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The cytokine thymic stromal lymphopoietin (TSLP) 
was originally detected in the supernatant of a thymic 
stromal cell line and shown to support the long-term 
growth of a B cell line and to enhance the proliferation 
of unfractionated thymocytes responding to stimula-
tion with anti-CD3 antibody1. It was later shown to be 
a critical mediator of type 2 immune responses and a 
promoter of T helper 2 (TH2) cell-mediated diseases, 
including asthma and atopic dermatitis (AD)2–4. However, 
work since this original definition now shows that TSLP 
has multiple functions, including in cell maturation, 
proliferation, survival and recruitment and is involved 
in various other diseases and host responses. Here, we 
review how TSLP broadly contributes to pathological 
conditions such as allergic disease, host defence, can-
cer and chronic inflammatory disease. Understanding 
the roles of TSLP has implications for new therapeutic  
strategies that target this cytokine signalling system.

Targets and sources of TSLP
TSLP is a four α-helical type I cytokine and a paralogue of 
IL-7 (ref.5) (Box 1). Although first shown to act on B cells1, 
TSLP was then found to act directly on dendritic cells 
(DCs) and to indirectly affect T cells based on its effects on 
DCs6,7; however, TSLP was later shown to also be required 
for normal CD4+ T cell development and to act directly 
on CD4+ and CD8+ T cells3,8–11. Furthermore, TSLP has 
effects on neutrophils, mast cells, basophils, eosinophils, 
group 2 innate lymphoid cells (ILC2s), natural killer T cells, 
smooth muscle cells and tumour cells4,12–14. This range of 
target cells helps to explain the broad functions that can 
be mediated by this cytokine in both humans and mice.

Epithelial cells and stromal cells in the lungs, skin 
and gastrointestinal tract are the primary source of TSLP 
during both homeostatic and inflammatory conditions, 
although DCs, basophils and mast cells can also produce 
this cytokine6,15–18 (Fig. 1). TSLP is also produced by hair 
follicles and, together with IL-7, TSLP contributes to 
the persistence within skin of ILCs, which tune the skin 
microbiota by controlling sebaceous gland function14. 
TSLP production by epithelial cells can be induced by 
many stimuli, including mechanical injury, ligands for 
Toll-like receptor 3 (TLR3), TLR2 and NOD2, helminth 
infection, pro-inflammatory cytokines, and proteases, 
including trypsin and papain6,19–21. TSLP production 
in the lungs is also triggered following infection with 
viruses, including respiratory syncytial virus (RSV), 
rhinovirus22–24, influenza virus and lymphocytic chorio
meningitis virus25. TSLP acts as an alarmin, being 
released from cells rapidly and inciting further exoge-
nous and endogenous danger signals and exacerbating 
inflammation.

TSLP production is positively regulated by the pro- 
inflammatory TH2-type cytokines IL-4 and IL-13 as well 
as by tumour necrosis factor (TNF), IL-1β and IL-25, with 
TNF synergizing with TH2-type cytokines to increase 
TSLP production. By contrast, interferon-γ (IFNγ) and 
IL-17 inhibit TSLP release26. β2-Adrenoceptor agonists 
and glucocorticoids also inhibit TSLP release and syner-
gize to inhibit poly(I:C)-induced release of TSLP27. In the 
context of tissue injury, macrophage-derived progranu-
lin induces TSLP production by mouse airway epithelial 
cells, leading to allergic inflammation28,29. In addition, 
the cross-linking of IgE bound to its high-affinity 
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A disease characterized by 
chronic type 2 inflammation, 
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receptor (FcεRI) induces mast cell production of TSLP6. 
At the transcriptional level, nuclear factor-κB (NF-κB) 
and AP1 contribute to TSLP gene expression, and NF-κB 
binding sites have been identified in the TSLP promoter 
region30.

Two variants of human TSLP have been described: 
a long form (lfTSLP) and a short form (sfTSLP)31; the 
former is also known as TSLP and is the molecule that 
corresponds to mouse TSLP. Transcription of sfTSLP ini-
tiates from a promoter in intron 2 and is thus truncated at 
the amino-terminus but has the same carboxy-terminus 
as lfTSLP, having a total of 63 amino acids versus  
159 amino acids for lfTSLP31. sfTSLP mRNA is consti-
tutively expressed in keratinocytes, epithelial cells and 
lung fibroblasts31 and is not upregulated by inflamma-
tion, whereas lfTSLP is induced by TLR ligands, includ-
ing flagellin, and TNF31–35. The distinct regulation of 
sfTSLP and lfTSLP suggests different roles, with an anti-
bacterial or anti-inflammatory function proposed for  
sfTSLP and a pro-inflammatory function for lfTSLP35–39. 
Accordingly, in a mouse asthma model, administration 
of sfTSLP ameliorated house dust mite-induced asthma, 
whereas administration of lfTSLP damaged airway 
barrier function, contributing to the pathogenesis of 
asthma37. Single nucleotide polymorphisms (SNPs) 
rs2289276 and rs2289278 in the TSLP promoter confer 
augmented binding by AP1 and enhanced lfTSLP pro-
duction, which may explain why these SNPs are associ-
ated with increased incidence of childhood atopic disease 
and adult asthma27. In ovarian and endometrial can-
cers, sfTSLP is predominantly expressed and promotes 
tumour growth through the activation of signalling path-
ways in cancer cells40. Further elucidating the different 
roles of these isoforms may provide new insights into 
TSLP biology.

TSLP-induced signalling
TSLP signals through a heterodimeric receptor com-
prising TSLPR, a type I cytokine receptor encoded 
by Crlf2, and the IL-7 receptor α-chain (IL-7Rα; also 
known as CD127)41–43 (Fig.  2). This heterodimer is 
expressed on TSLP target cells such as DCs, mast cells, 

macrophages, basophils and T cells as well as epithe-
lial cells and neurons13,38,44,45. Unlike its paralogue 
IL-7, which activates JAK1 and JAK3 via a hetero
dimeric receptor comprising IL-7Rα and the common  
cytokine receptor γ-chain, TSLP activates JAK1 (via 
IL-7Rα) and JAK2 (via TSLPR). JAK1 and JAK2 then 
primarily activate signal transducer and activator of 
transcription 5A (STAT5A) and STAT5B and, to a lesser 
extent, STAT1 and STAT3 (refs45,46), ultimately driving 
the production of IL-4, IL-5, IL-9 and IL-13 as well as 
pro-inflammatory effects. Unlike lfTSLP, it is unclear 
whether sfTSLP signals via the combination of TSLPR 
and IL-7Rα or potentially has an alternative mechanism 
of signalling given its truncated form.

