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Global reference mapping of human 
transcription factor footprints

Jeff Vierstra1 ✉, John Lazar1,2, Richard Sandstrom1, Jessica Halow1, Kristen Lee1, Daniel Bates1, 
Morgan Diegel1, Douglas Dunn1, Fidencio Neri1, Eric Haugen1, Eric Rynes1, Alex Reynolds1, 
Jemma Nelson1, Audra Johnson1, Mark Frerker1, Michael Buckley1, Rajinder Kaul1,  
Wouter Meuleman1 & John A. Stamatoyannopoulos1,2,3 ✉

Combinatorial binding of transcription factors to regulatory DNA underpins gene 
regulation in all organisms. Genetic variation in regulatory regions has been 
connected with diseases and diverse phenotypic traits1, but it remains challenging to 
distinguish variants that affect regulatory function2. Genomic DNase I footprinting 
enables the quantitative, nucleotide-resolution delineation of sites of transcription 
factor occupancy within native chromatin3–6. However, only a small fraction of such 
sites have been precisely resolved on the human genome sequence6. Here, to enable 
comprehensive mapping of transcription factor footprints, we produced high- 
density DNase I cleavage maps from 243 human cell and tissue types and states and 
integrated these data to delineate about 4.5 million compact genomic elements that 
encode transcription factor occupancy at nucleotide resolution. We map the fine- 
scale structure within about 1.6 million DNase I-hypersensitive sites and show that the 
overwhelming majority are populated by well-spaced sites of single transcription 
factor–DNA interaction. Cell-context-dependent cis-regulation is chiefly executed by 
wholesale modulation of accessibility at regulatory DNA rather than by differential 
transcription factor occupancy within accessible elements. We also show that the 
enrichment of genetic variants associated with diseases or phenotypic traits in 
regulatory regions1,7 is almost entirely attributable to variants within footprints, and 
that functional variants that affect transcription factor occupancy are nearly evenly 
partitioned between loss- and gain-of-function alleles. Unexpectedly, we find 
increased density of human genetic variation within transcription factor footprints, 
revealing an unappreciated driver of cis-regulatory evolution. Our results provide a 
framework for both global and nucleotide-precision analyses of gene regulatory 
mechanisms and functional genetic variation.

Genome-encoded recognition sites for sequence-specific DNA bind-
ing proteins are the atomic units of eukaryotic gene regulation. Cur-
rently we lack a comprehensive, nucleotide-resolution annotation of 
such elements and their selective occupancy in different cell types and 
states. Such a reference is essential both for analysis of cell-selective 
regulation and for systematic integration of regulation with genetic 
variation associated with diseases and phenotypic traits.

In vivo binding of regulatory factors shields bound DNA elements from 
nuclease attack, giving rise to protected single-nucleotide-resolution 
DNA ‘footprints’. The advent of DNA footprinting using the non-specific 
nuclease DNase I8 marked a turning point in analyses of gene regu-
lation, and facilitated the identification of the first mammalian 
sequence-specific DNA binding proteins9. Genomic DNase I footprint-
ing3–6 enables the genome-wide delineation of DNA footprints (approxi-
mately 7–35 base pairs (bp)) over any genomic region in which DNase I 
cleavage is sufficiently dense—chiefly DNase I hypersensitive sites (DHSs). 

DNase I footprints pinpoint regulatory factor occupancy on DNA and can 
be used to discriminate sites of direct versus indirect occupancy when 
integrated with chromatin immunoprecipitation and sequencing (ChIP–
seq) experiments4. Cognate transcription factors (TFs) can be assigned 
to footprints on the basis of matching consensus sequences, enabling 
the TF-focused analysis of gene regulation and regulatory networks10 
and of the evolution of regulatory factor binding patterns11. DNase I is 
roughly the size of a typical TF and recognizes the minor groove of DNA, 
where it hydrolyses single-stranded cleavages. These, in turn, reflect 
both the topology and the kinetics of coincidently bound proteins. Pre-
vious efforts to analyse these featues4 were complicated by the slight 
sequence-driven cleavage preferences of DNase I, which have since been 
exhaustively determined12, setting the stage for fully resolved tracing of 
DNA–protein interactions within regulatory DNA.

Here we combine sampling of more than 67 billion uniquely map-
ping DNase I cleavages from over 240 human cell types and states to 

https://doi.org/10.1038/s41586-020-2528-x

Received: 30 January 2020

Accepted: 25 June 2020

Published online: 29 July 2020

Open access

 Check for updates

1Altius Institute for Biomedical Sciences, Seattle, WA, USA. 2Department of Genome Sciences, University of Washington, Seattle, WA, USA. 3Division of Oncology, Department of Medicine, 
University of Washington, Seattle, WA, USA. ✉e-mail: jvierstra@altius.org; jstam@altius.org

https://doi.org/10.1038/s41586-020-2528-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2528-x&domain=pdf
mailto:jvierstra@altius.org
mailto:jstam@altius.org


730 | Nature | Vol 583 | 30 July 2020

Article
index human genomic footprints with unprecedented accuracy and 
resolution, and thereby to identify the sequence elements that encode 
TF recognition sites within the human genome. We leverage this index 
to (i) systematically assign footprints to TF archetypes; (ii) define pat-
terns of cell-selective occupancy; and (iii) analyse the distribution and 
effect of human genetic variation on regulatory factor occupancy and 
the genetics of common diseases and traits.

Global mapping of TF footprints
To create comprehensive maps of TF occupancy, we deeply sequenced 
high-quality, high-complexity DNase I libraries from 243 biosamples 
derived from diverse primary cells and tissues (n = 151), primary cells 
in culture (n = 22), immortalized cell lines (n = 10) and cancer cell lines 
and primary samples (n = 60) (Supplementary Table 1). Collectively, 
we uniquely mapped 67.6 billion DNase I cleavage events (mean, 278.2 
million uniquely mapped cleavages per biosample), which represents 
a great increase over earlier studies4. On average, 49.7% of DNase cleav-
ages from each biosample mapped to DHSs, which covered 1–3% of 
the genome.

To identify DNase I footprints genome-wide, we developed a compu-
tational approach that incorporates both chromatin architecture and 
exhaustively enumerated empirical DNase I sequence preferences to 
determine expected per-nucleotide cleavage rates across the genome, 
and to derive, for each biosample, a statistical model for testing whether 
its observed cleavage rates at individual nucleotides deviated signifi-
cantly from expectation (Extended Data Fig. 1a–g, Supplementary 
Methods). We note that the derivation of cleavage variability models 
for each biosample individually accounts for additional sources of 
technical variability beyond DNase I cleavage preference.

