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Thediscovery of drivers of cancer has traditionally focused on protein-coding
genes'™. Here we present analyses of driver point mutations and structural variantsin
non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole
Genomes (PCAWG) Consortium® of the International Cancer Genome Consortium
(ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a
statistically rigorous strategy for combining significance levels from multiple
methods of driver discovery that overcomes the limitations of individual methods.
For structural variants, we present two methods of driver discovery, and identify
regions that are significantly affected by recurrent breakpoints and recurrent somatic
juxtapositions. Our analyses confirm previously reported drivers®’, raise doubts
about others and identify novel candidates, including point mutationsin the 5’ region
of TP53,inthe 3’ untranslated regions of NFKBIZ and TOBI, focal deletions in BRD4 and
rearrangements in the loci of AKR1C genes. We show that although point mutations
and structural variants that drive cancer are less frequent in non-coding genes and
regulatory sequences thanin protein-coding genes, additional examples of these
drivers will be found as more cancer genomes become available.

Previous large-scale sequencing projects have identified many putative
cancer genes, but most efforts have concentrated on mutations and
copy-number alterations in protein-coding genes, mainly using whole-
exome sequencing and single-nucleotide polymorphism arrays' ™.
Whole-genome sequencing has made it possible to systematically
survey non-coding regions for potential driver events, including

single-nucleotide variants (SNVs), small insertions and deletions
(indels) and larger structural variants. Whole-genome sequencing
enables the precise localization of structural variant breakpoints and
connections between distinct genomicloci (juxtapositions). Although
previous whole-genome sequencing analyses of modestly sized cohorts

have revealed candidate non-coding regulatory driver events®™,
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the frequency and functional implications of these events remain
understudied®”31¢7,

Driver identification remains a far greater challenge in non-coding
regions thanincoding genes, owingto sequencing and mappingarte-
facts, poorly understood localized hypermutation processes'*'$%,
incomplete annotation of regulatory regions, inaccurate estimation
of the background mutation rate and the unknown functional effect
of non-coding mutations. The discovery of drivers from structural
variants is further complicated by their sparsity, the lack of obvious
neutral events to build background models and their complex func-
tional effects. Adequate statistical methods that address these issues
are needed toreliably identify non-coding drivers.

TheICGC and TCGA PCAWG effort, which has collected and system-
atically analysed cancer genome sequences from 2,658 patients across
38 types of cancer’, offers an opportunity to characterize putative
non-coding driver events that cannot be found using data from whole-
exome sequencing or single-nucleotide polymorphismarrays. Here we
describe acomprehensive search for non-coding somatic drivers. For
point mutations (SNVs and indels), we combine results from multiple
driver-discovery algorithms and, by carefully evaluating the signifi-
cant hits, reveal that recurrent artefacts and poorly understood muta-
tional processes have led to common false positives among previously
reported non-coding drivers. For structural variants, we introduce two
new methods foridentifying both regions with significantly recurrent
breakpoints (SRBs) and with significantly recurrent juxtapositions
(SRJs), accounting for genomic heterogeneity in the rates of DNA break
and repair and the three-dimensional architecture of the genome.
Finally, to assess the potential for future non-coding driver discoveries,
we quantify our statistical power in the PCAWG dataset and estimate
the overall excess of point mutations in non-coding regulatory regions
around known cancer genes.

Hotspot mutations across cancer types

Many protein-coding driver mutations occur in single-site ‘hotspots’.In
the PCAWG dataset, only 12 single-nucleotide positions were mutated
in>1%,and 106 in >0.5%, of patients (Extended Data Fig. 1a, Methods).
Although protein-coding regions span only about 1% of the genome, 15
outof 50 (30%) of the most frequently mutated sites were well-studied
hotspotsin cancer genes (KRAS, BRAF, PIK3CA, TP53and IDHI) (Fig. 1a,
Extended Data Fig. 1b), along with the two canonical TERT promoter
hotspots®’.

The remaining non-coding hotspots could be attributed to the
following localized mutational processes associated with passenger
events: (i) damage fromultraviolet (UV) light and impaired nucleotide
excision repair in melanoma at sites occupied by transcription fac-
tors>#2% (ii) somatic hypermutation by activation-induced cytosine
deaminase (AID) in B-cell non-Hodgkin lymphoma (Lymph-BNHL)
and chronic lymphocytic leukaemia (Lymph-CLL); (iii) palindromic
sequence contexts believed to form hairpin DNA structures targeted
by APOBEC enzymes (in an intron of GPR126 (also known as ADGRG6)
and the PLEKHSI promoter)'®; and (iv) presumed technical artefacts
(Fig.1a, Supplementary Note 1). These findings suggest that—besides
TERT promoter events—non-coding single-site hotspot drivers are
infrequent or fall in regions with low sensitivity to detect mutations.

Discovery of point-mutation drivers

To identify recurrently mutated genomic elements, we first analysed
somatic SNVs and indels in protein-coding regions, RNA genes (long
and short non-coding RNAs and microRNAs (miRNAs)), and regula-
tory regions (promoters, 5’ untranslated regions (UTRs), 3’ UTRs and
enhancers), totalling about 4% of the genome (Extended Data Fig. 2a-c,
Methods, Supplementary Table 1). We analysed 2,583 tumours from
27 individual tumour types, and 15 meta-cohorts that grouped cancers

by tissue of origin or organ system (Extended Data Fig. 2d, Methods).
Weidentified candidate drivers—thatis, cohort-element combinations
with Q<0.1(10% false discovery rate (FDR))—by integrating 13 discov-
ery algorithms, circumventing biases introduced by any one method
(Extended DataFigs.2e,11, Supplementary Tables 2,3, Supplementary
Note 2). We benchmarked this approach by evaluating its ability to
detect 603 known cancer genes (from the Cancer Gene Census (CGC)?,
v.80), and found that combining methods improved performance
compared to single algorithms (Extended Data Fig. 3a, b, Methods).
Overall, we identified 1,294 significant hits that involved 520 unique
candidates (Supplementary Tables 4, 5).

Filtering the significant hits

Even after conservative FDR control, false-positive ‘driver’ loci can
remain, owingtoinaccurate background models, sequencing and map-
pingartefacts, orlocalincreases in mutations due to unaccounted-for
mutational processes. We therefore systematically filtered the candi-
date driver elements on the basis of technical and biological criteria,
followed by careful review (Extended Data Fig. 3c, Methods, Supple-
mentary Note 3). Examples of filtered elements include the promot-
ers of PIMI (lymphoid tumours) and RPL13A (melanoma) because of
associations with localized AID and UV-light mutational processes,
respectively; PLEKHSI, GPR126, TBCID12 and LEPROTLI because of
palindromic APOBEC target sequences®®; and the WDR74 5’ UTR and
promoter®°*, owing to mapping problems detected in downstream
manual review (Supplementary Table 5, Supplementary Note 4). In
combination, filtering and reapplying FDR control discarded 589 out of
1,294 (46%) of the original cohort-element hits and 341 out of 520 (66 %)
unique elements (Extended Data Fig. 3¢, Supplementary Tables 4, 5).

Candidate coding and non-coding drivers

Our stringent combination and filtering strategy yielded 705 hits
in 179 genomic elements: 602 hits in 143 protein-coding genes and
103 hits in non-coding elements. We observed wide variability across
different types of cancer, from one hit in clear-cell renal cancer to
80inthe pan-cancer meta-cohort (Fig. 1b, Supplementary Tables 4,5).
Although most candidate drivers gained significance in larger meta-
cohorts, some genes—such as DAXX (pancreatic endocrine tumour),
NRAS (melanoma), SPOP (prostate adenocarcinoma), FGFRI (pilocytic
astrocytoma) and MIR142 (Lymph-BNHL)—scored higherinindividual
tumour types (Extended Data Fig. 3d). These results emphasize the
trade-offbetween limiting driver discovery analyses to particular types
of tumour and maximizing cohort size.

The candidate coding drivers we identified agreed with previous
results: of the 143 genes that were significant in at least 1 cohort, 69%
are in the CGC and nearly all have previously been implicated in can-
cer. In contrast to large whole-exome sequencing datasets, the fewer
patients per cancer type in this dataset provided power sufficient only
todetect genes with the strongest signal. We found 116 additional hits
in 84 unique elements that were ‘near significance’ (0.1< Q< 0.25).
Fifty-one per cent of the 63 unique protein-coding genes in this set
arein the CGC, which suggests that they would have been discovered
in larger cohorts (Supplementary Table 4).