TSLP in allergic diseases
It is well established that TSLP, along with the other 
epithelial cell-derived cytokines IL-25 and IL-33, play 
pivotal roles in the development of allergic diseases, 
including asthma, AD and food hypersensitivity47 
(Fig. 3). TSLP was initially shown to promote allergic 
responses by acting on DCs and inducing their expres-
sion of OX40 ligand (OX40L), CD80 and CD86, thereby 
promoting the differentiation of naive CD4+ T cells into 
pro-inflammatory TH2 cells that produce IL-4, IL-5, 
IL-13 and TNF6,7. Subsequently, it was shown that 
TSLP-activated DCs also stimulate naive CD4+ T cells 
to differentiate into T follicular helper cells (defined 
by expression of CXCR5, IL-21, CXCL13 and BCL6), 
which can induce IgG and IgE secretion by memory  
B cells48, linking TSLP to IgE production in allergy. TSLP 
also promotes the release of TH2 cytokines and chemo
kines by eosinophils, mast cells and macrophages30,49–52. 
TSLP acting on basophils has been linked to the 
development of an IgE-independent mouse model 
of the food allergy-associated inflammatory disease 
eosinophilic oesophagitis53, although the importance 
of TSLP in basophil responses remains unclear54,55.  
A DC–T cell–basophil cascade has been implicated in 
TSLP-driven type 2 immunity, whereby DCs activated 
by TSLP prime CD4+ T cells via OX40L to produce IL-3, 
which then leads to the recruitment of basophils and the 
production of IL-4 (ref.56). DCs themselves were reported 
to produce TSLP upon TLR stimulation, suggesting that 
TSLP might also act in an autocrine manner to amplify 
the TH2 cell response16.

Besides indirect effects of TSLP on CD4+ T cells, this 
cytokine also acts directly on CD4+ T cells3,8,57–59 and is 
required for their full proliferation in response to antigen 
as well as for the formation of memory TH2 cells and 
recall responses3,8,60. Mice lacking TSLPR (Crlf2-/- mice) 
exhibit strong TH1 cell responses associated with high 
levels of IL-12, IFNγ and IgG2a, but low levels of IL-4, 
IL-5, IL-10, IL-13 and IgE. Crlf2-/- CD4+ T cells prolif-
erate only weakly to antigen3, and Crlf2-/- mice do not 
develop ovalbumin (OVA)-induced lung inflammation 
unless supplemented with wild-type CD4+ T cells3,57. 
Interestingly, TSLP has different actions in models of air-
way inflammation depending on whether it is acting on 
innate or adaptive immune cells. A recent study used cell 
lineage-specific TSLPR-deficient mice to dissect the 
cell-intrinsic requirements for TSLP responsiveness in 

Box 1 | Thymic stromal lymphopoietin versus IL-7

Thymic stromal lymphopoietin (TSLP) and IL-7 are paralogues, likely having risen by a 
gene duplication event. They signal via a shared IL-7 receptor α-chain (IL-7Rα), which 
partners with the TSLP receptor (TSLPR) in the case of TSLP, or the common cytokine 
receptor γ-chain in the case of IL-7. Interestingly, whereas IL-7 binds more robustly to 
IL-7Rα, TSLP binds more robustly to TSLPR, a situation perhaps analogous to another 
cytokine pair, IL-4 and IL-13, which share IL-4Rα as a receptor component but where 
IL-4 dominantly binds to this protein and IL-13 primarily binds to IL-13Rα1 (ref.189). For 
IL-7 and TSLP, the question is why have both cytokine genes evolved and been retained, 
especially given that TSLP has a pathological role in several diseases. TSLP and IL-7 
indeed share some functions related to lymphoid development but they also have 
unique functions, with IL-7 primarily contributing to T cell development and homeo
stasis, and TSLP having roles in allergic disease as well as a broad range of actions on 
T cells, B cells and other cells (as detailed in this Review and elsewhere3,8–11,30). The shar-
ing of IL-7Rα suggests that these cytokines might also compete for its recruitment and 
have competing actions. Both IL-7 and TSLP activate STAT5 but IL-7 does so more 
potently. Thus, what is the in vivo relationship between TSLP and IL-7? When do these 
cytokines cooperate and when do they potentially compete? Additionally, what is the 
physiological role of TSLP (that is, long-form TSLP) versus short-form TSLP? These are 
important questions for the better understanding of the overall biology of TSLP.

Group 2 innate lymphoid 
cells
(ILC2s). Innate lymphoid  
cells characterized by high 
expression of GATA3 and 
production of IL-5 and IL-13 
that have pathological and 
protective roles in multiple 
human diseases such as 
asthma, atopic dermatitis  
and infectious diseases.

Alarmin
Molecules that are released by 
injured tissue as well as dead 
or dying cells and activate  
the host response through  
the inflammasome.

Eosinophilic oesophagitis
A chronic eosinophil-mediated 
inflammatory disease of  
the oesophagus; affected 
individuals have oesophageal 
dysfunction with vomiting, 
dysphagia or feeding difficulties.
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type 2 inflammation in the lungs. In a papain-induced 
model of airway inflammation, TSLP directly stimulated 
ILC2s but not basophils to enhance type 2 inflamma-
tion, whereas in OVA-induced airway inflammation, 
TSLP principally acted on DCs and CD4+ T cells, and 
not basophils or ILC2s, during the sensitization phase61. 
Thus, TSLP has broad actions related to allergic diseases 
and, as discussed below, there is genetic predisposition 
related to TSLP in the development of AD and asthma, 
with key roles of this cytokine in skin and lung linked to 
pathogenesis in these diseases.

Atopic dermatitis. AD is a heterogeneous disease with 
multifactorial pathogenesis, including genetic predis-
position and environmental and immunological factors. 
Genetic variants of TSLP affect the severity and persis-
tence of this disease. For example, homozygosity of the 
TSLP variant rs1898671 is associated with a reduced risk 
of AD in children62, whereas the variants rs2289278 and 
rs1837253 increase the risk for atopic diseases63,64.

TSLP is highly expressed in human AD lesions6,65 
and its overexpression in mouse skin results in AD-like 
disease66. DNA demethylation of a specific region of the 

TSLP promoter augments expression of TSLP in skin 
lesions of patients with AD67 and diminishes expression 
of filaggrin68, a protein in which loss-of-function muta-
tions are associated with epidermal barrier defects and 
more severe AD62. TSLP expression in human keratino
cytes and nasal epithelial cells may also be increased by 
histamine (a key mediator of allergic diseases) bind-
ing to histamine H4 receptor69–71, suggesting a role for  
histamine in TSLP-dependent atopic disease.

