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Combinatorial binding of transcription factors to regulatory DNA underpins gene
regulationinall organisms. Genetic variation in regulatory regions has been

connected with diseases and diverse phenotypic traits', but it remains challenging to
distinguish variants that affect regulatory function®. Genomic DNase I footprinting
enables the quantitative, nucleotide-resolution delineation of sites of transcription
factor occupancy within native chromatin®®. However, only a small fraction of such
sites have been precisely resolved on the human genome sequence®. Here, to enable
comprehensive mapping of transcription factor footprints, we produced high-
density DNase I cleavage maps from 243 human cell and tissue types and states and
integrated these datato delineate about 4.5 million compact genomic elements that
encode transcription factor occupancy at nucleotide resolution. We map the fine-
scale structure within about 1.6 million DNase I-hypersensitive sites and show that the
overwhelming majority are populated by well-spaced sites of single transcription
factor-DNA interaction. Cell-context-dependent cis-regulation is chiefly executed by
wholesale modulation of accessibility at regulatory DNA rather than by differential
transcription factor occupancy within accessible elements. We also show that the
enrichment of genetic variants associated with diseases or phenotypic traitsin
regulatory regions'” is almost entirely attributable to variants within footprints, and
that functional variants that affect transcription factor occupancy are nearly evenly
partitioned between loss- and gain-of-function alleles. Unexpectedly, we find
increased density of human genetic variation within transcription factor footprints,
revealing an unappreciated driver of cis-regulatory evolution. Our results provide a
framework for both global and nucleotide-precision analyses of gene regulatory
mechanisms and functional genetic variation.

Genome-encoded recognition sites for sequence-specific DNA bind-
ing proteins are the atomic units of eukaryotic gene regulation. Cur-
rently we lack acomprehensive, nucleotide-resolution annotation of
suchelements and their selective occupancy in different cell types and
states. Such areference is essential both for analysis of cell-selective
regulation and for systematic integration of regulation with genetic
variation associated with diseases and phenotypic traits.
Invivobinding of regulatory factors shieldsbound DNA elements from
nuclease attack, giving rise to protected single-nucleotide-resolution
DNA ‘footprints’. The advent of DNA footprinting using the non-specific
nuclease DNase I® marked a turning point in analyses of gene regu-
lation, and facilitated the identification of the first mammalian
sequence-specific DNA binding proteins’®. Genomic DNase I footprint-
ing®®enables the genome-wide delineation of DNA footprints (approxi-
mately 7-35 base pairs (bp)) over any genomic region in which DNase |
cleavageis sufficiently dense—chiefly DNase I hypersensitive sites (DHSs).

DNase Ifootprints pinpoint regulatory factor occupancy on DNAand can
be used to discriminate sites of direct versus indirect occupancy when
integrated with chromatinimmunoprecipitation and sequencing (ChIP-
seq) experiments*. Cognate transcription factors (TFs) canbe assigned
to footprints on the basis of matching consensus sequences, enabling
the TF-focused analysis of gene regulation and regulatory networks'™
and of the evolution of regulatory factor binding patterns™. DNase I is
roughly the size of atypical TF and recognizes the minor groove of DNA,
where it hydrolyses single-stranded cleavages. These, in turn, reflect
boththetopology andthekinetics of coincidently bound proteins. Pre-
vious efforts to analyse these featues* were complicated by the slight
sequence-driven cleavage preferences of DNase I, which have sincebeen
exhaustively determined?, setting the stage for fully resolved tracing of
DNA-proteininteractions within regulatory DNA.

Here we combine sampling of more than 67 billion uniquely map-
ping DNase I cleavages from over 240 human cell types and states to
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index human genomic footprints with unprecedented accuracy and
resolution, and thereby to identify the sequence elements thatencode
TF recognition sites within the human genome. We leverage this index
to (i) systematically assign footprints to TF archetypes; (ii) define pat-
terns of cell-selective occupancy; and (iii) analyse the distribution and
effect of human genetic variation onregulatory factor occupancy and
the genetics of common diseases and traits.

Global mapping of TF footprints

To create comprehensive maps of TF occupancy, we deeply sequenced
high-quality, high-complexity DNase I libraries from 243 biosamples
derived from diverse primary cells and tissues (n =151), primary cells
inculture (n=22),immortalized cell lines (n=10) and cancer cell lines
and primary samples (n = 60) (Supplementary Table 1). Collectively,
we uniquely mapped 67.6 billion DNase I cleavage events (mean, 278.2
million uniquely mapped cleavages per biosample), which represents
agreatincrease over earlier studies*. On average, 49.7% of DNase cleav-
ages from each biosample mapped to DHSs, which covered 1-3% of
the genome.

