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Plasmonic photoconductive terahertz 
focal-plane array with pixel super-resolution
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Ali Charkhesht    4, Aydogan Ozcan    1,2,3 & Mona Jarrahi    1,2 

Imaging systems operating in the terahertz part of the electromagnetic 
spectrum are attractive due to their ability to penetrate many opaque 
materials and provide unique spectral signatures of various chemicals. 
However, the use of terahertz imagers in real-world applications has been 
limited by the slow speed, large size, high cost and complexity of present 
systems, largely due to the lack of suitable terahertz focal-plane array 
detectors. Here we report a terahertz focal-plane array that can directly 
provide the spatial amplitude and phase distributions, along with the 
ultrafast temporal and spectral information of an imaged object. It consists 
of a two-dimensional array of ~0.3 million plasmonic photoconductive 
nanoantennas optimized to rapidly detect broadband terahertz radiation 
with a high signal-to-noise ratio. We utilized the multispectral nature of 
the amplitude and phase data captured by these plasmonic nanoantennas 
to image different objects, including super-resolved etched patterns in 
a silicon substrate and defects in battery electrodes. By eliminating the 
need for raster scanning and spatial terahertz modulation, our terahertz 
focal-plane array offers more than a 1,000-fold increase in the imaging 
speed compared with the state of the art and potentially suits a broad range 
of applications in industrial inspection, security screening and medical 
diagnosis, among others.

The past decades witnessed substantial developments in terahertz 
imaging technologies and their unique utilization in a broad range of 
applications. The relatively low energy of terahertz photons and their 
high penetration through many non-conductive materials make tera-
hertz radiation promising for non-destructive biomedical imaging1–3; 
security screening4–6; quality control of pharmaceutical7–9, industrial10–12 
and agricultural products13–15; and cultural heritage conservation16–18.

Despite its great potential, the usage of terahertz imaging in 
real-world applications has been limited by the slow speed, large 
size, high cost and complexity of existing imaging systems. Terahertz 
time-domain spectroscopy (THz-TDS) systems have been instru-
mental for various imaging applications19–29 since they provide the 
time-resolved response of objects with a sub-picosecond temporal 

resolution, which yields both amplitude and phase information over 
a broad terahertz-frequency range. However, due to the single-pixel 
nature of existing THz-TDS systems, image data are acquired by raster 
scanning either the object or the imaging system, leading to very slow 
imaging speeds and bulky, complex setups.

To avoid raster scanning, electro-optic processes in nonlinear crys-
tals have been employed to convert the object’s terahertz amplitude 
and phase information to the near-infrared regime and acquire them 
with an optical camera22–25. However, due to the nonlinear nature of 
the wavelength conversion process, these imaging systems generally 
require bulky and expensive high-energy lasers and provide very low 
signal-to-noise ratio (SNR) levels (Supplementary Table 1). Another way 
to avoid raster scanning is to encode the terahertz radiation pattern 

Received: 10 July 2023

Accepted: 3 November 2023

Published online: 4 January 2024

 Check for updates

1Department of Electrical & Computer Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, USA. 2California NanoSystems Institute 
(CNSI), University of California Los Angeles (UCLA), Los Angeles, CA, USA. 3Department of Bioengineering, University of California Los Angeles (UCLA), 
Los Angeles, CA, USA. 4Lookin, Inc., Los Angeles, CA, USA. 5These authors contributed equally: Xurong Li, Deniz Mengu.  e-mail: mjarrahi@ucla.edu

http://www.nature.com/naturephotonics
https://doi.org/10.1038/s41566-023-01346-2
http://orcid.org/0000-0003-3770-723X
http://orcid.org/0000-0003-1407-1830
http://orcid.org/0009-0003-8351-6191
http://orcid.org/0000-0002-0717-683X
http://orcid.org/0000-0001-9514-555X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41566-023-01346-2&domain=pdf
mailto:mjarrahi@ucla.edu


Nature Photonics | Volume 18 | February 2024 | 139–148 140

Article https://doi.org/10.1038/s41566-023-01346-2

super-resolution (PSR) using a convolutional neural network (CNN) 
trained with deep learning. As a first proof of concept, we successfully 
imaged and super-resolved etched patterns in a high-resistivity silicon 
substrate and reconstructed both shape and depth of these patterns 
with an effective number of pixels that exceeds 1 kilopixels, digitally 
increasing the space–bandwidth product of the THz-FPA by 16 times. 
This PSR-enhanced THz-FPA would be transformative for building 
high-throughput and high-resolution imaging and inspection systems 
that benefit from the unique spectral features of terahertz waves, and 
would open up a plethora of new applications in biomedical imaging, 
defense/security screening, agriculture and quality control, among 
many others.

