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Photon bound state dynamics from a single 
artificial atom
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Rüdiger Schott4, Sascha R. Valentin    4, Andreas D. Wieck    4, Arne Ludwig    4, 
Alisa Javadi    1 & Richard J. Warburton    1

The interaction between photons and a single two-level atom constitutes 
a fundamental paradigm in quantum physics. The nonlinearity provided 
by the atom leads to a strong dependence of the light–matter interface 
on the number of photons interacting with the two-level system within 
its emission lifetime. This nonlinearity unveils strongly correlated 
quasiparticles known as photon bound states, giving rise to key physical 
processes such as stimulated emission and soliton propagation. Although 
signatures consistent with the existence of photon bound states have 
been measured in strongly interacting Rydberg gases, their hallmark 
excitation-number-dependent dispersion and propagation velocity 
have not yet been observed. Here we report the direct observation of a 
photon-number-dependent time delay in the scattering off a single artificial 
atom—a semiconductor quantum dot coupled to an optical cavity. By 
scattering a weak coherent pulse off the cavity–quantum electrodynamics 
system and measuring the time-dependent output power and correlation 
functions, we show that single photons and two- and three-photon bound 
states incur different time delays, becoming shorter for higher photon 
numbers. This reduced time delay is a fingerprint of stimulated emission, 
where the arrival of two photons within the lifetime of an emitter causes one 
photon to stimulate the emission of another.

Photons do not easily interact with one another. This property is com-
monly exploited to communicate over long distances using optical 
fibres. Interaction between photons is desired, however, for classical 
and quantum information processing, but requires a highly nonlinear 
medium. Optical nonlinear processes are employed in a range of pho-
tonic applications such as frequency conversion, optical modulation, 
light amplification and sensing1–3. In the limit where the optical non-
linearity is expressive on the scale of a few photons, one can observe 
quantum nonlinear phenomena, for instance via the optical correlation 
functions3–5. One manifestation of the nonlinearity is the presence of 

two- and higher-order photon bound states. Photons in these bound 
states are strongly correlated, such that the likelihood of observing 
a photon at any one time is fixed, but once one photon is detected, 
the arrival of another is much more likely than at a random time. We 
emphasise that photon bound states are distinct from bunched photon 
states, as photon bound states are quasiparticles that have their own 
dispersion relation and are eigenstates of the underlying Hamiltonian 
that describes the nonlinear medium. It has recently been predicted 
theoretically that the photon-number-dependent propagation velocity 
of photon bound states can lead to the formation of highly entangled, 
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The experimental set-up is schematically depicted in Fig. 1a.  
Gaussian pulses of light are guided via a circulator to the one-sided 
QD–cavity system. The light is back-scattered and redirected by the 
circulator towards a Hanbury Brown–Twiss (HBT) set-up equipped with 
single-photon detectors that record the time of arrival τ of individual 
photons. By launching a weak coherent pulse with average photon 
number n̄ ≪ 1, one can probe directly the scattering dynamics of 
single-photon pulses via power measurements P(τ) = G(1)(τ), which is 
proportional to the single-photon wavefunction |ψ1(τ)|2. Conversely, 
the second-order correlation function G(2)(τch1, τch2) is insensitive to the 