Toidentify DNase I footprints genome-wide, we developed acompu-
tational approachthatincorporates both chromatinarchitecture and
exhaustively enumerated empirical DNase I sequence preferences to
determine expected per-nucleotide cleavage rates across the genome,
andtoderive, for eachbiosample, astatistical model for testing whether
its observed cleavage rates at individual nucleotides deviated signifi-
cantly from expectation (Extended Data Fig. 1a-g, Supplementary
Methods). We note that the derivation of cleavage variability models
for each biosample individually accounts for additional sources of
technical variability beyond DNase I cleavage preference.

Using this model, we performed de novo footprint discovery inde-
pendently on each of 243 biosamples, detecting on average 657,029
high-confidence footprints per biosample (range 220,580-1,664,065,
empirical false discovery rate <1% (Supplementary Methods)), and col-
lectively 159.6 million footprint events across all biosamples. Nucleo-
tide protection tracked closely with both the presence of known TF
recognition sequences and the level of per-nucleotide evolutionary
conservation (Extended Data Fig. 2a, b). At the level of individual
nucleotides, de novo footprints genome-wide were highly concordant
between biological replicates of the same cultured cell type or between
the same primary cell and tissue types sampled from differentindividu-
als (median Pearson’s r = 0.83 and 0.74, respectively) (Extended Data
Fig.2c-e). Within each biosample, footprints encompassed an average
of around 7.6 Mb (0.2%) of the genome, with a mean of 4.3 footprints
per DHS with sufficient read depth for robust detection (normalized
cleavage density within DHS of at least 1).

Unified index of human genomic footprints

Comparative footprinting across cell types has the potential to
illuminate both the structure and function of regulatory DNA, but
a systematic approach for joint analysis of genomic footprinting
data has been lacking. Given the scale and diversity of the cell types
and tissues surveyed, we sought to develop a framework that could
integrate hundreds of available footprinting datasets to increase the
precision and resolution of footprint detection and, furthermore,
to provide a scaffold for acommon reference index of TF-contacted
DNA genome-wide.

To accomplish this, we implemented an empirical Bayes frame-
work that estimates the posterior probability that a given nucleotide
is footprinted by incorporating a prior on the presence of a footprint
(determined by footprintsindependently identified within individual
datasets) and alikelihood model of cleavage rates for both occupied and
unoccupied sites (Fig. 1a, Supplementary Methods). Figure 1b depicts
per-nucleotide footprint posterior probabilities computed for two
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DHSs within a representative locus (RELB) across all 243 biosamples.
A notable feature of these data is the positional stability and discrete
appearance of footprints seen within each DHS across tens to hundreds
ofbiosamples. Plotting individual nucleotides scaled by their footprint
prevalence across all samples precisely resolves the core recognition
sequences of diverse TFs (Fig. 1b, bottom).

To establish a reference set of TF-occupied DNA elements
genome-wide, we applied the Bayesian approach to all DHSs detected
within one or more of the 243 biosamples, and applied the same
consensus approach used to establish a consensus DHS index" to
collate overlapping footprinted regions across individual biosa-
mples into distinct high-resolution consensus footprints (Supple-
mentary Methods). Collectively, we delineated approximately 4.46
million consensus footprints within about 1.6 million (46%) of the
3.39 million DHSs indexed within these biosamples® (Fig. 1c). More
than 90% of the DHSs with moderate sequencing coverage (over 250
tags per 250 million sequenced) contained at least one footprint
(and typically many more; Fig. 1d). As expected, consensus (that is,
empirical Bayes) footprints were markedly more reproducible than
footprints detected using individual datasets (average Jaccard simi-
larity between replicate biosamples 0.43 versus 0.29, respectively)
(Extended DataFig. 3a).

Consensus footprints were on average 16 bp wide (middle 95%:
7-44 bp; 90%: 7-36 bp; 50%: 9-21 bp) and were distributed across all
classes of DHS, albeit with enrichment in promoter-proximal elements
owingtotheir generally elevated cleavage density (Extended DataFig. 3b,
¢). Most consensus footprints (82.6%) localized directly within the core
of aDHS peak (average width 203 bp), with virtually all of the remainder
localized within 250 bp of a DHS peak summit (Fig. 1e). Collectively,
consensus footprints annotated 2.1% (72 Mb) of the human genome refer-
ence sequence, compared with about1.5% for protein coding elements.

Given the strong dependency of footprint detection on sequenc-
ing depth (Extended Data Fig. 1b) and sample diversity, we sought
to estimate how comprehensively this index covered the possible
detectable footprint space and to what degree additional sequenc-
ing and/or biosamples would augment footprint discovery. De novo
footprint detection after iteratively subsampling the most deeply
sequenced DNase I libraries (more than 750 million sequenced tags)
showed that footprints detected increased linearly with sequencing
depth (Extended Data Fig. 3d, e), indicating that these DNase I librar-
ies have yet to be sampled to saturation. By contrast, the addition of
new biosamples and/or replicates produced a sublinear increase in
the number of footprints detected (Extended Data Fig. 3f, g). Because
the consensus approach favours footprints with support from many
biosamples, the consensus footprint space reported here is likely to
represent a substantial proportion of TF binding sites that are shared
across many cell and tissue types.