Tonominate asignificant non-coding element as acandidate driver,
we reviewed the supporting evidence from the mutation calls, addi-
tional genomic data (chromosomal breakpoints, copy number, loss-
of-heterozygosity and expression data), cancer gene databases and the
literature (Methods, Supplementary Tables 6,10). We describe the key
candidates below, and in Supplementary Note 4.

The TERT promoter was the most frequently mutated non-coding
driver in this dataset (14 cohorts) (Fig. 1b), and these mutations were
strongly associated with higher TERT expression, as has previously
been reported® (Extended Data Fig. 4a, Supplementary Table 10).
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Fig.1|Non-coding point mutationsin PCAWG. a, The bar chart (left) shows
the total number of patients across PCAWG with mutations ata particular
genomic hotspot (chromosome:position). The top 25 hotspotsare grouped as
knowndrivers orinduced by mutational processes. The table (middle) shows
the frequency of mutations across asubset of PCAWG cohorts. Lymphoid
malignancies comprise Lymph-BNHL and Lymph-CLL. The stacked bar chart
(right) shows the contribution of mutational processes to the hotspot
mutations (Methods). Gene names are given when hotspots overlap functional
elements (colour-coded), withamino acid (AA) alterations for protein-coding
genes (solidus denotes substitution with any one of the indicated amino acids).
Extended DataFig.1b shows the top 50 hotspots, and all cohorts. b, Significant
non-coding elements (Q<0.1of Brown’s combined Pvalues of up to13 driver

Mutations in the promoter and/or 5" UTR of MTG2 (which encodes
a GTPase involved in the mitochondrial ribosome) were associated
with an expression of MTG2 that was marginally significantly lower, in
both the pan-cancer (P=0.036, fold difference = 0.8) and carcinoma
(P=0.029, fold difference = 0.8) meta-cohorts (Extended DataFigs. 4a,
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discovery methods; Methods) identified before manual reviewin cohorts with
atleastone hit. Colour represents significance levels. Details are provided in
Supplementary Table 5. *Potential technical artefact; #targets affected by
mutational processes. AdenoCA, adenocarcinoma; CNS, central nervous
system; Eso, oesophageal; GBM, glioblastoma; HCC, hepatocellular carcinoma;
Medullo, medulloblastoma; Panc, pancreatic; Prost, prostate; RCC, renal cell
carcinoma; Repr., reproductive organs; SCC, squamous cell carcinoma; TCC,
transitional cell carcinoma; Thy, thyroid. HISTIH2AM is also known as H2ACI7;
Ala.TGCas TRA-TGC3-1; Met.CAT as TRM-CATI-1; and Gly.GCCas TRG-GCC2-3.
PTDSS1/MTERF3denotes that 5’ UTR mutationsin PTDSS1also overlap the
MTERF3 promoter.

5a). Mutations in the 5’ UTR have previously been shown to decrease
MTG2 expression invitro®.

Recurrent somatic events were identified in the 3’ UTRs of TOBI
(carcinomaand pan-cancer meta-cohorts), NFKBIZ (lymphomas) and
ALB (liver cancer) (Fig. 1b). TOB1 encodes an anti-proliferation regulator
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Fig.2|Newlyidentified non-coding driver candidates and localized
transcription-associated mutational process. a, Recurrent mutations and
associated gene expressioninthe highly conserved TOB13’ UTR. Tracks
showing conservation score (PhyloP, grey), miRNA-binding sites (TargetScan
(top track) and Ago-Clip (bottom track)), and observed SNVs (blue) and indels
(green). Expression of TOBI in mutated (n=13) and wild-type (n=886) cases
(right). Pvalue based on two-sided Wilcoxon rank-sum test. Bars represent
means. CNA, copy-number alteration. b, Indels and SNVs overlapping the TP53
5’ regionand their effect on gene expression. H3K4me3 from the GM12878 cell
line (ENCODE). Event numbers matchwithgene expressioninthe right panel
(red dot, mutated sample; black bar, median). Pvalue represents Fisher’s
combination of permutation tests within each tumour type. ChRCC,
chromophoberenal cell carcinoma; FPKM, fragments per kilobase of

that associates with ERBB2, and also affects migration and invasionin
gastric cancer®. TOB1 regulates other mRNAs through binding to their
3’UTR and promoting deadenylation?, Tumours with 3’ UTR mutations
in TOB1showed atrend towards decreased expression (P=0.053, fold
difference =0.7). The mutations did not concentrate in known miRNA-
binding sites; however, the region is extremely conserved and thus
probably functional (Fig. 2a). TOBI1 and its neighbouring gene WFIKKN2
are focally amplified in breast cancer and pan-cancer, suggesting a
complexrolein cancer (Extended Data Fig. 4b). NFKBIZis a transcrip-
tion factor thatis mutated in diffuse large B cell lymphomaand ampli-
fied in primary lymphomas®. Mutations in the 3’ UTR accumulated
in a hotspot proximal to the stop codon and upstream of conserved
miRNA-bindingssites (Extended DataFig. 5b). The enrichment of indels
next to the stop codonsuggests that this hotspotis not due to AID off-
target activity. Previous functional experiments have associated these
mutations with increased NFKBIZ expression®, which we observed in
ourlymphoma cohort (P=0.035, fold difference =3.2; after correction
for copy number, P=0.03) (Extended DataFig. 5b).

Both the exon and promoter of the non-coding RNA RMRP were sig-
nificantly mutated in multiple types of cancer (Fig. 1b, Extended Data
Fig. 5¢). Germline RMRP mutations cause cartilage-hair hypoplasia,
and previous invitro studies have shown that some somatic promoter
mutationsare functional'®. The RMRPlocus is also focally amplified in
several types of tumour (Extended Data Fig. 4b). The enrichment of
mutations in sites that can affect secondary structure suggests that
these mutations are functional (P=0.011, permutation test) (Extended

transcript per million mapped reads. ¢, Overall pan-cancer distribution of
indelsand SNVsinALB, NEAT1 and MALATI genomic loci (lymphoid tumour
samples were excluded owingto AID).d, Quantification of average indel rates
for genes withsignificantly mutated 3’ UTRs. Error bars represent 95% binomial
confidenceintervals. e, Contribution of indels of different sizes in: all protein-
codingandlong non-coding RNA genes; ALB; NEATI; MALATI; MIR122; and the
remaining genes enriched in2-5-bp indels. f, SNV and indel rates (total events
per Mb per patient) in different functional regions of 18 protein-coding genes
enrichedin2-5-bpindels (without ALB, which contributed 47% of indels). Red
linesindicate backgroundindel and SNV rates estimated from all protein-
codinggenes. Error bars asind; raw counts provided in Supplementary
Table18.c-f, Mutations analysedin all unique cases (n=2,583).

Data Fig. 5¢), although caution is required because this locus also
appears to be affected by mapping artefacts or increased mutation
rates (Supplementary Note 4).

The miR-142 precursor miRNA was significantin Lymph-BNHL and
the lymphatic and haematopoietic cohorts (Fig. 1b; Extended Data
Fig. 5d). The locus is a known AID off-target region in lymphoma'>?,
but 7 out of 8 mutations in the mature miRNA mir-142-p3--for which
the largest functional effect is expected--were not assigned to AID,
which suggests that these mutations are under selection™.

Unbiased genome-wide driver screen

To test whether we missed drivers by focusing on functionally anno-
tated regions, we applied an unbiased genome-wide survey to all non-
overlapping 2-kb windows for excess point mutations. Twenty-two of
theresulting 67 significant windows overlap with known protein-coding
drivers, and 28 overlap highly transcribed regions with an excess of
2-5-bpindels (described in the ‘Transcription-associated indel signa-
ture’ section below) (Extended Data Fig. 5e, Supplementary Table 9,
Supplementary Note 5). The remaining 17 windows have no obvious
link to cancer, and several appear to be affected by mapping artefacts.
Aseparate analysis of 4,351 ultra-conserved non-coding regions did not
yield new candidate drivers (Extended Data Fig. 5e, Supplementary
Note 5). Both screens suggest that the paucity of non-coding point-
mutation drivers found in this study is not due to the annotation of
functional elements.