ordered states of light6. Photon bound states have been predicted 
to exist in a number of systems, such as unidirectional waveguide 
quantum electrodynamics (QED)7–9 and strongly correlated Rydberg 
gases10. In the latter case, experimental observations consistent with 
their presence have been reported11–13. A direct observation of their 
dynamics is, however, lacking. To observe directly the dynamics of 
photon bound states, we examine the unidirectional propagation 
of few-photon wavepackets strongly interacting with a single atom,  
in practice a semiconductor quantum dot (QD) coupled to a  
one-sided cavity.
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Fig. 1 | Photon-number-dependent pulse scattering. a, A Gaussian pulse of 
light is launched into a circulator, which guides the pulse towards a QD, coupled 
to a one-sided microcavity. Upon interaction with the QD–cavity system, states 
of light with different photon number are transported through the system with 
different time delays. b, Normalised photon counts versus delay. For a Gaussian 
pulse (σΓ = 2.2) launched at time τ = 0 (dotted grey line), the propagated pulse 
undergoes a Wigner delay in the presence of the optical cavity alone (dotted 
black line). Scattering off the QD–cavity system, the single-photon components 
G(1)(τ) (red points, experiment; red solid line, theoretical model) undergo pulse 
reshaping and arrive with a larger delay than the two-photon bound states 
G(2)(τ, τ) (blue points, experiment; blue solid line, theoretical model), which in 
turn undergo a larger delay than three-photon states G(3)(τ, τ, τ) (green points, 

experiment; green solid line, Gaussian fit). c, Average pulse peak delay Δτ 
experienced by n photons. Mean and 1σ s.d. extracted from 12 (for n = 1, 2) and 1 
(for n = 3) low-power resonant measurements for different input pulse widths. 
d,e, Autocorrelation map G(2)(τch1, τch2) of the pulse following propagation 
through the entire system in resonance with the optical cavity but in the 
absence of the QD (d) and in the presence of the QD (e). The white dotted line 
represents the equal-time correlation. f, Simulation of normalised |ψ2(τch1, τch2)|2. 
g, Autocorrelation map G(3)(τch1, τch2, τch3). The volumes in the three-dimensional 
space depict the isosurfaces at 0.05, 0.20, 0.50, 0.75 and 0.90 of the normalised 
counts, and the projections on each axis are plotted on setting one of the 
detection times to zero. h, Cut-through of G(3) at times τch3 and τch1 = τch2.
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single-photon Fock component and is used to study two-photon  
scattering dynamics14. G(2)(τch1, τch2) is proportional to the squared 
amplitude of the two-photon wavefunction, |ψ2(τch1, τch2)|2. We also 
measure the third-order correlation function G(3)(τch1, τch2, τch3) to probe 
the dynamics of the three-photon component. For higher-order  
correlation functions, we can determine the equal-time correlators, 
that is, when τch1 = τch2 = ... = τchn. For the coherent state the equal-time 
correlator is G(n)(τ, τ, …, τ) = P(τ)n. Deviations from this indicate that 
the photons undergo a nonlinear scattering process.

Single-photon states and two-photon states undergo distinct 
dynamics when scattering off the cavity–QED system. We can under-
stand these dynamics by examining the one- and two-photon scattering 
eigenstates. In our cavity–QED set-up the QD couples almost perfectly 
to the cavity, which in turn has small undesired losses (≤5%), and we 
thus model our system as being lossless. The single-photon scattering 
eigenstates are plane waves that are transmitted through the system 
with a transmission coefficient15–17

t1(∆L, ∆C) =
∆L −∆C − g2/∆L − iκ/2
∆L −∆C − g2/∆L + iκ/2 , (1)

where ΔL = ωL − ωQD is the angular frequency detuning of the photon 
and the QD, ΔC = ωC − ωQD is the detuning between the cavity resonance 
and the QD, g is the atom–cavity coupling, and κ is the cavity loss rate. 
Under the lossless assumption, the scattering amplitude is unitary, 
|t1| = 1, but scattering imparts a frequency-dependent phase on the 
photon. The importance of the frequency-dependent phase is high-
lighted when scattering Gaussian pulses off the cavity–QED system. 
Defining eiϕ1 = t1, we then have ϕ1 = −i ln(t1). As in standard Gaussian 
pulse propagation18, the first to third derivatives of ϕ1 then give the 
delay Δτ1(ΔL, ΔC), broadening and chirp, and distortion d1(ΔL, ΔC) of the 
Gaussian pulse upon scattering off the quantum system, respectively. 
On resonance (ΔL = 0, ΔC = 0), the delay is Δτ1(0, 0) = 4/Γ, where Γ = 4g2/κ 
is the Purcell-enhanced decay rate. The distortion is given by 
d1(0, 0) = −32(1 − 3Γ/κ)/Γ3.