Assigning TFs to footprints

Recognition sequences now exist for all major families and subfami-
lies of TFs, and for a large number of individual TF isoforms™. We
thus sought to create a reference mapping between annotated TFs
and consensus footprints by (i) compiling and clustering all publicly
available motif models®™; (ii) creating non-redundant TF archetypes
by placing closely related TF family members ona common sequence
axis (Extended Data Fig. 4, Supplementary Table 2, Supplementary
Methods); (iii) aligning TF archetypes to the human reference sequence
athigh stringency (P<107*); and (iv) enumerating all potential TF arche-
types that are compatible with each consensus footprint on the basis
of overlap and match stringency. In total, 80.7% of the approximately
4.46 million consensus footprints could be assigned to atleast one TF
with atleast 90% sequence overlap, of which 860,780 (19.3%) could be
unambiguously assigned to asingle factor,and 2,038,220 (45.7%) to a
single TF with two lower-ranked alternatives.
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Fig.1|Anucleotide-resolution atlas of TF occupancy on the human
genome. a,DNasel cleavage patterns (RELBlocusin CD8'T cells). Top,
windowed DNase I cleavage density. Below, per-nucleotide cleavage and
footprint posterior probabilities within two DHSs. b, Heat map of footprint
posterior probabilities integrating 243 biosamples. Rows are individual
biosamples grouped by tissue or organ systems; columns are individual
nucleotides. Blackfills to right of heat maps indicate overlapping DHSs in
biosample. Below, DHS sequence scaled by footprint prevalence. Grey boxes,

Togauge the sensitivity and accuracy of the motif-to-consensus foot-
print mappings, we evaluated the posterior footprint probability as
metricto classify motif occupancy by using the genomic master regula-
tor CCCTC-binding factor (CTCF). CTCF combines awell-documented,
unambiguous motifwith the availability of ENCODE ChIP-seq data®® for
abroad range of cell and tissue types that match those represented in
the consensus footprintindex (Supplementary Table 3). Comparing the
occupancy of all CTCF motifs within all DHSs (Supplementary Methods)
with CTCF ChIP-seq data showed strong classification performance,
with amean area under precision-recall curve of 0.80 (Extended Data
Fig.5a,b). Atthe posterior footprint probability threshold used to gener-
ate consensus footprints (P>0.99), we correctly identified an average of
19,904 CTCF-bound recognition elements per cell type, corresponding
to a mean precision of 82.5% and sensitivity of 60% (Supplementary
Table 3), despite posterior footprint probability not encoding any
information about the quality of motif matches. Lower CTCF motif
match scores were strongly associated with false-positive footprint or
motif classifications, so the incorporation of motif match strengthin
addition to footprint probability is expected to increase classification
precision (Extended DataFig. 5c). Overall, footprinted motifs showed an
approximately 2.5-fold increase in CTCF ChIP-signal when compared to
non-footprinted motifs (Extended DataFig. 5d, e). Examination of other
TFsyielded similar results, albeit with variable classification accuracy
that was probably driven by the ambiguity in footprint assignment for
motifs recognized by many distinct TFs and the predominance of weak
and/or indirect occupancy (Extended Data Fig. 5f-m).

consensus footprintsin one or more cell or tissue types (footprint posterior
>0.99). ¢, Consensus map of TF occupancy derived from 243 biosamples
covering 1.6 million DHSs providing expansive nucleotide-resolution
annotation of regulatory DNA.d, Proportion of DHSs with footprints at given
sequencing depth. Dashedredlines and dot show read depth (tags per 250
millionuniquely mapped reads) at which footprintis detected in 90% of DHSs.
e, Histogram of footprint location relative to DHS peak summit. Dashed red
linesrepresent average size ofaDHS peak (203 bp).