Results
Figure 1 shows the schematic and operation principles of the 
terahertz imaging system. It consists of a THz-FPA composed of 
a 2D array of 283,500 plasmonic nanoantennas fabricated on a 
low-temperature-grown GaAs (LT-GaAs) substrate, where the plas-
monic nanoantennas serve as photoconductive terahertz detector ele-
ments. The geometry of the nanoantennas is chosen to obtain a strong 
spatial overlap between the received terahertz radiation and optical 
pump beam, despite the large difference between their wavelengths, 
to achieve high detection sensitivity over a broad terahertz-frequency 
range (Supplementary Fig. 1). Unlike previously used plasmonic nano-
antenna arrays for single-pixel terahertz detection36–39, which utilized 
deeply subwavelength nanoantenna lengths, the designed THz-FPA 
benefits from a wavelength-range nanoantenna length, which pro-
vides substantially stronger terahertz electric field enhancement in 
the device active area. Also, unlike the earlier architectures employed 
in single-pixel terahertz detection36–39, the geometry of the plasmonic 
nanoantennas and shadow electrodes are chosen to accommodate 
the connection traces of the THz-FPA and maintain a strong overlap 
between the optical and terahertz beams. To simplify data readout from 
the THz-FPA, the plasmonic nanoantennas are grouped into 7 × 9 clus-
ters (that is, pixels) and the collective response of all the clusters is cap-
tured using a custom-made readout circuit packaged with the FPA chip 
(Supplementary Fig. 3 and Methods). Using this configuration, ultrafast 
temporal and spectral information of all the FPA pixels are resolved with 
more than a 60 dB SNR and a 3 THz detection bandwidth when used in 
a THz-TDS setup (Supplementary Fig. 4 and Methods). Although this 
clustering reduces the number of physically accessible pixels of the FPA 
to 63, the distributed nature of the 283,500 plasmonic nanoantennas 
positioned uniformly across the entire image plane—when combined 
with their high SNR and large bandwidth—allowed us to perform PSR 
using a trained CNN, digitally increasing the space–bandwidth product 
of the THz-FPA by 16-fold and achieving an effective pixel number of 
>1 kilopixels. Furthermore, the high sensitivity and broad bandwidth of 
the THz-FPA enable resolving spectral images of objects over a 2.5 THz 
bandwidth without using raster scanning or spatial modulation of the 
terahertz beam (Supplementary Fig. 6).

As a proof of concept, we experimentally realized PSR and digitally 
increased the effective pixel count of our THz-FPA by more than an 
order of magnitude. For this, we utilized a convolutional deep neural 
network that was trained on the basis of the experimental image data. 
Figure 2a illustrates the architecture of the convolutional deep neural 
network used in this study to process the information recorded by 
the THz-FPA (Methods). To train the PSR network with our THz-FPA, 
we imaged spatially structured objects comprising etched patterns 
in a high-resistivity silicon substrate (Supplementary Fig. 7). Two 
different experimental setups were designed and tested to image 
various patterned objects at a distance of 1.1 mm and 20 cm (far field) 
from the THz-FPA (Supplementary Fig. 5). The same PSR framework 
was applied to super-resolve the images that are projected onto the 
THz-FPA in these setups, making our results broadly applicable to dif-
ferent lens-based and lens-free imaging systems.

interacting with the object through a time-varying spatial modulator 
and reconstruct the image using the spatial pattern information26–30. 
This approach enabled faster and more robust terahertz imaging sys-
tems by eliminating the mechanical stages used for raster scanning. 
However, these imaging systems require multiple time intervals to 
encode the terahertz radiation pattern with different spatial distri-
butions, limiting their speed, especially when acquiring image data 
over a broad terahertz bandwidth. In addition, the requirement for a 
time-varying spatial modulator adds to the size, complexity and cost 
of the imaging system.

