients with severe disease, and remained elevated in later 
phases (Fig. 2b). In addition, inflammasome-induced cytokines, such 
as IL-1β and IL-18, were also higher in patients with severe disease than in 
patients with moderate disease at most time-points analysed (Fig. 2c). 
IL-1 receptor antagonist (IL-1Ra), which is induced by IL-1R signalling 
as a negative feedback regulator18, was also increased in patients with 
severe COVID-19 from day 10 of disease onset (Extended Data Fig. 4).

With respect to type 1 immunity, there was an increased number of 
monocytes at approximately 14 DfSO in patients with severe but not 
moderate COVID-19 (Fig. 2d). The innate cytokine IL-12, a key inducer 
of type-1 immunity11,12, displayed a similar pattern to IFNγ—increasing 
over time in patients with severe disease but declining steadily in those 
with moderate disease (Fig. 2d). Intracellular cytokine staining showed 
that CD4+ and CD8+ T cells from patients with moderate disease secreted 
comparable amounts of IFNγ to those from patients with severe disease. 
Together with the severe T cell depletion seen in patients with severe 
disease (Fig. 1), our data suggest that secretion of IFNγ by non-T cells 
(ILC1, NK cells), or non-circulating T cells in tissues was the primary 
contributor to the enhanced levels observed in patients with severe 
disease (Extended Data Fig. 5).

Type-2 immune markers continued to increase over time in patients 
with severe COVID-19, as indicated by the strong correlations observed 
at late time points for these patients (Fig. 2a). Eosinophils and levels of 
eotaxin-2 increased in patients with severe disease and remained higher 
than in patients with moderate disease (Fig. 2e). Type 2 innate immune 
cytokines, including thymic stromal lymphopoietin (TSLP) and IL-33, 
did not show significant differences between patients with severe and 
moderate disease (Fig. 2e). Levels of hallmark type 2 cytokines, includ-
ing IL-5 (associated with eosinophilia) and IL-13 (Fig. 2e), were higher 
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in patients with severe disease than in those with moderate disease. By 
contrast, IL-4 levels were not significantly different. However, IL-4, simi-
lar to IL-5 and IL-13, showed an upward trend over the course of disease 

in patients with severe COVID-19 (Fig. 2e). The type 2 antibody isotype 
IgE was also higher in patients with severe diasease and continued to 
increase during the disease course (Fig. 2e).
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IL-6, which is linked to CRS, was elevated in patients with severe 
disease19. Circulating neutrophils did not show a significant increase 
in our longitudinal analysis (Fig. 2f), although patients with severe 
disease showed hallmarks of type 3 responses, including increased 

plasma IL-17A and IL-22, as well as secretion of IL-17 by circulating CD4 
T cells as assessed by intracellular cytokine staining (Fig. 2f, Extended 
Data Fig. 5). These data identify broad elevations of type 1, type 2 and 
type 3 signatures in severe cases of COVID-19, with differences in their 
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kinetics and magnitudes between patients with severe and moderate  
disease.

Viral load correlates with elevated cytokines
We next measured viral load kinetics using serial nasopharyngeal swabs. 
Although there was no significant difference in viral RNA load between 
patients with moderate and severe disease at any specific time point ana-
lysed, patients with moderate disease showed a steady decline in viral 
load over the course of disease, whereas those with severe disease did not 
(Fig. 3a). Regardless of whether patients exhibited moderate or severe 
disease, viral load correlated significantly with the levels of IFNα, IFNγ, 
TNF and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) 
(Fig. 3b). In addition, several chemokines responsible for monocyte recruit-
ment correlated significantly with viral load only in patients with severe 
disease (Extended Data Fig. 6a, b). These data indicate that nasopharyn-
geal viral load correlates with plasma levels of interferons and cytokines.

Early cytokine profile marks disease outcomes
Next, we investigated whether specific early cytokine responses are asso-
ciated with severe COVID-19. To this end, we conducted an unsupervised 
clustering analysis using baseline measurements collected before 12 DfSO 
(Fig. 3c). Three main clusters with correlation to distinct disease outcomes 

emerged. These were characterized by four distinct immune signatures. 
Signature A contained several stromal growth factors, including epidermal 
growth factor (EGF), platelet-derived growth factor (PDGF) and vascular 
endothelial growth factor (VEGF), that are mediators of wound healing 
and tissue repair20, as well as IL-7, a key growth factor for lymphocytes. 
Signature B consisted of eotaxin 3, IL-33 and TSLP, along with IL-21, IL-23 and 
IL-17F, thus representing type 2 and type 3 immune effectors. Signature C 
comprised a mixture of all immunotypes, including type 1 (IFNγ, IL-12 p70, 
IL-15, IL-2 and TNF), type 2 (IL-4, IL-5 and IL-13), and type 3 cytokines (IL-1α, 
IL-1β, IL-17A, IL-17E and IL-22). Finally, signature D contained a number of 
chemokines involved in leukocyte trafficking, including CCL1, CCL2, CCL5, 
CCL8, CCL15, CCL21, CCL22, CCL27, CXCL9, CXCL10, CXCL13, and SDF1.

Cluster 1 primarily comprised patients with moderate disease who 
experienced low occurrences of coagulopathy, shorter lengths of hos-
pital stay, and no mortality (Fig. 3c, d). The main characteristics in this 
cluster were low levels of inflammatory markers and similar or increased 
levels of parameters in signature A, which contains tissue reparative 
growth factors (Fig. 3c). Clusters 2 and 3 were characterized by a rise in 
inflammatory markers, and patients belonging to these clusters had a 
higher incidences of coagulopathy and mortality, which was more pro-
nounced in cluster 3 (Fig. 3c, d). Patients in cluster 2 showed higher levels 
of markers in signatures C and D, which included IFNα, IL-1Ra and several 
hallmark type 1, type 2 and type 3 cytokines, than patients in cluster 1, 
but lower expression of markers in signatures B, C and D than those in 
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cluster 3 (Fig. 3c, d). Patients in cluster 3 showed higher expression of 
markers in signatures B, C and D than those in other clusters. Cluster 3 
showed particular enrichment in expression of markers in signature B, 
including several innate cytokines such as IFNλ, TGFα, TSLP, IL-16, IL-23 
and IL-33, and markers linked to coagulopathy, such as TPO (Fig. 3c, d).