Nature | Vol 578 | 6 February 2020 | 105



Article

Increasing power for known cancer genes

Finally, we performed restricted hypothesis testing to boost the sta-
tistical power to detect cis-regulatory driver mutations near cancer
genes from the CGC? (Supplementary Table 7). Restricted hypothesis
testing of cancer gene promoters revealed a significant recurrence of
TP53 promoter mutations (11 patients in pan-cancer, Q=0.044), mostly
comprising SNVs and deletions that affect the transcription start site
or donor splice site of the first non-coding exon. In 10 out of 11 cases,
the mutation occurred in combination with loss-of-heterozygosity,
and all samples with expression data showed decreased mRNA levels
(Fig.2b). None of these patients contained additional coding mutations
that could instead be responsible for the downregulation of TP53. To
our knowledge, this is the first report of arelatively infrequent—but
impactful—form of TP53 inactivation by non-coding mutations.

Focal gains or losses in cancer are selected for modulating expres-
sion levels of their target genes. Restricting the hypothesis testing to
the non-coding elements of such genes (n =216,986 cohort-element
combinations, representing 5,201 unique elements) (Methods) yielded
only one new hit, the 3’ UTR of the oncogene FOXAI in prostate can-
cer (Supplementary Table 11).

Transcription-associated indel signature

Several significant non-coding elements (the ALB 3" UTR, NEATI,
MALATI and MIR122) were hit by many indels; all have previously
been reported to be mutated in cancer'®>% (Figs. 1b, 2¢). To explore
whether ALB3’ UTR events are under selection, we calculated indel rates
across the functional regions of this gene. Theindel rate is notably high
throughout the UTRs, introns and exons, and even downstream of the
polyadenylation site—a patterninconsistent with selection (Fig. 2c, d).
Similarly, FOXA1 has highindel rates throughout its locus, whereas the
indels in NFKBIZ and TOBI are in their 3’ UTRs, suggesting that these
aredriver events (Fig.2d). ALB, NEATI and MALATI mutations were not
associated with changes in gene expression (Extended Data Fig. 4a)
and were not associated with high cancer cell fractions or biallelic loss
(Extended DataFig. 6a,b). Likewise, indelsin MIR122 were downstream
ofthemature miRNA, and were not associated with altered expression
of the targets of this miRNA (Supplementary Note 5).

Ifthe indels in these genes were due to a mutational process rather
than selection, they might exhibit distinct features. Indeed, indels in
NEAT1, MALAT1, MIR122 and ALBwere strongly enriched in2-5-bp-long
events (Fisher’s P< 6.8 107, for all) (Fig. 2e). A systematic search of
coding and non-coding genes with significantly (Q < 0.1) increased
rates of 2-5-bp indels revealed that this mutational process affects at
least 18 additional genes in different types of tumour, most of which are
highly expressed and tissue-specific (as has previously been reported
for some of these genes®) (Extended Data Fig. 6e, f). Although less
enriched, SNVsalso occurat high frequenciesin these regions (Fig. 2f).
Overall, our findings suggest that theindelsin MALATI, NEAT1,ALB and
MIR122 are not driver events and are the result of atranscription-asso-
ciated mutational process. The previously reported oncogenic effect
of altered MALATI and NEATI expression? 2’ may thus be unrelated
to these mutations. Our findings also suggest that although FOXAI
protein-codingindels are drivers, 3’ UTR indels might be passengers™.

Breakpoints at driver and fragile sites
Driver structural variants may act by disrupting one or both of their
breakpoint loci (for example, deactivating a tumour suppressor), or
by generating a novel juxtaposition between loci. We thus searched
both for genomic regions with SRBs and for pairs of regions with SRJs
(Extended Data Fig. 7).

For SRBs, we first defined abackground model to predict breakpoint
density, using eight explanatory variables (Methods, Supplementary
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Table 13) and accounting for unexplained sources of variation® (Sup-
plementary Note 6). We identified 53 disjoint regions with SRBs (Q<0.1)
(Fig.3a, Supplementary Table 14), which cleanly divided into two groups
onthe basis of the variability of the breakpoints at the other side of the
rearrangements. Eight SRBs had partner breakpoints that were tightly
clustered (had low rearrangement dispersion scores; Methods) and
represented known oncogenic fusions. The remaining 45 SRBs had
dispersed partner breakpoints (had high rearrangement dispersion
scores), and were largely associated with previously identified somatic
copy-number alterations (SCNAs) (Fig. 3b).

It has been difficult to distinguish recurrent driver SCNAs from
passenger events at fragile sites®. At the resolution afforded by
whole-genome sequencing, late replication timing predicted fra-
gility-associated SRBs better than existing fragile site annotations
(Supplementary Note 7), identifying 12 fragile-like SRBs (Fig. 3b). The
remaining 33 SCNA-like SRBs comprised 14 amplifications, 8 deletions
and 11 copy-neutral events (Supplementary Table 14).

The different classes of SRB were associated with different effects
on neighbouring genes. Five of the eight deletion-associated SRBs
were associated with biallelic inactivation of nearby known tumour
suppressors, compared to none of the 12 fragile-like SRBs (P = 0.039)
(Extended DataFig. 8a). The fragile-like SRBs were furthest from tissue-
matched enhancers and caused the weakest expression changes, con-
sistent with thembeing passenger events®. By contrast, fusion-like SRBs
were closer to tissue-matched enhancers than the other SRBs (P< 0.01)
(Extended Data Fig. 8b) and were associated with greater changes in
expression than all other SRBs except amplifications (P < 0.05 for all
types) (Extended Data Fig. 8c, Methods). Our analyses indicate that
SRB driver events can be classified using rearrangement dispersion
scores, replication timing and gene expression. Notably, neither rear-
rangement dispersion scores nor association with replication time can
beaccurately determined from microarrays or whole-exome sequenc-
ing, which highlights the importance of whole-genome sequencing.
Altogether, weidentified SRBs at 34 sites of known oncogenic fusions
and recurrent SCNAs, 5 additional sites that are probably due to DNA
fragility and 14 novel driver candidates (Supplementary Note 8).

Novel structural-variant driver candidates

Although most SCNA-like SRBs act by altering gene copy numbers,
several appeared to target regulatory elements. We identified three
that were significantly (Q < 0.05) associated with expression changes
of nearby genes after controlling for copy number (Methods), two of
whichwediscuss here. The first comprised structural variants at 10p15,
which were associated with a greater than twofold upregulation of
AKRIC1,AKRIC2and AKRIC3inseven cases of lung squamous cell car-
cinomaand two cases of liver hepatocellular carcinoma (Extended Data
Fig. 8d). AKRIC proteins are aldo-keto reductases involved in steroid
homeostasis. Ectopic expression transforms cell lines, and germline
mutations have previously been linked to anincreased risk of develop-
ing lung cancer®?*, Three-quarters of the breakpoints are near (<10 kb)
lineage-specific enhancers, potentially altering promoter-enhancer
interactions (and hence gene expression). However, because the high-
estdensity of breakpointslies between two longinverted repeats, the
structural variants may have beeninduced by DNA secondary structure.

Thesecond SRB contains recurrent microdeletions (<50 kb) involving
the 5’ end of BRD4in ovarian (eight cases, P<107) and breast tumours
(six cases, P<0.04) (Fig. 3c, Extended Data Fig. 8e). These deletions
were highly enriched in cancers that amplified asegment thatincludes
BRD4and NOTCH3(P<0.004) (Fig.3d, Extended DataFig. 8f) but were
not a direct consequence of these amplifications (Supplementary
Note 9). BRD4isachromatinregulator and atherapeutic targetin sev-
eral types of cancer®?¢, including ovarian and triple-negative breast
cancer’”®®, Giventheincreased copy number of the full BRD4 gene, we
would expectincreased gene expression. However, the microdeletions
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indicates the rearrangement (top). Breakpoint density across PCAWG breast
and ovarian cancers (middle). Enhancer locations from breast (BRCA) and
ovarian (OV) tissue® (bottom). d, Somatic copy number at the BRD4 and
NOTCH3locusinbreast and ovarian cancers with (SV+) and without (SV-)
rearrangements. e, Gene expression per absolute copy number for BRD4 and
NOTCH3.f, The 30 most-significant SRJs, with their relative enrichment (circle

size) per tumour type, annotated with oncogenic fusions from the Catalogue of

Somatic Mutationsin Cancer (COSMIC) (left), CGC gene (centre) and protein
disruption (right) (Methods). ATPSE is also known as ATPSF1E. g, Expression
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correlates of rearrangements in SRJs from COSMIC (purple), other SRJs (pink)
ornotinany SRJ (grey). For eachrearrangement (R), the primary locus (left) is
defined as the breakpoint within 100 kb of the gene thatis most overexpressed
inrearranged samples; the secondary locus (right) is the other breakpoint.
Expressionatthe primarylocusinsampleswith therearrangementrelative to
samples without the rearrangement is greater for SRJs than for other
rearrangements (left). The tissue-specific expression at the secondary locusin
wild-type (WT) samples, relative to samples of different tissue types, isgreater
for SRJs than other rearrangements (right). Pvalues represent comparisons to
‘notinSRJ)’.d, e, g, Box plots show the interquartile range, median and 95%
confidenceinterval; two-sided t-test. h, TERT promoter mutations and
rearrangements across PCAWG melanomas. i, Rearrangements between TERT
promoter and BASPI and MYOI0locus resultin focal amplification and
relocation of distal enhancers to TERT. AML, acute myeloid leukaemia;
Colorect, colorectal; Leiomyo, leiomyosarcoma; MPN, myeloproliferative
neoplasm; Osteosarc, osteosarcoma; PiloAstro, pilocytic astrocytoma.

exon-1H3K4me3 peak and intron-1enhancer elementsin HMEC (nor-
mal breast) and MCF-7 (breast tumour) cells (Extended Data Fig. 8e),
which suggests that these deletions disrupt regulatory elements.
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To ourknowledge, thisis the first evidence of arecurrent microdeletion
limiting expression of an amplified gene.

