
The novel coronavirus SARS-​CoV-2 causes coronavirus 
disease 2019 (COVID-19) and has spread around the 
world, leading to a global pandemic1. The number of 
confirmed cases has reached 27,486,960 and the num-
ber of deaths has risen to 894,983 across 200 countries  
(as of September 9, 2020)2. The Center for Systems 
Science and Engineering at Johns Hopkins University3 
has reported an even higher infection rate, with 
27,699,112 confirmed cases and 900,203 deaths, indi-
cating highly efficient transmission at an exponen-
tially increasing rate1. The data from the World Health 
Organization (WHO) suggest that SARS-​CoV-2 has a 
case fatality rate of about 3.3%, which is higher than 
that of the 1918 influenza pandemic (2%) and the 1957 
influenza pandemic (0.6%)4. The rate of the spread of 
SARS-​CoV-2 is 40-​fold higher than that of SARS-​CoV1, 
which makes it more difficult to control. Therefore, 
addressing the SARS-​CoV-2 pandemic requires scientific  
collaborations across borders and disciplines5.

Viruses are able to adapt to changing environmental 
conditions and rapidly evolve6. Therefore, accurate, rapid 
and long-​term detection strategies, efficient protec
tion and frequent updating of treatments are needed to  
control the spread of viruses, which requires multidisci-
plinary solutions. In addition, only a global network can 
achieve coordinated detection, protection, containment 
and therapy. Materials science has long played a key 

role in the rapid response to emerging viral diseases by 
developing instruments that reveal the structures of viral 
proteins, by designing point-​of-​care devices for accurate 
and rapid detection and diagnosis 7,8, and by formulating 
therapeutic treatment and vaccination strategies9.

In this Review, we discuss the role of materials sci-
ence in antiviral research and highlight the importance 
of collaborations with virologists, epidemiologists and 
clinicians in addressing the global pandemic caused by 
SARS-​CoV-2 (ref.1). We examine viral transmission, 
infection and disease progression (Fig. 1a), and discuss 
viral protection, detection, treatment and vaccination 
from a materials-​science viewpoint (Fig. 1b). Finally, we 
investigate the future role of materials science in studying 
infectious viruses and in the treatment of viral diseases. 
Indeed, the emergence of a new pandemic that is poten-
tially more severe than the SARS-​CoV-2 pandemic is not 
a matter of if but when1,10. Therefore, universal platform 
technologies offered by materials science will also play a 
crucial role in the understanding, protection, diagnosis, 
treatment and prevention of future viral outbreaks.

Materials science against viruses
Materials science is important in all areas of antivi-
ral research, including investigation of viral struc-
ture and biology, protection, detection, treatment and 
vaccination.
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Virus sequence and structure. The generation of efficient 
approaches to the protection, detection and treatment 
of viral diseases requires a thorough understanding of 
viral sequence, structure and transmission. Materials 
science offers important tools and technologies for 
viral research. For example, individual viral particles 
can be tracked in cells using confocal microscopy11,12 
(Fig. 2a,b), allowing the dissection of the mechanism 
of infection. Gene sequencing provides the basis of 
antiviral-​drug design and genomic-​biomarker detection. 
Nanotechnology, for example, nanopore sequencing, has 
contributed to the speed and accuracy of next-​generation 
gene-​sequencing platforms13 (Fig. 2c). Based on the gene 
sequence, viral proteins can be synthesized and their  
3D structure can be reconstructed at an atomic level 
using cryo-​electron microscopy, X-​ray crystallography14 
or NMR spectroscopy15. However, X-​ray crystallography 
requires a large number of small crystals, and large pro-
teins are difficult to investigate by NMR spectroscopy, 
which also requires high protein concentration and 
stability. These limitations can be addressed by single-​
particle cryo-​electron microscopy16, which has enabled 
the determination of the structure of many viruses17, 
including the 3.5-​Å-​resolution structure of the CoV 
spike (S) glycoprotein of SARS-​CoV-2, as well as mono
clonal antibody affinities18. Importantly, towards the 
understanding of viruses, materials science has played 
a key role in developing and optimizing instrumental 
components to ensure the accuracy and sensitivity of 
characterizations.

Protection from viral infection. Viruses replicate inside 
living cells and are transmitted by direct contact19, 
saliva20, semen, vaginal fluid, anal mucus21, air22, blood-​
sucking insects23, food24, blood exposure25 or from preg-
nant women to newborns. SARS-​CoV-2 first attaches 

to the host cell through binding of the S protein to the 
angiotensin-​converting enzyme 2 (ACE2) receptor, allow-
ing it to enter the cell and release its viral RNA (Fig. 1a). In 
the cell, the virus hijacks the machinery of the host cell to 
synthesize RNA and produce structural proteins, which 
assemble into new viruses that are released from the host 
cell. The replication cycle is then repeated26,27. Not only 
humans but also animals (cats, golden hamsters and  
ferrets)28,29 can be infected by SARS-​CoV-2.