Using this model, we performed de novo footprint discovery inde-
pendently on each of 243 biosamples, detecting on average 657,029 
high-confidence footprints per biosample (range 220,580–1,664,065, 
empirical false discovery rate <1% (Supplementary Methods)), and col-
lectively 159.6 million footprint events across all biosamples. Nucleo-
tide protection tracked closely with both the presence of known TF 
recognition sequences and the level of per-nucleotide evolutionary 
conservation (Extended Data Fig. 2a, b). At the level of individual 
nucleotides, de novo footprints genome-wide were highly concordant 
between biological replicates of the same cultured cell type or between 
the same primary cell and tissue types sampled from different individu-
als (median Pearson’s r = 0.83 and 0.74, respectively) (Extended Data 
Fig. 2c–e). Within each biosample, footprints encompassed an average 
of around 7.6 Mb (0.2%) of the genome, with a mean of 4.3 footprints 
per DHS with sufficient read depth for robust detection (normalized 
cleavage density within DHS of at least 1).

Unified index of human genomic footprints
Comparative footprinting across cell types has the potential to 
illuminate both the structure and function of regulatory DNA, but 
a systematic approach for joint analysis of genomic footprinting 
data has been lacking. Given the scale and diversity of the cell types 
and tissues surveyed, we sought to develop a framework that could 
integrate hundreds of available footprinting datasets to increase the 
precision and resolution of footprint detection and, furthermore, 
to provide a scaffold for a common reference index of TF-contacted 
DNA genome-wide.

To accomplish this, we implemented an empirical Bayes frame-
work that estimates the posterior probability that a given nucleotide 
is footprinted by incorporating a prior on the presence of a footprint 
(determined by footprints independently identified within individual 
datasets) and a likelihood model of cleavage rates for both occupied and 
unoccupied sites (Fig. 1a, Supplementary Methods). Figure 1b depicts 
per-nucleotide footprint posterior probabilities computed for two 

DHSs within a representative locus (RELB) across all 243 biosamples. 
A notable feature of these data is the positional stability and discrete 
appearance of footprints seen within each DHS across tens to hundreds 
of biosamples. Plotting individual nucleotides scaled by their footprint 
prevalence across all samples precisely resolves the core recognition 
sequences of diverse TFs (Fig. 1b, bottom).

To establish a reference set of TF-occupied DNA elements 
genome-wide, we applied the Bayesian approach to all DHSs detected 
within one or more of the 243 biosamples, and applied the same 
consensus approach used to establish a consensus DHS index13 to 
collate overlapping footprinted regions across individual biosa-
mples into distinct high-resolution consensus footprints (Supple-
mentary Methods). Collectively, we delineated approximately 4.46 
million consensus footprints within about 1.6 million (46%) of the 
3.39 million DHSs indexed within these biosamples13 (Fig. 1c). More 
than 90% of the DHSs with moderate sequencing coverage (over 250 
tags per 250 million sequenced) contained at least one footprint 
(and typically many more; Fig. 1d). As expected, consensus (that is, 
empirical Bayes) footprints were markedly more reproducible than 
footprints detected using individual datasets (average Jaccard simi-
larity between replicate biosamples 0.43 versus 0.29, respectively) 
(Extended Data Fig. 3a).

Consensus footprints were on average 16 bp wide (middle 95%: 
7–44 bp; 90%: 7–36 bp; 50%: 9–21 bp) and were distributed across all 
classes of DHS, albeit with enrichment in promoter-proximal elements 
owing to their generally elevated cleavage density (Extended Data Fig. 3b, 
c). Most consensus footprints (82.6%) localized directly within the core 
of a DHS peak (average width 203 bp), with virtually all of the remainder 
localized within 250 bp of a DHS peak summit (Fig. 1e). Collectively, 
consensus footprints annotated 2.1% (72 Mb) of the human genome refer-
ence sequence, compared with about 1.5% for protein coding elements.

Given the strong dependency of footprint detection on sequenc-
ing depth (Extended Data Fig. 1b) and sample diversity, we sought 
to estimate how comprehensively this index covered the possible 
detectable footprint space and to what degree additional sequenc-
ing and/or biosamples would augment footprint discovery. De novo 
footprint detection after iteratively subsampling the most deeply 
sequenced DNase I libraries (more than 750 million sequenced tags) 
showed that footprints detected increased linearly with sequencing 
depth (Extended Data Fig. 3d, e), indicating that these DNase I librar-
ies have yet to be sampled to saturation. By contrast, the addition of 
new biosamples and/or replicates produced a sublinear increase in 
the number of footprints detected (Extended Data Fig. 3f, g). Because 
the consensus approach favours footprints with support from many 
biosamples, the consensus footprint space reported here is likely to 
represent a substantial proportion of TF binding sites that are shared 
across many cell and tissue types.

Assigning TFs to footprints
Recognition sequences now exist for all major families and subfami-
lies of TFs, and for a large number of individual TF isoforms14. We 
thus sought to create a reference mapping between annotated TFs 
and consensus footprints by (i) compiling and clustering all publicly 
available motif models15–17; (ii) creating non-redundant TF archetypes 
by placing closely related TF family members on a common sequence 
axis (Extended Data Fig. 4, Supplementary Table 2, Supplementary 
Methods); (iii) aligning TF archetypes to the human reference sequence 
at high stringency (P < 10−4); and (iv) enumerating all potential TF arche-
types that are compatible with each consensus footprint on the basis 
of overlap and match stringency. In total, 80.7% of the approximately 
4.46 million consensus footprints could be assigned to at least one TF 
with at least 90% sequence overlap, of which 860,780 (19.3%) could be 
unambiguously assigned to a single factor, and 2,038,220 (45.7%) to a 
single TF with two lower-ranked alternatives.
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To gauge the sensitivity and accuracy of the motif-to-consensus foot-
print mappings, we evaluated the posterior footprint probability as 
metric to classify motif occupancy by using the genomic master regula-
tor CCCTC-binding factor (CTCF). CTCF combines a well-documented, 
unambiguous motif with the availability of ENCODE ChIP–seq data18 for 
a broad range of cell and tissue types that match those represented in 
the consensus footprint index (Supplementary Table 3). Comparing the 
occupancy of all CTCF motifs within all DHSs (Supplementary Methods) 
with CTCF ChIP–seq data showed strong classification performance, 
with a mean area under precision-recall curve of 0.80 (Extended Data 
Fig. 5a, b). At the posterior footprint probability threshold used to gener-
ate consensus footprints (P > 0.99), we correctly identified an average of 
19,904 CTCF-bound recognition elements per cell type, corresponding 
to a mean precision of 82.5% and sensitivity of 60% (Supplementary 
Table 3), despite posterior footprint probability not encoding any 
information about the quality of motif matches. Lower CTCF motif 
match scores were strongly associated with false-positive footprint or 
motif classifications, so the incorporation of motif match strength in 
addition to footprint probability is expected to increase classification 
precision (Extended Data Fig. 5c). Overall, footprinted motifs showed an 
approximately 2.5-fold increase in CTCF ChIP–signal when compared to 
non-footprinted motifs (Extended Data Fig. 5d, e). Examination of other 
TFs yielded similar results, albeit with variable classification accuracy 
that was probably driven by the ambiguity in footprint assignment for 
motifs recognized by many distinct TFs and the predominance of weak 
and/or indirect occupancy (Extended Data Fig. 5f–m).