Recurrent fusions target gene regulation

Motivated by the detection of fusion-like SRBs, we specifically looked
for genomic loci that were juxtaposed more often than expected by
chance, after controlling for both the rate of breakpoints at eachlocus
and the distance between them (Methods). We identified 90 such SRJs
(Fig. 3f, Supplementary Table 15), including 13 known oncogenic fusions
(including all 8 fusion-like SRBs) and 77 novel hits—18 of which linked
to atleastone known cancer gene (Supplementary Note 8). Previously
reported oncogenic SRJs were observed more frequently (average
24 patients per fusion, range 2-98) than novel ones (most often 2
patients per fusion, range 2-4). As juxtapositions are unlikely to occur
by chance, observing even two becomes highly significant. However, it
ispossible that some SRJs reflectinaccuraciesin our background model
rather thantruedrivers. We therefore further evaluated the SRJson the
basis of (i) a ‘robustness factor’ that indicates how much the background
rate couldincrease before the SR) would become insignificant, and (ii)
theratiobetweenthe observed and expected numbers of events under
the current background model (‘effect size’) (Extended Data Fig. 9a).
Twenty-six SRJs, including 11 of the 13 known driversand 15 newly iden-
tified SRJs, are robust to tripling the expected background rate, and
22 others would remain significant with a doubled rate.

Most canonical driver rearrangements have previously been found
in single tumour types, often associated with tissue-specific expres-
sion®*°, We found that 9 of our top 10 SRJs are tissue-specific, despite
searching across 30 different types of tumour. Such tissue specificity
isnot observed for cancer genes affected by SCNAs, for which the top
10 are altered in11.9 cancer types (on average), or by point mutations
(forwhichthetop 10 are alteredin 6.7 cancer types, on average) (Sup-
plementary Table 16).

Thetissue specificity of SRJs suggests that they are strongly shaped
by epigenetic state, either owing to mechanistic reasons (for example,
tissue-specific three-dimensional proximity of the two DNA break-
points) or to selection that connects tissue-specific regulatory elements
with oncogenes™* 3, The latter seems to be more likely because: (i) SRJs
are associated with significant overexpression of only one of the rear-
rangement partners (the ‘primary locus’) relative torandomly selected
rearrangements (primary locus, P<10™* (Fig. 3g left); secondary locus,
P>0.05 (Extended Data Fig. 9b left)); (ii) the rearrangement partner,
inthesecondary locus, tends to be highly expressed in that tissue type
relative to others (Fig. 3g right); and (iii) the distance to the nearest
tissue-specific enhancer is smaller for SRJs than for rearrangements
overall (Extended Data Fig. 9b). These observations suggest that SRJs
actin general by bringing regulatory elements to an oncogene that is
otherwise expressed at alow level.

In many cases, SRJs generate truncated or chimeric proteins, and
breakpoints within introns or exons were indeed overrepresented
(68% versus 56% expected, P<107). However, only 11 of the 30 (37%)
most significant SRJs generated novel proteins in all samples, and 6
others sometimes generated novel proteins; the rest were either non-
disruptive or contained breakpoints within the first two introns of the
disrupted gene, leaving most of the proteinintact** (Fig. 3f). Moreover,
SRJsthat generate novel proteins exhibited expression changes similar
tothosethat donot (P=0.4) (Extended DataFig. 9c). We conclude that
altering gene expression is a key function of both classes of SR}Js, and
that SRJs are akin to non-coding driver point mutations that act on
regulatory elements.

We found several SRJs that involve amplified oncogenes, including
MDM?2, EGFR and TERT (Fig. 3f, h, i, Extended Data Fig. 9d-f, Supple-
mentary Table 15). The TERT promoter region was juxtaposed in four
melanomas (P<107) to a region in the BASPI gene (both on chromo-
some 5), and to aregion near NDUFC2 (t(5,11)) in two melanomas and
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one medulloblastoma (P<107%). Both juxtaposed regions were marked
withmelanocyte enhancers, which suggests that they could drive TERT
expression. Among melanomas, these rearrangements are mutually
exclusive with the C228T and C250T mutations of the TERT promoter
(P<107%) (Fig. 3h). Because the juxtapositions were always part of com-
plex events that also amplified TERT, increased TERT expression may
be due to amplification, the juxtapositions or both.

Paucity of non-coding drivers in cancer

Our analyses of genomic hotspots, functional elements, genomic
windows and SRJs all suggest that non-coding drivers are rare com-
pared to protein-coding drivers. This might, in part, be due to a lack
of discovery power?®. We therefore evaluated the discovery power of
mutational-burden tests for recurrent events across the different types
ofelement in our tumour cohorts, focusing first on point mutations>®.
We found that the fraction of mutated patients required for a driver
to reach 90% discovery power ranged from <1% in large cohorts with
low background-mutation densities to 25% in small cohorts with high
background-mutation densities (Fig. 4a). Different types of element
were similarly powered, suggesting that the paucity of drivers in non-
coding versus coding elementsis not due to alack of power. Similarly,
our power to detect SRJs was higher in large cohorts with low rear-
rangementrates, and for long and interchromosomal rearrangements
owingto their lower overallrates (Extended Data Fig. 10a): we were only
powered to detect events that recurin 5-20% of samples in most types
of cancer (Fig. 4b). Moreover, beginning with about 2,500 tumours,
we expect to find anew SR with every 25additional genomes (Fig. 4c).

Low sequencing coverage (for example, in GC-rich regions*) also
limits driver discovery. To measure this effect in the PCAWG data, we
quantified our ability to detect mutations (detection sensitivity)'in
cancer gene promoters. Although the mean detection sensitivity in
promoters is high (41.9% of genomic positions have mean detection
sensitivity >80% across tumours), only 4.1% of the promoters had detec-
tion sensitivity >90% in >90% of bases. In particular, the two canoni-
cal TERT promoter hotspots had highly variable detection sensitivity
among patients and cohorts, from only 3% of patients in the central-
nervous-system pilocytic astrocytoma cohort to 100% in the thyroid
adenocarcinoma cohort (Extended Data Fig. 10b). From these data,
we inferred the expected number of TERT events in each tumour type
(Extended Data Fig. 10c) and found that about 263 (95% confidence
interval 232-295) TERT hotspot mutations were probably missed owing
toalack of detection sensitivity. Moreover, on average 9.9% (1.3-13.0%
interquartilerange) of the cancer gene promoter territory in the tumour
ofeach patient was severely underpowered (an average detection sen-
sitivity of <10%). Therefore, the lack of coverage in promoters may
contribute to the paucity of non-coding drivers.