Further advancements in terahertz imaging technology would 
substantially benefit from terahertz focal-plane arrays (THz-FPAs) that 
can directly provide the spatial, ultrafast temporal, spectral, amplitude 
and phase information of the object simultaneously. Existing terahertz 
detector arrays based on field-effect transistors31 and microbolom-
eters32 do not provide time-resolved and frequency-resolved image 
data and lack phase information. It has been shown that phase infor-
mation can be recovered through digital holography when using these 
detector arrays in an interferometric setup33–35. However, the scope 
of such interferometric setups is restricted to objects that possess 
axially uniform refractive indexes and does not apply to more general 
multilayered structures.

Overall, imaging science in the terahertz part of the electromag-
netic spectrum has been lacking FPAs that can directly provide the 
amplitude and phase information of samples over a large spectral 
bandwidth and with an ultrafast temporal response. Such capabilities, 
if made possible in the same FPA, would open up various new applica-
tions, for example, difficult-to-see phase-only objects that are weakly 
scattering could be imaged and sensed in a snapshot, potentially reveal-
ing their conformational changes at ultrafast timescales. As another 
opportunity, broadband spectral features that are acquired from the 
objects could also reveal their unique spectral signatures, and when 
this is combined with the amplitude and phase images and the ultrafast 
temporal response of the samples, it could provide unprecedented 
channels of information for automated three-dimensional analysis and 
quantification of samples at high throughput. These powerful informa-
tion channels, once bundled together, would help us fully exploit all the 
advantageous features of terahertz waves and substantially improve 
the resolution and throughput of techniques that are used for imag-
ing, sensing and inspecting materials, objects, scenes and chemical 
processes in the terahertz-frequency range.

Motivated by these pressing needs, here we present the first 
THz-FPA that can directly provide the spatial amplitude and phase 
distributions, along with the ultrafast temporal and spectral informa-
tion of an imaged object. It consists of a two-dimensional (2D) array of 
283,500 plasmonic nanoantennas36–39 engineered to detect broadband 
terahertz radiation with a high SNR when used in a THz-TDS system. To 
simplify data readout from the THz-FPA, these plasmonic nanoanten-
nas are grouped into 7 × 9 clusters, and the collective response of all 
the nanoantenna clusters is electronically captured at each temporal 
point to simultaneously resolve their time-domain response. The 
amplitude and phase responses of the THz-FPA outputs are extracted 
from the time-domain data over a 3 THz bandwidth. Using an electronic 
readout, the THz-FPA outputs at each temporal point are captured in 
164 μs, exhibiting a 1,000-fold increase in speed compared with the 
fastest-reported multipixel terahertz time-domain imaging system28, 
enabling time-domain terahertz video capture at 16 fps (Supplemen-
tary Fig. 8 and Supplementary Video 1). Although the use of plasmonic 
nanoantenna arrays for single-pixel terahertz detection has been previ-
ously demonstrated36–39, terahertz detector arrays based on plasmonic 
nanoantennas were not realized before, preventing the direct detection 
of spatial amplitude and phase distributions, as well as the ultrafast 
temporal and spectral information of an imaged object.

In this work, we utilize the broadband nature of the spatial 
amplitude and phase data captured by our THz-FPA to realize pixel 
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First, we fabricated 300 spatially structured silicon samples, each 
corresponding to a unique combination of 75 designed patterns and 
4 etch depths (Δt = 10, 20, 30 and 40 μm). The objects were imaged at 
an axial distance of 1.1 mm from the active area of the THz-FPA using a 
high-refractive-index semiconductor substrate, leading to a Fresnel 
number of >1. Therefore, one of the main sources of spatial resolution 
loss for these imaging experiments is the pixelation at the THz-FPA. 
The resulting measurements from these samples were divided into two 
sets for the training and blind testing of our PSR-enhanced THz-FPA. 
The etched depths of all samples, Δm

t , were measured using a profilom-
eter to establish the ground-truth images during the training and 
testing of our PSR deep neural network.

Our PSR neural network aims to benefit from the large SNR and 
broad bandwidth of each FPA pixel to achieve super-resolution, and 
therefore, it is designed to take the raw spectral amplitude and phase 
components of the THz-FPA output (Fig. 2a). The spectral ampli-
tude components of each FPA pixel at N different frequencies within 
[fmin, fmax] are used as N input channels to the PSR network. We also 
enriched this input information by concatenating a thickness (that is, 
optical path length) image estimate that is computed based on the slope 
of the unwrapped phase detected within [fmin, fmax]. As a result, we have 
a total of N + 1 information channels that feed the PSR network, which 
was trained using error backpropagation with a structural loss term 
calculated against the ground-truth images. This is a one-time training 
process, which utilizes the high SNR and multispectral output of our 
THz-FPA to digitally achieve PSR and increase the space–bandwidth 
product of our FPA. Although the detection bandwidth of the THz-FPA 
extends from 0.1 to 3.0 THz, in our training and testing, we took fmin and 
fmax as 0.5 and 1.0 THz, respectively, avoiding some of the water vapour 
absorption lines, setting the number of amplitude channels at the input 
of the PSR network to N = 41. As a result of this choice, the PSR network 
was trained to process the spatial information contained in the N + 1 = 42 
input channels detected by our THz-FPA to perform PSR.