Primary architecture of regulatory regions
Despite intensive efforts over several decades, the primary architecture 
of regulatory regions has remained unclear, with the singular exception 
of the interferon ‘enhanceosome’19. Elucidating the primary architec-
ture of active regulatory DNA requires accurate tracing of the TF–DNA 
interface over an extended interval. Because TF engagement creates 
subtle alterations in DNA shape and protects underlying phosphate 
bonds from nuclease attack via steric hindrance6, we investigated to 
what extent fluctuations in corrected DNase I cleavage rates within 
individual consensus footprints accurately reflected the topology 
of the TF–DNA interface. Notably, previous efforts to resolve such 
features4 were obscured by subtle intrinsic cleavage preferences and 
lacked resolving power at individual TF footprints on the genome. 
Poly-zinc fingers are the most prevalent class of human TFs and have 
recognition interfaces that potentially cover tens of nucleotides14. The 
DNA recognition domain of CTCF comprises 11 zinc fingers, potentially 
encoding 33 bp of sequence (or DNA shape20) recognition. We identi-
fied 25,852 footprints that coincided precisely with CTCF motifs within 
regulatory T cells. Transposing the average corrected per-nucleotide 
cleavage propensity with an extended co-crystal structure of CTCF21 
accurately traced all features of the protein–DNA interaction interface, 
including focal hypersensitivity within the hinge region between zinc 
fingers 7 and 95,22,23 (Fig. 2a, Supplementary Methods). A similar result 
was obtained for widely divergent classes of DNA binding domain, such 
as the paired-box domain-containing TF PAX624 (Extended Data Fig. 6a) 
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annotation of regulatory DNA. d, Proportion of DHSs with footprints at given 
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and other TFs with extant co-crystal structures (not shown). Critically, 
these topological features were evident at the level of individual TF 
footprints on the genome (Fig. 2a, Extended Data Fig. 6). Overall, the 
average footprint width for diverse TFs tightly tracked the width of 
their respective recognition sequences (Spearman’s ρ = 0.90, P = 0.001) 
(Fig. 2b). As such, the extended profile of corrected per-nucleotide 
DNase I cleavage across entire regulatory regions should, in principle, 
provide a snapshot of the primary structure of active regulatory DNA.

Distinguishing TF occupancy modes
TFs compete cooperatively with nucleosomes for access to regu-
latory DNA25,26. Many TFs have the potential to catalyse changes in 
nucleosome occupancy over a strongly matching recognition motif, 
a process referred to as ‘pioneering’27. However, it is unclear how 
steady-state chromatin accessibility is maintained by TFs in place of 
a canonical nucleosome, and whether this results primarily from local 
protein–protein interactions or the synergistic effects of independent 
TF–DNA binding26. We reasoned that the number, relative spacing, 

and morphology of TF binding events within individual regulatory 
elements could be used to gain insight into the mechanistic basis of 
TF cooperativity.

As the width of genomic footprints tightly tracks the physical struc-
ture of individual TFs bound to DNA (Fig. 2a, b, Extended Data Fig. 6), 
and direct TF–TF interactions are dependent on close proximity, such 
interactions should result in larger footprints that contain multiple TF 
recognition sites. Conversely, independent TF–DNA interaction events 
should yield compact and widely spaced footprints that contain single 
TF recognition sites. As such, the prevalence of cooperativity mediated 
by direct TF–TF interactions rather than by synergy of independent 
binding events should be reflected in the relative proportion of wide, 
multi-motif footprints compared to that of well-spaced single foot-
prints. Larger footprints are overwhelmingly associated with two (or 
more) recognition sequences (Fig. 3a), but such footprints represent 
only 8% of the global footprint landscape. By contrast, 92% of footprints 
contain a single TF recognition site (Fig. 3b).

Because TFs can distort DNA upon engagement, TF spacing could 
be critical for establishing regulatory structures. To quantify global 
footprint spacing patterns, we first binned each DHS by its average 
accessibility across all biosamples (as footprint discovery depends 
on total DNase I cleavage; Extended Data Fig. 1b), and for each bin we 
computed the mean number of footprints present per element and 
their relative edge-to-edge spacing. The density of footprints within the 
most deeply sampled DHSs genome-wide plateaued at an average of 5.5 
per 200 bp (Fig. 3c, top), which is in agreement with theoretical predic-
tions of the number of human TFs required to destabilize a canonical 
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nucleosome26 and to encode specificity28. Within DHSs, footprints 
exhibited average edge-to-edge spacing of about 21 bp (middle 50%, 
12–35 bp) (Fig. 3c, bottom). Together, these results are compatible 
with the observed lack of evolutionary constraint on the spacing and 
orientation29–33 of TF motifs and strongly suggest that steady-state 
regulatory DNA accessibility is maintained chiefly by independent but 
synergistic TF binding modes (Fig. 3d).

Cell-selective TF occupancy landscapes
Footprint occupancy across all biosamples showed marked enrichment 
for the recognition sequences of key regulatory TFs in their cognate 
lineages (Extended Data Fig. 7a). In total, we identified 609 motif mod-
els that matched footprinted sequences (Supplementary Methods); 
these models encompassed 64 distinct archetypal TF recognition codes 
(Supplementary Table 2), representing virtually all major DNA-binding 
domain families. For degenerate motifs where the same sequence is 
recognized by many distinct TFs, we observed highly cell-selective 
occupancy patterns that could be decomposed into coherent groups 
that corresponded to cell type and function (Extended Data Fig. 7b–d). 
However, the cell-selective occupancy patterns of most individual TF 
footprints within DHSs mirrored the cell-selective actuation of their 
encompassing DHS (Extended Data Fig. 7b–d).