The most straightforward method for protection is 
physically isolating viruses by masks, gloves, face shields 
and protective suits. Surgical masks are made of three 
different fibre layers to prevent the entry of viruses; 
the outside layer is designed to stop liquid splash; the 
interlayer acts as a barrier against viruses and bacte-
ria; and the inner coating absorbs moisture exhaled 
by the wearer30. Different materials can be synthesized 
to act as protective coatings, such as polyimide thin 
films with nanoporous membranes31 and carbon-​based 
materials32. A polymer nanofibre filter, with the surface 
chemistry optimized to match that of particulate mat-
ter, allows both transparency to sunlight and sufficient 
airflow33. A self-​powered air filter composed of an ionic 
liquid-​polymer composite and a sponge network also 
enables efficient removal of particulate matter, including 
nanoparticles34 (Fig. 2d). Although these materials have 
not yet been used for viral protection owing to safety and 
cost concerns, they could be modified and introduced 
for virus protection in the foreseeable future, which will 
require research efforts to simplify synthesis procedures 
and guarantee safety.

Detection of infected patients. Rapid identification 
of infected patients helps limit the spread of viruses. 
Immunoassays and nucleic-​acid-​amplification tests 
using PCR are widely used and reliable methods for 
detecting viral proteins and nucleic acids, respectively. 
The accuracy of the results of immunoassays, such as 
radioimmunoassay35, enzyme-​linked immunosorbent 
assay36 and the immune colloidal gold technique37, 
depends on the sensitivity of the instruments and mate
rials. The immune colloidal gold technique is an immuno
assay based on labelling the antibody with plasmonic  
gold nanostructures, enabling a fluorescent readout once 
the antigen is captured by the antibody. This technique 
can be used for the detection of viral antigens, for exam-
ple, of the Zika and dengue viruses7. Compared with 
conventional singleplex approaches, this multiplexed 
immunoassay can amplify near-​infrared fluorescence 
by up to 100 times, substantially improving the imaging 
of antibody binding. In addition, the immune colloidal 
gold technique requires only 1 μl of human serum, owing 
to its high sensitivity (Fig. 3a). Nanowire field-​effect tran-
sistors can be combined with immune colloidal gold 
assays38 for real-​time and direct electrical detection of 
single virus particles based on conductance changes after 
antigen–antibody binding (Fig. 3b). Similarly, an external 
electrical pulse can be applied to incorporate graphene 
quantum dots and gold-​embedded polyaniline nano-
wires during the virus-​accumulation step to increase 
the sensitivity of virus detection, for example, for the  
detection of the hepatitis E virus39 (Fig. 3c).
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Real-​time PCR with reverse transcription 
(rRT-​PCR) is commonly used for the detection of viral 
DNA or RNA40, and is the recommended technique 
for the detection of the single-​stranded RNA virus 
SARS-​CoV-2 (ref.41). However, PCR-​based techniques 
for nucleic-​acid detection come with trade-​offs in terms 
of efficacy, cost, simplicity and speed. Alternatively, 
the CRISPR effectors Cas12 (refs42,43) and Cas13a44 
can be applied for nucleic-​acid detection. For exam-
ple, specific high-​sensitivity enzymatic reporter 
unlocking (SHERLOCK) is a fluorescence-​based or 
lateral-​flow-​based assay using CRISPR nucleases for 
nucleic-​acid detection45. Interestingly, a prophylactic 
antiviral CRISPR strategy using Cas13 has also been 
proposed to inhibit SARS-​CoV-2 in human cells46. 
Single-​molecule nucleic-​acid sensitivity and selectivity 
can also be achieved using a biosensing platform based 
on microcavities. In this platform, the hybridization 
kinetics of matching and non-​matching strands are 

detected by monitoring microcavity resonance wave-
length shifts caused by interaction of the molecules 
with nanorods47 (Fig. 3d). This label-​free technology 
has the advantage of transiently monitoring molecular 
interactions, allowing statistical analysis of interaction 
kinetics and increasing sensor lifetime. Nanopore-​based 
platforms can also be used for targeted sequencing, 
and have already been applied for SARS-​CoV-2 virus  
detection48.

The immune system responds to viral infections and 
induces detectable symptoms, such as high body tem-
perature. Non-​contact detection of body temperature 
is mainly performed to preliminarily detect infected 
patients by using infrared thermal-​imaging systems, 
for example, hand-​held infrared temperature guns. 
However, the temperature gun is inaccurate at cold 
ambient temperatures, because the temperature is cal-
culated based on a Seebeck coefficient49 close to the body 
temperature, which is not available at low temperatures. 
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Although laboratory assays have been developed for 
identifying infected patients, the detection and diagno-
sis of severe viral infections, such as COVID-19, may 
also require clinical diagnostic methods, such as com-
puted tomography (CT), ultrasonic imaging, magnetic 
resonance imaging, single-​photon emission comput-
erized tomography and positron emission tomogra-
phy. For example, CT can be used to detect interstitial 
changes and small patchy shadows in the lung, as well 
as extrapulmonary bands, in patients infected with 
SARS-​CoV-2 (ref.50). However, instruments and profes-
sional medical staff are limited, and, therefore, porta-
ble diagnosis instruments51,52 and artificial intelligence 
(AI)53 should be further developed and combined with 
clinical diagnosis to improve the detection process and 
guarantee the accuracy of results.