Asthma. The prevalence of asthma varies among ethnic 
groups72, and 35–80% of asthma may result from genetic 
variation73,74, with childhood-onset asthma associated 
with TSLP SNP rs1837253 (refs75,76). In mouse models, 
overexpression of TSLP in the lungs results in severe 
airway inflammation and airway hyper-responsiveness 
(AHR). Additionally, patients with asthma, especially 
those with severe asthma, have increased levels of TSLP 
and TH2 cytokines in the airways77,78, with TSLP levels 
predictive of future asthma exacerbation79. Biopsy sec-
tions from individuals with mild atopic asthma show 
that allergen challenge increases IL-25, IL-33 and TSLP 
levels in the bronchial epithelium and submucosa, and 

Inducers
of TSLP

Sources
of TSLP

Targets
of TSLP

Injury Environmental
stimulators

Viruses
(influenza virus,
LCMV,
RSV,
rhinovirus)

TLR2 NOD2

Epithelial
cell

Bacteria Helminths Cytokines
(TNF, IL-1β,
IL-4, IL-13,
IL-25)

Proteases
(trypsin,
papain)

Progranulin

BasophilMast cell

TSLP

Fibroblast

• β
2
-Adrenoceptor agonists 

• Glucocorticoids
• IFNγ
• IL-17

DC

• Development of B cells and IgE production 
• Development and activation of T cells
• Recruitment of eosinophils
• Activation of ILC2s, NKT cells and smooth muscle cells
• Differentiation of alternatively activated macrophages
• Activation of neurons to trigger robust itch behaviours

Fig. 1 | Inducers, sources and targets of thymic stromal lymphopoietin. A variety of environmental agents, including 
mechanical injury, ligands for Toll-like receptors (TLRs), viruses and cytokines, induce the production of thymic stromal 
lymphopoietin (TSLP). Epithelial cells are the main source of TSLP production. Fibroblasts, dendritic cells (DCs), basophils 
and mast cells also produce TSLP following stimulation. TSLP has pleiotropic actions on B cells, T cells, eosinophils, group 2 
innate lymphoid cells (ILC2s), natural killer T (NKT) cells, macrophages, smooth muscle cells and nerve cells, and it also  
has effects on DCs, basophils and mast cells. IFNγ, interferon-γ; LCMV, lymphocytic choriomeningitis virus; TNF, tumour 
necrosis factor; RSV, respiratory syncytial virus.

Filaggrin
A filament-associated protein 
that binds to keratin fibres in 
epithelial cells and is essential 
for normal regulation of 
epidermal homeostasis; also 
known as filament aggregating 
protein.
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levels of these cytokines correlate with the extent of 
airway obstruction80. In addition, patients with eosino-
philic asthma have raised levels of IL-4, which not only 
increases the permeability of airway epithelial cells by 
reducing expression of filaggrin and adhesion molecules, 
including E-cadherin, but also increases levels of IL-33 
and TSLP, which further enhance the TH2 inflammatory 
response81.

Individuals with one atopic disease often have 
other atopic diseases and progress to allergic diseases, 
including asthma or rhinitis, which is known as the 
atopic march82. Early therapeutic intervention in individu-
als with AD who are at risk and a better understanding of 
the mechanisms triggering asthma may help to prevent 
asthma and the atopic march. TSLP is involved in both 
AD and asthma, and recent studies indicate its role in the 
atopic march83. Consistent with this idea, skin-derived 
TSLP promotes allergen-sensitive asthma in animal 
models. Interventions in animal models that induce the 
systemic release of TSLP, such as keratinocyte-specific 
deletion of the DNA-binding protein RBP-J (a medi-
ator of Notch signalling important for epidermal dif-
ferentiation) or topical application of the vitamin D 
analogue MC903, cause AHR upon allergen challenge 
in the lungs84,85. These studies are consistent with  
the hypothesis that skin barrier defects, associated 
with TSLP production, could trigger systemic atopy. 
Moreover, when mice are infected with RSV as neo-
nates, upon reinfection, they exhibit enhanced AHR due 
to TSLP expression, with OX40L expression, lung DC 
migration and TH2 cell polarization, leading to allergic 
responses later in life23,86. Correspondingly, more than 
40% of infants who have severe bronchitis or respira-
tory tract infections will develop asthma in childhood87. 
Persistence of an altered immune phenotype in male 
mice triggered by early infection of RSV and the associ-
ated production of TSLP is consistent with the fact that 
boys are more vulnerable to RSV infection and the onset 
of asthma88. Interestingly, TSLP induced by RSV infec-
tion alters chromatin structure in DCs and promotes the 
expression of epigenetic enzymes such as lysine-specific 
demethylase 6A, which regulates transcriptional pro-
grammes mediated by interferon-regulatory factor 4 
and STAT3 and leads to a pathogenic gene programme89.

Importantly, the key pathogenic role for TSLP 
in asthma is supported by the finding that a human 
monoclonal antibody specific for TSLP, known as 
tezepelumab (Tezspire), which blocks its binding to 
TSLPR and its biological actions, reduces eosinophilic 
inflammation and AHR and lowers disease exacerba-
tion in patients with asthma90. In a phase IIb trial (the 
PATHWAY trial; NCT02054130), tezepelumab reduced 
exacerbations by up to 71% and improved lung func-
tion, asthma control and health-related quality of life 
compared with placebo91,92. In a phase III multicen-
tre, randomized, double-blind, placebo-controlled 
trial (the NAVIGATOR trial; NCT03347279), the 
rate of asthma exacerbations was significantly lower 
with tezepelumab than with placebo in patients with 
severe, uncontrolled asthma, including those with low 
blood eosinophil counts at baseline. Lung function was 
improved and exacerbations were reduced, with less 

hospitalization and emergency room visits for patients 
treated with tezepelumab93. Accordingly, in 2021, the US 
FDA approved tezepelumab for the treatment of severe 
asthma. Several clinical trials with tezepelumab for 
allergic diseases and chronic inflammatory diseases are 
ongoing (Table 1). Moreover, a humanized Fc-disabled 
IgG1 monoclonal antibody against IL-7Rα, which poten-
tially blocks both TSLP and IL-7, is being evaluated for 
the treatment of autoimmune diseases94. However, in 
contrast to its effect on asthma, tezepelumab did not 
achieve a statistically significant improvement in AD in 
a phase IIa trial (NCT03809663).

TSLP and host defence against infection
Staphylococcus aureus infection. S. aureus can cause 
serious skin infections in healthy individuals, and 
these infections are becoming more problematic by 
the expansion of strains with antibiotic resistance, 
including methicillin-resistant S. aureus (MRSA). As 
mentioned, TSLP is highly expressed at barrier sur-
faces, including skin, and has been shown to enhance 
neutrophil-mediated killing of MRSA with direct 
actions of TSLP on neutrophils12. TSLP also enhances 
the killing of Streptococcus pyogenes, another important 
cause of skin infections. TSLP mediates its antibacterial 
effect by directly engaging the complement C5 system 
to modulate the production of reactive oxygen species 
by neutrophils and thereby increases MRSA killing in 
a neutrophil-dependent and complement-dependent 
manner12.