Given that most DHSs are shared across at least two cell types or 
states13,34, we queried how the pattern of footprints within a DHS (and 
hence its topology) differed with cellular context. Although differential 
TF occupancy can be discerned upon manual inspection4, systematic 
analysis has not been possible owing to the dominance of intrinsic 
DNase I cleavage propensities. To enable unbiased detection of dif-
ferential footprint occupancy, we developed a statistical framework to 
test for differences in relative cleavage rates at individual nucleotides 
across many samples, analogous to methods developed for the identi-
fication of differentially expressed genes (Supplementary Methods). 
To estimate the proportion of differentially regulated footprints within 
DHSs of a given cell or tissue, we focused on the neural lineage, for which 
many biosamples were available. We compared footprint occupancy 
within DHSs that were broadly accessible in nervous-system-derived 
samples (n = 31) with that in non-nervous-system-derived samples 
(n = 212). We selected 67,368 DHSs that were highly accessible in at least 
10 nervous- and non-nervous-derived samples, and for each DHS, per-
formed a per-nucleotide differential test (Extended Data Figs. 8a, b, 9a). 
This analysis identified only a small proportion of DHSs (1,720 DHSs; 
2.5%) as containing one or more differentially footprinted elements 
(Extended Data Fig. 9a). Most of these DHSs contained a single differ-
entially regulated footprint, whereas a small fraction contained 2–4 
differentially occupied elements (Extended Data Fig. 9a). Nonetheless, 
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differentially occupied footprints were significantly enriched in recog-
nition sites for known nervous system regulators such as REST, NFIB, 
ZIC1, and EBF1 (Extended Data Fig. 9a–c) and tissue-selective occupancy 
events paralleled the expression of nearby genes (in the case of REST 
occupancy) (Extended Data Fig. 9d).

Collectively, the above results indicate that the vast majority of 
regulatory DNA regions marked by DHSs encode a single structural 
topology that reflects a fixed pattern of footprint occupancy. None-
theless, at a small minority of elements, DHSs provide a scaffold for 
cell-context-specific TF occupancy that is typically confined to one 
or a small number of footprinted elements.

Functional DNA variants in TF footprints
Identifying genetic variants that are likely to affect regulatory func-
tion has remained challenging. Deep sequence coverage at DHSs 
enables de novo genotyping of regulatory variants and simultaneous 
characterization of their functional effect on local chromatin archi-
tecture by quantifying and comparing cleavage for each allele2,4. The 
243 biosamples we analysed were derived from 147 individuals, and 
de novo genotyping (Supplementary Methods) revealed 3.76 million 
single-nucleotide variants (SNVs) within DHSs, of which 1,656,597 were 
heterozygous and had sufficient read depth (at least 35 overlapping 
reads) to accurately quantify allelic imbalance.

Across individuals, we conservatively identified 117,626 
chromatin-altering variants (CAVs) that altered DNA accessibility on 
individual alleles (median 2.4-fold imbalance) (Fig. 4a, Extended Data 
Fig. 10a–c, Supplementary Methods). Within DHSs, CAVs were mark-
edly enriched in core consensus footprints, even after controlling for 
the increased detection power (that is, sequencing depth) within this 
compartment (Fig. 4b, Extended Data Fig. 10d).

In protein-coding regions, most functional genetic variation 
is expected to be deleterious, with rare gain-of-function alleles35. 
Protein–DNA recognition interfaces are likewise presumed to be 
susceptible to disruption at critical nucleotides, predisposing to 
loss-of-function alleles36. Notably, we found that CAVs were nearly 

evenly partitioned between loss-of-function (disruption of binding) 
and gain-of-function (increased or de novo binding) alleles (Fig. 4c, 
d, Extended Data Fig. 10c). Homozygosity for either the reference or 
alternative allele paralleled results from heterozygotes and further 
revealed that structural changes due to TF occupancy were precisely 
confined to the DNA sequence recognition interface (Fig. 4c, bot-
tom). In many cases, SNVs that were detected in both heterozygous 
and homozygous configurations showed strong agreement between 
allelic ratios and relative footprint strength (Fig. 4e; Spearman’s ρ = 0.9, 
P < 10−5). Variants within footprinted motifs were markedly enriched for 
imbalance when compared to non-footprinted motifs; were localized 
to high-information-content positions within the recognition interface 
(Fig. 4c, bottom, Extended Data Fig. 11); and paralleled the predicted 
energetic effect of the variant on the TF binding site (Fig. 4f, Extended 
Data Fig. 12), thus providing a direct quantitative readout of the effects 
of functional variation on TF occupancy.

TFs occupy hypermutable DNA
We next sought to characterize the patterns of human genetic variation 
within regulatory DNA with high precision. Only a small fraction (11.6%) 
of individual footprints showed evidence of evolutionary constraint 
(phyloP score >1), consistent with purifying selection, whereas the vast 
majority appeared to be evolving neutrally (Fig. 5a). To quantify the 
relationship between evolutionary constraint and genetic variation 
in human populations, we calculated mean nucleotide diversity (π) 
within consensus genomic footprints by using more than 400 mil-
lion single-nucleotide variants detected by whole-genome sequenc-
ing of over 65,000 individuals under the TOPMED project37 (Fig. 5b, 
Supplementary Methods). Canonically, reduced levels of π reflect the 
elimination of deleterious alleles from the population by natural selec-
tion, and hence are indicative of recent functional constraint. Consist-
ent with prior observations36, we found that mean π within footprints 
approximated that of fourfold degenerate sites within protein-coding 
regions, which are assumed to be evolving neutrally or under relaxed 
selection. Stratification of footprints by the level of evolutionary con-
straint (phyloP score >1) revealed marked differences in genetic diver-
sity, with significantly reduced levels of π within highly evolutionarily 
constrained footprints and increased π in non-constrained footprints 
(P < 0.0001; two-sample bootstrap t-test).

The density of sampled variation enabled nucleotide-resolution anal-
ysis of nucleotide diversity at footprinted and non-footprinted bases 
within DHSs. Unexpectedly, we found a marked increase in nucleotide 
diversity centred precisely within the core of footprints (Fig. 5c), reveal-
ing that these elements as a class—but not intervening non-footprinted 
segments of DHSs—are highly polymorphic in human populations. 
This result eclipses prior global analyses indicating that TF occupancy 
sites are generally not under substantial purifying selection4,36 both 
in the magnitude of the observed effect and in its nucleotide-precise 
localization within the footprint core.