Treatment and vaccination. Currently available antiviral 
drugs can be broadly divided based on their mechanism 
of action into penetration and husking inhibitors, DNA 
polymerase inhibitors, reverse transcriptase inhibi-
tors, protein inhibitors, neuraminidase inhibitors and 

broad-​spectrum antiviral drugs54–56. Indeed, the majority 
of antiviral drugs currently used in the clinic are poly-
merase inhibitors, which are specific for a given viral 
enzyme. However, owing to their specificity, polymer-
ase inhibitors cannot be applied for the treatment of  
infections with new viruses, such as SARS-​CoV-2.

In contrast to bacteria, which can often be treated 
with antibiotics owing to their similar structure and 
replication mechanisms, the structure and replication 
of viruses greatly differ between types and species. 
Therefore, only few broad-​spectrum antiviral drugs 
exist57,58. For example, cyclodextrins modified with 
mercaptoundecane sulfonic acids mimic the key viri-
cidal effects of heparan sulfates without causing systemic 
toxicity59. Alternatively, antiviral nanoparticles have 
been developed with flexible and long linkers that mimic 
heparan sulfate proteoglycans. The nanoparticles gener-
ate high forces (~190 pN), which irreversibly deform the 
virus60 (Fig. 4a). Based on the spatially defined arrange-
ment of ligands for the viral spike protein, bacteriophage 
capsids have also been designed that carry a multivalent 
binder. The bacteriophages can cover the entire virus 
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envelope and, thus, prevent its binding to the host cell61. 
In addition, nanosponges derived from the plasma 
membranes of human lung epithelial type II cells or of 
human macrophages can neutralize SARS-​CoV-2 by dis-
playing the protein receptors necessary for SARS-​CoV-2 
entry into host cells62.

Similarly, biomimetic cell membrane vesicles can 
act as delivery platforms. Cell membrane vesicles have 
excellent biocompatibility and possess the inherited 
functions of the source cells, such as long circulation 

time (red blood cells)63, specific targeting moieties 
and receptors62,64. For example, virus-​mimetic nano
vesicles can deliver antiviral antigens and mimic the 
viral property to trigger specific immunogenicity65. 
Nanodecoys composed of cell membranes of the Zika 
virus and gelatin nanoparticles can be administered 
to capture the Zika virus and inhibit Zika virus entry 
and infection66. Nanomaterials may also be applied to 
control the cytokine storm associated with pneumonia, 
which is a common symptom in patients with severe 
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COVID-19. For example, neutrophil membrane-​coated 
poly(lactic-​co-​glycolic acid) nanoparticles can neutral-
ize pro-​inflammatory cytokines and suppress inflam-
mation in inflammatory arthritis, which might also be  
applicable for pneumonia67.

The development of new antiviral drugs is challeng-
ing and requires thorough knowledge of the infection 
and replication mechanisms of the specific virus. For 
example, based on the genome sequence similarity 
between SARS-​CoV and SARS-​CoV-2, the serine pro-
tease TMPRSS2 was identified to be crucial for S protein 

priming and, thus, for SARS-​CoV-2 cell entry via ACE2.  
Therefore, a TMPRSS2 inhibitor may provide a treat-
ment strategy to prevent SARS-​CoV-2 infection68. 
Remdesivir, which is a nucleotide analogue prodrug that 
inhibits RNA-​dependent RNA synthetase, has also been 
explored for COVID-19 treatment69. Preliminary data 
of the Randomised Evaluation of COVID-19 Therapy 
(RECOVERY) trial, testing dexamethasone as a treat-
ment strategy for hospitalized COVID-19 patients, 
shows a lower 28-​day mortality rate of treated patients 
than patients in the standard-​care group, supporting a 
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potential treatment effect of dexamethasone in patients 
who need respiratory support70. Injection or inhalation 
of dexamethasone nanoformulations may promote the 
treatment efficacy on COVID-19 through targeting of 
the drug to hyperactivated immune cells, potentiating its 
antioedema activity and antifibrotic effects71. Moreover, 
neutralizing antibodies72–74 and nanobodies (antibody 
fragments)75,76 have been proposed for COVID-19  
treatment. A recent clinical trial (NCT04313127), 
testing neutralizing antibodies to prevent COVID-19,  
had shown satisfactory results and is in further 
evaluation77,78. However, achieving a high concentra-
tion of neutralizing antibodies is crucial for efficacy and, 
thus, aluminium-​based adjuvants, such as those used for 
PiCoVacc79,80, may be helpful.