Helminth infection. TSLP affects the function of 
immune cells, tissue inflammation and host protec-
tive immunity following helminth infection. Use of 
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Fig. 2 | Mechanisms of thymic stromal lymphopoietin- 
induced signalling. Thymic stromal lymphopoietin (TSLP) 
binds to a receptor comprising TSLP receptor (TSLPR) and 
IL-7 receptor α-chain (IL-7Rα), which are both type 1 mem-
brane receptor proteins. TSLP binding activates JAK1, JAK2 
and signal transducer and activator of transcription 5A and 
5B (STAT5A and STAT5B) to promote the transcription  
of target genes, including the type 2 cytokines IL-4, IL-5 
and IL-9.

Atopic march
The progression of allergic 
manifestations generally 
beginning with atopic 
dermatitis, followed by 
IgE-mediated food allergy, 
allergic asthma and allergic 
rhinitis.
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monoclonal antibody-mediated neutralization of TSLP 
or deletion of Crlf2 in normally resistant mice showed 
that TSLP is necessary for the development of protec-
tive TH2 cell responses after infection with the helminth 
Trichuris muris. The absence of TSLP signalling led to 
increased expression of IL-12p40, IFNγ and IL-17A, 
leading to severe intestinal inflammation95. Treatment 
of Crlf2-/- mice with a neutralizing monoclonal antibody 
to IL-12p40 restored TH2 cytokine production and atten-
uated IFNγ production, rescuing host protective immu-
nity. It has also been shown that excretory–secretory  
products from Heligmosomoides polygyrus and 
Nippostrongylus brasiliensis suppress the production of 
IL-12p40 by DCs, bypassing the need for TSLP96.

ILC2s are also important in antihelminth immu-
nity through their production of TH2 cytokines. Recent 
studies show that neurotransmitters and neuropeptides, 
including catecholamines, nicotine, acetylcholine, neuro
medin U, vasoactive intestinal peptide and calcitonin 
gene-related peptide, can regulate ILC2 responses, high-
lighting an association between the nervous system and 
innate immunity at barrier surfaces97–103. Activated ILC2s 

express increased levels of choline acetyltransferase,  
the enzyme responsible for the biosynthesis of acetylcho-
line, after infection with N. brasiliensis or after treatment 
with alarmins or cytokines, including IL-25, IL-33 and 
TSLP. Thus, TSLP can stimulate ILC2s to augment the 
production of choline acetyltransferase as a mechanism 
for promoting host defence to helminth infection104.

Viral infection. As discussed above, the role of TSLP in 
TH2-type responses has been extensively studied, but its 
role in CD8+ T cell responses is less well characterized. 
Influenza virus infection is a major cause of respira-
tory disease, with substantial morbidity and mortality, 
accounting for approximately 500,000 deaths per year. 
During influenza virus infection or administration of 
poly(I:C), which mimics viral double-stranded RNA, 
pulmonary epithelial cells produce pro-inflammatory 
cytokines, including TSLP, that alter the immune 
response in the lungs105,106 (Fig. 3). TSLP supports the 
survival of cytotoxic T cells both directly10 and indi-
rectly via the activation of DCs107,108. However, there are 
conflicting reports about the effect of TSLP on CD8+ 
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Table 1 | Recent and ongoing clinical trials of the TSLP-targeting monoclonal antibody tezepelumab

Trial Status Trial participants Interventions Result Clinical trials 
identifier and Refs

Healthy individuals

Pharmacokinetics of 
tezepelumab delivered by 
APFS, AI, or vial and syringe, 
phase I

Completed 
Dec. 2019

Healthy adult individuals Tezepelumab NA NCT03989544

Tezepelumab  
pharmacokinetics, phase I

Completed 
Oct. 2020

Healthy Chinese 
individuals

Tezepelumab 
versus placebo

NA NCT04362410

Asthma

Tezepelumab home use, 
phase III

Completed 
Jun. 2020

Adolescents and adults 
with severe asthma

Tezepelumab 
administered by 
APFS versus AI

APFS and AI were functional 
and reliable, and performed 
equally well at home and in 
the clinic

NCT03968978 
(ref.185)

Efficacy and safety of 
tezepelumab in reducing 
oral corticosteroid use, 
phase III (SOURCE)

Completed 
Sep. 2020

Adults with oral 
corticosteroid-dependent 
asthma

Tezepelumab 
versus placebo

NA NCT03406078 
(ref.186)

Efficacy and safety of 
tezepelumab, phase III 
(NAVIGATOR)

Completed 
Nov. 2020

Adults and adolescents 
with severe uncontrolled 
asthma

Tezepelumab 
versus placebo

Tezepelumab associated 
with fewer exacerbations 
and better lung function, 
asthma control and 
health-related quality of life 
than placebo

NCT03347279 (ref.93)

Effects of tezepelumab  
on airway inflammation, 
phase II (CASCADE)

Completed 
Nov. 2020

Adults with uncontrolled 
asthma and other 
hypersensitivity airway 
diseases

Tezepelumab 
versus placebo

Tezepelumab improved 
clinical outcomes in 
patients with asthma, with 
reduction of eosinophilic 
airway inflammation; it also 
reduced hyperresponsive-
ness to mannitol

NCT03688074 
(refs90,187,188)

Long-term safety of 
tezepelumab, phase III

Completed 
Mar. 2021

Japanese adults and 
adolescents with 
inadequately controlled 
severe asthma

Tezepelumab NA NCT04048343

Pharmacokinetics of 
tezepelumab, phase I

Recruiting Children with asthma Tezepelumab NA NCT04673630

Efficacy and safety of 
tezepelumab, phase III

Recruiting Adults with severe 
uncontrolled asthma

Tezepelumab 
versus placebo

NA NCT03927157

Extension study on 
safety and tolerability of 
tezepelumab, phase III 
(DESTINATION)

Active, not 
recruiting

Adults and adolescents 
with severe, uncontrolled 
asthma

Tezepelumab 
versus placebo

NA NCT03706079

Effect of tezepelumab 
on the immune response 
to influenza vaccination, 
phase III (VECTOR)

Active, not 
recruiting

Adolescents and young 
adults with moderate to 
severe asthma

Tezepelumab 
versus placebo

NA NCT05062759

Effect of tezepelumab 
on airway structure 
and function, phase III 
(WAYFINDER)