To train and test the CNN shown in Fig. 2a, we used an experi-
mental dataset of 343 raw image measurements conducted on the 
300 samples, with some of the samples imaged more than once to 

demonstrate the repeatability of the imaging system. This image data 
were partitioned in a way that 68 measurements were preserved for 
the blind testing of the PSR network, whereas the rest of the meas-
urements were used for training (Supplementary Fig. 15 shows the 
ground-truth thickness images of the training dataset). Figure 2b 
depicts the ground-truth images of these 68 test samples that were 
never used or seen by the PSR network before, and the corresponding 
super-resolved images are reported in Fig. 2c. Visual comparison of the 
ground-truth thickness images and the super-resolved PSR network 
output images reconstructed by taking advantage of the broad band-
width operation of our multispectral THz-FPA reveals a close match 
for all the test samples regardless of their material thickness and etch 
depth. These results also demonstrate resolving small-scale target 
objects, including patterns with spatial features as small as one-fourth 
the physical pixel size of our THz-FPA in each lateral direction, which 
clearly highlights the success of the PSR network. We also performed a 
quantitative comparison between the ground-truth thickness images 
shown in Fig. 2b and the neural network’s reconstructions in Fig. 2c 
using the structural similarity index measure (SSIM) and the peak 
signal-to-noise ratio (PSNR); our reconstruction results achieved an 
SSIM of 0.839 ± 0.098 and a PSNR of 16.60 ± 3.67 dB, further revealing 
the success of our PSR-enhanced THz-FPA.

To characterize the experimentally achieved resolution of our 
PSR-enhanced THz-FPA, Fig. 3 provides a closer look at the reconstruc-
tion performance of the neural network for some grating patterns in 
our test data with sub-pixel linewidths corresponding to 0.75, 0.50 and 
0.25 times the physical pixel size of the FPA. The cross-sections of the 
ground-truth and PSR network output images with different sub-pixel 
linewidths (Fig. 3) demonstrate that we can resolve horizontally and 
vertically oriented thickness variations as small as one-fourth the 
physical pixel size of the THz-FPA. This indicates a 16-fold increase in 
the number of effective pixels and a super-resolved total pixel count of 
1,008. Despite the deeply subwavelength etch depths of these gratings, 
the PSR network resolved the 2D structure of these sub-pixel gratings 
and accurately quantified the thickness variations as shown in the 
cross-sectional plots (Fig. 3).
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Fig. 1 | Plasmonic photoconductive THz-FPA with PSR. The FPA captures 
hyperspectral, time-resolved terahertz images of an object and a PSR neural 
network processes these images to reconstruct a higher-resolution image with 
a 16-fold larger number of effective pixels. The red and blue beams represent 

the optical pump and terahertz beams, respectively. λm = 398 μm denotes the 
median wavelength of the terahertz-frequency band of interest. The inset shows 
the optical microscopy images (left and middle) of the THz-FPA and a scanning 
electron microscopy image of the plasmonic nanoantennas (right).
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To shed more light on the generalization performance of our 
PSR-enhanced THz-FPA, we trained three additional PSR networks 
based on different partitioning schemes of the experimental data 
between the training and testing sets. Supplementary Fig. 9 shows 
these new tests and their corresponding super-resolved images, all of 
which successfully demonstrate the generalization capacity of our PSR 
approach under different training and testing sets.