Vaccines remain the most efficient strategy to pro-
tect against viral infections, because they generate spe-
cific antibodies81. Following infection, the virus causes 
inflammation and stimulates the release of chemokines, 
which attract leucocytes to the infected area to destroy 
the virus82. At the same time, phagocytes engulf viruses, 
disassemble them, deliver them to nearby lymph nodes 
and present the antigens to other immune cells, such  
as B and T cells, to initiate the production of antibod-
ies that specifically recognize viral antigens82. However, 
upon first contact with a virus, the immune response 
is slow, and can only help patients to recover, but not 
to prevent the disease. Once antigen-​specific T and  
B cells are activated, they proliferate and generate mem-
ory cells. Therefore, upon second contact with the same 
type of virus, the immune system can respond quickly 
and efficiently. Pulmonary surfactant biomimetic lipos-
omes can be applied to encapsulate and deliver an ago-
nist of the interferon gene inducer, that is, stimulator 
of interferon genes, to increase the immune response 
against influenza viruses83,84 (Fig. 4b).

The purpose of a vaccine is to protect the body 
against a specific virus, capitalizing on the memory of the 
immune system, so that the immune system can elimi-
nate the virus upon first contact. Vaccine design includes 
the identification of an antigen and adjuvant, which 
boosts the immune response caused by the antigen85,  
as well as an appropriate delivery platform. A vari-
ety of vaccines have been developed, including live-​ 
attenuated vaccines, inactivated vaccines, toxoid vaccines,  
subunit vaccines, conjugate vaccines, DNA vaccines, 
mRNA vaccines and recombinant vector vaccines. mRNA 
vaccines86, which directly induce antigen expression, 
provide an interesting alternative for RNA viruses, such 
as the Zika virus and SARS-​CoV-2, which are suscep-
tible to mutation and, therefore, to drug resistance6. 
mRNA vaccines require nanocarriers for encapsula-
tion and stabilization of the mRNA87,88; for example, 
mRNA can be encapsulated in lipid nanoparticles  
to protect mice against Zika89 virus infection (Fig. 4c).

Although there is no mRNA vaccine yet approved 
for any disease, several clinical trials are under way. For 
example, Pfizer Inc., in a collaboration with BioNTech 
AG, is working on the phase II/III clinical trial of BNT162 
mRNA vaccines for COVID-19 (NCT04368728)90 and 
has just announced data from preclinical studies91. 
Moderna, Inc. is currently conducting phase II clinical 

trials (NCT04232280) with an mRNA vaccine encod-
ing a monoclonal antibody against cytomegalovirus92. 
In addition, the mRNA-1273 vaccine, developed by 
Moderna, Inc., against SARS-​CoV-2 is currently in 
phase III clinical trials (NCT04470427)93. These mRNA 
vaccines are all delivered by lipid nanoparticles.

Finally, medical devices, such as ventilators, are 
important for the treatment of infected patients, to 
provide oxygen and ensure airflow in the lungs. Alter
natively, extracorporeal membrane oxygenation 
(ECMO) can be applied in patients with severe respira-
tory failure to promote their recovery process94. In this 
procedure, venous blood is drained from the body, oxy-
genated using a gas-​exchange device and then returned 
to the body95 (Fig. 4d). ECMO has also been applied for 
the treatment of COVID-19 patients94.

Possibilities for materials science
Materials science has long played an important role in 
the study of viruses and in the treatment of viral infec-
tions18,37,44,96–106 (Fig. 5). In the future, materials science and 
engineering will certainly continue to contribute to con-
fronting viral outbreaks by providing platform techno
logies and tools for virus research, ensuring efficient and  
comfortable protection, performing rapid, accurate  
and low-​cost detection, and enabling timely and effective 
treatment and vaccination.

Physical protection. Physical protection provides a key 
strategy to prevent viral infection. Materials science can 
be applied to optimize physical-​protection platforms in 
terms of preparation, manufacturing, material perfor-
mance and structure, and to balance comfort and practi-
cality. Commercial face masks can reduce virus emission 
from infected patients by providing a physical barrier 
with a certain cut-​off size30. However, masks could also 
be designed to incorporate drugs or physical obstacles 
for killing the virus and stopping the transmission; for 
example, the virus could be damaged by heat generated 
by photothermal materials, such as graphene32, or by 
producing reactive oxygen species through a photo-
dynamic process107–109. The design of reusable masks 
could further address personal protective equipment 
shortages, as experienced during the COVID-19 pan-
demic. Reusable masks would need to retain filtration 
ability and remain safe after decontamination, such as 
ultraviolet irradiation, moist heat and vaporous hydro-
gen peroxide110. To address this challenge, fibres, such 
as washable polypropylene fibres coated with assembled 
metal-​organic frameworks111 or thermally stable elec-
trospun polyimide/zeolitic imidazolate framework-8 
nanofibres112, could be applied that tolerate heat, 
ultraviolet irradiation113 and hydrogen-​peroxide treat-
ment. In addition, a self-​cleaning capability could be 
implemented by changing the surface chemistry of the 
material or by coating materials with photothermal 
materials32,109 or hydrophobic membranes31 to capture, 
kill and release the virus; for example, likewise, using 
filters composed of metal-​organic frameworks with 
photodynamic ability109 or graphene with photother-
mal ability32. Functional nanofibres, for example, fibres 
modified with amino-​functionalized silica particles114 
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or nanodecoys66 capable of capturing viruses through 
charge interactions or by active recognition, could also 
be used for masks and manufactured by nanospinning115 
or 3D printing116,117. To address the problem of fogging 
when wearing safety glasses and masks, a layer of non-​
ionic surfactant could be added to the surface of protec-
tive equipment. Environmental contamination may also 
play a role in SARS-​CoV-2 transmission118. Therefore, 
long-​lasting and sprayable antiviral materials (for exam-
ple, functional nanogels can multivalently interact with 
viruses and have adhesive effects on the surface)119 could 
be developed that can be applied on surfaces to keep the 
environment and protective equipment clean.