To determine whether the paucity of non-coding drivers discov-
ered thus far could be due to the limited statistical power of current
datasets, we estimated the overall excess of point mutations above
background (thatis, the expected number of driver events) in coding
and cis-regulatory non-coding sequences in 603 cancer genes*® (Meth-
ods, Supplementary Table 7, Supplementary Note 11). To minimize
the effect of samples with low detection sensitivity, we included only
936 samples with >90% detection sensitivity at the two TERT promoter
hotspots (Extended Data Fig.10c, d, Supplementary Note 11). Overall,
thisapproach predicted more than 1,475 driver mutations (95% confi-
denceinterval1,410-1,687;1,069 SNVs and 406 indels) in the protein-
coding sequences of these cancer genes (Fig. 4d), compared to only
96 (95% confidence interval 30-190) estimated driver mutations in
promoters (73 attributed to TERT), 22 (95% confidence interval 0-88) in
5’UTRs, and 68 (95% confidence interval 0-178) in3’ UTRs. Non-coding
mutations in cancer-gene promoters were also not generally associ-
ated with loss-of-heterozygosity or altered expression, as one would
expect if they were enriched with drivers (Supplementary Note 12).
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Fig.4|Power considerations and paucity of non-codingdrivers. a, Heat map
shows the minimal frequency of adriver element with>90% discovery power.
Powerisdependent onthe background mutation frequency (above the heat
map), theelementlength (medianlength depicted in Extended DataFig. 2c)
and the number of patients with mutations (cell numbers). For example, the
pan-cancer cohortis powered to discover a protein-coding driver gene (coding
sequence (CDS)) presentin <1% (18 patients), whereas the Bladder-TCC cohort
isonly powered to discover drivers presentinat least 27% (6 patients).

b, Number of samples required to detect 90% of recurrent juxtapositions
across 90% of pairs of loci, as a function of the median number of
rearrangements per sample and the rate above background at which the fusion
recurs (solid lines). The vertical dashed lines represent the median

These results collectively indicate that, independently of statistical
power, non-coding cis-regulatory driver mutations in known cancer
genes besides TERT are much less frequent than protein-coding drivers.

Discussion

Theaccurateandreliable discovery of genomic driversin tumours may
have critical implications for patients with cancer. Our findings and
the methodsintroduced here for the discovery of point-mutation and
structural-variant drivers, method integration, vetting of candidates
and identification of local hypermutation and fragile sites represent
animportant contribution to the collective effort towards chartingall
malignant changes that drive the cancer of each patient’.

Amongthe mostinteresting candidate non-coding driver elements
we uncovered are the 5’-end mutations in 7P53; 3’ UTR mutations in
NFKBIZ and TOBI; and rearrangements involving AKR1C genes and
BRD4. By careful analysis of the whole-genome sequencing data, we
found that several previously reported and frequently altered non-
coding elements may not be genuine drivers, including (i) the non-
coding RNAs, NEAT1 and MALATI (which containahigh density of indels,

Mutations in excess (observed — expected)

rearrangement rates of each cancer type, and the starson theselinesindicate
the numbers of whole genomes analysed for that cancer type. ¢, Number of
SRJs detected after downsampling the data to various sample sizes, separately
indicating rearrangements that recur at high (=12%; red) and low (<12%; black)
rates above background; their sum (blue). d, Number of observed mutations
(SNVsandindels) in cis-regulatory and coding regions of 603 protein-coding
cancer genes with the expected numbers shownin lighter colours (left). Right,
the number of excess mutations (that is, the estimated number of driver
mutations) (right). The grey fraction of promoter mutationsindicates TERT
events. Error bars show 95% binomial confidence intervals. Only samples with
high detection sensitivity wereincluded (n=936).

seemingly owingto atranscription-associated mutational process) and
(ii) recurrent structural variants in regions of late replication, indicat-
ing DNA fragility.

This study yielded unexpectedly few non-coding driver point muta-
tions and structural variants. SRJs, which appear toactlargely through
the rearrangement of regulatory elements, are less frequent than
SCNA-like SRBs, which directly amplify or delete coding sequences.
The results from five analyses--hotspot recurrence, driver-element
discovery, structural variants, discovery power and aggregated muta-
tional excess——suggest that this paucity is not caused by a particular
analysis strategy, but that regulatory elements truly contribute amuch
smaller number of recurrent cancer-driving events than protein-coding
sequences. This paucity of non-coding drivers contrasts with the dis-
tribution of germline polymorphisms associated with heritability of
complex traits, which are most frequently located outside of protein-
coding genes".

Atleast two factors contribute to therelative paucity of non-coding
driver mutationsin cancer: (i) the differential fitness effects of coding
and non-coding mutations and (ii) the target size of functional ele-
ments. The paucity of promoter driver mutations in well-established
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cancer genes suggests that point mutations markedly affect the func-
tion of non-coding regulatory elements only rarely. This highlights TERT
asanotable exception, perhapsbecause evenamodestincreasein TERT
expression may suffice to circumvent normal telomere shortening.
For other cancer genes, directly mutating protein-coding sequences
or altering expression levels by copy-number change may provide
larger phenotypic effects. For example, complete loss-of-function
by nonsense mutations or deletions may be easier to achieve than by
disrupting or translocating regulatory regions.

Technical shortcomings (such as coverage ‘blind spots’ in GC-rich
promoters and different filtering strategies) may cause genuine driv-
erstobe missed*s. Therefore, the discovery of non-coding drivers will
benefit fromtechnicalimprovements, including even sequence cover-
age, longerand accurate reads, and improved variant-calling methods.
Moreover, better annotation of functional non-coding elements will
increase both the power to discover infrequently mutated driver ele-
ments and their interpretability. As datasets grow, yet-unidentified
mutational mechanisms targeting particular genomic regions will
emerge andrequireimproved background models, including additional
covariates and more-sophisticated statistical models. The analysis of
structural variants has greater challenges because (i) accurately model-
ling their background density is complicated by their lower frequency
and larger fraction of drivers (Supplementary Note 6); (ii) their target
genes may be far from the breakpoints, as in SCNAs; (iii) the space for
modelling SRJs is much larger (the genome squared); and (iv) many
structural variants are part of complex events that often involve multi-
ple chromosomes®, so that the resultant topology cannot be deduced
without technologies such aslong- or linked-read sequencing**°. For
these reasons, experimental validation remains important for all-and
especially for non-coding—candidate drivers.

Our work suggests that larger datasets and technological advances
will continue toidentify new non-coding drivers, albeit at considerably
lower frequencies than protein-coding drivers. We anticipate that the
approaches developed here will provide a solid foundation for the
incipient era of driver discovery from ever-larger numbers of cancer
whole genomes.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment.

Detailed methods are provided as Supplementary Methods.

Dataset generation

Out of 2,955 samples, we selected 2,583 unique donor samples for SNV
andindel driver-discovery analysis on the basis of SNV quality control
(Supplementary Methods). We found that 110 additional myeloid-AML
samples had robust structural variant calls despite SNV artefacts; we
included these in structural variant analyses, for a total of 2,693 sam-
ples. For tumour-type cohort analyses, we used only cohorts with at
least 20 patients. Tumour meta-cohorts were defined by cell type of
origin or by organ system (for example, lung for lung adenocarcinoma
and lung squamous cell carcinoma). A pan-cancer meta-cohort was
created by combining all tumour cohorts except for Skin-Melanoma
and lymphoid tumours (Supplementary Methods).

Hotspot SNV analysis

We selected the 50 most-frequent SNV hotspots. These were analysed
to identify known driver events; mutational signature biases related
to sequence palindromes, immunoglobulinlociand so on; and poten-
tial artefacts, including regional mapping problems (Supplementary
Methods).

Mutational signatures

We performed de novo global-signature discovery and signature
attributions with SignatureAnalyzer’s Bayesian non-negative matrix
factorization method®, based on 1,697 channels—including 1,536
pentanucleotide sequence contexts for single-base substitutions, 83
indel features, and 78 doublet-nucleotide substitution classes (Sup-
plementary Methods).

Definition of genomic elements

GENCODE v.19 (ref.>*) and other genomic resources were used to define
functional genomic elements, including protein-coding genes (CDS,
splicesites, 5’ UTR, 3’ UTR and promoters), long non-coding RNAs (gene
body, splice site and promoters), short RNAs, miRNAs and enhancers
(Supplementary Methods).

Candidate-driver-mutation identification methods and
combination of results

We obtained results (P values) from 13 methods of driver discovery,
including ActiveDriverWGS®*, CompositeDriver, DriverPower™,
dndscv*¢, ExInAtor®®, LARVAY, MutSig tools®, NBR™, ncdDetect,
ncDriver®®, OncodriveFML®® and regDriver®. We integrated the results
of all these methods using a custom framework based on a previously
published method® for combining P values. Results from individual
methods that showed large deviations fromthe expected uniform null
distribution of Pvalues were excluded. This approach was evaluated on
real and simulated data. We controlled the FDR within each of the sets
of tested genomic elements by concatenating all combined Brown'’s
Pvalues from across all tumour-type cohorts and applying the Ben-
jamini-Hochberg procedure®. Cohort-element combinations with
Qvalues < 0.1 were designated as significant hits, and combinations
with 0.1<Q<0.25as‘near significance’. Extensive details are provided
in the Supplementary Methods. In addition, we tested for element-
independent recurrence with the NBR method on 2-kb bins spanning
the entire genome, and non-coding ultraconserved regions®*.