Primary architecture of regulatory regions

Despiteintensive efforts over several decades, the primary architecture
ofregulatory regions has remained unclear, with the singular exception
of the interferon ‘enhanceosome™. Elucidating the primary architec-
ture of active regulatory DNA requires accurate tracing of the TF-DNA
interface over an extended interval. Because TF engagement creates
subtle alterations in DNA shape and protects underlying phosphate
bonds from nuclease attack via steric hindrance®, we investigated to
what extent fluctuations in corrected DNase | cleavage rates within
individual consensus footprints accurately reflected the topology
of the TF-DNA interface. Notably, previous efforts to resolve such
features* were obscured by subtle intrinsic cleavage preferences and
lacked resolving power at individual TF footprints on the genome.
Poly-zinc fingers are the most prevalent class of human TFs and have
recognition interfaces that potentially cover tens of nucleotides™. The
DNA recognition domain of CTCF comprises 11 zinc fingers, potentially
encoding 33 bp of sequence (or DNA shape®) recognition. We identi-
fied 25,852 footprints that coincided precisely with CTCF motifs within
regulatory T cells. Transposing the average corrected per-nucleotide
cleavage propensity with an extended co-crystal structure of CTCF*
accurately traced all features of the protein-DNA interactioninterface,
including focal hypersensitivity within the hinge region between zinc
fingers 7 and 9°%2* (Fig. 2a, Supplementary Methods). A similar result
was obtained for widely divergent classes of DNA binding domain, such
asthe paired-box domain-containing TF PAX6* (Extended DataFig. 6a)
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Fig.2|Footprints encapsulate topological structures of individual
TF-DNAinteractions. a, Structure of CTCF zinc fingers 3-11bound to cognate
DNA recognition sequence (Protein Data Bank (PDB) codes: SYEF and SYEL)?.
DNA coloration shows mean observed versus expected cleavage at footprinted
CTCF motifs (in Tregulatory cells). b, Heat map of relative cleavage at each

of 25,852 footprinted CTCF motifs (posterior probability >0.99). Below,
aggregate (summed) nuclease cleavage relative to footprinted motifs. Right,
nuclease cleavage (observed and expected) at three footprints randomly
selected across genome. ¢, Footprint widthis tightly correlated with the width
ofthe TFrecognition sequence (Spearman’sp=0.9,P=0.001).

and other TFs with extant co-crystal structures (not shown). Critically,
these topological features were evident at the level of individual TF
footprints on the genome (Fig. 2a, Extended Data Fig. 6). Overall, the
average footprint width for diverse TFs tightly tracked the width of
their respective recognition sequences (Spearman’s p=0.90, P=0.001)
(Fig. 2b). As such, the extended profile of corrected per-nucleotide
DNase I cleavage across entire regulatory regions should, in principle,
provideasnapshot of the primary structure of active regulatory DNA.

Distinguishing TF occupancy modes

TFs compete cooperatively with nucleosomes for access to regu-
latory DNA??¢, Many TFs have the potential to catalyse changes in
nucleosome occupancy over a strongly matching recognition motif,
a process referred to as ‘pioneering®. However, it is unclear how
steady-state chromatin accessibility is maintained by TFs in place of
acanonical nucleosome, and whether this results primarily from local
protein-proteininteractions or the synergistic effects of independent
TF-DNA binding®. We reasoned that the number, relative spacing,
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20bpapart.

and morphology of TF binding events within individual regulatory
elements could be used to gain insight into the mechanistic basis of
TF cooperativity.

Asthe width of genomicfootprints tightly tracks the physical struc-
ture of individual TFs bound to DNA (Fig. 2a, b, Extended Data Fig. 6),
anddirect TF-TF interactions are dependent on close proximity, such
interactions should resultin larger footprints that contain multiple TF
recognitionsites. Conversely, independent TF-DNA interaction events
shouldyield compact and widely spaced footprints that containsingle
TF recognitionsites. As such, the prevalence of cooperativity mediated
by direct TF-TF interactions rather than by synergy of independent
binding events should be reflected in the relative proportion of wide,
multi-motif footprints compared to that of well-spaced single foot-
prints. Larger footprints are overwhelmingly associated with two (or
more) recognition sequences (Fig. 3a), but such footprints represent
only 8% of the global footprint landscape. By contrast, 92% of footprints
contain asingle TF recognition site (Fig. 3b).

Because TFs can distort DNA upon engagement, TF spacing could
be critical for establishing regulatory structures. To quantify global
footprint spacing patterns, we first binned each DHS by its average
accessibility across all biosamples (as footprint discovery depends
ontotal DNase I cleavage; Extended Data Fig. 1b), and for each bin we
computed the mean number of footprints present per element and
theirrelative edge-to-edge spacing. The density of footprints within the
most deeply sampled DHSs genome-wide plateaued at an average of 5.5
per200bp (Fig. 3¢, top), whichisin agreement with theoretical predic-
tions of the number of human TFs required to destabilize a canonical
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nucleosome? and to encode specificity?. Within DHSs, footprints
exhibited average edge-to-edge spacing of about 21 bp (middle 50%,
12-35bp) (Fig. 3c, bottom). Together, these results are compatible
with the observed lack of evolutionary constraint on the spacing and
orientation®** of TF motifs and strongly suggest that steady-state
regulatory DNA accessibility is maintained chiefly by independent but
synergistic TF binding modes (Fig. 3d).