Virus detection. Materials science offers tools and tech-
niques to improve the speed, sensitivity, accuracy and 
portability of virus-​detection methods, in particular, 
for the isolation of nucleic acids and proteins from 
viruses. For example, magnetic particles can be used to 

capture nucleic acids or proteins in a sample, which can 
then be separated by application of a magnetic field120. 
Integrating microfluidics with isolation techniques can 
reduce the amount of reagents, increase isolation speed 
and allow automation121. Moreover, microfluidics can 
be introduced to rapidly mass-​synthesize uniform mag-
netic particles122 and to efficiently isolate viruses using 
magnetic-​particle-​based microfluidics123. In addition, 
DNA124 or RNA nanostructures125 that contain comple-
mentary oligonucleotides to virus DNA or RNA could 
be combined with microfluidics for virus isolation. 
Although current nasal swabs are effective in collect-
ing virus samples, nasal swabs with a controlled porous 
architecture could be functionalized with materials that 
can capture viruses through multivalent interactions119, 
which would enable the collection of viruses even at very 
low concentrations.

Similarly, aggregation-​induced-​emission (AIE) tech-
nology or quantum dots could be integrated with immune 
colloidal gold techniques to increase viral-​detection 
sensitivity126. In addition, materials-​science approaches, 
such as ionic-​liquid-​based materials127,128, could be 
applied to improve the stability of extracted nucleic acids 
or proteins for further investigation. Improving the sensi-
tivity, specificity and simplicity of virus-​detection meth-
ods is important to ensure accurate and rapid testing of 
samples. For example, an Fe–Au nanoparticle-​coupling 
approach, combining PCR amplification with the quan-
titative measurement of Au nanoparticles using induc-
tively coupled plasma mass spectrometry129, which was 
originally developed for the detection of circulating 
tumour DNA, could also be applied for the sensitive and 
specific detection of SARS-​CoV-2 RNA. Microarrays, 
which have been developed for the precise control and 
manipulation of fluids, combine sample preparation, 
reaction, separation and detection on one chip of a few 
square centimetres130, and could be used in combina-
tion with surface-​enhanced Raman spectroscopy for 
rapid virus detection using nanoparticle aggregates or 
arrays that can generate surface-​enhanced Raman spec-
troscopy signals131,132. Low-​cost point-​of-​care devices, 
designed with microfluidics, could also be adapted for 
viral detection, requiring only small sample volumes. 
Microfluidics can further be used for the production 
of designed nanoparticles133,134, which are used for viral 
detection, treatment and vaccination.

Plasma protein profiles have been investigated as 
disease-​related biomarkers using mass-​spectroscopy-​ 
based proteomics; similarly, viral protein biomarkers 
could be detected in blood135. However, the accuracy 
of protein identification by mass-​spectrometry-​based 
proteomics is limited, owing to the concentration range  
(from pg ml−1 to mg ml−1) of the >10,000 proteins in 
plasma. The protein corona, that is, the shell of bio
molecules formed on a nanoparticle upon contact with a 
biofluid136, can be exploited to increase the concentration 
of proteins for mass spectrometry to overcome the bot-
tleneck of blood-​sample-​based proteomics and to enable 
the detection of low-​abundance proteins137. Therefore, 
investigating the protein corona138,139 may also provide 
a strategy for virus detection and/or to study the host 
response. For example, nanoparticles could be designed 
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to adsorb viral protein biomarkers or host response pro-
teins (that is, cytokines) in plasma, serum or other bio-
logical samples. The nanoparticles could then be isolated 
for downstream mass-​spectrometry-​based proteomics 
analysis, enabling fully automated, high-​throughput 
viral detection, including nanoparticle-​plasma incu-
bation, protein-​corona purification using magnetism, 
protein digestion and liquid chromatography–tandem 
mass spectrometry139.