We next ranked these parameters obtained at early time points as pre-
dictors of severe disease outcomes (Fig. 3e, Extended Data Fig. 6c). In both 
cases, plasma inflammatory markers were strongly associated with severe 
disease outcomes. For example, high levels of type I IFN (IFNα) before 
the first 12 DfSO correlated with longer hospital stays and death (Fig. 3e, 
Extended Data Fig. 6c). Moreover, patients who ultimately died of COVID-19 
exhibited significantly elevated levels of IFNα, IFNλ and IL-1Ra, as well as 
chemokines associated with monocytes and T cell recruitment and survival 
such as CCL1, CLL2, macrophage colony stimulating factor (M-CSF), IL-2, 
IL-16 and CCL21, within the first 12 DfSO (Fig. 3e, Extended Data Fig. 6c). 
These analyses identify specific immunological markers that appear early 
in the disease and correlate strongly with poor outcomes and death.

Retrospective analysis of immune correlates
To further evaluate potential drivers of severe COVID-19 outcome in an 
unbiased manner, we performed unsupervised clustering analysis that 

included all patients and all time points using cytokines and chemokines 
(Fig. 4a). Notably, three main clusters of patients emerged and the dis-
tribution of patients in early time-point clusters identified in Fig. 3c 
matched the distribution for the all-time point analysis (Fig. 4a) in 96% of 
cases. Cluster 1 primarily comprised patients with moderate disease who 
showed improving clinical signs (Fig. 4a–d, Extended Data Fig. 7). This 
cluster contained only two deceased patients. Cluster 1 was character-
ized by low levels of inflammatory markers as well as similar or increased 
expression of markers in signature A′ (Fig. 4a–d), which mostly matched 
the signature A markers described in Fig. 3c. Clusters 2 and 3 contained 
patients with coagulopathy and worsened clinical progression, including 
most of the deceased patients (Fig. 4a–d, Extended Data Fig. 7).

Clusters 2 and 3 were driven by a set of inflammatory markers that 
fell into signatures B′, C′ and D′ to some extent, which overlapped 
highly with the ‘core signature’ cytokines and chemokines identified 
in Fig. 1 as well as with signatures B and C identified in Fig. 3c. These 
include type 1 immunity markers, including IL-12, chemokines linked 
to monocyte recruitment and IFNγ; type 2 responses, such as TSLP, 
chemokines linked to eosinophil recruitment, IL-4, IL-5 and IL-13; 
and type-3 responses, including IL-23, IL-17A and IL-22. In addition, 
most CRS- and inflammasome-associated cytokines were enriched in 
these clusters, including IL-1α, IL-1β, IL-6, IL-18 and TNF (Fig. 4a). These 
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findings were consistent with generalized estimating equations that 
identified relationships between the risk of death and cytokines or 
immune cell populations over time (Extended Data Fig. 8). Together, 
these results identify groups of inflammatory and potentially protec-
tive markers that correlated with COVID-19 trajectories. The immune 
signatures that correlate with recovery (cluster 1) and the immune 
signatures that correlate with worsening diseases (cluster 2 < cluster 
3) were remarkably similar whether we took a prospective (Fig. 3) or 
retrospective (Fig. 4) approach.

Discussion
Our longitudinal analyses of patients admitted to YNHH with COVID-19 
revealed key temporal features of viral load and immune responses that 
distinguish disease trajectories during hospitalization. Unsupervised 
clustering revealed three distinct profiles that influenced the evolu-
tion and severity of COVID-19. Cluster 1, characterized by low expres-
sion of proinflammatory cytokines and enrichment in tissue repair 
genes, followed a disease trajectory that remained moderate and led 
to eventual recovery. Clusters 2 and 3 were characterized by highly 
elevated proinflammatory cytokines (cluster 3 being more intense), 
worse disease, and death. Thus, in addition to the known CRS-related 
pro-inflammatory cytokines, we propose these four signatures of 
immune response profiles that more accurately divide patients into 
distinct COVID-19 disease courses.

Although nasopharyngeal viral RNA levels were not significantly 
different between patients with moderate and severe disease at the 
specific time points, linear regression analyses showed a slower decline 
of viral loads in patients who were admitted to the ICU. Viral load was 
highly correlated with IFNα, IFNγ and TNF, suggesting that viral load 
may drive these cytokines and that interferons may not successfully 
control the viral replication. Moreover, many interferons, cytokines, 
and chemokines were elevated early in disease for patients who ulti-
mately died of COVID-19. This finding suggests possible pathological 
roles associated with these host defence factors, as previous reported 
for patients infected with SARS-CoV-121.

Our comprehensive analysis of soluble plasma factors revealed broad 
misfiring of immune effectors in patients with COVID-19, with early 
predictive markers and distinct dynamics between types of immune 
responses among moderate and severe disease outcomes. These results 
suggest that late-stage pathology in COVID-19 may be driven primarily 
by host immune responses to SARS-CoV-2 and highlights the need for 
combination therapy to block other cytokines highly represented by 
these clusters, including inflammasome-dependent cytokines and type 
2 cytokines. We observed a correlation with cytokines linked to the 
inflammasome pathway, which partially overlap with CRS, including 
IL-1β and IL-18. Indeed, it is plausible that inflammasome activation, 
along with a sepsis-like CRS, triggers the vascular insults and tissue 
pathology that are observed in patients with severe COVID-1922.

Overall, our analyses provide a comprehensive examination of the 
diverse inflammatory dynamics during COVID-19 and possible contri-
butions of distinct sets of inflammatory mediators to disease progres-
sion. This raises the possibility that early immunological interventions 
that target inflammatory markers that are predictive of worse disease 
outcome would be more beneficial than those that block late-appearing 
cytokines. Our disease trajectory analyses provide bases for more tar-
geted treatment of patients with COVID-19 based on early cytokine 
markers, as well as therapies designed to enhance tissue repair and 
promote disease tolerance.
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Methods

Ethics statement
This study was approved by Yale Human Research Protection Program 
Institutional Review Boards (FWA00002571, protocol ID 2000027690). 
Informed consent was obtained from all enrolled patients and health-
care workers.