Post-filtering of driver mutation candidates
We applied stringent filters to discern positive selection from tech-
nical artefacts and mutational processes. We required at least three

mutations to be presentin candidate elements, in atleast three patients
ofthetested cohort; more than 50% of mutationsin mappable regions;
less than 50% of mutations in palindromic DNA; and less than 50% of
mutations attributed to APOBEC activity. For lymphoid tumours and
skin melanoma, we required that <35% and <50% of mutations were
attributed to the AID and UV-light mutational signatures, respectively.
The FDR was recalculated after post-filtering.

Candidate driver structural-variant analyses

We applied separate analyses to detect recurrent structural variant
breakpoints and recurrent juxtapositions. For each analysis, we first
binned breakpoints, accepting only one breakpoint per sample per bin.
We then determined which bins had more breakpoints than expected by
chance (the SRB analysis), and which pairs of bins (or ‘tiles’) were joined
by more rearrangements than expected by chance (the SRJ analysis).

Candidate driver breakpoints

We calculated the background rate of breakpoints per bin based on
a Gamma-Poisson model® that took into account genomic covari-
ates, breakpoint counts normalized by the number of bases within
each bin that had sufficient mappability to be eligible for breakpoint
detectionand accounted for an observed overdispersion of breakpoint
counts that probably reflects unaccounted-for covariates (Supple-
mentary Methods). We used the Gamma-Poisson model to calculate
the Pvalue for each bin (that is, the probability that each bin would
exhibit the observed number of breakpoints (or greater) by chance
alone), applying the Benjamini—-Hochberg procedure® to correct for
multiple hypotheses.

Post-filtering of driver breakpoint candidates

Wescored eachrecurrent breakpoint locus on the basis of the average
replication timing of its breakpoints, and filtered those loci with scores
>0.5as probable fragile sites®.

Candidate driver juxtapositions

We developed a background modeltoindicate the probability that two
loci would be joined, taking into account the observed rate at which
eachlocus underwent DNA breaks (from the breakpoint analysis), the
distance between them and the propensity for these rearrangements
toreflect abreak followed by invasion versus two breaks that were then
joined. We determined the probability that each tile would contain the
observed number of rearrangements using a binomial test, followed
by controlling for multiple hypothesis testing using the Benjamini-
Hochberg procedure®,

Gene-expression analyses

Gene-expression data were provided by the PCAWG Transcriptome
Core Group®, and also generated using the same approach for an
extended set of non-coding transcripts (Supplementary Methods).

Additional evidence for selection

In addition to associations between mutations or structural variants
and expression, we looked for signals of copy-number-alteration recur-
rence using the GISTIC2 algorithm®. We also tested whether driver can-
didates showed ssignificantly higher frequency of loss-of-heterozygosity
in mutated samples using Fisher’s exact test. We calculated cancer
allelic fractions using ploidy and tumour purity predictions from a
previous publication®®,

Mutational process and indel enrichment

For every gene, we calculated the proportion of indels of length 2-5
bp out of the total number of indels. This proportion was compared
to the genome background proportion using a binomial test. We also
compared theindelrate per gene (not distinguishing by length) to the
background. Both sets of Pvalues were corrected with the FDR method.
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Power calculations

We estimated our power to discover driver elements mutated ata par-
ticular frequency in the population as previously described*', but
solving for the lowest frequency for a driver element in the patient
populationthatis powered (=90%) for discovery. The calculation of this
lowest frequency takesinto account (i) the average background muta-
tion frequencies for each cohort-element combination; (ii) the median
length and average detection sensitivity for each element type and
patient cohortsize; and (iii) aglobal desired false-positive rate of 10%.
The effect of element lengthis discussed in Supplementary Note 10, and
detailsare provided in Supplementary Methods. Power calculations for
detection of recurrent juxtapositions was performed similarly, except
over atwo-dimensional genomic fusion map divided into 100 x 100-kb
tiles (Supplementary Methods). We performed this analysis first as a
function of the distance between breakpoints (Extended Data Fig.10a)
andsecond as afunction of the median number of rearrangements per
sample, spanning values represented by histologies with more than15
samples (Fig. 4b).

Estimation of the number of mutations in non-coding regions of
known cancer genes

NBR was used to estimate the background mutation rate expected
across cancer genes, using a conservative list of 19,082 putative passen-
ger genes asbackground andincluding as covariates the local mutation
rate, gene expression and averaged copy-number states. The resulting
model predicted the number of passenger SNVs and indels expected
by chance. By aggregating the expected numbers over 603 known
cancer genes from the CGC* (CGC v.80) (Supplementary Table 7), we
compared the observed and expected numbers of mutations. For this
analysis, we excluded samples with problems of low detection sensitiv-
ity (Supplementary Methods).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Data associated with this Article are available at https://dcc.icgc.org/
releases/PCAWG/drivers. SRBs and SRJs are available at www.svscape.
org. Alist of datafiles used for analysesinthis paper is provided in Sup-
plementary Table 20. Somatic and germline variant calls, mutational
signatures, subclonal reconstructions, transcript abundance, splice
calls and other core data generated by the ICGC and TCGA PCAWG
Consortium are described in an accompanying Article’, and are avail-
ablefordownload at https://dcc.icgc.org/releases/PCAWG. Additional
information on accessing the data, including raw read files, can be
found at https://docs.icgc.org/pcawg/data/. In accordance with the
data access policies of the ICGC and TCGA projects, most molecular,
clinical and specimen data are in an open tier that does not require
accessapproval. Toaccessinformation that could potentially identify
participants, such as germline alleles and the underlying sequencing
data, researchers will need to apply to the TCGA dataaccess committee
via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login)
for access to the TCGA portion of the dataset, and to the ICGC data
access compliance office (http://icgc.org/daco) for the ICGC portion
of the dataset. In addition, to access somatic single-nucleotide vari-
ants derived from TCGA donors, researchers will also need to obtain
dbGaP authorization.

Code availability

The core computational pipelines used by the PCAWG Consortium for
alignment, quality control and variant calling are available to the public

athttps://dockstore.org/search?search=pcawg under the GNU General
Public Licensev.3.0, which allows for reuse and distribution. Code for
Pvalue combination from multiple driver methods is available from
https://github.com/broadinstitute/getzlab-PCAWG-pvalue_combina-
tion/. Power calculation methods are available from https://github.
com/broadinstitute/getzlab-PCAWG-power_calculations. Structural
variant methods are located at https://github.com/mskilab/fishHook,
https://github.com/walaj/ginseng and https://github.com/walaj/SVsig.
Links to individual driver discovery methods are provided in the cor-
responding section of the Supplementary Methods.
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Extended DataFig.2|Element-based driver discovery and combination of
Pvalues. a, Schematic describing definition of types of functional element
(Methods). Functional elements (black) are defined on the basis of transcript
annotations fromvarious databases. Elements arising from multiple
transcripts with the same geneidentity are collapsed, as seen here for the
protein-codingisoforms. Promoter elements are defined as 200 bases
upstream and downstream of the transcription startsites of the transcripts of a
gene (green). Splicesite elements extend 6 and 20 bases fromthe 3’and 5’
exonicendsintointronicregions, respectively (lightblue). Regions
overlapping protein-coding bases and protein-coding splice sites are
subtracted fromother regions. b, Percentage of genomic coverage for each
elementtype.c, Distribution of elementlengths foreach elementtype. Thick
linesindicateinterquartile ranges and short horizontal barsindicate the
medians. d, Organization of meta-cohorts defined by tissue of origin and organ
system. Pan-cancer contains all cancers, excluding Skin-Melanoma and