Bioelectronic systems140 enable the real-​time and 
remotely controlled monitoring of biological infor-
mation in the body; for example, wearable sensors for 
the wireless monitoring of uric acid and tyrosine in 
sweat141, glucose levels during diabetes therapy142 and 
skin temperature143. Bioelectronic devices could also be 
applied for the long-​term monitoring of symptoms of 
viral infections, such as an increase in temperature or 
respiratory syndrome. Protective equipment could also 
be equipped with a sensor that can sense the entry of 
viral particles and translate the signal to a smartphone. 
For example, cellular-​binding-​like events between the 
virus and host-​cell-​mimicking sensors (that is, sensors 
coated with host-​cell membranes or multivalent bind-
ers) can be detected by thermal-​shift measurements 
based on protein stabilization induced by a ligand144,145, 
which can be translated into a digital signal recorded 
by a smartphone. Similarly, interactions between viral 
particles and specific molecules could be detected in 
protective masks.

Mobile technologies offer the possibility of track-​and-​ 
trace systems that provide information on COVID-19-​ 
infected patients, including age, gender, symptoms and 
geographical areas. These systems can alert users when 
they are in high-​risk areas via an app to slow down the 
spread of SARS-​CoV-2. Mobile technology can also be 
used to collect data for analysis and to inform guide-
lines for government policies. For example, a COVID-19  
symptoms tracker app has been developed. The app has 
already collected data from over 2.8 million participants, 
providing information about risk factors, symptoms, 
clinical results and geographic hotspots. The data are 
publicly available and important in the response to a 
pandemic; however, privacy concerns and ethical con-
siderations should also be considered146. In addition, AI, 
such as machine learning, can be applied to large data-
sets of clinical results to help clinicians in their diagnosis. 
For example, an AI system has been developed based on 
the CT database of COVID-19 patients, enabling rapid 
diagnosis147.

Finally, point-​of-​care devices are particularly impor-
tant in areas with low resources; for example, low-​cost 
and portable gene-​sequencing devices that can be oper-
ated without the need for trained medical staff. Accurate, 
real-​time monitoring of viral transmission can further 
help to understand the infection process; for example, 
bioluminescent microscopy can be used to image the 
transmission of a virus with an inserted luciferase gene 
in mice148,149 or ferrets150. Similarly, fluorescent protein 
genes such as green fluorescent proteins and red flu-
orescent proteins genes151–153 could be integrated into 
the SARS-​CoV-2 genome for tracking transmission  
in vitro and in animal models.

Drug discovery and delivery. Materials science can also 
contribute to the development of new technologies, such 
as thermal proximity coaggregation144 and time-​resolved 
wide-​angle X-​ray scattering154, which allow the dynamic 
observation of structural protein changes in host cells 
in response to a virus, and virus–drug interactions, to 
accelerate and improve the process of drug discovery. In  
addition, drug development relies heavily on studies 
in animal models, which cannot entirely recapitulate 
the human response and often inaccurately predict the 
safety and efficacy in humans. Alternatively, micro
physiological systems, such as organ-​on-​a-​chip plat-
forms, in which engineered human tissues are connected 
by physiologically relevant flows, can be applied for 
drug development, as well as for toxicity and efficacy 
evaluation. Similarly, organoids derived from stem 
cells can provide macroscale models of human tissues 
featuring the complexity and spatial heterogeneity of 
human organs. However, compared with animal models, 
organs-​on-​a-​chip and organoids would fail in discover-
ing systemic immunity-​modulation drugs, because they 
cannot recapitulate the organ microenvironment155,156. 
Moreover, the lifespan of these platforms would need to 
be prolonged to allow the generation of mature tissues 
undergoing homeostasis156. Importantly, organoids can 
be used for disease modelling and for the evaluation 
of antiviral drug toxicity and treatment effects157–159. 
For example, bat and human intestinal organoids were 
used to confirm that bat intestinal cells can be infected 
by SARS-​CoV-2 and that the human intestinal tract is 
a possible transmission route of SARS-​CoV-2 (ref.160). 
Furthermore, it could be demonstrated in SARS-​CoV-2-​ 
infected kidney and human blood vessel organoids 
that soluble human ACE2 can inhibit SARS-​CoV-2 
infection161. Materials science can improve organoid 
cultures by developing chemically defined, tunable, syn-
thetic scaffolds that guide the assembly of human cells 
into tissues and that support organoid maturation162,163.

Nanoparticles can enable the effective delivery of 
drugs, improving circulation time, enhancing targeting 
efficiency and reducing potential adverse side effects. 
Nanocarriers can also be used to deliver antiviral thera-
peutics into cells to intervene with the viral-​replication 
cycle at the molecular level or to deliver plasmid DNA164 
and mRNA165 for vaccination. Vaccine efficiency and 
safety are of the utmost importance, and, therefore,  
US Food and Drug Administration (FDA)-​approved 
materials should be used as delivery platforms; for exam-
ple, a lipid-​nanoparticle-​encapsulated mRNA, encoding 
the receptor binding domain of SARS-​CoV-2, has been 
reported as a vaccine candidate166. The FDA-​approved 
lipid nanoparticle improves the stability of the mRNA 
and the transfection efficiency in vivo.