Cell-selective TF occupancy landscapes

Footprint occupancy across all biosamples showed marked enrichment
for the recognition sequences of key regulatory TFs in their cognate
lineages (Extended DataFig. 7a). In total, we identified 609 motif mod-
els that matched footprinted sequences (Supplementary Methods);
these models encompassed 64 distinct archetypal TF recognition codes
(Supplementary Table 2), representing virtually allmajor DNA-binding
domain families. For degenerate motifs where the same sequence is
recognized by many distinct TFs, we observed highly cell-selective
occupancy patterns that could be decomposed into coherent groups
that correspondedto cell type and function (Extended Data Fig. 7b-d).
However, the cell-selective occupancy patterns of most individual TF
footprints within DHSs mirrored the cell-selective actuation of their
encompassing DHS (Extended Data Fig. 7b-d).
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between homozygousindividuals at variants overlapping an NFIX footprint.
Each pointshows anindividual SNV within the footprinted NFIX binding
sitethatisbothimbalanced (g<0.2) in heterozygotes and differentially
footprinted (nominal P<0.05) inhomozygotes. Grey line, fitted linear model.
f, Allelicimbalance versus predicted energetic effects of variants within NFIX
footprints. Shownis medianlog-oddsscore (reference versus alternate allele)
of all tested variants within footprinted motifs binned by allelic ratio. Error bars
show 5th and 95th percentiles of log-odds motifscoresineach bin.

Given that most DHSs are shared across at least two cell types or
states™**, we queried how the pattern of footprints withina DHS (and
henceits topology) differed with cellular context. Although differential
TF occupancy can be discerned upon manual inspection®, systematic
analysis has not been possible owing to the dominance of intrinsic
DNase I cleavage propensities. To enable unbiased detection of dif-
ferential footprint occupancy, we developed astatistical framework to
test for differencesinrelative cleavage rates at individual nucleotides
across many samples, analogous to methods developed for the identi-
fication of differentially expressed genes (Supplementary Methods).
Toestimate the proportion of differentially regulated footprints within
DHSsof agivencell or tissue, we focused on the neural lineage, for which
many biosamples were available. We compared footprint occupancy
within DHSs that were broadly accessible in nervous-system-derived
samples (n=31) with that in non-nervous-system-derived samples
(n=212). We selected 67,368 DHSs that were highly accessiblein atleast
10 nervous- and non-nervous-derived samples, and for each DHS, per-
formed a per-nucleotide differential test (Extended DataFigs. 8a, b, 9a).
This analysis identified only a small proportion of DHSs (1,720 DHSs;
2.5%) as containing one or more differentially footprinted elements
(Extended Data Fig. 9a). Most of these DHSs contained a single differ-
entially regulated footprint, whereas a small fraction contained 2-4
differentially occupied elements (Extended Data Fig. 9a). Nonetheless,
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differentially occupied footprints were significantly enriched in recog-
nition sites for known nervous system regulators such as REST, NFIB,
ZIC1,and EBF1 (Extended Data Fig. 9a-c) and tissue-selective occupancy
events paralleled the expression of nearby genes (in the case of REST
occupancy) (Extended Data Fig. 9d).

Collectively, the above results indicate that the vast majority of
regulatory DNA regions marked by DHSs encode a single structural
topology that reflects a fixed pattern of footprint occupancy. None-
theless, at a small minority of elements, DHSs provide a scaffold for
cell-context-specific TF occupancy that is typically confined to one
or asmall number of footprinted elements.

Functional DNA variantsin TF footprints

Identifying genetic variants that are likely to affect regulatory func-
tion has remained challenging. Deep sequence coverage at DHSs
enables de novo genotyping of regulatory variants and simultaneous
characterization of their functional effect on local chromatin archi-
tecture by quantifying and comparing cleavage for each allele?*. The
243 biosamples we analysed were derived from 147 individuals, and
de novo genotyping (Supplementary Methods) revealed 3.76 million
single-nucleotide variants (SNVs) within DHSs, of which 1,656,597 were
heterozygous and had sufficient read depth (at least 35 overlapping
reads) to accurately quantify allelicimbalance.

Across individuals, we conservatively identified 117,626
chromatin-altering variants (CAVs) that altered DNA accessibility on
individual alleles (median 2.4-fold imbalance) (Fig. 4a, Extended Data
Fig.10a-c, Supplementary Methods). Within DHSs, CAVs were mark-
edly enriched in core consensus footprints, even after controlling for
theincreased detection power (that is, sequencing depth) within this
compartment (Fig. 4b, Extended Data Fig.10d).