lymphoid malignancies. e, Combination workflow: overview of methods of
driver discovery and their lines of evidence to evaluate candidate gene drivers.
Methods using each feature are marked with aboxin the appropriate track.
Heat map displaying Spearman’s correlation of Pvalues across the different
driver-discovery algorithms based on simulated (null model) mutational data.
Dendrogramillustrates the relatedness of method Pvalues, and algorithm
approaches are marked by coloured boxes ondendrogram leaves. Next,
Pvalues are combined with Brown’s method on the basis of the calculated
correlationstructure. Individual method (left) and integrated (right) log-
transformed Pvalues are showninaheat map (grey, missing data). Post-
filtering used several criteria to identify likely suspicious candidates.
Significant driver candidates wereidentified after controlling for multiple
hypothesis testing based onan FDR Q value threshold of 0.1 (blue asterisk).
Candidates with Qvalues below 0.25 (blue dash) were also considered of
interest.
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Extended DataFig.3|Sensitivity of driver-discovery methods andfilter
statistics. a, Percentage of coding-driver discovery runs (withstable F; score,
n=33),acrossall cohorts, inwhich the method had the highest F,score
(Methods). b, F,;score of different methods of driver discovery, and different
combinations evaluated inthe four largest cohorts (pan-cancer (n=2,278),
carcinoma (n=1,856),adenocarcinoma (n=1,631) and digestive tract (n=797)).
Only methods that used the same algorithm to call coding and non-coding
drivers were evaluated. Vertical lines indicate 95% confidence intervals.
Horizontal black lines mark the medianineach group. Pvalues were calculated
with the two-sided non-parametric Mann-Whitney Utest. ¢, Ontop, theinitial
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element types mature miRNA (n=2before filtering) and miRNA promoters
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(n=16 beforefiltering) were omitted from the table. The heat map shows the
number of hits filtered at each step in the sequential application of filters and
post-filtering re-application of the FDR correction. Background colours
indicate the corresponding percentage of input element removed. The final
numbers of hits (including those that were later filtered by the comprehensive
vetting procedures) are indicated below the heat map. d, Sensitivity versus
specificity inindividual cohorts versus meta-cohorts for candidate drivers:
Qvalues for the most significantindividual cohort (x axis) versus metacohort
(yaxis) areshown. Driver elements are coloured by their element type. Qvalues
derived from combination of Pvalues fromindividual driver-discovery
methods (Methods).
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Extended DataFig. 4 |Mutation-to-expression correlation and focal copy-
number alterations. a, Expressionis compared between mutated and non-
mutated samples. For eachelement, the zscore of the expression values for
mutated and wild typein the significant cohortis plotted. For copy number,
CNA amplificationindicates CNA >10; CNA gainindicates CNA>3; CNAloss
indicates CNA<1;and noeventsindicates CNA<3and CNA > 1.If a patientis
mutated with multiple types of point mutation, indels are indicated over SNVs.
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For TERT, only samples powered to call mutation status were used. Pvalues are
based onatwo-sided Wilcoxon rank-sum test. Bars indicate means. b, Copy-
number profiles of 55 of 441 stomach adenocarcinomas from TCGA show copy-
number gains around HES1. TOBI and its gene neighbour WFIKKN2 are focally
amplifiedin cancer (172 010,844 total samples from 33 cancer types are
shown). RMRPfocal amplifications in TCGA cancers (160 0f 10,844 total
tumours shown).
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Extended DataFig.5|Non-coding driver candidates.a, MTG2promoter
locus (left) and associated gene-expression changes in carcinoma tumours
(right). Expression of MTG2in mutated (n=3) versus the carcinoma meta-
cohortwild-type cases (n=896). Two-sided Wilcoxon rank-sum test. Bars
represent means. b, Genomiclocus of NFKBIZ3’ UTR (left) and associated gene-
expression changesin Lymph-BNHL (right). Expression of NFKBIZin mutated
(n=6) versuswild-type cases (n=98). Testandbarsasinb. c, Genomiclocus of
the RMRPtranscriptand promoter region (left). RMRPis an RNA component of
theendoribonuclease RNase MRP, the function of whichdepends onits RNA

secondary and tertiary structure. The RNA secondary structure, tertiary
structureinteractions, protein and substrate interactions, and mutations with
their predicted structural effect (right) of RMRP; lymphoma and melanoma
mutations are excluded. d, MIR1421locus and mutationsin patients with
lymphoma with the AID signature annotation. e, Manhattan-style plot showing
significance of mutation recurrence enrichment for genomic bins (top) and
ultraconserved elements (bottom) across cohorts (Methods; Supplementary
Table9).
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Extended DataFig. 8| Gene-expression effects of SRBs. a, Fraction of
recurrent breakpointlociassociated with biallelicinactivation ofaknown
tumour suppressor gene (frag-SCNA, 0/12; neutral-SCNA, 0/14; del-SCNA, 5/8;
Fisher’sexacttest). b, Distanceinbpto the nearest tissue-specific enhancer for
each breakpointclass. Dashed greylinerepresents1,000 randomly selected
breakpoints from the same tumour samples. Allbox plots show the
interquartile range, median and 95% confidence interval. ¢, Expression fold
change for the gene with the most-altered expression within1Mb of the cluster
centroid insamples with, compared to samples without, abreakpointat the
clusterlocus. Random controls (in dashed boxes) represent 1,000 randomly
selected breakpoints. Pvalues are from two-sided t-tests (Methods).

d, Breakpoint density near AKR1C genes (top), locations of enhancers (middle)

T T 1

15 Mop 16 Mbp 16.44 Mop

Chromosome 19

and expression of local genes (bottom; n=7SV+tumours, n=41SV-lung
squamous cell tumours; two-sided ¢-test) in samples with and without local
rearrangements. e, Ratio of tumour-to-normal read coverage across six breast
tumours and eight ovarian tumours with focal BRD4 exonlandintronl
deletions.Red linesindicate rearrangements. f, Amplification structure
(absolute copy number, y axis) of the BRD4and NOTCH3locus in breast and
ovariantumourswith aBRD4focal deletion. In most cases, the copy-number
calleridentified the focal deletion. However, in some cases, the deletions were
toosmalltobeidentified only using read depth. When combining read depth
andrearrangementsignalsina, thereis clear evidence for focal deletions.
Deletion locations are marked by an asterisk.
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Extended DataFig.9|Gene-expression effects of SRJs. a, Assessment of SR]
robustness against unaccounted for mechanistic and technical confounders.
Left, arobustness factor, defined as the ratio between the background
probability value that would lower the Pvalue of an SR) below the genome-wide
P-value threshold and the estimator for the background probability from our
2D model. Higher robustness values represent lower susceptibility to
unaccounted variationsin the background model. The top 48 SRJs have a
robustness factor greater than 2, which suggests that these SRJs would remain
significant evenifthe true background rate was twice as high as our model
estimates. Right, the effectsizeis calculated as the differencein observed and
estimated number of SRJs in units of standard deviation (assuming binomial
distribution of structural variant count per 2D genomic region). Most SRJs are
wellabove tenstandard deviations of the predicted value. b, Characteristics of
SRJsecondary loci. Left, fold expression enrichment of the most highly
overexpressed geneinthesecondarylocusincancer samples with these

fusionsrelative to cancers of the same histology without the fusion. Right, the
distance fromthe SR) secondary locus (green) to the nearest enhancer is
significantly smaller (P<0.05; two-sided t-test) compared to randomly
selected breakpoints (grey). ¢, Fold expression enrichment of the most highly
overexpressed geneinthe primary locus, for fusions that disrupt protein-
coding sequences and fusions that do not. Allbox plots show the interquartile
range, medianand 95% confidenceinterval. d, Rearrangements between the
TERT promoter and the BASPI and MYO10locus resultin focal amplification of
TERT and relocation of distal enhancers to TERT. e, TERT-NDUFC2fusion in two
melanomasamples connecting TERT with an enhancer-rich region next to
NDUFC2.Bothsamplesalso have focal amplifications of TERT.f, Recurrent
translocation between EGFRin chromosome 7 and the KL and STARDI3locus on
chromosome13.Inallthreesamples, the rearrangement contributed to the
amplification of EGFR.
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Extended DataFig.10|Alack of detection power inspecificelements.
a,Number of tumour-normal pairs needed to detect fusions with 90% power as
afunction of the span of the fusionand the rate above background at which it
recurs. Thered asterisksindicate the numbers of samples required to detect
100-kb and100-Mb fusions that recur at 0.5% above their background rates.