To further quantify the imaging performance of our PSR-enhanced 
THz-FPA, in Fig. 4a, we report the depth estimation ∆̂t for each of the 

reconstructed test patterns shown in Fig. 2b, compared with the 
ground-truth values Δm

t  measured with a profilometer. As desired, Δ̂t 
inferred by the PSR network output images generally follow the Δm

t = Δ̂t 
line (Fig. 4a, dashed line). Figure 4b–d illustrates a similar analysis for 
the three additional test datasets (Supplementary Fig. 9), where the 
inference results also follow the Δm

t = Δ̂t line (Fig. 4b–d, dashed lines) 
without any major errors or outliers, demonstrating the success of the 
presented PSR-enhanced THz-FPA in achieving both super-resolution 
and material thickness estimation, independent of the training and 
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Fig. 2 | PSR-enhanced THz-FPA imaging results. a, The presented imaging 
system relies on the high SNR and broad detection bandwidth of our THz-FPA 
and exploits the spatiotemporal information collected in a single shot without 
any time multiplexing or raster scanning, to enhance the resolution of the 
imaging system beyond the limit dictated by the physical size of the pixels with 
the help of a trained CNN. b, Ground-truth thickness images of the objects 
used in our experiments. Blind testing set A/B contains 54/14 measurements 
collected based on 27/8 different object patterns. Compared with the training 

set, the samples in set A differ in terms of their thickness contrasts, whereas 
the samples in set B are unique with regard to their 2D patterns and thickness 
contrasts. c, Super-resolved images using the PSR-enhanced THz-FPA. The PSR 
neural network provides a 16-fold increase in the number of effective pixels, 
revealing >1 kilopixels in each image. d, Relative spectral phase slope of the 
objects computed based on the slope of unwrapped spectral phase distribution. 
e, Amplitude channel at the median frequency of fm = 0.754 THz (λm = 398 μm).
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testing datasets. This conclusion is also supported by the SSIM and 
PSNR values shown in Fig. 4e,g. We also analysed the SSIM and PSNR 
of the reconstructed images across all the test sets using the percentage 
of thickness estimation error, defined as 

||Δm
t −Δ̂t ||
Δm
t

× 100 (Fig. 4f). Based 

on this analysis, the mean error in Δ̂t inferred by our PSR network is 
found to be 10.73%; for example, for the test samples fabricated with 
Δt = 10 µm, this mean error corresponds to ~1 μm, which is deeply 
subwavelength.

To further assess the generalization performance of our 
PSR-enhanced THz-FPA, we designed, fabricated and imaged various 
objects with more complex and irregular spatial structures than the 
ones used for the training, including hand-written numbers and let-
ters, and verified the robustness of our PSR algorithm in resolving both 
depth and shape of these objects. These newly fabricated objects were 
blindly tested with the same PSR neural network used in Fig. 2, and no 
patterns with similar shapes were seen by the neural network during 
its training. The depth and shape of the patterns were successfully 
reconstructed with an average PSNR of 12 dB and SSIM of 0.64, confirm-
ing the generalization performance of the presented PSR-enhanced 
THz-FPA (Supplementary Fig. 11). In addition, we numerically tested 
the same PSR-enhanced THz-FPA framework for resolving images of 
objects with non-binary depths and weaker contrast. Supplementary 
Fig. 16 shows these new objects with variable depths/thicknesses and 
their corresponding super-resolved images; our results reveal the 
successful reconstruction of these test object images with an average 
PSNR of 29.4 dB and SSIM of 0.93.

To demonstrate the capability of our PSR-enhanced THz-FPA for 
imaging far-field objects, we imaged several spatially structured silicon 
samples with four different etch depths (Δt = 10, 20, 30 and 40 μm), 
placed at an axial distance of 20 cm from the THz-FPA surface (Sup-
plementary Fig. 5). We constructed an experimental image dataset 
containing 151 far-field measurements, selected 16 measurements 
corresponding to 16 unique samples for blind testing and used the 
remaining 135 measurements to train the PSR network (Supplemen-
tary Fig. 20 shows the ground-truth thickness images of the training 
dataset). In our training and testing, we took fmin and fmax as 1.3 THz 
and 2.1 THz, respectively, avoiding some of the water vapour absorp-
tion lines, setting the number of amplitude channels at the input of 
the PSR network to N = 52. The ground-truth images of the 16 test 
samples representing our blind testing set and the corresponding 
super-resolved images are shown in Fig. 5a,b, respectively. Visual com-
parison of the ground-truth thickness images and the super-resolved 
images indicates a close match for all the test samples regardless of 
their thickness and etch depth. Our reconstruction results achieved 
an average SSIM of 0.78 and a PSNR of 14.5 dB, demonstrating the 
success of our PSR-enhanced THz-FPA imaging system in far-field  
measurements.