Patients
One-hundred and thirty-five patients admitted to YNHH with COVID-
19 between 18 March 2020and 5 May 2020 were included in this study. 
No statistical methods were used to predetermine sample size. Naso-
pharyngeal swabs were collected as described23, approximately every 
four days, for SARS-CoV-2 RT–qPCR analysis where clinically feasible. 
Paired whole blood for flow cytometry analysis was collected simul-
taneously in sodium heparin-coated vacutainers and kept on gentle 
agitation until processing. All blood was processed on the day of col-
lection. Patients were scored for COVID-19 disease severity through 
review of electronic medical records (EMR) at each longitudinal time 
point. Scores were assigned by a clinical infectious disease physician 
according to a custom-developed disease severity scale. Moderate 
disease status (clinical score 1–3) was defined as: SARS-CoV-2 infection 
requiring hospitalization without supplementary oxygen (1); infection 
requiring non-invasive supplementary oxygen (<3 l/min to maintain 
SpO2 >92%) (2); and infection requiring non-invasive supplemen-
tary oxygen (>3 l/min to maintain SpO2 >92%, or >2 l/min to maintain 
SpO2 >92% and had a high-sensitivity C-reactive protein (CRP) >70) and 
received tocilizumab). Severe disease status (clinical score 4 or 5) was 
defined as infection meeting all criteria for clinical score 3 and also 
requiring admission to the ICU and >6 l/min supplementary oxygen 
to maintain SpO2 >92% (4); or infection requiring invasive mechanical 
ventilation or extracorporeal membrane oxygenation (ECMO) in addi-
tion to glucocorticoid or vasopressor administration (5). Clinical score 
6 was assigned for deceased patients. Of note, the use of tocilizumab 
can increase circulating levels of IL-6 by inhibiting IL-6Rα-mediated 
degradation. Analysis of our cohort indicate higher plasma levels of 
IL-6 in patients with either moderate or severe disease who received 
tocilizumab treatment (Extended Data Fig. 1d).

For all patients, days from symptom onset were estimated as fol-
lows: (1) highest priority was given to explicit onset dates provided by 
patients; (2) next highest priority was given to the earliest reported 
symptom by a patient; and (3) in the absence of direct information 
regarding symptom onset, we estimated a date through manual assess-
ment of the electronic medical record (EMRs) by an independent clini-
cian. Demographic information was aggregated through a systematic 
and retrospective review of patient EMRs and was used to construct 
Extended Data Table 1. Symptom onset and aetiology were recorded 
through standardized interviews with patients or patient surrogates 
upon enrollment in our study, or alternatively through manual EMR 
review if no interview was possible owing to clinical status. The clini-
cal data were collected using EPIC EHR and REDCap 9.3.6 software. 
At the time of sample acquisition and processing, investigators were 
unaware of the patients’ conditions. Blood acquisition was performed 
and recorded by a separate team. Information about patients’ condi-
tions was not available until after processing and analysis of raw data 
by flow cytometry and ELISA. A clinical team, separate from the experi-
mental team, performed chart reviews to determine relevant statistics. 
Cytokines and FACS analyses were performed blinded. Patients’ clinical 
information and clinical score coding were revealed only after data 
collection.

Viral RNA measurements
RNA concentrations were measured from nasopharyngeal samples 
by RT–qPCR as previously described23. In brief, total nucleic acid was 
extracted from 300 μl of viral transport medium (nasopharyngeal 

swab) using the MagMAX Viral/Pathogen Nucleic Acid Isolation kit 
(ThermoFisher Scientific) with a modified protocol and eluted into 
75 μl elution buffer.

To detect SARS-CoV-2 RNA, we tested 5 μl RNA 371 template as previ-
ously described24, using the US CDC real-time RT–qPCR primer/probe 
sets for 2019-nCoV_N1, 2019-nCoV_N2, and the human RNase P (RP) 
as an extraction control. Virus RNA copies were quantified using a 
tenfold dilution standard curve of RNA transcripts that we previously 
generated24. The lower limit of detection for SARS-CoV-2 genomes 
assayed by qPCR in nasopharyngeal specimens was established as 
described24. In addition to a technical detection threshold, we also 
used a clinical referral threshold (detection limit) to either: (1) refer 
asymptomatic HCWs for diagnostic testing at a CLIA-approved labo-
ratory; or (2) cross-validate results from a CLIA-approved laboratory 
for SARS-CoV-2 qPCR-positive individuals upon study enrollment. 
Individuals above the technical detection threshold, but below the 
clinical referral threshold, were considered SARS-CoV-2 positive for 
the purposes of our research.

Isolation of patient plasma
Plasma samples were collected after centrifugation of whole blood at 
400g for 10 min at room temperature (RT) without brake. The undiluted 
serum was then transferred to 15-ml polypropylene conical tubes, and 
aliquoted and stored at −80 °C for subsequent analysis.

Cytokine and chemokine measurements
Patient serum was isolated as before and aliquots were stored at −80 °C. 
Sera were shipped to Eve Technologies (Calgary, Alberta, Canada) on 
dry ice, and levels of cytokines and chemokines were measured using 
the Human Cytokine Array/Chemokine Array 71-403 Plex Panel (HD71). 
All samples were measured upon the first thaw.

Isolation of PBMCs
PBMCs were isolated from heparinized whole blood using Histopaque 
(Sigma-Aldrich, #10771-500ML) density gradient centrifugation in a 
biosafety level 2+ facility. After isolation of undiluted serum, blood 
was diluted 1:1 in room temperature PBS, layered over Histopaque in a 
SepMate tube (StemCell Technologies; #85460) and centrifuged for 10 
min at 1,200g. The PBMC layer was isolated according to the manufac-
turer’s instructions. Cells were washed twice with PBS before counting. 
Pelleted cells were briefly treated with ACK lysis buffer for 2 min and then 
counted. Percentage viability was estimated using standard Trypan blue 
staining and an automated cell counter (Thermo-Fisher, #AMQAX1000).