Not yet 
recruiting

Adults with uncontrolled 
moderate-to-severe 
asthma

Tezepelumab 
versus placebo

NA NCT05280418

Efficacy and safety of 
tezepelumab in reducing 
oral corticosteroid use, 
phase III

Not yet 
recruiting

Adults with severe 
asthma on high-dose 
corticosteroids

Tezepelumab NA NCT05274815

Other allergic and chronic inflammatory diseases

Safety and efficacy of 
tezepelumab, phase II

Terminated Patients with 
moderate-to-severe 
atopic dermatitis

Tezepelumab 
versus placebo

Tezepelumab did not reach 
the targeted efficacy level 
pre-established for this 
patient population

NCT03809663

Effect of tezepelumab 
in COPD exacerbation, 
phase II

Recruiting Patients with 
moderate-to-very- 
severe COPD

Tezepelumab 
versus placebo

NA NCT04039113
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T cells during primary influenza virus infection9,109,110. 
One study found that IL-7 is necessary for generating 
robust influenza A virus-specific CD4+ and CD8+ T cell 
responses but TSLP did not affect the control of primary 
infection nor viral-specific CD8+ T cell responses109. 
Another study concluded that TSLP is required for the 
expansion and activation of virus-specific effector CD8+ 
T cells in the lungs during primary infection but that this 
results from TSLP-induced IL-15 production by CD11b+ 
inflammatory DCs110 rather than from direct effects on 
CD8+ T cells. Other studies used an adoptive co-transfer 
model of wild-type and Crlf2-/- T cell receptor-transgenic 
cells. After infection with influenza virus, selective loss of 
TSLPR signalling in the antiviral CD8+ T cells decreased 
their proliferation and accumulation in the respiratory 
tract, indicating that TSLP enhances primary CD8+ 
T cell responses9. However, TSLP was also reported to 
act directly on CD8+ T cells to limit their responses dur-
ing primary infection, with more virus-specific Crlf2-/-  
cells than virus-specific wild-type cells25. Conflicting 
reports on the roles of TSLP in CD8+ T cell responses 
during primary influenza virus infection may, in part, 
be owing to differences in experimental models (that is, 
direct studies in Crlf2-/- mice versus co-transfer mod-
els) and different influenza virus strains (that is, X31 
versus PR8). Recently, the role of TSLP in memory 
CD8+ T cells was studied using a competitive adoptive 
co-transfer model of wild-type and Crlf2-/- P14 T cells 
(T cell receptor-transgenic CD8+ T cells specific for 
lymphocytic choriomeningitis virus gp33)25. TSLP did 
not affect the development or maintenance of memory 
CD8+ T cells after primary influenza virus infection 
but it limited memory CD8+ T cell recall responses, 
with higher responses by Crlf2-/- CD8+ T cells following  
secondary influenza virus infection.

A recent study revealed a previously unknown 
pathway in antiviral defence involving TSLP. Influenza 
virus-induced release of IFNλ can trigger the synthesis 
of TSLP by airway microfold cells in the upper air-
way overlying bronchus-associated lymphoid tissue, 
which stimulates CD103+ migratory DCs and promotes 
antigen-dependent germinal centre reactions in draining 
lymph nodes111. The IFNλ–TSLP axis mediated the pro-
duction of virus-specific IgG1 and IgA after immuniza-
tion with influenza virus vaccines, leading to enhanced 
resistance against influenza virus infection. TSLP also 
suppressed the expression of influenza virus-induced 
genes related to cell cycle, apoptosis or protection from 

virus; thus, modulating TSLP might affect the control of 
influenza virus infection and have therapeutic potential.

Severe acute respiratory syndrome coronavirus 2  
(SARS-CoV-2), the cause of coronavirus disease 2019 
(COVID-19), is associated with cytokine release 
syndrome, which is characterized by TH1 and TH2 
cell-associated inflammation. TSLP production is also 
induced in patients with COVID-19, with high TSLP 
levels associated with greater severity of disease112,113. 
Thus, TSLP seems to feed into pathological pathways 
and may be a useful target for therapeutic strategies to 
inhibit TH2 cell responses in patients with COVID-19.

Besides respiratory viruses, several other viral infec-
tions have been reported to induce TSLP production by 
epithelial cells, including vesicular stomatitis virus106, hep-
atitis C virus114,115, immunodeficiency viruses (HIV and 
SIV)116 and human papillomavirus (HPV)117, highlighting 
the role of TSLP as an alarmin. Certain strains of HPV 
cause cervical cancer, the progression of which is associated 
with a marked increase of serum IgE levels118. Infection 
with these high-risk HPVs correlated with increased 
production of TSLP by epithelial cells in cervical cancer, 
leading to a TH2 cell response and immunosuppressive 
microenvironment117. More recently, it was shown that 
expression of HPV oncoprotein in skin drove the onset of 
AD-like pathology that was associated with the secretion 
of high levels of TSLP and increased numbers of ILC2s119.

In summary, TSLP functions in a wide range of infec-
tious diseases other than helminth infections, including 
both bacterial and viral infections. The reported roles 
of TSLP in viral infection are still controversial given 
differing results depending on the specific model system 
used. The roles of TSLP induced by microbial infection 
may potentially contribute to the exacerbation of allergic 
diseases, such as asthma, in these settings.

TSLP and cancer
Over the past decade, roles of TSLP in the control and 
onset of a variety of cancers, both solid tumours and leu-
kaemias, have been elucidated, revealing that TSLP has 
both pro-tumour and antitumour effects, depending on 
the context and type of tumour (Fig. 4).

Acute lymphocytic leukaemia. Philadelphia chromosome- 
like acute lymphoblastic leukaemia (ALL) is commonly 
associated with genetic alterations affecting CRLF2, 
which encodes TSLPR120. In a large cohort of patients 
with T cell ALL, overexpression of CRLF2, causing 

Trial Status Trial participants Interventions Result Clinical trials 
identifier and Refs

Other allergic and chronic inflammatory diseases (cont.)

Efficacy and safety of 
tezepelumab, phase II

Recruiting Adults with chronic 
spontaneous urticaria

Two doses of 
tezepelumab 
versus omalizumab 
and placebo

NA NCT04833855

Efficacy and safety of 
tezepelumab, phase III

Recruiting Patients with severe 
chronic rhinosinusitis with 
nasal polyps

Tezepelumab 
versus placebo

NA NCT04851964

AI, autoinjector; APFS, accessorized pre-filled syringe; COPD, chronic obstructive pulmonary disease; NA, not available.