The physics of two-photon scattering is richer, as the energy of the 
individual photons is not necessarily conserved, which leads to photon 
correlations. The two-photon scattering matrix has previously been 
computed16,19, but here we diagonalise the scattering matrix and show 
that the two-photon eigenstates contain a subspace of two-photon 
bound states (photonic dimers) (the full calculation is provided in 
Supplementary Section VI). We find general semi-analytic forms for 
these states, but in the limit where κ is larger than all other rates and 
detunings in the system, the bound eigenstates have the simple form

ψE(xc, x) = NeiExc [e
− Γ

2vg
(1+ Γ

κ
)|x|

− Γ

κ
e
− κ

2vg
|x|
] +O ( 1

κ2
), (2)

where N is a normalisation constant and O(1/κ2) indicates terms of order 
1/κ2 and higher. The state is not separable, and the two photons form-
ing the bound state are entangled with each other. In the relative 
two-photon coordinate x = x1 − x2, the photons are exponentially local-
ised. However, because the two-photon energy is conserved, they take 
the form of a plane wave eiExc in the two-photon centre-of-mass coor-
dinate xc = (x1 + x2)/2, with a common two-photon frequency E. The 
exponential localisation in the relative coordinates evidences the 
strong correlation of the two photons in the bound state. In contrast 
to the waveguide QED bound states6, the presence of the cavity results 
in the second term, which removes the cusp such that the function is 
smooth at x = 0.

The strong localisation within a time 1/Γ in the difference coordi-
nate means that the two photons in the bound state excite and stimulate 
the emission of the atom. This distinctly correlated interaction between 
the photons leads to this eigenstate having its own distinct transmis-
sion coefficient tB(E) and dispersion in comparison to the single-photon 

eigenstate, and therefore undergoes different delays, broadening and 
distortion. We compute the general form of tB(E) numerically, but, in 
the limit of a broadband cavity, the transmission coefficient of the 
two-photon bound states is

tB(E) =
E(κ + 2Γ ) − 2iΓ (κ − Γ − E2/Γ )
E(κ + 2Γ ) + 2iΓ (κ − Γ − E2/Γ ) +O ( 1

κ2
). (3)

Similar to single-photon scattering, by taking respectively the first and 
third derivatives of ϕB = −i ln(tB(E)) , we find that the delay of the 
two-photon bound state in the centre-of-mass coordinate is 
Δτ2(0, 0) = 1/Γ + 3/κ and the distortion is d2(0, 0) = −(1 − 3Γ/κ)/(2Γ3). In 
comparison to the single-photon state, the bound state therefore 
undergoes both a reduced delay and a factor of 64 less distortion. The 
reduction in distortion was shown to be related to soliton propagation 
in waveguide QED6.

To fulfil experimentally the two criteria to study the 
photon-number-dependent scattering dynamics, namely unidirec-
tional light propagation and a strong atom–photon interaction, we 
employ not a real atom but an artificial atom, a single QD. The QD is 
embedded in a Fabry–Pérot microcavity. The cavity suppresses the 
effects of phonons such that the QD mimics a two-level system pre-
cisely20. The epitaxially grown InAs QDs are part of a semiconductor 
heterostructure comprising an n–i–p diode and a GaAs/AlAs Bragg 
reflector—the ‘bottom mirror’. The ‘top mirror’ consists of a concave, 
dielectric Bragg mirror fabricated into a silica substrate. The reflectivity 
of the bottom mirror is substantially higher than that of the top mirror. 
With the aid of xyz nanopositioners, one can position a QD in the sample 
relative to the cavity mode and one can tune the resonance frequency of 
the cavity to that of the QD’s emission. Essential for the unidirectional-
ity condition, the cavity should have only one port. In this system, unde-
sired losses (losses via the bottom mirror, absorption and scattering 
losses21) account for κloss/(2π) = 0.72 ± 0.07 GHz (ref. 22), while the total 
cavity linewidth is κ/(2π) = 20.1 ± 1.5 GHz, indicating that ~96% of the 
light is back-reflected via the one port of the microcavity, namely the 
top mirror. The QDs in this sample present a close-to-transform-limited 
linewidth γ/(2π) = 0.30 GHz. When QD and cavity are coupled, the 
Purcell-enhanced QD linewidth Γ = FP × γ becomes Γ/(2π) = 4.24 GHz, 
where FP = 14.1 is the Purcell factor. The lifetime of the emitter becomes 
τQD = 37.5 ps, and the QD–cavity coupling rate g/(2π) = 4.62 GHz. The 
strong atom–photon interaction and near-lossless operation result 
in a near-unitary probability of emission from the QD into the cavity 
mode, β = FP/(FP + 1) = 0.93. Further experimental details are provided 
in Supplementary Sections I and II.