Flow cytometry
Antibody clones and vendors were as follows: BB515 anti-hHLA-DR (G46-
6) (1:400) (BD Biosciences), BV785 anti-hCD16 (3G8) (1:100) (BioLeg-
end), PE-Cy7 anti-hCD14 (HCD14) (1:300) (BioLegend), BV605 anti-hCD3 
(UCHT1) (1:300) (BioLegend), BV711 anti-hCD19 (SJ25C1) (1:300) (BD 
Biosciences), AlexaFluor647 anti-hCD1c (L161) (1:150) (BioLegend), 
biotin anti-hCD141 (M80) (1:150) (BioLegend), PE-Dazzle594 anti-hCD56 
(HCD56) (1:300) (BioLegend), PE anti-hCD304 (12C2) (1:300) (BioLe-
gend), APCFire750 anti-hCD11b (ICRF44) (1:100) (BioLegend), PerCP/
Cy5.5 anti-hCD66b (G10F5) (1:200) (BD Biosciences), BV785 anti-hCD4 
(SK3) (1:200) (BioLegend), APCFire750 or PE-Cy7 or BV711 anti-hCD8 
(SK1) (1:200) (BioLegend), BV421 anti-hCCR7 (G043H7) (1:50) (BioLeg-
end), AlexaFluor 700 anti-hCD45RA (HI100) (1:200) (BD Biosciences), 
PE anti-hPD1 (EH12.2H7) (1:200) (BioLegend), APC anti-hTIM3 (F38-2E2) 
(1:50) (BioLegend), BV711 anti-hCD38 (HIT2) (1:200) (BioLegend), BB700 
anti-hCXCR5 (RF8B2) (1:50) (BD Biosciences), PE-Cy7 anti-hCD127 
(HIL-7R-M21) (1:50) (BioLegend), PE-CF594 anti-hCD25 (BC96) (1:200) 
(BD Biosciences), BV711 anti-hCD127 (HIL-7R-M21) (1:50) (BD Bio-
sciences), BV421 anti-hIL17a (N49-653) (1:100) (BD Biosciences), Alex-
aFluor 700 anti-hTNFa (MAb11) (1:100) (BioLegend), PE or APC/Fire750  
anti-hIFNy (4S.B3) (1:60) (BioLegend), FITC anti-hGranzymeB (GB11) 



(1:200) (BioLegend), AlexaFluor 647 anti-hIL-4 (8D4-8) (1:100) (BioLeg-
end), BB700 anti-hCD183/CXCR3 (1C6/CXCR3) (1:100) (BD Biosciences), 
PE-Cy7 anti-hIL-6 (MQ2-13A5) (1:50) (BioLegend), PE anti-hIL-2 (5344.111) 
(1:50) (BD Biosciences), BV785 anti-hCD19 (SJ25C1) (1:300) (BioLeg-
end), BV421 anti-hCD138 (MI15) (1:300) (BioLegend), AlexaFluor700 
anti-hCD20 (2H7) (1:200) (BioLegend), AlexaFluor 647 anti-hCD27 
(M-T271) (1:350) (BioLegend), PE/Dazzle594 anti-hIgD (IA6-2) (1:400) 
(BioLegend), PE-Cy7 anti-hCD86 (IT2.2) (1:100) (BioLegend), APC/
Fire750 anti-hIgM (MHM-88) (1:250) (BioLegend), BV605 anti-hCD24 
(ML5) (1:200) (BioLegend), BV421 anti-hCD10 (HI10a) (1:200) (Bio-
Legend), BV421 anti-CDh15 (SSEA-1) (1:200) (BioLegend), AlexaFluor 
700 Streptavidin (1:300) (ThermoFisher), BV605 Streptavidin (1:300) 
(BioLegend). In brief, freshly isolated PBMCs were plated at 1–2 × 106 
cells per well in a 96-well U-bottom plate. Cells were resuspended in 
Live/Dead Fixable Aqua (ThermoFisher) for 20 min at 4 °C. Follow-
ing a wash, cells were blocked with Human TruStan FcX (BioLegend) 
for 10 min at RT. Cocktails of desired staining antibodies were added 
directly to this mixture for 30 min at RT. For secondary stains, cells 
were first washed and supernatant aspirated; then to each cell pellet 
a cocktail of secondary markers was added for 30 min at 4 °C. Prior to 
analysis, cells were washed and resuspended in 100 μl 4% PFA for 30 
min at 4 °C. For intracellular cytokine staining following stimulation, 
cells were resuspended in 200 μl cRPMI (RPMI-1640 supplemented 
with 10% FBS, 2 mM l-glutamine, 100 U/ml penicillin, and 100 mg/ml 
streptomycin, 1 mM sodium pyruvate, and 50 μM 2-mercaptoethanol) 
and stored at 4 °C overnight. Subsequently, these cells were washed 
and stimulated with 1× Cell Stimulation Cocktail (eBioscience) in 200 μl  
cRPMI for 1 h at 37 °C. Fifty microlitres of 5× Stimulation Cocktail 
(plus protein transport 442 inhibitor) (eBioscience) was added for 
an additional 4 h of incubation at 37 °C. Following stimulation, cells 
were washed and resuspended in 100 μl 4% PFA for 30 min at 4 °C. To 
quantify intracellular cytokines, these samples were permeabilized 
with 1× permeabilization buffer from the FOXP3/Transcription Factor 
Staining Buffer Set (eBioscience) for 10 min at 4 °C. All subsequent 
staining cocktails were made in this buffer. Permeabilized cells were 
then washed and resuspended in a cocktail containing Human TruStan 
FcX (BioLegend) for 10 min at 4 °C. Finally, intracellular staining cock-
tails were added directly to each sample for 1 h at 4 °C. Following this 
incubation, cells were washed and prepared for analysis on an Attune 
NXT (ThermoFisher). Data were analysed using FlowJo software version 
10.6 software (Tree Star). The specific sets of markers used to identify 
each subset of cells are summarized in Extended Data Fig. 9.