Finally, to experimentally assess the resilience of our PSR-enhanced 
THz-FPA imaging system to potential object misalignments, we imaged 
test objects (1) at different axial distances from the THz-FPA and (2) with 
different rotation angles within the sample field of view, and demon-
strated the successful reconstruction of both shape and depth of these 
purposely misaligned objects despite the fact that the network training 
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Fig. 3 | Resolution quantification of the PSR-enhanced THz-FPA. Resolved 
images of the fabricated resolution test objects are shown on the left. The 
linewidths and separations are 0.75, 0.50 and 0.25 times the FPA pixel size in 
both horizontal and vertical directions. The raw images show the depth patterns 

estimated from the raw data of the THz-FPA. λm = 398 μm denotes the median 
wavelength of the terahertz-frequency band of interest. The right plots show the 
averaged depth profiles in the vertical (top three plots) and horizontal (bottom 
three plots) directions.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 18 | February 2024 | 139–148 144

Article https://doi.org/10.1038/s41566-023-01346-2

was free from such large degrees of misalignments (Supplementary 
Figs. 14, 18 and 19).

Discussion
In this work, we present one of the first THz-FPAs comprising 283,500 
plasmonic photoconductive nanoantennas, capable of simultaneously 
providing the spatial amplitude and phase distributions as well as the 
ultrafast temporal and spectral information of an imaged object. Our 
PSR-enhanced THz-FPA exploits its multispectral operation to increase 

the spatial resolution and the effective number of pixels in the final recon-
structions compared with the physical pixel size of the FPA. The presented 
deep learning-driven terahertz imaging system uses the amplitude and 
phase information of the detected spectral components of an imaged 
object to enhance the spatial resolution by 4-fold in each lateral direction, 
increasing the space–bandwidth product of the FPA by 16-fold (4 × 4), with 
>1 kilopixels in each reconstructed image. In addition, our PSR-enhanced 
THz-FPA has been shown to quantify deeply subwavelength material thick-
ness variations as small as 10 µm, with a mean thickness accuracy of ~1 µm.
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(right) of all the object patterns in the test sets, namely, set A, set B, set 2A, set 3A 
and set 4A as a function of the percentage of thickness estimation error, that is, 
||Δ̂t−Δmt ||

Δmt
× 100. g, Violin plots of SSIM (left) and PSNR (right) values along with the 

corresponding standard deviations representing the image reconstruction 
quality achieved by the PSR networks for the object patterns included in the test 
sets of set A, set B, set 2A, set 3A and set 4A as a function of Δt. Nm denotes the 
sample size for each test set.
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To further emphasize the importance of the multispectral opera-
tion of the THz-FPA, we compared the performance of our PSR frame-
work with multispectral input data against the use of single-frequency 
input data. For this purpose, we trained six image reconstruction 
deep neural networks that use the amplitude and phase outputs of 
the THz-FPA at a single frequency of 0.50, 0.75, 1.00, 1.25, 1.60 and 
2.00 THz. Supplementary Fig. 10 shows the reconstructed images of 
each one of these single-frequency PSR networks along with their cor-
responding SSIM and PSNR values. Although these single-frequency 
systems can reveal the images of the input objects to some extent, 
the reconstructed images suffer from severe artifacts and distortions 
compared with our multispectral PSR results (Fig. 2). These results 
testify that a single-frequency or narrowband THz-FPA capable of 
providing both amplitude and phase information cannot match the 
super-resolution capabilities offered by our multispectral THz-FPA. 
It should also be noted that the existing detector arrays based on 
field-effect transistors31 and microbolometers32 do not provide 
frequency-resolved image data and cannot obtain phase informa-
tion, which would prevent their performance enhancement with the  
discussed PSR framework.

Our neural network-based PSR results demonstrated strong gener-
alization to new imaging conditions (for example, object rotations and 
axial defocusing) and new types of sample never used in the training 
before (Supplementary Figs. 11, 14, 16, 18 and 19). The quality of the 
resolved images using the reported PSR framework could be further 
improved with additional training data and unique objects, which 
would also allow us to make use of deeper neural network architec-
tures without overfitting. Additionally, we did not use a generative 

model trained through an adversarial game between a generator and 
a discriminator network; instead, we solely relied on a structural loss 
function in the form of mean squared error. With sufficiently large train-
ing data and carefully balanced loss terms using a linear mix between 
a structural and adversarial loss, the image reconstruction quality 
reported in this study could be further improved using, for example, 
generative adversarial networks40,41.