Lessons learned from cancer vaccines can benefit 
the development of antiviral vaccines. Biocompatible 
materials have been explored for drug delivery in cancer, 
to improve the stability and pharmacokinetics of pay-
loads and to prevent premature release or degradation. 
In addition, nanomaterials can be modified to target 
the delivery to antigen-​presenting cells and to enable 
co-​delivery of viral antigens and adjuvants to the lymph 
nodes167, for example, by using an albumin-​hitchhiking 
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approach168 or by targeting phagocytic cells to promote 
lymph-​node transportation169. Nanomaterials can also 
be designed to respond to a specific environment or 
to external stimuli, allowing the control of payload 
release and preventing undesired immune reactions, 
such as immune toxicities in normal tissues caused by 
payload leakage or an immune cytokine storm caused 
by rapid payload release87, for example, pH-​responsive 
nanoparticles170 or light-​responsive nanoparticles171. 
Cancer vaccines can be designed to integrate diagno-
sis and treatment using nanomaterials with imaging 
abilities172, for example, to monitor the delivery of anti-
gens and adjuvants in vivo, which may also be relevant 
for antiviral vaccines. Real-​time data on the location and 
treatment responses could be generated by introducing 
NIR-​II bioluminescence173, NIR-​II chemiluminescence174 
or NIR-​II fluorescence175 to enable the rational design of 
nanoscale materials and bench-​to-​bedside translation 
of vaccines. Materials science also enables the design of 
self-​administration platforms; for example, vaccines for-
mulated as microneedle patches176, which slowly release 
payloads upon self-​administration. Reproducibility 
and scalability also play major roles for the translation 
of nanomaterials for drug delivery. Microfluidic sys-
tems can be used for the controlled, reproducible and 
high-​throughput synthesis of libraries of nanoparticles. 
Nanomaterials also play a role in virus treatment, for 
example, to provide cofactors, such as Zn2+, which inhib-
its RNA polymerase and, thus, transcription177. Zn-​based 
nanomaterials that bind RNA polymerase could also be 
designed and administered to inhibit virus replication. 
In contrast to dendrimers or polymers, the valency and 
spatial structures of DNA nanostructures can be easily 
designed. In addition, DNA nanomaterials are non-​toxic 
and stable. Therefore, DNA nanostructures with particu-
lar shapes, modified with virus-​targeting aptamers, can 
be applied for virus detection and inhibition124. Owing to 
their customized spatial structure, such DNA nanostruc-
tures precisely match the viral surface, enabling efficient 
virus capture.

Inhalation as a route of drug and vaccine administra-
tion is particularly relevant for viruses causing respira-
tory symptoms, such as SARS-​CoV-2, because it allows 
small-​molecule drugs178 and vaccines179 to directly target 
the lungs, in which the virus resides180. Inhalation is par-
ticularly advantageous in resource-​poor regions, because 
no medical staff is needed and self-​administration of 
drugs or vaccines improves patient compliance. Inspired 
by the approved intranasal spray vaccine FluMist105, 
similar inhaled drugs or vaccines could be encapsulated 
using smart nanoparticles to promote their stability and 
to realize long-​term and controlled release. In addition, 
inhaled nanoparticles encapsulating drugs or vaccines 
can be modified with specific antibodies targeting the 
cells in which the viruses reside to kill the viruses, or 
immune cells to trigger an immune response. This strat-
egy could also decrease potential side effects of drugs and 
vaccines by avoiding drug delivery to healthy tissues. For 
example, nanomaterials could be coated with a specific 
ligand that binds to receptors on host cells of the virus  
in the lungs. Therefore, following inhalation, the nano
particles would inhibit virus–host cell interactions.  

In the case of SARS-​CoV-2, the ACE2 receptor or 
the serine protease TMPRSS2 could be targeted68,181. 
Nanoparticles can also be modified with elements of 
host-​cell membranes to inhibit viral entry64,66; for exam-
ple, nanomaterials can be decorated with host-​cell mem-
branes derived from human lung epithelial type II cells 
or human macrophages62 to capture SARS-​CoV-2 and 
inhibit infection. Similarly, using nanomaterials that 
can generate free radicals56 or heat32 could improve the  
antiviral efficacy of such approaches.

Nanoscale materials have a similar size to viruses, 
which allows them to interact with the virus at the 
same size level. Cyclodextrins modified with mer-
captoundecane sulfonic acids59, nanoparticles mod-
ified with long linkers that mimic heparan sulfate 
proteoglycans60, nanodecoys64, cellular nanosponges62 or 
DNA nanostructures124 could bind the virus to inhibit 
infection by inhibiting virus entry56.

Viral infections, such as SARS-​CoV182 and dengue183 
virus, can cause cytokine storms as a result of an exces-
sive immune response184. SARS-​CoV-2 infection can 
also induce a cytokine storm in some patients, which 
contributes to inflammation and pneumonia185. Lessons 
from nanotechnology-​based cancer immunotherapy 
can inform treatment designs to modulate the cytokine 
storm by delivering anti-​inflammatory drugs or inhib-
itors to inflammation sites. In particular, biorespon-
sive nanomaterials186–188 that target inflammation sites 
can deliver anti-​inflammatory drugs and inhibitors. 
However, the targeting efficacy and payload leakage still 
need to be optimized to decrease side effects. In addition, 
the fabrication of clinical-​grade materials with the ability 
of modulating cytokine storms remains a challenge.