The direct observation of photon-number-dependent scatter-
ing dynamics is presented in Fig. 1b. A weak, coherent Gaussian pulse 
with temporal full-width at half-maximum (FWHM) of 135 ps—about 
twice the lifetime of the QD, σΓ = 2.2—is launched into the input of 
the optical system. Without any interaction with the cavity–QED 
system, it propagates through the optical system and arrives at the 
single-photon detectors at time τ = 0 (the pulse peak is represented by 
the grey dotted line). Upon resonant interaction with the broadband 
cavity, but in the absence of the quantum emitter, the Gaussian pulse 
undergoes a linear transmission, and is delayed by ΔτC = 29.2 ± 0.4 ps 
(the centre of the Gaussian pulse is represented by the black dotted 
line). This delay matches the predicted delay for a one-sided cavity 
ΔτC = 4/κ = 31.7 ± 2.4 ps (Supplementary Section IV). The delay imparted 
via the elastic scattering of a wavepacket by a resonator is often referred 
to as a Wigner delay23. In the presence of the QD, that is, when the QD 
is tuned into resonance with the cavity, we observe that the scattered 
n-photon pulse reveals an n-dependent ‘quantum Wigner delay’. We 
inspect the dynamics under full resonant conditions, ΔL = ΔC = 0, via the 
nth equal-time correlators. The single-photon scattering is given by a 
power measurement, G(1)(τ), presented as red dots in Fig. 1b, and shows 
how the output pulse is delayed relative to the input pulse, a result also 
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previously observed for other quantum systems24–26. The scattered 
pulse is non-Gaussian in shape. This distortion causes the peak of the 
pulse to be delayed by a value different from Δτ1 = 4/Γ (Supplementary 
Fig. 6a–c). The distortion arises from the fact that the spectral compo-
nents of the pulse probe a sizeable fraction of the components making 
up the resonance of the cavity–QED system. The observed dynamics in 
G(1)(τ) are well captured by the theoretical model (red solid line). The 
scattering of two-photon states is examined via G(2)(τ, τ) (Fig. 1b, blue 
dots; theory, solid blue line). We find experimentally that both the delay 
and distortion in G(2)(τ, τ) are significantly reduced compared to those 
of G(1)(τ). The theory accounts for the measured G(2)(τ, τ) very convinc-
ingly. This constitutes a clear observation of two-photon bound states. 
We also interrogate the third-order equal-time correlator, G(3)(τ, τ, τ), 
given by green dots in Fig. 1b (the green solid line is a Gaussian fit). Both 
the peak delay and temporal width of the G(3)(τ, τ, τ) curve are reduced 
further, consistent with the observation of three-photon bound states.