Focally increased genetic diversity within footprints suggested that 
the nucleotides that encode these elements may have an increased 
mutational load when compared with immediately adjacent sequences. 
To explore this possibility, we focused on variants with extremely low 
allele frequencies in human populations (minor allele frequency less 
than 10−4); such variants are assumed to result from de novo germline 
(that is, non-segregating) mutation and are often used as a surro-
gate for mutation rate in humans. We found that the distribution of 
extremely rare variants within and around footprints mirrored that of 
nucleotide diversity, compatible with increased mutation rate within 
footprints (Fig. 5d, top). TFs have been hypothesized to potentiate 
de novo mutation by focally inhibiting access by the DNA repair machin-
ery38,39. Nucleotide context is also known to have a substantial role in 
genome mutation40, and this can be accurately modelled across a wide 
range of nucleotide combinations41,42. To differentiate these possible 
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causes of increased mutation, we used a 7-mer context mutation rate 
model42 (Supplementary Methods) to predict mutation density within 
footprints. This model nearly completely recapitulated the observed 
density of human SNVs within footprints (Fig. 5d, bottom), indicating 
that footprint mutational load derives chiefly from local sequence 
composition and not from a repair-mediated process.

Mutational mechanisms have been linked to the observed wide-
spread turnover of TF recognition sites43,44. Of note, many TFs favour 
the recognition of dinucleotide combinations such as CpGs that are 
intrinsically hypermutable or of dinucleotides that result from CpG 
deamination43,44. We examined the nucleotide-resolved patterns of 
both evolutionary conservation and genetic variation at footprinted 
motifs for structurally distinct TFs with CpG dinucleotides in their 
core recognition sequence (ETS1, JDP2 and CTCF). For each motif, con-
servation and nucleotide diversity were reciprocal, and mutations at 
CpG dinucleotides appeared to be the key drivers of generic diversity 
(Extended Data Fig. 13a–c).

Because increased polymorphism within TF footprints is attribut-
able to variability in mutation rates resulting from sequence context, 
it remains unclear to what extent purifying selection is acting on TF 
occupancy. To quantify this, we compared footprinted motifs to 
non-footprinted elements (both within and outside DHS), reasoning 
that the latter should represent neutrally evolving, non-functional 
sites, but should be subjected to similar mutational forces owing to 
proximity. Consistent with this, footprinted motifs were markedly 
more evolutionarily constrained (approximately threefold to five-
fold) than non-footprinted motifs (Extended Data Fig. 13a–c, top). 
For each TF, we found that footprinted motifs had lower aggregate 
nucleotide diversity than non-footprinted elements, yet these differ-
ences were largely overshadowed by differences between evolutionarily 
constrained and unconstrained motifs (Extended Data Fig. 13d–f, red 
and black boxes, respectively). These results indicate that while a core 
set of binding sites appears to be under substantial constraint (on a par 
with protein-coding regions), the vast majority of footprints appear to 
be under very weak selective constraint. Notably, for each of the three 
aforementioned TFs, mutations that occurred within their footprinted 
motifs preferentially modulated allelic imbalance in chromatin acces-
sibility, linking natural variation to functional variation (Extended Data 
Fig. 11). Thus, hypermutation within genomic footprints appears to 

have a key evolutionary role by favouring variability in TF occupancy 
and hence natural variation in gene regulation.

GWAS variants localize within TF footprints
Given the above, genetic variation within footprints should, in princi-
ple, be a key contributor to phenotypic variation. We therefore next 
resolved the large set of variants that are strongly associated (nominal 
P < 5 × 10−8) with diverse diseases and phenotypic traits from the NHGRI/
EBI genome-wide association study (GWAS) catalogue45 to consensus 
genomic footprints. To account for the baseline increase in genetic 
variation present within the genomic footprints described above, we 
performed exhaustive (1,000×) sampling of matched variants (by minor 
allele frequency, linkage-disequilibrium (LD) structure, and distance 
to the nearest gene) from the 1,000 Genome Project46 (Supplemen-
tary Methods). In addition, we expanded both GWAS catalogue and 
matched sampled variants to include variants that were in perfect LD 
(r2 = 1). Within DHSs, aggregated GWAS catalogue SNPs were enriched 
within footprints but not non-footprinted subregions, and the former 
increased monotonically with footprint strength (Fig. 6a).

To gain a more accurate view of the enrichment of trait-associated 
variants in footprints, we compared the SNP-based trait heritability 
of individual traits47,48. Using summary statistic data from individual 
GWAS studies from the UK BioBank, we applied partitioned LD-score 
regression to compute the relative heritability contribution of vari-
ants within all DHSs and footprints collectively versus that of DHSs 
and footprints from the expected cognate cell type for a given trait 
(Fig. 6b, c). We found striking enrichment of variants that account for 
trait heritability in footprints generally (more than fivefold) and most 
prominently in footprints from the cognate cell type (up to approxi-
mately 45-fold) (Fig. 6b, c). We thus conclude that the genetic signals 
from disease- and trait-associated variants within DHSs emanate from 
TF footprints, and that variants within footprints are major contribu-
tors to trait heritability.

Discussion
We have described the highest-resolution view to date of regulatory 
factor occupancy patterns on the human genome, measured across an 
expansive range of cell and tissue contexts sampled from more than 140 
genotype backgrounds. The scale and breadth of the data have enabled 
delineation of a reference set of about 4.5 million genomic sequence 
elements that form the building blocks of regulatory DNA and collec-
tively define nucleotides that are crucial for genome regulation and 
function. While expansive, this catalogue is nonetheless not compre-
hensive owing to incomplete sampling of human cell types and states, 
and non-exhaustive sequencing of individual DNase-seq libraries. We 
note further that the algorithms we have applied, while incorporating 
considerable advances over prior efforts, nonetheless incompletely 
exploit the richness and subtleties of the measured cleavage landscape.

Assigning individual TFs to individual footprints presents many 
challenges. Here, we applied a de novo approach in which TFs were 
assigned to footprints post hoc via overlap with their cognate rec-
ognition sequences. A complicating factor is that many functionally 
distinct TFs use similar recognition sequences, leading to potential 
ambiguous assignment of TFs to individual footprints. In addition, 
co-expressed TFs with similar recognition sequences may alternatively 
occupy the same element49. Because DNase I cleavage patterns encode 
rich information about the topology and binding modes of individual 
factors (Fig. 2, Extended Data Fig. 6), incorporating this information 
into future approaches should greatly increase the fidelity of TF–foot-
print assignments.