b, Distribution of TERT promoter hotspot (top, chromosome 5:1,295,228;
bottom, chromosome 5:1,295,250; hg19) detection sensitivity for each patient,
by cohort. Grey dots indicate values for individual patients inside estimated
distribution (areas coloured by cohort). Horizontal black bars mark the
medians. Numbers above distributions indicate the percentage of patients
powered (detection sensitivity > 90%) in each cohort. Cohortsizes asin Fig. 4a.
¢, Percentage of patients with observed (blue) and inferred missed (red)
mutations at the chromosome 5:1,295,228 and chromosome 5:1,295,250 TERT

promoter hotspotsites. Error barsindicate 95% Poisson confidence interval.
Numbersabove bars show the total inferred number of TERT promoter
mutations for each site in this cohort. Red numbersindicate the absolute
number of inferred missed mutations (owingto alack of read coverage).
CohortsizesasinFig.4a.d, Detection sensitivity for the two TERT promoter
hotspotsacrossall samples showing the variationin powered samples. Red
vertical line (x=0.9) indicates cutoff for ‘sufficiently powered samples’.
e,Meandetectionsensitivityin1,000 randomly selected putative passengers
(pass) and 603 cancer genes (driv) across element types: promoters, 5’ UTRs,
CDSand 3’ UTRs. Theleft panel shows the results for allsamples and the right
panel corresponds to the set of samples with high sensitivity at TERT hotspots.
Boxesshow the interquartile range and median; outliers are shown as circles.
Weighted sensitivity means are shown at the top of the box plot.
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Extended DataFig.11|Pvalue combination details. a, Quantile-quantile
plots of Pvalues reported by various driver-detectionalgorithms on the three
simulated datasets (Broad, DKFZ and Sanger; shown for coding regions
(n=20,172) inthe meta-carcinoma cohort; see Methods for details for the
statistical background model or test of each algorithm) showed no major
enrichment of mutations above the backgroundrate. Results generally
followed the expected null (uniform) distribution, and the Pvalues reported on
simulated datawere subsequently used to assess the covariance of method
results. b, Quantile-quantile plots of integrated Pvalues using the Brown and
Fisher methods for combining Pvalues across theresults from different driver-
detectionalgorithms were generated for a few representative tumour cohorts
(shown here for coding regions). Brown combined Pvalues (light blue)
generally followed the null distribution as expected, whereas Fisher combined
Pvalues weresignificantly inflated (dark blue), confirming that dependencies
existed between theresults reported by the various driver-detection
algorithms. To simplify the integration procedure, we calculated covariances
using Pvalues from the observed datainstead of simulated dataand found that

theintegrated results based on the observed covariances (first column of
plots) were essentially the same as the results obtained using the simulated
covariances (second, third, and fourth columns of plots). ¢, Triangular heat
maps showing the Spearman correlations of Pvalues among the various driver-
detection methodsinobserved versus simulated data (coding regions
(n=20,172), colorectal adenocarcinoma cohort) are highly similar. Differences
inthe observed and simulated correlation values (shownin the heat mapson
the far right) were minimal, and thus the final integration of Pvalues across
methods was performed using covariances estimated on observed data.

d, Brown combined Pvalues based on observed and simulated covariance
estimations (shownonthe right, top heat map, for coding regionsin
glioblastoma) did not differ noticeably. In cases inwhichindividual methods
reportedresults thatyielded substantially fewer hits than the median acrossall
methods (bottom heat map, methodsinlight grey with resultsin dashed box),
removing the methods from the integration did not affect the number of
significant genesidentified (right column of results in bottom heat map, shown
for coding regionsinlungadenocarcinoma). Number of codingregionsasinc.
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|z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data and metadata were collected from International Cancer Genome Consortium (ICGC) consortium members using custom software
packages designed by the ICGC Data Coordinating Centre. The general-purpose core libraries and utilities underlying this software have
been released under the GPLv3 open source license as the "Overture" package and are available at https://www.overture.bio. Other data
collection software used in this effort, such as ICGC-specific portal user interfaces, are available upon request to contact@overture.bio.

Data analysis The workflows executing core WGS alignment, QC and variant-calling software are packaged as executable Dockstore images and
available at: https://dockstore.org/search?labels.value.keyword=pcawg&searchMode=files. Individual software components are as
follows: BWA-MEM v0.78.8-r455; DELLY v0.6.6; ACEseq v1.0.189; DKFZ somatic SNV workflow v1.0.132-1; Platypus v0.7.4; ascatNgs
v1.5.2; BRASS v4.012; grass v1.1.6; CaVEMan v1.50; Pindel v1.5.7; ABSOLUTE/JaBbA v1.5; SVABA 2015-05-20; dRanger 2016-03-13;
BreakPointer 2015-12-22; MuTect v1.1.4; MuSE v1.0rc; SMuFIN 2014-10-26; OxoG 2016-4-28; VAGrENT v2.1.2; ANNOVAR v2014Nov12;
VariantBAM v2017Dec12; SNV-Merge v2017May26; SV-MERGE v2017Dec12; DKFZ v2016Dec15

The method for combining p-values is available from https://github.com/broadinstitute/getzlab-PCAWG-pvalue_combination/. Power
calculations are available from https://github.com/broadinstitute/getzlab-PCAWG-power_calculations. The method for identifying
significantly recurrent breakpoints by controlling for covariates is available at: https://github.com/mskilab/fish.hook. The method for
permuting rearrangement breakpoint pairs to identify covariates affecting rearrangement partner selection is available as the "swap"
module of: https://github.com/walaj/ginseng. The method for identify significantly recurrent rearrangements is available as the "2D"
method at: https://github.com/ofershapira/SVsig. The method for identifying cis-expression consequences of SVs, CESAM, is available at:
https://bitbucket.org/weischen/cesam

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

WGS somatic and germline variant calls, mutational signatures, subclonal reconstructions, transcript abundance, splice calls and other core data generated by the
ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium are available for download at https://dcc.icgc.org/releases/PCAWG. Additional information on
accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA
projects, most molecular, clinical and specimen data are in an open tier which does not require access approval. To access potentially identification information,
such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP (https://
dbgap.nchi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance Office (DACO; http://
icgc.org/daco) for the ICGC portion. In addition, to access somatic single nucleotide variants derived from TCGA donors, researchers will also need to obtain dbGaP
authorization.
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Life sciences study design
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Sample size We compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC Data Coordinating Centre. Most samples came
from treatment-naive, primary cancers, but there were a small number of donors with multiple samples of primary, metastatic and/or
recurrent tumours. Our inclusion criteria were: (i) matched tumour and normal specimen pair; (ii) a minimal set of clinical fields; and (iii)
characterisation of tumour and normal whole genomes using Illumina HiSeq paired-end sequencing reads.
For analyses specific to this study, we generated sample subsets as described in the methods.

Data exclusions  After quality assurance, data from 176 donors were excluded as unusable. Reasons for data exclusions included inadequate coverage,
extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing errors (for example, through 8-
oxoguanine).

Replication In order to evaluate the performance of each of the mutation-calling pipelines and determine an integration strategy, we performed a large-
scale deep sequencing validation experiment. We selected a pilot set of 63 representative tumour/normal pairs, on which we ran the three
core pipelines, together with a set of 10 additional somatic variant-calling pipelines contributed by members of the SNV Calling Working
Group. Overall, the sensitivity and precision of the consensus somatic variant calls were 95% (C190%: 88-98%) and 95% (C190%: 71-99%)
respectively for SNVs. For somatic indels, sensitivity and precision were 60% (34-72%) and 91% (73-96%) respectively. Regarding SVs, we
estimate the sensitivity of the merging algorithm to be 90% for true calls generated by any one caller; precision was estimated as 97.5% - that
is, 97.5% of SVs in the merged SV call-set have an associated copy number change or balanced partner rearrangement.

Randomization  No randomisation was performed.

Blinding No blinding was undertaken.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Human research participants

Policy information about studies involving human research participants

Population characteristics Patient-by-patient clinical data are provided in the marker paper for the PCAWG consortium (Extended Data Table 1 of that
manuscript). Demographically, the cohort included 1,469 males (55%) and 1,189 females (45%), with a mean age of 56 years
(range, 1-90 years). Using population ancestry-differentiated single nucleotide polymorphisms (SNPs), the ancestry distribution
was heavily weighted towards donors of European descent (77% of total) followed by East Asians (16%), as expected for large
contributions from European, North American and Australian projects. We consolidated histopathology descriptions of the
tumour samples, using the ICD-0-3 tumour site controlled vocabulary. Overall, the PCAWG data set comprises 38 distinct tumour
types. While the most common tumour types are included in the dataset, their distribution does not match the relative
population incidences, largely due to differences among contributing ICGC/TCGA groups in numbers sequenced.

Recruitment Patients were recruited by the participating centres following local protocols.

Ethics oversight The Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office and the Ethics and Governance
Committee of the ICGC. Each individual ICGC and TCGA project that contributed data to PCAWG had their own local
arrangements for ethics oversight and regulatory alignment.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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