Statistical analysis
Patients and their analysed features were clustered using the K-means 
algorithm. Heat maps were created using the ComplexHeatmap pack-
age25. The optimum number of clusters was determined by using the 
silhouette coefficient analysis, available with the NBClust and factoex-
tra packages26. Before data visualization, each feature was scaled and 
centred. Multiple group comparisons were analysed by running both 
parametric (ANOVA) and non-parametric (Kruskal–Wallis) statistical 
tests with Dunn’s and Tukey’s post hoc tests. Mutual information analy-
ses were performed using the Caret R package and visualized using 
ggplot2. Multiple correlation analysis was performed by computing 

Spearman’s coefficients with the Hmisc package for R and visualized 
with corrplot by only showing correlations with P < 0.05. For general-
ized linear models (GLM), we calculated the incident risk ratio (IRR) 
by conducting a Poisson regression with a log link and robust vari-
ance estimation; this value approximates the risk ratio estimated by a 
log-linear model. For generalized estimating equation (GEE) models, we 
calculated the incidence risk ratio (IRR) in the same way as for non-GEE 
GLM models, assuming an independent correlation structure. All mod-
els controlled for participant sex and age.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All the background information on HCWs, clinical information for 
patients, and raw data used in this study are included in Supplemen-
tary Table 1. Additionally, all of the raw fcs files for the flow cytometry 
analysis are available at ImmPort (https://www.immport.org/shared/
home; study ID SDY1655).
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Extended Data Fig. 1 | Age and BMI cohort distributions and Select 
Medications distributions. a, b, Aggregated ages (a) and BMIs (b) were 
collected for patients with moderate, severe, and fatal COVID-19 and relative 
frequency histograms generated for comparison across disease sub-groups. 
Gaussian and lognormal distributions were fit through least squares 
regression and compared for goodness of fit through differential Akaike 

information criterion (AICc) comparison. All distributions were best described 
by a Gaussian model except for age in the ‛severe’ disease category, which was 
best modelled by a lognormal distribution. c, Proportion of patients admitted 
to YNHH receiving hydroxycholorquine (HCQ), tocilizumab (Toci), 
methylprednisolone (Solu-medrol), and remdesivir (Rem) are shown, stratified 
by disease severity. d, Medication and age adjustments for IL-6 and T cell count.



Extended Data Fig. 2 | Overview of cellular immune changes in COVID-19 
patients. a, b, Immune cell subsets of interest, plotted as a concentration of 
millions of cells per millilitre of blood (a) or as a percentage of a parent 
population (b). c, Phenotyping to TCR-activated T cells, cytokine-secreting 
T cells, and HLA-DR expression within monocytes and neutrophils. Each dot 
represents a separate time point per subject (HCW, n = 49; Moderate, n = 114; 

Severe, n = 41). For all boxplots, the centre is drawn through the median of the 
measurement, and the lower and upper bounds of the box correspond to the 
first and third percentile. Whiskers beyond these points denote 1.5 × the 
interquartile range. P values were determined by two-sided, Wilcoxon 
rank-sum test.
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Extended Data Fig. 3 | Overview cytokine and chemokines profiles of 
COVID-19 patients. a, Quantification of cytokines in the periphery plotted as 
log10-transformed concentrations. Each dot represents a separate time point 
per subject (HCW, n = 47; Moderate, n = 124; Severe, n = 45). For all boxplots, the 

centre is drawn through the median of the measurement, while the lower and 
upper bounds of the box correspond to the first and third percentile. Whiskers 
beyond these points denote 1.5 × the interquartile range. P values were 
determined by two-sided, Wilcoxon rank-sum test.



Extended Data Fig. 4 | Longitudinal cytokines and chemokines of COVID-19 
patients. a, Quantification of cytokines plotted as log10-transformed 
concentration over time according to the days of symptom onset for patients 
with moderate disease (n = 112) or severe disease (n = 39). The dotted green line 
represents the mean measurement from uninfected HCWs. Regression lines 

are indicated by the dark blue (moderate) or red (severe) solid lines. Associated, 
Pearson’s correlation coefficients and linear regression significance are in pink 
(moderate) or dark blue (severe). 95% confidence intervals for the regression 
lines are denoted by the pink (moderate) or dark blue (severe) filled areas.
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Extended Data Fig. 5 | T cell immune profiles in moderate and severe 
patients. a, b, CD4+ (a) and CD8+ (b) T cell populations of interest, plotted as a 
percentage of parent populations, over time according to the days following 
symptom onset for patients with moderate disease (n = 118) or severe disease 
(n = 41). Each dot represents a distinct patient and time point arranged by 

intervals of five days until 25 days. Dark blue or pink lines pass through the 
mean of each measurement at the specified time interval; error bars at this 
intersection denote s.e.m. The dotted green line represents the mean 
measurement from uninfected HCWs.



Extended Data Fig. 6 | See next page for caption.



Article
Extended Data Fig. 6 | Early cytokine profile distinguishes moderate and 
severe outcomes. a, Quantification of log10-transformed cytokine 
concentrations plotted continuously with NP viral load (expressed as log10 
genomic equivalents (GE)/ml) per within an individual patient and time point. 
Regression lines are indicated by the dark blue (moderate) or red (severe) solid 
lines for patients with moderate disease (n = 112) or severe disease (n = 39), 
respectively. Associated Pearson’s correlation coefficients, and linear 
regression significance are in pink (moderate) or dark blue (severe). 95% 
confidence intervals for the regression lines are denoted by the pink 
(moderate) or dark blue (severe) filled areas. b, Correlation map of highly 
correlated cytokines with NP viral load in patients with moderate (blue) or 
severe disease (red). Pearson’s correlation coefficients are indicated in grey, 
connecting the central node, NP viral load, with peripheral nodes; P values for 

each correlation are indicated above each peripheral node.  c, Length of 
hospital stay plotted per patient against an individual’s baseline plasma 
cytokine measurements (<12 days from symptom onset), which were grouped 
according to high or low expression (>0.5 log10-transformed difference): IFNa2 
(Hi:12, Lo:13), TNFa (Hi:6, Lo:4), IL4 (Hi:7, Lo:11), IL4 (Hi:8, Lo:6), IL1RA (Hi:8, 
Lo:7), IL1b (Hi:11, Lo:5), IL6 (Hi:8, Lo:7), IL18 (Hi:5, Lo:5). d, Baseline plasma 
cytokine measurements for each patient who was either discharged from the 
hospital (n = 83) or expired during treatment for COVID-19 (n = 11). For all 
boxplots, the centre is drawn through the median of the measurement, while 
the lower and upper bounds of the box correspond to the first and third 
percentile. Whiskers beyond these points denote 1.5 × the interquartile range. 
P values were determined by two-sided, Wilcoxon rank-sum test.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Distribution of days from symptom onset stratified 
by collection time point and select cluster clinical data. a, Correlation of 
days from symptom onset and samples collection time points. Violin plots 
comparing the distributions of days from symptom for each patient ordered by 
sequential IMPACT study time points (1–8). Study time points 7 and 8 are 
represented by discrete points for the single patient collected at each. Violin 
plots display median values (solid line) and associated quartiles (dashed lines). 
T1–8 (time point 1 to 8). b–h, Aggregated clinical data for patients in clusters 
1–3. Displayed are laboratory values at time of admission to YNHH (“admit”); 

last recorded values from duration of admission (“last”); maximum recorded 
values from duration of admission (“max”); minimum recorded values from 
duration of admission (“min”); and average recorded values for duration of 
admission (“mean”). Scatter plots show cluster means with s.e.m. plotted 
above and below. Clusters were subsequently compared using ordinary two-
way ANVOA and post hoc pairwise comparisons are identified where 
significant (adjusted P values displayed, Tukey’s method for multiple 
comparisons).