Collectively, the consensus footprint index now provides a ready and 
extensible nucleotide-precise reference for diverse analyses, particu-
larly those involving genetic variation. The preferential localization of 
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disease- and trait-associated variation within regulatory DNA has here-
tofore been described in terms of entire regulatory regions demarcated 
by DHSs or clusters thereof. Our results now show that genetic asso-
ciation and heritability signals from regulatory DNA overwhelmingly 
emanate from consensus TF footprints, which should greatly facilitate 
the connection of disease- and trait-associated genetic variation with 
genome function.

Perhaps most notably, we report that human genetic variation is 
itself concentrated within TF footprints, owing apparently to a com-
bination of mutation propensity and the evolved sequence recogni-
tion repertoire of human TFs, which favours hypermutable nucleotide 
combinations (for example, CpG dinucleotides). Given that human and 
mouse TFs share the large majority of their recognition landscapes, the 
concentration of variation within TF occupancy sites is likely to have had 
a considerable role in shaping mammalian regulation50; furthermore, 
this finding suggests that genomes are heavily primed for regulatory 
evolution, providing a possible underlying mechanism for facilitated 
phenotypic evolution51.
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Extended Data Fig. 1 | Statistical modelling of DNase I cleavage variation 
and footprint detection within a single dataset. a, A negative binomial 
model was fit from the distribution of observed cleavage counts for each 
predicted cleavage rate. Shown are histograms of observed cleavage counts in 
CD19+ B cells at all genomic sites with 5, 25, or 60 expected cleavages. Red, the 
negative binomial distribution fit to the observed data using maximum 
likelihood estimation (Supplementary Methods). Blue, Poisson distribution 
with λ set to the corresponding expected cleavage rate. Lower right panel, 
means of fitted negative binomial distributions vs means of observed cleavage 
rates. Dashed grey line indicates y = x for reference. b, Estimated power of 
empirical cleavage dispersion model. Computed P values for different cleavage 
rate effect sizes with respect to expected cleavage rates in CD19+ B cells. 
Coloured lines represent the modelled effect size (depletion of cleavages) 

relative to the expected rate corresponding to a hexamer sequence model.  
c, Example of footprint detection within promoters for TMEM143 and SYNGR4 
in CD19+ B cells. Expected cleavages were generated by reassigning observed 
cleavages according to a hexamer cleavage model (Supplementary Methods). 
The significance of difference between the observed and expected cleavages 
was evaluated per nucleotide using the negative binomial dispersion model. 
Individual P values are combined in 7-bp windows using Stouffer’s Z-score 
method. Per-nucleotide false discovery rates were computed by sampling from 
the expected null distributions. d, Autocorrelation of P values sampled from 
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values for observed (e) and sampled (f) data. g, Observed and sampled P values 
compared to empirically determine and calibrate false-positive rates (FPR).
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instances (blue, observed cleavage; yellow, expected cleavage).
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Extended Data Fig. 7 | Cell-selective occupancy of TF recognition 
sequences. a, Hierarchically clustered heat map of TF recognition sequence 
enrichment (–log10 q values; Supplementary Methods) overlapping consensus 
footprints. Rows correspond to motifs and columns correspond to individual 
samples. b, Clustered heat maps of posterior probabilities for footprints (left) 
overlapping an E-box/CAGCTG (MYF6_bHLH_1 motif model) and their 

corresponding DNase I density (right) in each sample. Rows and columns  
are ordered using K-means (k = 6) and hierarchical clustering, respectively.  
c, d, Same as b, for footprints overlapping an E-box/CATATG (c, Neurog1_
MA0623.1 motif model) or MEIS (d, MEIS1_MEIS_1 motif model) recognition 
sequence.



Chr. 15

SCAMP5

74,995,400 74,995,500

0

50

0

5

0

16

0

20

−1

0

1

0
4

4

ZFX (C2H2) REST (C2H2) TFAP2C (TFAP)

CD4+
T cells

A673 cells

N
on

-n
er

vo
us

N
on

-n
er

vo
us

N
er

vo
us

N
er

vo
us

Bipolar
neuron

Bipolar
neuron

SK-N-DZ

Relative
DNase I 
protection

 (log2)

Consensus
footprints

Consensus
footprints

–l
og

10
 PNervous

Non-nervous

26 nervous vs. 151 non-nervous samples with DHS 

Chr. 11

73,983,300 73,983,400 73,983,500

UCP2

0

10

0

10Fetal brain

0

40
CD3+

T cells

ZIC1

0

30B lymphoblasts
(GM06990)

−1

0

1Relative
DNase I 
protection

 (log2)

NFYB

Nervous

Non-nervous

28 nervous samples vs. 189 non-nervous with DHS 

0
4

4 –l
og

10
 P

a b
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occupancy at nucleotide resolution. a, b, Comparative footprinting within 
the SCAMP5 (a) and UCP2 (b) promoters identifies footprints that are 
differentially occupied in nervous cell and tissue types. Top, DNase I cleavage 
in two exemplar nervous and non-nervous cell types. Bottom, mean differential 

per nucleotide cleavage (log2 observed/expected) between nervous 
system-derived (SCAMP5: n = 26; UCP2: n = 28 out of 31) and non-nervous 
samples (SCAMP5: n = 151; UCP2: n = 189 out of 212) in which region is DNase I 
hypersensitive (Supplementary Methods). The colour of each bar indicates the 
statistical significance (–log10 p) of the per-nucleotide differential test.
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aggregate DNase I cleavage profiles. a, Differential footprint testing within 
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topology. Top, percentage of the DHSs tested that containing one or more 
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recognition sequences of REST, NFIB, ZIC1 and EBF1. Grey indicates 
distribution of all motif instances tested. Black indicates differentially 
footprinted. c, Per-nucleotide aggregate plots of the mean relative DNase I 
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a b

dc

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8 σ =0.09

0.0 0.5 1.0
Prop. reads w/ reference allele

in combined data

100 randomly
sampled SNVs

407,511 high read 
depth SNVs

Prop. reads w/ reference allele

Prop. reads w/ reference allele

Pr
op

. r
ea

ds
 w

/ r
ef

er
en

ce
 a

lle
le

in
 s

in
gl

e 
sa

m
pl

es
 (m

ea
n±

σ)