In protein-coding regions, most functional genetic variation
is expected to be deleterious, with rare gain-of-function alleles®.
Protein-DNA recognition interfaces are likewise presumed to be
susceptible to disruption at critical nucleotides, predisposing to
loss-of-function alleles®. Notably, we found that CAVs were nearly
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evenly partitioned between loss-of-function (disruption of binding)
and gain-of-function (increased or de novo binding) alleles (Fig. 4c,
d, Extended Data Fig. 10c). Homozygosity for either the reference or
alternative allele paralleled results from heterozygotes and further
revealed that structural changes due to TF occupancy were precisely
confined to the DNA sequence recognition interface (Fig. 4c, bot-
tom). In many cases, SNVs that were detected in both heterozygous
and homozygous configurations showed strong agreement between
allelicratios andrelative footprint strength (Fig. 4e; Spearman’s p=0.9,
P<107). Variants within footprinted motifs were markedly enriched for
imbalance when compared to non-footprinted motifs; were localized
to high-information-content positions within the recognitioninterface
(Fig. 4c, bottom, Extended Data Fig. 11); and paralleled the predicted
energetic effect of the variant on the TF binding site (Fig. 4f, Extended
DataFig.12), thus providing adirect quantitative readout of the effects
of functional variation on TF occupancy.

TFs occupy hypermutable DNA

We next sought to characterize the patterns of humangenetic variation
within regulatory DNA with high precision. Only asmall fraction (11.6%)
of individual footprints showed evidence of evolutionary constraint
(phyloP score >1), consistent with purifying selection, whereas the vast
majority appeared to be evolving neutrally (Fig. 5a). To quantify the
relationship between evolutionary constraint and genetic variation
in human populations, we calculated mean nucleotide diversity (i)
within consensus genomic footprints by using more than 400 mil-
lion single-nucleotide variants detected by whole-genome sequenc-
ing of over 65,000 individuals under the TOPMED project® (Fig. 5b,
Supplementary Methods). Canonically, reduced levels of mreflect the
elimination of deleterious alleles from the population by natural selec-
tion, and hence areindicative of recent functional constraint. Consist-
entwith prior observations*, we found that mean mwithin footprints
approximated that of fourfold degenerate sites within protein-coding
regions, which are assumed to be evolving neutrally or under relaxed
selection. Stratification of footprints by the level of evolutionary con-
straint (phyloP score >1) revealed marked differencesin genetic diver-
sity, with significantly reduced levels of mwithin highly evolutionarily
constrained footprints and increased min non-constrained footprints
(P<0.0001; two-sample bootstrap t-test).

The density of sampled variation enabled nucleotide-resolution anal-
ysis of nucleotide diversity at footprinted and non-footprinted bases
within DHSs. Unexpectedly, we found amarked increase innucleotide
diversity centred precisely within the core of footprints (Fig. 5¢), reveal-
ing that these elements as aclass—but notintervening non-footprinted
segments of DHSs—are highly polymorphic in human populations.
This result eclipses prior global analyses indicating that TF occupancy
sites are generally not under substantial purifying selection** both
in the magnitude of the observed effect and in its nucleotide-precise
localization within the footprint core.

Focally increased genetic diversity within footprints suggested that
the nucleotides that encode these elements may have anincreased
mutationalload when compared withimmediately adjacent sequences.
To explore this possibility, we focused on variants with extremely low
allele frequencies in human populations (minor allele frequency less
than107*); such variants are assumed to result from de novo germline
(that is, non-segregating) mutation and are often used as a surro-
gate for mutation rate in humans. We found that the distribution of
extremely rare variants within and around footprints mirrored that of
nucleotide diversity, compatible with increased mutation rate within
footprints (Fig. 5d, top). TFs have been hypothesized to potentiate
denovomutation by focally inhibiting access by the DNA repair machin-
ery*®** Nucleotide context is also known to have a substantial role in
genome mutation*®, and this can be accurately modelled across awide
range of nucleotide combinations*"*2, To differentiate these possible
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causes of increased mutation, we used a 7-mer context mutation rate
model* (Supplementary Methods) to predict mutation density within
footprints. This model nearly completely recapitulated the observed
density of human SNVs within footprints (Fig. 5d, bottom), indicating
that footprint mutational load derives chiefly from local sequence
composition and not from a repair-mediated process.

Mutational mechanisms have been linked to the observed wide-
spread turnover of TF recognition sites****, Of note, many TFs favour
the recognition of dinucleotide combinations such as CpGs that are
intrinsically hypermutable or of dinucleotides that result from CpG
deamination****. We examined the nucleotide-resolved patterns of
both evolutionary conservation and genetic variation at footprinted
motifs for structurally distinct TFs with CpG dinucleotides in their
corerecognitionsequence (ETS1,JDP2 and CTCF). For each motif, con-
servation and nucleotide diversity were reciprocal, and mutations at
CpGdinucleotides appeared to be the key drivers of generic diversity
(Extended DataFig.13a-c).