Extended Data Fig. 8 | Risk of death according to biomarkers levels. Forest 
plots comparing the risk of death among ill patients. Each effect estimate 
represents an individual regression estimate with a Poisson family, log link, and 
robust variance estimation; each model accounts for repeated measures within 
one individual through the use of generalized estimating equations (GEE). 

Measurements are divided into three time-periods: 0–11 days after symptom 
onset, 12–19 days after symptom onset, and ≥20 days after symptom onset. If an 
individual had more than one measurement of a biomarker during any 
particular time period, we used the average of all values. Each model controls 
for participant age and gender.
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Extended Data Fig. 9 | Gating strategies. Gating strategies are shown for the 
key cell populations described in Figs. 1b, c, 2d–f, and in Extended Data Figures. 
a, Leukocyte gating strategy to identify lymphocytes, granulocytes, monocytes,  
pDCs, and cDCs in Figs. 1b, c, 2d–f and Extended Data Fig. 2a. b, T cell surface 
staining gating strategy to identify CD4 and CD8 T cells, TCR-activated T cells, 

terminally-differentiated T cells, and additional subsets as shown in Extended 
Data Fig. 2b. c, Intracellular T cell gating strategy to identify CD4 and/or CD8 
T cells secreting TNF, IFNγ, IL-6, IL-2, granzyme B, IL-4, and/or IL-17 in Extended 
Data Figs. 2c, 5a, b.



Extended Data Table 1 | Basic demographics for IMPACT cohort

Unless otherwise noted, relative risks were not statistically significant. Moderate (clinical score 1–3) and severe (clinical score 4–5) disease status were assigned as described in Methods. 
Percentages of sub-group (moderate or severe) are shown for each category with respective counts in parenthesis. Average age was calculated with accompanying sample standard deviation. 
Ethnicity and BMI were extracted from most recent electronic medical record (EMR) data. Select COVID-19 risk factors were scored by a clinical infectious disease physician. Presenting symp-
toms were recorded through direct interview with patient or surrogate or retrospective EMR review.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Data collection EPIC EHR software (retrospective EMR review and clinical data aggregation) and REDCap 9.3.6 (clinical data aggregation).
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mlbench, and ggstatsplot, FlowJo software version 10.6 software (Tree Star). 
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- A description of any restrictions on data availability
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Sample size No statistical methods were used to calculate the sample size. Sample size was determined based on the number of patients admitted to Yale-
New Haven Hospital (YNHH) between March 18th and May 5th that were enrolled and consented with th current study. This study enrolled 
135 patients admitted to the Yale New Haven Health care network under IRB and HIC approved protocol #2000027690. Patients were 
identified though screening of EMR records for potential enrollment. Informed consent was obtained by trained staff and sample collection 
commenced immediately upon study enrollment. Clinical specimens were collected approximately every 4 days where an individual’s clinical 
status permitted, and was continued until patient discharge or expiration. 

Data exclusions 135 COVID-19 patients were enrolled on this study however 22 were excluded. Those included: Pregnant women and patients on active 
chemotherapy. Specifically, cytokine ELISAs from two individuals were excluded from analysis due to poor sample quality. Measurements 
from these individuals were outliers (beyond 1.5x the interquartile range) in more than half of the cytokines measured. This strongly 
suggested that a technical error occurred during these two experiments.Finally, for each individual boxplot, line graph, or linear regression, 
unique values that fell into the top or bottom 1% were excluded. Duplicate values within this range were not excluded. This applies only to 
unique values, such that two identical measurements falling into this range will remain in the analysis. We chose this very conservative 
method of exclusion in order to most faithfully represent the heterogeneity of our data, without allowing for extreme outliers to obscure our 
analyses. This is particularly true in situations in which we subset the data further by time intervals; with a smaller n in each time interval, 
extreme outliers disproportionately skew the mean/median at this point. Finally for the health donors group, asymptomatic or pre-
symptomatic healthcare workers were excluded (when positive for SARS-CoV2 q-RT-PCR or serology). 

Replication  The findings were not replicated - longitudinal analyses from human individuals. 

Randomization Patients were stratified by disease severity (moderate and severe) based on based on oxygen levels and intensive care unit (ICU) requirement. 
Moderate disease status (Clinical Score 1, 2 and 3) was defined as: (1) SARS-CoV-2 infection requiring hospitalization without supplemental 
oxygen, (2) infection requiring non-invasive supplemental oxygen (<3 L / min, sufficient to maintain greater than 92% SpO2), (3) infection 
requiring non-invasive supplemental oxygen (> 3L supplemental oxygen to maintain SpO2 > 92%, or, required > 2L supplemental oxygen to 
maintain SpO2 > 92% and had a high sensitivity C-reactive protein (CRP) > 70) and received tocilizumab. Severe disease status (Clinical score 4 
and 5) was defined as infection meeting all criteria for clinical score 3 while also requiring admission to the YNHH Intensive Care Unit (ICU) and 
> 6L supplemental oxygen to maintain SpO2 > 92% (4); or infection requiring invasive mechanical ventilation / extracorporeal membrane 
oxygenation (ECMO) in addition to glucocorticoid / vasopressor administration (5). Clinical score 6 was assigned for deceased patients.  

Blinding At the time of sample acquisition and processing, scientists were completely unaware of the patients’ conditions. Blood acquisition is 
performed and recorded by a separate team. Information of patients’ conditions are not available until after processing and analysing raw 
data by flow cytometry and ELISA. A clinical team, separate from the experimental team, performs chart review to determine patients’ 
relevant statistics. Cytokines and facs analyses were blinded. Patients clinical information and clinical scores coding were only revealed after 
data collection.   