0

2

4

6

O
bs

er
ve

d 
de

ns
ity

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
ed

 d
en

si
ty

(m
ax

-s
ca

le
d)

μ=0.5
α=66.8
β=66.7

Binomial Beta-
binomial

Tested SNVs
(n=1.65 million)
Imbalanced SNVs
(n=117,626)

0.00 0.25 0.50 0.75 1.00
0
1
2
3
4
5

D
en

si
ty

[25
, 5

0)

[50
, 7

5)

[75
, 1

00
)

[10
0, 

12
5)

[12
5, 

15
0)

[15
0, 

17
5)

[17
5, 

20
0)

Read depth over SNV

0.00

0.10

0.20

Pr
op

. v
ar

ia
nt

s 
im

ba
la

nc
ed

Inside footprint
Outside footprint

1.73-fold

Extended Data Fig. 10 | Detection of chromatin-altering variants.  
a, Scatter plot of allelic ratios at 100 randomly selected high-confidence SNVs 
(Supplementary Methods) computed after aggregating reads from different 
samples (x-axis) against the distribution of allelic ratios at the same SNVs in 
each sample ( y-axis; mean ± s.d.). The average s.d. indicated in the top left 
corner was used to tune the parameters of a beta-binomial distribution.  
b, Simulation of allelic ratios from the observed total read depth at 

high-confidence SNVs assuming a binomial distribution (P = 0.5) or a 
beta-binomial distribution. Grey indicates the observed allelic ratios at the 
same variants. c, Density histogram of allelic ratios for all tested SNVs (grey 
line) and significantly imbalanced SNVs (blue line). d, Proportion of SNVs 
imbalanced with respect to read depth for variants within (blue) or outside 
(orange) consensus footprints (posterior probability >0.99).



Article
a

b

c

d

e

Enrichment of imbalanced
SNVs within motif (log2)

SNVs

Representative
cluster

motif model
Imbalanced

SNVs

SNVs

Imbalanced
SNVs

SNVs

Imbalanced
SNVs

% imbalanced

% imbalanced

% imbalanced

SNVs

Imbalanced
SNVs

% imbalanced

Footprinted
Not footprinted

−1 0 1 2

0

500 Nucleotide

C
G
T

A

0

25

-20 1 12 20
Distance relative to recognition sequence

0

10

0

500

0

25

-20 1 10 20
Distance relative to recognition sequence

0

10

0

1000

0

25

-20 1 11 20
Distance relative to recognition sequence

0
2
5

TEAD1_TEA_1
(C166:TEAD)

TFAP2C_TFAP_2
(C264:TFAP2)

CREB1_MA0018.3
(C49:CREB/ATF)

NFIX_NFI_1
(C189:NFI)

Footprinted
Not footprinted

0

1000

0

50

-20 1 15 20
Distance relative to recognition sequence

0

25

ZFX
HINFP1/1

Ebox/CACGTG/2
PLAG1

REST/NRSF
NR/3
ZIC/2

INSM1
GLI

EGR
NRF1

RUNX/2
NR/1
IRF/2
GLIS

E2F/2
NR/17

REL-halfsite
HD/12
NR/11
NR/12
HIC/1
NR/13
PAX/1

ZIC
SMAD

TFAP2/2
CREB3/XBP1

MFZ1
Ebox/CACGTG/1

PAX/2
KLF/SP/1
TFAP2/1

KLF/SP/2
EBF1

NR/16
NFI/2

FOX/7
ZNF423
THAP1

Ebox/CACCTG
MAF

RUNX/1
NFKB/1

SPI
Ebox/CAGCTG

ETS/1
RFX/1
TEAD
IRF/3

AP1/2
CTCF

Ebox/CAGATGG
CREB/ATF/3

NFI/1
CREB/ATF/2
CREB/ATF/1

AP1/1
CCAAT/CEBP

Motif:

Extended Data Fig. 11 | Enrichment of imbalanced variants within 
footprinted TF recognition sequences. a–d, Distribution of SNVs around the 
recognition sequences for CREB/ATF, NFI, TEAD and TFAP2 TFs. For each TF, 
shown are the total SNVs tested for imbalance (top), imbalanced variants 
(middle), and the proportion of variants imbalanced stratified overlap with a 
consensus footprint. e, log2 enrichment of imbalanced variants residing within 
TF recognition sequences relative to non-imbalanced SNVs for both variants 

within footprinted (blue) and non-footprinted motifs (orange). Motifs are 
grouped into clusters, where each point represents an individual motif model 
(Extended Data Fig. 4, Supplementary Table 2 and Supplementary Methods). 
Black bars indicate mean enrichment across all motifs in each cluster and 
footprint overlap. Only motifs with significant (q < 0.05) enrichment of 
imbalanced SNVs with a footprinted recognition sequence are shown.



a

b

0.00 0.25 0.50 0.75 1.00
−5.0

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00
0

2

0.00 0.25 0.50 0.75 1.00

−5

0

5

0.00 0.25 0.50 0.75 1.00
0

2

4

0.00 0.25 0.50 0.75 1.00

−5

0

5

0.00 0.25 0.50 0.75 1.00
0

2

4

Variants in CREB1 footprints Variants in TEAD1 footprints Variants in TFAP2C footprints

All variants
(n=1,320)

Imbalanced
(n=353)

All variants
(n=1,434)
Imbalanced
(n=336)

All variants
(n=5,215)
Imbalanced
(n=736)D

es
ni

ty

193 143
Ref. strongerAlt. stronger Ref. strongerAlt. stronger Ref. strongerAlt. stronger

165 188 340 396

Variant effect on CREB1
recognition sequence

Variant effect on TEAD1
recognition sequence

Variant effect on TFAP2C
recognition sequence

Alternate allele 
stronger motif

Alternate allele
weaker motif

Lo
g-

od
ds

 m
ot

if 
sc

or
e

(re
f. 

vs
 a

lt.
)

Prop. cleavages on reference allele

Prop. cleavages on reference allele

Extended Data Fig. 12 | Allelic imbalance parallels the predicted energetic 
effect of genetic variation. a, Histogram of allelic ratios for variants 
overlapping footprinted CREB1 (CREB/ATF), TEAD1 (TEAD) and TFAP2C 
(TFAP2) recognition sequence. Grey line, all variants tested for imbalance. Blue 

line, all variants significantly imbalanced. b, Median log-odds score (reference 
versus alternate allele) of all tested variants within footprinted motifs binned 
by allelic ratio. Error bars show 5th and 95th percentiles of log-odds motif 
scores in each bin.