Because increased polymorphism within TF footprints is attribut-
able to variability in mutation rates resulting from sequence context,
it remains unclear to what extent purifying selection is acting on TF
occupancy. To quantify this, we compared footprinted motifs to
non-footprinted elements (both within and outside DHS), reasoning
that the latter should represent neutrally evolving, non-functional
sites, but should be subjected to similar mutational forces owing to
proximity. Consistent with this, footprinted motifs were markedly
more evolutionarily constrained (approximately threefold to five-
fold) than non-footprinted motifs (Extended Data Fig. 13a-c, top).
For each TF, we found that footprinted motifs had lower aggregate
nucleotide diversity than non-footprinted elements, yet these differ-
ences were largely overshadowed by differences between evolutionarily
constrained and unconstrained motifs (Extended Data Fig. 13d-f, red
andblack boxes, respectively). These resultsindicate that whileacore
set of binding sites appears to be under substantial constraint (on a par
with protein-coding regions), the vast majority of footprints appear to
beunder very weak selective constraint. Notably, for each of the three
aforementioned TFs, mutations that occurred within their footprinted
motifs preferentially modulated allelicimbalance in chromatin acces-
sibility, linking natural variation to functional variation (Extended Data
Fig.11). Thus, hypermutation within genomic footprints appears to

have a key evolutionary role by favouring variability in TF occupancy
and hence natural variation in gene regulation.

GWAS variants localize within TF footprints

Giventhe above, genetic variation within footprints should, in princi-
ple, be a key contributor to phenotypic variation. We therefore next
resolved the large set of variants that are strongly associated (nominal
P<5x107%) with diverse diseases and phenotypic traits from the NHGRI/
EBIgenome-wide association study (GWAS) catalogue® to consensus
genomic footprints. To account for the baseline increase in genetic
variation present within the genomic footprints described above, we
performed exhaustive (1,000x) sampling of matched variants (by minor
allele frequency, linkage-disequilibrium (LD) structure, and distance
to the nearest gene) from the 1,000 Genome Project*¢ (Supplemen-
tary Methods). In addition, we expanded both GWAS catalogue and
matched sampled variants to include variants that were in perfect LD
(r’=1). Within DHSs, aggregated GWAS catalogue SNPs were enriched
within footprints but not non-footprinted subregions, and the former
increased monotonically with footprint strength (Fig. 6a).

To gain a more accurate view of the enrichment of trait-associated
variants in footprints, we compared the SNP-based trait heritability
of individual traits**%, Using summary statistic data from individual
GWAS studies from the UK BioBank, we applied partitioned LD-score
regression to compute the relative heritability contribution of vari-
ants within all DHSs and footprints collectively versus that of DHSs
and footprints from the expected cognate cell type for a given trait
(Fig. 6b, ¢). We found striking enrichment of variants that account for
trait heritability in footprints generally (more than fivefold) and most
prominently in footprints from the cognate cell type (up to approxi-
mately 45-fold) (Fig. 6b, c). We thus conclude that the genetic signals
from disease- and trait-associated variants within DHSs emanate from
TF footprints, and that variants within footprints are major contribu-
tors to trait heritability.

Discussion

We have described the highest-resolution view to date of regulatory
factor occupancy patterns onthe human genome, measured across an
expansive range of cell and tissue contexts sampled from more than 140
genotypebackgrounds. The scale and breadth of the data have enabled
delineation of areference set of about 4.5 million genomic sequence
elements that form the building blocks of regulatory DNA and collec-
tively define nucleotides that are crucial for genome regulation and
function. While expansive, this catalogue is nonetheless not compre-
hensive owing to incomplete sampling of human cell types and states,
and non-exhaustive sequencing of individual DNase-seq libraries. We
note further that the algorithms we have applied, while incorporating
considerable advances over prior efforts, nonetheless incompletely
exploitthe richness and subtleties of the measured cleavage landscape.

Assigning individual TFs to individual footprints presents many
challenges. Here, we applied a de novo approach in which TFs were
assigned to footprints post hoc via overlap with their cognate rec-
ognition sequences. A complicating factor is that many functionally
distinct TFs use similar recognition sequences, leading to potential
ambiguous assignment of TFs to individual footprints. In addition,
co-expressed TFswith similar recognition sequences may alternatively
occupy the same element*. Because DNase I cleavage patterns encode
richinformation about the topology and binding modes of individual
factors (Fig. 2, Extended Data Fig. 6), incorporating this information
into future approaches should greatly increase the fidelity of TF-foot-
print assignments.

Collectively, the consensus footprintindex now providesaready and
extensible nucleotide-precise reference for diverse analyses, particu-
larly those involving genetic variation. The preferential localization of
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disease-and trait-associated variation within regulatory DNA has here-
toforebeendescribed interms of entire regulatory regions demarcated
by DHSs or clusters thereof. Our results now show that genetic asso-
ciation and heritability signals from regulatory DNA overwhelmingly
emanate from consensus TF footprints, which should greatly facilitate
the connection of disease- and trait-associated genetic variation with
genome function.