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies
Antibodies used All antibodies used in this study are against human proteins. BB515 anti-hHLA-DR (G46-6) (1:400) (BD Biosciences), BV785 anti-

hCD16 (3G8) (1:100) (BioLegend), PE-Cy7 anti-hCD14 (HCD14) (1:300) (BioLegend), BV605 anti-hCD3 (UCHT1) (1:300) (BioLegend), 
BV711 anti-hCD19 (SJ25C1) (1:300) (BD Biosciences), AlexaFluor647 anti-hCD1c (L161) (1:150) (BioLegend), Biotin anti-hCD141 (M80) 
(1:150) (BioLegend), PE-Dazzle594 anti-hCD56 (HCD56) (1:300) (BioLegend), PE anti-hCD304 (12C2) (1:300) (BioLegend), APCFire750 
anti-hCD11b (ICRF44) (1:100) (BioLegend), PerCP/Cy5.5 anti-hCD66b (G10F5) (1:200) (BD Biosciences), BV785 anti-hCD4 (SK3) (1:200) 
(BioLegend), APCFire750 or PE-Cy7 or BV711 anti-hCD8 (SK1) (1:200) (BioLegend), BV421 anti-hCCR7 (G043H7) (1:50) (BioLegend), 
AlexaFluor 700 anti-hCD45RA (HI100) (1:200) (BD Biosciences), PE anti-hPD1 (EH12.2H7) (1:200) (BioLegend), APC anti-hTIM3 
(F38-2E2) (1:50) (BioLegend), BV711 anti-hCD38 (HIT2) (1:200) (BioLegend), BB700 anti-hCXCR5 (RF8B2) (1:50) (BD Biosciences), PE-
Cy7 anti-hCD127 (HIL-7R-M21) (1:50) (BioLegend), PE-CF594 anti-hCD25 (BC96) (1:200) (BD Biosciences), BV711 anti-hCD127 
(HIL-7R-M21) (1:50) (BD Biosciences), BV421 anti-hIL17a (N49-653) (1:100) (BD Biosciences), AlexaFluor 700 anti-hTNFa (MAb11) 
(1:100) (BioLegend), PE or APC/Fire750 anti-hIFNy (4S.B3) (1:60) (BioLegend), FITC anti-hGranzymeB (GB11) (1:200) (BioLegend), 
AlexaFluor 647 anti-hIL-4 (8D4-8) (1:100) (BioLegend), BB700 anti-hCD183/CXCR3 (1C6/CXCR3) (1:100) (BD Biosciences), PE-Cy7 anti-
hIL-6 (MQ2-13A5) (1:50) (BioLegend), PE anti-hIL-2 (5344.111) (1:50) (BD Biosciences), BV785 anti-hCD19 (SJ25C1) (1:300) 
(BioLegend), BV421 anti-hCD138 (MI15) (1:300) (BioLegend), AlexaFluor700 anti-hCD20 (2H7) (1:200) (BioLegend), AlexaFluor 647 
anti-hCD27 (M-T271) (1:350) (BioLegend), PE/Dazzle594 anti-hIgD (IA6-2) (1:400) (BioLegend), PE-Cy7 anti-hCD86 (IT2.2) (1:100) 
(BioLegend), APC/Fire750 anti-hIgM (MHM-88) (1:250) (BioLegend), BV605 anti-hCD24 (ML5) (1:200) (BioLegend), BV421 anti-hCD10 
(HI10a) (1:200) (BioLegend), BV421 anti-CDh15 (SSEA-1) (1:200) (BioLegend), AlexaFluor 700 Streptavidin (1:300) (ThermoFisher), 
BV605 Streptavidin (1:300) (BioLegend).