Medical equipment and instruments. Materials science 
can be applied to optimize filters in ventilators with 
self-​cleaning and virus-​inhibition ability. 3D printing of 
ventilators could be introduced and optimized to fabri-
cate ventilators with more functions. Similarly, ECMO 
machines, which are applied as life-​saving treatment for 
severe respiratory diseases, such as COVID-19, suffer 
from high complexity, the need for highly trained staff, 
low portability and concerns about potential harm189, 
such as changes in thrombotic190 and immune-​related 
factors189. A small device could be developed that com-
bines the blood pump and the oxygenator to improve 
portability and reduce thrombotic issues, by decreasing 
the time that blood spends outside the body. Indeed, 
portable ECMO devices, such as the Maquet Cardiohelp 
device, which combines the pump and oxygenator in 
one unit191, have been developed. To decrease the size of 
such devices, wireless technology and energy-​converting 
materials could be applied. In addition, bioelectronic sys-
tems and wireless mobile technology could be integrated 
in ECMO devices to monitor blood-​status changes in 
real time. The gas-​exchange membranes, which are a key 
component of ECMO machines, are usually made of hol-
low fibres, such as silicone rubber fibres192 or polymeth-
ylpentene materials193. Their resistance to blood flow and 
their gas-​exchange capacity could be further improved 
by using 3D-​printable biocompatible materials, such as 
respiratory-​membrane-​derived materials.
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Outlook
Viral-​disease outbreaks require a rapid response to 
obtain basic knowledge, but also continuous antiviral 
research. Materials science plays an important role in 
many aspects of antiviral research, including the study 
of viral biology and transmission, protection, identifi-
cation of infected patients, treatment and vaccination. 
The investigation of new viral strains requires virus iso-
lation and purification, size, structure and component 
determination, and analysis of infection, replication 
and spread. To prepare for new viral outbreaks and to 
accelerate and coordinate our response, portable and 
inexpensive devices for viral isolation and purification 
from samples such as blood or saliva are needed; for 
example, a hand-​powered ultra-​low-​cost centrifuge194,195. 
To investigate virus structure and composition, electron 
microscopy, cryo-​electron microscopy, confocal micros-
copy and sequencing technologies need to be applied. 
Additionally, the real-​time dynamics of the replica-
tion of a single virus in host cells and tissues, includ-
ing RNA replication, protein formation and cell-​to-​cell 
transmission, need to be assessed, for example, using 
super-​resolution imaging or time-​resolved wide-​angle 
X-​ray scattering. Advanced materials-​enabled technolo
gies, such as thermal-​proximity coaggregation144 and 
time-​resolved wide-​angle X-​ray scattering154, could 
further enable the observation of interactions between 
drugs and viruses. These technologies will require more 
powerful instruments with high temporal and spa-
tial resolution, as well as high sensitivity. However, spatial  
resolution should not be achieved at the expense of  
time resolution, for example, in super-​resolution micro
scopy. The development of portable and inexpensive 
imaging equipment, such as the Octopi196, BiteOscope197 
and scale-​free vertical tracking microscopy198, are parti
cularly important in low-​resource settings. However, the 

nanoscale settings in viral research provide a challenge 
for portable optical-​imaging systems, owing to the dif-
fraction limit. Thus, the time resolution might be more 
important than the spatial resolution in this case.

During viral outbreaks, large amounts of masks 
and personal protective equipment need to be rap-
idly produced, for example, using 3D printing117 and 
nano-​electrospinning for the fabrication of nanofibres 
to compose filters. Virus detection further needs to be 
quick and done with high accuracy and at a low price, 
for example, by distributing self-​testing kits, which have 
a sample-​collection tool for viral capture (enabled by a 
specific surface chemistry, for example, a coating that 
can capture viruses by multivalent interactions119 at low 
concentrations), and the results are shown on a strip43,199. 
Sharing of results and data is also an important aspect 
in antiviral research, in particular, during viral-​disease 
outbreaks.

The delivery of antiviral drugs and vaccines will 
greatly benefit from the use of vehicles based on biocom-
patible materials to reduce systemic toxicity, to improve 
circulation time, for the co-​delivery of multiple compo-
nents, to increase drug or vaccine stability and to target 
specific cells or tissues. Drugs and vaccines need to be 
preclinically tested in cells and virus-​infected animal 
models. Alternatively, engineered ex vivo systems can be 
applied, for example, organoids and organs-​on-​a-​chip, 
which allow the assessment of drug effects in real 
time. The production of drugs or vaccines may further  
require the use of robots and microfluidic technologies 
to enable scalability and to be able to respond to high 
demand. To tackle future challenges, the collaboration 
between different scientific fields, clinicians and industry  
will be required.
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