Table 1 (cont.) | Recent and ongoing clinical trials of the TSLP-targeting monoclonal antibody tezepelumab

IFNλ
A type III interferon that,  
on binding to IFNAR1 and 
IFNAR2, leads to JAK1  
and TYK2 activation and 
phosphorylation of STAT1 and 
STAT2, which combine with 
IRF9 to form the heterotrimeric 
transcription factor ISGF3.
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activation of the JAK–STAT pathway, was associated 
with poor prognosis121. Indeed, targeting of JAKs, for 
example, by proteolysis-targeting chimeras (PROTACs) 
directed against JAKs, has been shown to be a potent 
treatment for CRLF2-rearranged ALL122. In Down 
syndrome-associated ALL, in which there is a high rate of 
rearrangement of CRLF2, TSLP increases binding of the 
tyrosine phosphatase PTPN11 to RAS, resulting in RAS 
protein activation, which promotes ALL cell growth123.

Solid tumours. Immune responses in the tumour 
microenvironment are affected by factors produced 
by tumour cells and tumour-associated cells, including 
cancer-associated fibroblasts (CAFs)124. TSLP secretion 
by CAFs or tumour cells promotes predominantly type 2 
inflammation in the tumour microenvironment, mostly 
via DC activation and upregulation of OX40L, CD80 and 
CD86 expression125 following TSLPR-induced phosphory
lation of STAT5. A detrimental role for TSLP in cancer 
was first demonstrated in pancreatic cancer126 and breast 
cancer127,128. Patients with pancreatic cancer in which 
GATA3+ TH2 cells were dominant had a worse prognosis 
than patients with T-bet+ TH1 cell infiltrates126. TSLP was 

secreted by CAFs when activated with tumour-derived 
pro-inflammatory cytokines, including TNF and IL-1β, 
and these TSLP-containing supernatants upregulated 
the expression of TSLPR on myeloid DCs, which 
secreted TH2 cell-attracting chemokines and promoted 
TH2 cell polarization of CD4+ T cells126. Interestingly, 
tumour-released IL-1α, IL-1β and apoptosis-associated 
speck-like protein containing a CARD (ASC) augment 
the secretion of TSLP by CAFs, suggesting that tar-
geting these cells might decrease type 2 inflammation 
and tumour growth129. Moreover, basophil recruitment 
into draining lymph nodes was associated with TH2 cell 
polarization in patients with pancreatic cancer, and this 
was associated with a worse prognosis130.

In breast cancer, cancer cells can produce TSLP, and 
this is associated with the presence of OX40L+ DCs in 
primary breast tumour infiltrates128. These DCs promote 
the development of TH2 cells producing IL-13 and TNF 
in vitro, and blocking the actions of TSLP or OX40L low-
ered IL-13 production and reduced tumour growth in a 
xenograft model128. Interestingly, the release of IL-1β by 
DCs is necessary for TSLP production by breast cancer 
cells131. The role of TSLP in the growth and metastasis 
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a  TH2 cell-dependent effects of TSLP b  TH2 cell-independent effects of TSLP
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Fig. 4 | TSLP in cancer. a | Thymic stromal lymphopoietin (TSLP) secreted by 
either cancer-associated fibroblasts or tumour cells has tumour-promoting 
effects predominantly through the establishment of T helper 2 (TH2)-type 
inflammation in the tumour microenvironment, mostly through dendritic 
cell (DC) activation. TH2 cells and eosinophils promote angiogenesis 
through the production of vascular endothelial growth factor (VEGF) and 
IL-8. b | TH2 cell-independent mechanisms of TSLP in cancer rely on 
TSLP-induced signalling in TSLP receptor (TSLPR)-expressing tumour cells 
or B cell precursors. TSLP signalling in cancer cells can inhibit apoptosis, 

leading to tumour progression. Regulatory B cells induced by TSLPR 
signalling impair antitumour immunity in the tumour microenvironment, 
enabling metastasis. TSLP signalling in T cells prevents accumulation of 
CD11b+GR1+ myeloid cells that produce WNT ligands activating the 
WNT–β-catenin pathway in the epithelium, which can lead to 
carcinogenesis and tumour growth. CTL, cytotoxic T lymphocyte; GM-CSF, 
granulocyte-macrophage colony-stimulating factor;  MDSC, 
myeloid-derived suppressor cell; PDGF, platelet-derived growth factor; 
Treg cell, regulatory T cell.
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of breast cancer was also studied in an orthotopic mouse 
model using 4T1 cells, which are derived from a BALB/c 
breast ductal carcinoma. 4T1 cells produce TSLP, and the 
level of TSLP production correlated with the metastatic 
potential of different 4T1 clones127. Transplantation of 
4T1 cells into Crlf2-/- mice was associated with reduced 
TH2 cytokines and decreased tumour growth132,133. Thus, 
the delayed tumour development in Crlf2-/- mice was due 
to defective CD4+ T cell responses127, consistent with 
TSLP promoting a TH2-type tumour microenvironment 
that supports the development and growth of metastatic 
breast cancer.

Conversely, other studies have suggested that TSLP 
can have tumour-suppressive activity. One study found 
that genetic or chemical induction of TSLP at a dis-
tant site led to robust antitumour immunity against 
spontaneous breast carcinogenesis in mice, medi-
ated by TH2 cells134. However, in this study, breast 
cancer-prone PyMttg mice, in which cancer is driven 
by mammary-specific polyomavirus middle T antigen 
overexpression, were crossed with mice that overex-
press TSLP in their skin, which not only induced TSLP 
production but also caused systemic inflammation134, 
making it possible that either TSLP or the inflamma-
tory process or both could contribute to the antitumour 
effect. Another report found that TSLP was produced 
in fewer than 10% of breast cancers, with undetectable 
TSLPR expression on haematopoietic cells or stromal 
cells within the primary tumour microenvironment135, 
and another study demonstrated that the expression of 
TSLP was higher in normal tissue than in breast cancer 
tissue and that TSLP expression was associated with 
the increased survival of patients with breast cancer136. 
Thus, the role of TSLP may be context and/or tumour 
specific.

Reports regarding the role of TSLP in skin cancer 
have also differed. Groups have reported an antitumour 
role for TSLP in skin carcinogenesis in mice with clonal 
loss of Notch signalling in skin137,138. In this model, high 
levels of TSLP released by barrier-defective skin caused 
severe inflammation, resulting in gradual elimination 
of Notch-deficient epidermal clones and resistance to 
skin tumorigenesis. CD4+ T cells are required to medi-
ate these effects of TSLP, analogous to the breast cancer 
models reported above134. Another group reported that 
cutaneous T cell lymphoma lesions in advanced stages 
exhibited mainly TH2 cytokines and chemokines139.  
In vitro and ex vivo cell lines and peripheral blood mono
nuclear cells from patients with cutaneous T cell lym-
phoma expressed TSLPR and produced higher levels of 
IL-4 and IL-13 in response to TSLP. High TSLP expres-
sion is a poor prognostic marker for gastric cancer140 and 
oropharyngeal squamous cell carcinoma141, indicating 
that TSLP and inflammation can exert pro-tumour 
activity in these settings.