Article

1 12

0.25

0.75

5.1
8.7

16.8

Distance to
footprinted motif

Distance to
footprinted motif

Distance to
footprinted motif

a b c

d e f

M
ea

n 
π

(x
10

4 )
M

ea
n 

π
 (x

10
4 )

0.25

0.75

-15 1 10 15 -15 15

10

20

10

20

6.8 10.8

22.1

0

20

00

20
20

0.25

0.75

-15 1 17 15

7.5
10.0
12.5

5.1 7.6

24.8

M
ea

n
ph

yl
oP

%
 e

vo
lu

tio
na

ril
y

co
ns

tra
in

te
d

ETS1

ETS1 motifs CTCF motifs

CTCFCREB/ATF

CREB/ATF motifs
O

ut
si

de
D

H
S

W
in

th
in

fo
ot

pr
in

t

O
ut

si
de

fo
ot

pr
in

t

O
ut

si
de

D
H

S

W
in

th
in

fo
ot

pr
in

t

O
ut

si
de

Fo
ot

pr
in

t

O
ut

si
de

D
H

S

W
in

th
in

fo
ot

pr
in

t

O
ut

si
de

Fo
ot

pr
in

t

* * *

4-fold degenerate coding sitesConstrained  (phyloP>1)

5

10

15

5

10

5

10

Neutral (phyloP≤1)

Extended Data Fig. 13 | Nucleotide-resolved patterns of genetic variation 
within TF binding sites. a–c, Per-nucleotide profiles of phyloP scores (top) 
and human nucleotide diversity (π) (bottom) within footprinted motifs for 
ETS1 (a), JDP2 (b), and CTCF (c) motifs. Black box in the motif consensus logo 
annotates CpG dinucleotides. Asterisk indicates the position of the CpG 
dinucleotide in the profiles below. d–f, Ancient and recent constraints at the TF 
recognition sequences with respect to proximity to DHSs and consensus 
footprints. TF recognition sequences are grouped by those residing within 

±5 kb of DHS peaks but not inside (outside DHS), inside DHSs but not a footprint 
(outside footprint) and those overlapping a consensus footprint. Top, 
percentage of TF recognition sequence under elevated evolutionary constraint 
(mean phyloP score >1) in each group. Bottom, mean nucleotide diversity 
within the footprinted motifs additionally stratified by evolutionary 
constraint. Boxes indicate median and IQR of enrichments from 1,000 
bootstrap samples. Whiskers, 5th and 95th percentile.



�

������������	
���������
���������������

�������
���������

��������� !�"#$%&��'�()*#�%$� #%� +,+,#$%&��'�()-����%!�".$//#�,0#%$��-���#�1&2!�&��%�%�!/���3�%&������ $1!+!4!%,�5�5%&�2��6%&#%2�2��$+4!�&78&!�5��/���3! ���%�$1%$��5��1���!�%��1,#� %�#���#���1,!�!������%!�"79��5$�%&��!�5��/#%!������0#%$��-���#�1&��4!1!��:����$�; !%��!#4<�4!1!��#� %&�; !%��!#4<�4!1,�&�164!�%7
.%#%!�%!1�9��#44�%#%!�%!1#4#�#4,���:1��5!�/%&#%%&�5�44�2!�"!%�/�#��������%!�!�%&�5!"$��4�"�� :%#+4�4�"�� :/#!�%�=%:����>�%&� ���1%!��7�?#���5!�/� 8&��=#1%�#/�4��!@�'A(5���#1&�=���!/��%#4"��$�?1�� !%!��:"!3��#�#�# !�1��%��$/+��#� $�!%�5�5/�#�$��/��%B�%#%�/��%����2&�%&��/�#�$��/��%�2���%#6��5��/ !�%!�1%�#/�4������2&�%&��%&��#/��#/�4�2#�/�#�$�� ����#%� 4,8&��%#%!�%!1#4%��%'�($�� B0C2&�%&��%&�,#�����D����%2�D�! � EAFGHIJKKJAHLMNLNHNOJPFQHRMHQMNISTRMQHNJFMFGHRGHAUKMVHQMNISTRMHKJSMHIJKWFMXHLMIOATYPMNHTAHLOMHZMLOJQNHNMILTJA[B ��1�!�%!���5�5#441�3#�!#%��%��%� B ��1�!�%!���5�5#�,#��$/�%!�������1����1%!���:�$1&#�#�%��%��5�5���/#4!%,#� # \$�%/��%5��/$4%!�4�1�/�#�!����B5$44 ��1�!�%!���5�5%&��%#%!�%!1#4�#�#/�%���!�14$ !�"1��%�#4%�� ��1,'�7"7/�#��(�����%&��+#�!1��%!/#%��'�7"7��"����!��1��55!1!��%(B0C3#�!#%!��'�7"7�%#� #�  �3!#%!��(����#���1!#%� ��%!/#%���5�5$�1��%#!�%,'�7"71��5! ��1�!�%��3#4�(9���$44&,��%&��!�%��%!�":%&�%��%�%#%!�%!1'�7"7]:L:S(2!%&1��5! ��1�!�%��3#4�:�55�1%�!@��: �"�����5�55��� �/#� ̂ 3#4$���%� _T̀MĤH̀UFPMNHUNHMXUILH̀UFPMNHaOMAM̀MSHNPTLURFM[9��b#,��!#�#�#4,�!�:!�5��/#%!������%&�1&�!1��5�5��!���#� >#�6�31&#!�>��%��#�4���%%!�"�9��&!��#�1&!1#4#� 1�/�4�= ��!"��:! ��%!5!1#%!���5�5%&�#������!#%�4�3�45��%��%�#� 5$44�����%!�"�5�5�$%1�/��;�%!/#%���5�5�55�1%�!@��'�7"7��&��c�Q:<�#����c�S(:(:!� !1#%!�"&�2%&�,2���1#41$4#%� EPSHaMRHIJFFMILTJAHJAHNLULTNLTINHdJSHRTJFJeTNLNHIJALUTANHUSLTIFMNHJAHKUAGHJdHLOMHWJTALNHURJ̀M[.�5%2#��#� 1� �<�4!1,!�5��/#%!��#+�$%#3#!4#+!4!%,�5�51�/�$%��1� �C#%#1�44�1%!��C#%##�#4,�!�
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