Perhaps most notably, we report that human genetic variation is
itself concentrated within TF footprints, owing apparently to a com-
bination of mutation propensity and the evolved sequence recogni-
tion repertoire of human TFs, which favours hypermutable nucleotide
combinations (for example, CpG dinucleotides). Given thathuman and
mouse TFsshare the large majority of their recognition landscapes, the
concentration of variation within TF occupancysitesislikely to have had
aconsiderable roleinshaping mammalian regulation®’; furthermore,
this finding suggests that genomes are heavily primed for regulatory
evolution, providing a possible underlying mechanism for facilitated
phenotypic evolution®.
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Data availability

Allraw and processed DNase-seq dataare available throughthe ENCODE
portal (http://www.encodeproject.org/) under accessions in Supplemen-
tary Table1. Footprintsand their metadataare available at http://vierstra.
org/resources/dgfor https://doi.org/10.5281/zenodo.3603548 (Zenodo).
Atrack hub to visualize data in the UCSC Genome Browser is hosted
at https://resources.altius.org/-jvierstra/projects/footprinting.2020/
hub.txt. Protein structures for CTCF (Fig. 2a) and PAX6 (Extended Data
Fig. 6a) were downloaded from Protein Data Bank (https://www.rcsb.
org) (PDBIDs: 5YEF, 5YEL, and 6PAX).

Code availability

Footprint detection software is available at http://www.github.com/
jvierstra/footprint-tools. All code for analyses hereinis available upon
request.
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rate effect sizes withrespect to expected cleavage ratesin CD19* B cells.
Colouredlinesrepresent the modelled effect size (depletion of cleavages)
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inCD19"* B cells. Expected cleavages were generated by reassigning observed
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Thesignificance of difference between the observed and expected cleavages
was evaluated per nucleotide using the negative binomial dispersion model.
Individual Pvalues are combined in 7-bp windows using Stouffer’s Z-score
method. Per-nucleotide false discovery rates were computed by sampling from
the expected null distributions. d, Autocorrelation of Pvalues sampled from
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Extended DataFig.2|Genomicfootprints arereproducible, overlap
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recognitionsequences.a, Motif density is associated with footprint strength.
Plotted is the overlap of motif recognition sequence matches (P<0.0001) with

nucleotides ranked by footprint Pvalue from CD19" B cells. b, Asina, but
for per-nucleotide evolutionary conservation (phyloP). ¢, Scatter plot of
per-nucleotide footprint Pvalues for replicate experiments from the same cell
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FDR1%footprintsin either replicate were considered for correlation analysis.

d, Asinc,but forreplicates of the same primary cell (CD8" T cells) between two
distinctindividuals. e, Pearson’s correlation between replicates pairs grouped
by whether they were derived from the same cell and individual (n=43) or were

the same primary cell or tissue from differentindividuals (n=111). Boxes
indicate median and inner quartile-range (IQR). Whiskers, 5th and 95th
percentile.
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Data collection Sequencing data was collected using an lllumina HiSeq 4000 and processed using HCS software v3.3.76 (lllumina, Inc.).

Data analysis Data was analyzed using following software tools: bwa (v0.7.12), BEDOPS (v2.4.39), python (v2.7 and 3.6), GNU awk (v4.0.2), pyMOL (v2.3.2),
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- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All raw sequencing data and primary processing of the DNase | data is available through the ENCODE data portal (http://www.encodeproject.org/) with accessions
listed in Extended Data Table 1. Footprints and associated analysis are available at http://vierstra.org/resources/dgf or https://doi.org/10.5281/zenod0.3603548
(ZENODO). A track hub to visualize data in the UCSC Genome Browser is hosted at https://resources.altius.org/~jvierstra/projects/footprinting.2020/hub.txt. Protein
structures for CTCF (Fig. 2a) and PAX6 (Extended Data Fig. 6a) were downloaded from Protein Data Bank (https://www.rcsb.org/) (PDB ID: 5YEF, SYEL and 6PAX).

=
Q
=3
(-
=
D
=
(D
wn
Q)
QD
=
(@)
o
=
D
o
©)
=
>
(@]
(2]
<
3
3
Q
=
S




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

El Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

=
Q
=3
(-
=
D
=
(D
wn
D
QD
=
(@)
o
=
D
o
o
=
=t
>
Q
(2]
<
3
3
Q
=
S

Sample size No sample sizes calculations were performed -- all data was used where applicable
Data exclusions No data was excluded from analysis

Replication Not applicable -- no group-wise experimental testing was performed
Randomization Not applicable -- no group-wise experimental testing was performed

Blinding Not applicable -- no group-wise experimental testing was performed
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Cell lines were procured from appropriate commercial sources. h.ESC lines used were from NIH approved list and provided by
laboratories with expertise in growing, characterizing and differentiating these cell types. (see ENCODE website for details
and protocols).

Authentication Cells lines were authenticated in accordance with ENCODE policies.

Mycoplasma contamination Mycoplasma testing was not performed.

Commonly misidentified lines  None
(See ICLAC register)
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