In addition to the TH2-dependent roles of TSLP in 
cancer discussed above, TH2 cell-independent effects  
of TSLP have been reported. Depending on the con-
text, TSLP-induced signalling in tumour cells can 
lead to apoptosis, proliferation and remodelling of 
pro-angiogenic gene signatures. In breast cancer, 
tumour-derived IL-1α can induce expression of TSLP 

by tumour-infiltrating myeloid cells, which can induce 
expression of the anti-apoptotic molecules BCL-2 and 
BCL-xL and promote tumour cell survival44. Consistent 
with this, TSLP could promote metastasis. Moreover, in 
another study, tumour cell-derived TSLP increased the 
invasive and angiogenic gene expression profile of alve-
olar macrophages, whereas depleting these cells signif-
icantly reduced the growth of TSLP-expressing tumour 
cells142. TSLP could downregulate expression of the bone 
marrow-retention receptors CXCR4 and VLA4 in B cell 
precursors, increasing cellular motility, survival and 
proliferation. These pre-B cells were induced by tumour 
cells to differentiate into regulatory B cells, which down-
modulated antitumour immunity and promoted lung 
metastases143. Thus, lower TSLP production by can-
cer cells or lower TSLPR expression by B cells could 
decrease the accumulation of peripheral pre-B cells and 
potentially diminish cancer metastasis, suggesting that  
targeting TSLP might have therapeutic benefit.

A tumour-promoting function for TSLP was also 
described in lung cancer144. Expression of TSLP protein 
in tumours was significantly higher than in benign lesions 
and non-cancer lung tissue, and the prevalence of regula-
tory T cells in the tumour microenvironment correlated 
with the expression of TSLP in lung cancer. Furthermore, 
TSLP and TSLPR are expressed in macrophages purified 
from the lungs of patients with lung cancer145, with a  
presumed pro-tumorigenic role for TSLP.

TH2 cell-independent pro-tumour roles of TSLP in 
cervical cancer, gastric cancer and ovarian cancer have 
also been reported. TSLP was secreted from cervical 
cancer cells by hypoxia, inducing the release of chemo
kine CCL17, which then recruits eosinophils, leading 
to increased proliferation and diminished apoptosis 
of tumour cells through the upregulation of Ki-67 and 
BCL-2, respectively146, and indirectly stimulates angio-
genesis by inducing the production of IL-8 and vascular 
endothelial growth factor147. TSLP also promoted the 
proliferation and invasion of cervical cancer cells by 
downregulating microRNA-132, the expression of which 
was lower in cervical cancer than in non-cancerous 
tissues148. Human gastric cancer cells also produce 
TSLP, and its expression correlated with metastasis149. 
Moreover, in ovarian cancer, higher TSLP expression 
was associated with worse prognosis150.

Increased expression of TSLP and TSLPR has also 
been reported in colorectal cancer, and the TSLP SNP 
rs10043985 was shown to be a biomarker for an increased 
risk of colorectal cancer in the Saudi population151. 
Nevertheless, antitumour effects of TSLP in colorectal 
cancer have also been reported152, with decreased TSLP 
levels in tumour than in adjacent tissue and TSLP lev-
els negatively correlated with the clinical staging score. 
In this disease, TSLP was shown to activate JNK and 
MAPKp38 and promote apoptosis mainly through the 
extrinsic pathway. Analogous to this antitumour effect 
in colon carcinoma, TSLP can also prevent skin carcino-
genesis through a TH2 cell-independent mechanism138. 
Using loss-of-function and gain-of-function mouse 
models for Notch and WNT signalling, it was shown 
that TSLP-mediated inflammation protects against cuta-
neous carcinogenesis, and this was mainly mediated by 
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actions of TSLP on T cells. Deleting TSLPR resulted in 
the accumulation of CD11b+GR1+ myeloid cells that pro-
moted tumour growth by secreting WNT ligands and 
activating the WNT–β-catenin pathway in the neigh-
bouring epithelium, whereas deleting β-catenin pre-
vented the recruitment of CD11b+GR1+ myeloid cells 
and carcinogenesis in skin, suggesting that the epithelial 
population initiates tumour development.

Thus, TSLP has been associated with promoting or 
reducing cancer in a range of malignancies, suggesting 
context-dependent effects for this cytokine in malignant 
disease.

TSLP in fat metabolism
Obesity increases the risk of numerous diseases, includ-
ing hyperlipidaemia, diabetes mellitus, certain cancers, 
fatty liver and cardiovascular diseases. It has been shown 
that chronic, low-grade inflammation of adipose tissue 
increases type 2 immune cells, including ILC2s and 
eosinophils153–155. These cells increase the metabolic 
rate by promoting adipose tissue beiging and upregulat-
ing thermogenic energy consumption156–160. Regulatory 
T cells suppress the inflammatory state of adipose 
tissue, resulting in improved insulin resistance161,162. 
Recently, TSLP was reported to play a role in fat metab-
olism, selectively promoting the loss of white adipose 
tissue, which protected against obesity both in genetic 
models and diet-induced obesity as well as in insulin 
resistance and non-alcoholic steatohepatitis163. Mice 
with augmented levels of TSLP had greasy hair owing 
to the excessive loss of lipids through skin as sebum 
as well as elevated triglycerides, free fatty acids, cho-
lesterol esters, free cholesterol and wax esters, which 
resulted from the TSLP-mediated induction of sebum 
and sebum-associated antimicrobial peptide release by 
skin CD4+ or CD8+ T cells. Ablating TSLPR signalling 
or deleting T cells diminished the secretion of sebum 
and antimicrobial peptides with altered skin homeosta-
sis, thus identifying a previously unappreciated role for 
TSLP in adaptive immunity. Given that ILCs exposed 
to TSLP in skin negatively regulate sebaceous gland 
size and lipid content14, it is possible that ILCs and 
T cells regulated by TSLP might have opposing roles in  
controlling sebum secretion.

TSLP is also expressed in human adipose tissue and 
is produced by differentiated adipocytes in response 
to thyroid-stimulating hormone, IL-1β and TNF164. 
In humans, the level of TSLP in the serum was related 
to the basal metabolic index165. Obesity increases the 
risk of asthma by increasing bronchial hyperreactivity, 
leading to worse control of asthma, and obese patients 
with metabolic dysfunction tend to have more severe 
asthma166. Thus, TSLP produced from more than one 
source, such as either adipocytes or epithelial cells, can 
potentially affect the severity of asthma by regulating 
immune cells, as discussed above.