The finite spectral width of the pulses probes the frequency-  
and photon-number-dependent phase imparted on different 
photon-number states. For a coherent input pulse we examine the delay 
experienced by an n-photon pulse by comparing the delay at the peak 
of the scattered pulse Δτn ∶= max(G(n)(τ, τ, ..., τ))  (Fig. 1c). Because 
longer pulses undergo significantly reduced distortion, for n = 1, 2 we 
extract the peak delay from measurements with ten different pulse 
widths (1.3 ≤ σΓ ≤ 26.0). The one- and two-photon delays correspond 
well to the theoretical predictions (red and blue dotted lines,  
respectively). The single-photon wavepackets undergo a delay 
Δτ1 = 144.02 ± 26.90 ps, and two-photon wavepackets undergo a 
reduced delay Δτ2 = 66.45 ± 5.97 ps. The reduced delay is a consequence 
of stimulated emission: the first photon excites the atom, and the 
second photon stimulates the emission of the atom, thereby reducing 
the total time in which the photons interact with the atom. The 
three-photon delay is Δτ3 = 45.51 ± 0.09 ps, a further reduction. This 
measurement of the quantum Wigner delay therefore unveils the exist-
ence of few-photon bound states. Key to success is the strong nonlinear 
and unidirectional scattering off the single quantum emitter.

We proceed to examine the autocorrelation functions of the  
scattered pulses. Figure 1d shows the two-photon autocorrelation map 
G(2)(τch1, τch2) of the weak Gaussian pulses scattered off the optical cav-
ity, but in the absence of the quantum emitter. The linear response of 
the cavity displaces the two-dimensional Gaussian pulse shape by ΔτC 
along the equal-time-of-arrival line (τch1 = τch2) with respect to the Gauss-
ian structure of the non-interacting pulse centred at (τch1, τch2) = (0, 0). 
As shown experimentally (theoretically) in Fig. 1e(f), when the pulse 
interacts with the QD–cavity system the correlated counts are drawn 
towards the diagonal of the G(2)-map (white dashed line), and can no 
longer be described by a linear transformation of the response to the 
bare cavity. We examine also the three-photon autocorrelation map 
G(3)(τch1, τch2, τch3) in Fig. 1g, where the volumetric isosurfaces at 0.05, 
0.2, 0.5, 0.75 and 0.90 of the normalised counts are shown. The projec-
tions on the axes are the cut-through planes in each of the detection 
channels at time τ = 0. As in the G(2) measurements, there is a strong 
peak along the diagonal revealing highly correlated three-photon 
states, as well as faint lateral lobes away from the diagonal27.  
Figure 1h displays a cut-through along the plane defined by τch1 = τch2 and 
τch3 where the clustering of the coincidence counts along the diagonal 
are prominently revealed. In all likelihood, this manifests the propaga-
tion of three-photon bound states (photonic trimers).

Next, we investigate the behaviour of the single- and two-photon 
scattering dynamics as a function of the central frequency of the pho-
tons. Figure 2a,b shows, respectively, the experimental and simulated 
power signal of the scattered pulse (FWHM = 135 ps) as a function 
of laser detuning from the QD’s resonance ΔL/(2π). The red dotted 
line in the theoretical model shows where the pulse maximum would 
occur if distortion effects were disregarded. Here, the cavity is slightly 
detuned from the QD, ΔC/(2π) = 1.0 GHz, which induces a slight spectral 

asymmetry to the one- and two-photon peak delays presented in  
Fig. 2c (red and blue dots, respectively). The results are in good agree-
ment with the simulations and validate the theoretical model. We 
calculate numerically the dispersion of the peak delays Δτ1 and Δτ2 
(red and blue solid lines). The results describe the experimental obser-
vations very well. Here too, the red dotted line corresponds to the 
single-photon case, neglecting pulse distortion. The results dem-
onstrate that two-photon bound states experience a much reduced 
distortion, imperceptible in this system.