Validation All antibodies used in this study are commercially available, and all have been validated by the manufacturers and used by other 
publications. Likewise, we titrated these antibodies according to our own our staining conditions. The following were validated in the 
following species: BB515 anti-hHLA-DR (G46-6) (BD Biosciences) (Human, Rhesus, Cynomolgus, Baboon), BV785 anti-hCD16 (3G8) 
(BioLegend) (Human, African Green, Baboon, Capuchin Monkey, Chimpanzee, Cynomolgus, Marmoset, Pigtailed Macaque, Rhesus, 
Sooty Mangabey, Squirrel Monkey), PE-Cy7 anti-hCD14 (HCD14) (BioLegend) (Human), BV605 anti-hCD3 (UCHT1) (BioLegend) 
(Human, Chimpanzee), BV711 anti-hCD19 (SJ25C1) (BD Biosciences) (Human), AlexaFluor647 anti-hCD1c (L161) (BioLegend) (Human, 
African Green, Baboon, Cynomolgus, Rhesus), Biotin anti-hCD141 (M80) (BioLegend) (Human, African Green, Baboon), PE-Dazzle594 
anti-hCD56 (HCD56) (BioLegend) (Human, African Green, Baboon, Cynomolgus, Rhesus), PE anti-hCD304 (12C2) (BioLegend) 
(Human), APCFire750 anti-hCD11b (ICRF44) (BioLegend) (Human, African Green, Baboon, Chimpanzee, Common Marmoset, 
Cynomolgus, Rhesus, Swine), PerCP/Cy5.5 anti-hCD66b (G10F5) (BD Biosciences) (Human), BV785 anti-hCD4 (SK3) (BioLegend) 
(Human), APCFire750 or PE-Cy7 or BV711 anti-hCD8 (SK1) (BioLegend) (Human, Cross-Reactivity: African Green, Chimpanzee, 
Cynomolgus, Pigtailed Macaque, Rhesus, Sooty Mangabey), BV421 anti-hCCR7 (G043H7) (BioLegend) (Human, African Green, 
Baboon, Cynomolgus, Rhesus), AlexaFluor 700 anti-hCD45RA (HI100) (BD Biosciences) (Human), PE anti-hPD1 (EH12.2H7) 
(BioLegend) (Human, African Green, Baboon, Chimpanzee, Common Marmoset, Cynomolgus, Rhesus, Squirrel Monkey), APC anti-
hTIM3 (F38-2E2) (BioLegend) (Human), BV711 anti-hCD38 (HIT2) (BioLegend) (Human, Chimpanzee, Horse), BB700 anti-hCXCR5 
(RF8B2) (BD Biosciences) (Human), PE-Cy7 anti-hCD127 (HIL-7R-M21) (BioLegend) (Human), PE-CF594 anti-hCD25 (BC96) (BD 
Biosciences) (Human, Rhesus, Cynomolgus, Baboon), BV711 anti-hCD127 (HIL-7R-M21) (BD Biosciences) (Human), BV421 anti-hIL-17a 
(N49-653) (BD Biosciences) (Human), AlexaFluor 700 anti-hTNFa (MAb11) (BioLegend) (Human, Cat, Cross-Reactivity: Chimpanzee, 
Baboon, Cynomolgus, Rhesus, Pigtailed Macaque, Sooty Mangabey, Swine), PE or APC/Fire750 anti-hIFNy (4S.B3) (BioLegend) 
(Human, Cross-Reactivity: Chimpanzee, Baboon, Cynomolgus, Rhesus), FITC anti-hGranzymeB (GB11) (BioLegend) (Human, Mouse, 
Cross-Reactivity: Rat), AlexaFluor 647 anti-hIL-4 (8D4-8) (BioLegend) (Human, Cross-Reactivity: Chimpanzee, Baboon, Cynomolgus, 
Rhesus), BB700 anti-hCD183/CXCR3 (1C6/CXCR3) (BD Biosciences) (Human, Rhesus, Cynomolgus, Baboon), PE-Cy7 anti-IL-6 
(MQ2-13A5) (BioLegend) (Human), PE anti-hIL-2 (5344.111) (BD Biosciences) (Human), BV785 anti-hCD19 (SJ25C1) (BioLegend) 
(Human), BV421 anti-hCD138 (MI15) (BioLegend) (Human), AlexaFluor700 anti-hCD20 (2H7) (BioLegend) (Human, Baboon, Capuchin 
Monkey, Chimpanzee, Cynomolgus, Pigtailed Macaque, Rhesus, Squirrel Monkey), AlexaFluor 647 anti-hCD27 (M-T271) (BioLegend) 
(Human, Cross-Reacitivity: Baboon, Cynomolgus, Rhesus), PE/Dazzle594 anti-hIgD (IA6-2) (BioLegend) (Human), PE-Cy7 anti-hCD86 
(IT2.2) (BioLegend) (Human, African Green, Baboon, Capuchin Monkey, Common Marmoset, Cotton-topped Tamarin, Chimpanzee, 
Cynomolgus, Rhesus), APC/Fire750 anti-hIgM (MHM-88) (BioLegend) (Human, African Green, Baboon, Cynomolgus, Rhesus), BV605 
anti-hCD24 (ML5) (BioLegend) (Human, Cross-Reactivity: Chimpanzee), BV421 anti-hCD10 (HI10a) (BioLegend) (Human, African 
Green, Baboon, Capuchin monkey, Chimpanzee, Cynomolgus, Rhesus), BV421 anti-hCD15 (SSEA-1) (BioLegend) (Human), AlexaFluor 
700 Streptavidin (1:300) (ThermoFisher), BV605 Streptavidin (1:300) (BioLegend).

Human research participants
Policy information about studies involving human research participants

Population characteristics Cohort characteristics: age (62.96 ± 17.0), sex (Male 46.02% / Females 53.98% , Ethnicity (American Indian -Alaskan Native 
0%/ Asian (0.88%) / Black -African American (29.2%)/ Native Hawaiian-Pacific Islander(0%)/ White (53.98%)/ Hispanic 
(12.39%). Full demographic data is included in Extended data table 1.

Recruitment Patients admitted to the Yale New Haven Hospital (YNHH) between the 18th of March through the 27th of May 2020, were 
recruited to the Yale IMPACT study (Implementing Medical and Public Health Action Against Coronavirus CT) after testing 
positive for SARS-CoV2 by qRT-PCR.  (serology was further confirmed for all patients enrolled).  Patients were identified 
though screening of EMR records for potential enrollment with no self selection.  Informed consent was obtained by trained 
staff and sample collection commenced immediately upon study enrollment. Clinical specimens were collected 
approximately every 4 days where an individual’s clinical status permitted, and was continued until patient discharge or 
expiration. 

Ethics oversight Yale Human Research Protection Program Institutional Review Boards. Informed consents were obtained from all enrolled 
patients and healthcare workers. • Our research protocol was reviewed and approved by the Yale School of Medicine IRB and 
HIC (#2000027690). Informed consent was obtained by trained staff and records maintained in our research database for the 
duration of our study. There were no minors included on this study. 
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Freshly isolated PBMCs were stained for live and dead markers, blocked with Human TruStan FcX , stained for surface 
markers and then fixed with PFA 4%.  For intracellular cytokine staining following stimulation , cells were surface stained, 
washed and fixed in  4% PFA. After permeabilization with 1X Permeabilization Buffer cells were stained for intracellular 
cytokines analysis. 

Instrument Cells were acquired on an Attune NXT (ThermoFisher). 

Software  Data were analysed using FlowJo software version 10.6 software (Tree Star). n

Cell population abundance Cell population abundance: Cells populations were reported in various formats including as a number or concentration of the 
patient’s blood sample (x106cells/mL), as a proportion of live, single PBMC (% of Live), or as a proportion of a parent gate (% 
of CD4 T cells, % of Monocytes, etc.). The full gating path for clarification is included in the extended figures.

Gating strategy SSC-A and FSC-A parameters were used to select leukocytes from isolated PBMCs. Live and dead cells were defined based on 
aqua staining. Singlets were separated based on SSC/ FSC parameters.  Leukocytes were gated based on to identify 
lymphocytes (CD3/CD4/CD8/CD19/CD56 markers), granulocytes (CD16,CD14, HLA-DR markers) and pDCs, and cDCs (CD304, 
CD1c, CD141).  TCR-activated T cells, Terminally-differentiated T cells, and additional subsets.were defined using HLA-DR, 
CD38, CCR7,CD127, PD1, TIM-3, CXCR5, CD45RA, CD25.   Intracellular T cell gating strategy to identify CD4 and/or CD8 T cells 
secreting TNFa, IFN-y, IL-6, IL-2, GranzymeB, IL-4, and/or IL-17 were defined using the specif markers: CD3, CD4, CD8, TNF, 
IFN, IL-6, IL-2, IL-4, IL-17 and granzyme B.  

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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