TSLP in chronic inflammatory diseases
Emerging evidence indicates that TSLP has roles in 
chronic inflammation and autoimmune diseases that are 
independent of TH2 cells, highlighting its role beyond 
the TH2-type response. These findings indicate a wide 

range of effects for TSLP, potentially in a wide range of 
human diseases.

Chronic obstructive pulmonary disease. Chronic obstructive  
pulmonary disease (COPD) is generally associated with 
TH1 cells, macrophages and neutrophils, whereas asthma 
is primarily associated with TH2 cells, eosinophils and/or 
mast cells. Despite being a predominantly TH1-associated 
disease, TSLP mRNA and protein levels were increased 
in the bronchial epithelium of COPD compared with 
controls18. Factors known to exacerbate COPD, including 
respiratory viruses22, double-stranded RNA19,167, cigarette 
smoke extracts168,169 and pro-inflammatory cytokines 
that activate NF-κB20,170, stimulate the production of 
TSLP in patients with COPD, suggesting involvement  
of TSLP in the development and/or exacerbation of COPD, 
and thus that TSLP can affect lung pathophysiology  
in situations beyond TH2-related asthma.

Idiopathic pulmonary fibrosis. Idiopathic pulmonary 
fibrosis (IPF) is a severe, progressive and ultimately 
fatal disorder, characterized by interstitial fibrosis of 
the lungs of unknown aetiology. TSLP and TSLPR are 
overexpressed in the lungs of patients with IPF33, and 
TSLP is increased in bronchoalveolar lavage and serum 
from patients with IPF171,172. The observation that TSLP 
levels decreased in the lungs of patients treated with 
anti-fibrotic therapy but not in individuals with pro-
gressive disease, supports a possible contribution of 
TSLP to pro-fibrotic type 2 immune responses in IPF172. 
However, more studies are required to fully understand 
the role of TSLP in the aetiology and progression of this 
disease.

Rheumatoid arthritis. Rheumatoid arthritis (RA) is an 
autoimmune inflammatory disorder that affects the 
joints, which are characterized by chronic synovitis — 
predominantly associated with TH1-type and TH17-type 
inflammation. Recently, the relationship between TSLP 
gene polymorphisms and RA susceptibility risk was 
demonstrated, with SNPs at rs11466749, rs11466750 
and rs10073816 of TSLP leading to increased levels 
of TSLP associated with susceptibility to RA173. TSLP 
and TNF levels in the synovial fluid and plasma from 
patients with RA are significantly higher than in control 
patients173–175. Interestingly, TNF can induce TSLP pro-
duction by synovial fibroblasts not only from patients 
with RA but also from control patients, suggesting that 
TSLP production by synovial fibroblasts is not specific 
to RA and is augmented by TNF174. Correspondingly, 
blockade of TSLP activity by anti-TSLP neutralizing 
antibodies ameliorated TNF-dependent experimental 
arthritis injury in mice induced by anti-type II collagen 
antibodies, suggesting a role for TSLP in the pathogen-
esis of RA. Moreover, in collagen-induced arthritis in 
mice, TSLP injection significantly exacerbated the sever-
ity of arthritis with activation of T cells leading to joint 
destruction176. Mast cells and macrophages in the RA 
synovium have been suggested to contribute to TSLP lev-
els in the RA joint177–179. In the collagen-induced arthritis 
model, which is not a classic TH2 cell-associated disease, 
the effector inflammatory phase of arthritis depends on 

Adipose tissue beiging
A process by which white 
adipose tissue acquires 
features of beige or brown 
adipocytes that use extra 
energy for heat production.

Chronic obstructive 
pulmonary disease
(COPD). A chronic lung disease 
characterized by progressive 
airflow obstruction in 
peripheral airways, leading  
to air trapping, dynamic 
hyperinflammation and 
shortness of breath.
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TNF, but TSLP also contributes to pro-inflammatory 
cytokine-dependent inflammation that leads to tissue 
damage. Collectively, studies suggest that TSLP expres-
sion may be a disease marker of RA, and targeting TSLP 
signalling could represent a rational, new therapeutic 
strategy for RA.

Ulcerative colitis. Ulcerative colitis (UC) is a severe 
inflammatory bowel disease characterized by dysreg-
ulated immune responses to gut microbiota that can 
contribute to the development and maintenance of an 
intestinal inflammatory process. Although the aetiology 
of UC is not fully elucidated, it is affected by both genetic 
and environmental factors. Intestinal epithelial cells  
play an important role in intestinal homeostasis by 
maintaining and/or controlling barrier function along 
with innate immune defence and the ability to modu-
late immune responses in the gut180. Hyperactivation 
of DCs decreases TSLP production from intestinal epi-
thelial cells, which leads to uncontrolled production of  
pro-inflammatory cytokines, with the development 
of intestinal disorders, including inflammatory bowel 
disease181–183. TSLP mRNA levels are decreased in patients 
with UC, and TSLP expression was negatively correlated 
with the severity of UC, suggesting that TSLP has a pro-
tective role in UC and that low levels of TSLP promote 
severe disease184. This protective role of TSLP could be 
explained by the fact that TSLP can promote both Treg and 
TH2 cell responses that inhibit TH1 and TH17 cell respon
ses and, consequently, could suppress inflammation in  
this setting.

Conclusions
TSLP is a pleiotropic cytokine with pleiotropic actions. 
Although the original role for TSLP as an initiator of type 2  
inflammatory responses is well established, the biol-
ogy and actions of this cytokine extend much further 
as described in this Review. TSLP is now implicated in 
viral infections, including influenza virus and SARS- 
CoV-2 infections, cancer, chronic inflammation and fat 
metabolism. TSLP appears to often be deleterious (for 
example, in allergic disease) but, in host defence, it may 
be protective (for example, in S. aureus or helminth infec-
tions) and, in cancer, there are a range of studies that indi-
cate that TSLP can be beneficial or deleterious, depending 
on the malignancy and biological context. It is possible 
that TSLP has more than a single effect. Obviously, more 
studies are needed to rigorously define when the beneficial 
versus deleterious actions of TSLP occur, including studies 
and, eventually, clinical trials testing the effect of blocking 
TSLP. Indeed, the application of anti-TSLP-based ther-
apy may hold promise beyond allergic diseases, an area 
of ongoing investigation. Moreover, there may be clini-
cal settings in which augmenting, rather than blocking, 
TSLP might be desirable. Since the discovery of TSLP as 
a factor that could stimulate B cells, there have been huge 
advances, but the full significance of this cytokine and the 
range of therapeutic manipulations are still evolving.

Collectively, the roles of TSLP in a range of diseases and 
in cellular homeostasis indicate its potential as a predictive 
marker of disease severity and as a therapeutic target.
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