The interaction of the two-photon wavefunction with the  
cavity–QED system strongly depends on the Gaussian pulse width.  
In Fig. 3a we explore this dependence, where we present on the top row 
the experimental G(2) map for three different pulse widths, FWHM =  
(81.86, 256.72, 597.83) ps—equivalently σΓ = (1.3, 4.1, 9.6). We compare 
the experimental results to the simulated absolute square of the full 
two-photon wavefunction (middle row), which contains contribu-
tions from both two-photon bound states and extended states. The 
total contribution of the bound states alone is shown in the bottom 
row. The appearance of just the diagonals is evidence that the bound 
states contribute to the diagonal of the correlation maps. The extended 
states contribute to the lobes away from the diagonals. Details of the 
model are elucidated in Supplementary Section VI. The nodal line 
(absence of coincidence events) that occurs between the diagonal 
(the contribution from the bound states) and lobes (the contribution 
from the extended states) occurs due to the different phase the two 
states obtain after scattering. The phase approaches π for the bound 
state and is 0 for the extended states. For σΓ = 1.3, the lobes are very 
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Fig. 2 | Single-photon and two-photon bound state delay dispersion.  
a,b, Experimental G(1)(τ) as a function of laser detuning ΔL/(2π) for a cavity–QD 
detuning of ΔC/(2π) = 1.0 GHz and for an input pulse with FWHM intensity of 
~135 ps (a), and the respective simulation, where the red dotted line indicates the 
single-photon component delay in the continuous-wave limit (b). c, Peak delay 
Δτ as a function of laser detuning for single photons (red) and two-photon bound 
states (blue). The solid lines are the numerically simulated peak delays for the 
single- and two-photon bound states. The red dotted line shows the calculated 
pulse delay Δτ1 neglecting distortion. In this system, the two-photon bound state 
propagates without noticeable distortion. Error bars arise from fitting residual 
standard error.
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weak in both the experiment and accompanying theory: in Fig. 3b, we 
sum the counts in the G(2) map over successive stripes parallel to the 
diagonal, that is, for successive values of τch1 − τch2. This procedure is 
equivalent to performing a conventional correlation measurement 
g(2)(τch1 − τch2) with continuous-wave excitation, except unnormalised. 
We find an exponential dependence of G(2) on τch1 − τch2 (Fig. 3b, inset). 
This reveals, experimentally, the exponential decay of the two-photon 
bound-state wavefunction. The exponential dependence of the bound 
states as revealed in the experiments is well described by the theo-
retical model: we evaluate the absolute value squared of equation (2),  
taking the parameters established from the spectroscopy experi-
ments, and find excellent agreement with the experiment (Fig. 3b, red 
solid line). Finally, the total fraction of the scattered wavefunction in 
the bound-state subspace depends on the overlap of the two-photon 
bound states with the two-photon input pulse. The theory shows that 
this overlap has a strong dependence on the input Gaussian pulse dura-
tion relative to the lifetime of the quantum emitter, and is largest and 
very close to unity when the input pulse has a duration ~1/Γ, as shown in 
Fig. 3c as a solid blue line. Experimentally, we estimate the bound-state 
fraction by evaluating the ratio of the counts in the diagonal to the total 
counts in each G(2) map. The results (blue stars) follow the theoretical 
prediction convincingly.

We demonstrate here the ability to manipulate and identify 
highly correlated photonic states in time. The results reveal stimu-
lated emission in its most canonical description, a single quantum 
emitter interacting with single photons19. This achievement represents 
an important landmark in the development of a variety of quantum 
technologies. Stimulated emission plays a central role, for instance 
in approximate quantum cloning of photons28, a key technology for 

quantum information processing and networking. The strong depend-
ence of the propagated pulse on photon number can be enhanced by 
cascading such cavity–QED systems and enables a variety of important 
applications, such as photon sorting, photon-number-resolving detec-
tors and Bell measurements29–31. The revealing of two-photon bound 
states upon interaction with a single atom is an appealing resource 
for the realisation of high-fidelity two-qubit photonic gates, such as 
controlled-phase gates32. Furthermore, the systematic generation of 
photonic dimers paves the way for substantial advances in quantum 
metrology33, and quantum-enhanced microscopy and lithography34,35.
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