The presented multispectral super-resolution framework used for 
imaging phase objects demonstrates one potential application of our 
plasmonic photoconductive THz-FPA as its proof of concept. To dem-
onstrate that the imaging capabilities of this THz-FPA are not limited 
to super-resolving phase-only objects through a neural-network-based 
deep learning algorithm, we also captured and super-resolved a video 
(at 16 fps) of water flow in three adjacent plastic pipes (each with an 
inner diameter of 250 μm) by using a completely different algorithm 
based on holography (Supplementary Fig. 21 and Supplementary 
Video 1). Since water strongly absorbs terahertz waves, the channels 
that carry water form an opaque object that is dynamically evolving 
through the flow, in contrast to the transmissive phase objects that 
were used earlier in our experiments.

Based on all the proof-of-concept experimental results reported 
in this work, we believe that the unique capabilities of our plasmonic 
photoconductive THz-FPA enable the high-speed acquisition of 
spatial, ultrafast temporal, spectral, amplitude and phase informa-
tion of the imaged object; this diverse set of information acquired 
through our THz-FPA could be used in various applications by, for 
example, utilizing the time-of-flight terahertz pulses to reconstruct 
three-dimensional images of multilayered objects42, using the  

a Ground-truth images b Reconstructed super-resolved images

Relative spectral phase slopec d Amplitude channel at λm (1.6 THz)

0 40 50 µm 010 20 30 10 20 30 40 50 µm

0.50–0.5

Radian THz–1

4λm

Fig. 5 | Far-field PSR-enhanced THz-FPA imaging results. a, Ground-truth thickness images of the objects used in our experiments. b, Super-resolved images using 
the PSR-enhanced THz-FPA. c, Relative spectral phase slope of the objects computed based on the slope of unwrapped spectral phase distribution. d, Amplitude 
channel at the median frequency of fm = 1.6 THz.
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spectroscopic signatures to identify chemicals19–21 and integrating 
it with diffractive optical networks for feature detection and object 
classification43,44. For example, the demonstrated THz-FPA offers a 
powerful and much needed solution for a long-lasting problem in 
battery manufacturing: non-destructive quality assessment of battery 
electrodes during manufacturing. By extracting volumetric structural 
information of battery electrodes, which are layered structures of 
optically opaque coatings on metallic plates, our THz-FPA enables the 
real-time and high-throughput detection of various types of hidden 
defect such as divots, agglomerates and metal contamination, as well 
as non-uniformities in coating thickness (Fig. 6). These defects and 
non-uniformities drastically change the electrochemical performance 
of batteries, diminishing their performance by aggravating cycle effi-
ciency, lowering discharge capacity, shortening the life span and caus-
ing safety hazards like fire and explosion. Figure 6 illustrates different 
defective lithium-ion battery electrodes quantitatively imaged by our 

THz-FPA and the resolved intensity and thickness profiles, revealing 
structural information of these defective electrodes. To date, no other 
imaging method has been capable of detecting and quantifying such 
structural defect information in real time, to the best of our knowledge, 
which is urgently needed in roll-to-roll battery manufacturing plants 
considering all the applications and products that heavily rely on 
high-quality batteries.

The demonstrated THz-FPA can be further advanced to provide 
a larger number of pixels, larger field of view, higher SNR, higher 
bandwidth and faster image acquisition. The use of photoconductive 
nanoantennas integrated with a plasmonic cavity offers considerably 
higher SNR and bandwidth at a much lower optical power level45, and 
could enable larger-pixel-count FPAs and larger-field-of-view imaging 
systems without any degradation in the image quality. The speed of 
the demonstrated THz-FPA is still limited by the utilized sequential 
readout electronic system. Integration of the FPA with a 2D parallel 
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Fig. 6 | Structural information of defective lithium-ion battery electrodes 
captured with our THz-FPA. a, Optical camera image of a lithium-ion battery 
electrode (left), showing a slightly darker region around an agglomerate under 
a strong flashlight. The top view of the terahertz intensity (middle) and coating 
thickness (right) profiles captured by the THz-FPA clearly indicate the presence 
of the agglomerate, which causes terahertz scattering and thickness variations 
around the defective region. A uniform coating thickness of 100 μm is measured 
for the healthy regions of the battery electrode. b, Optical camera images of 

different lithium-ion battery electrodes (left), showing small changes in the 
darkness of the defective regions (agglomerates and divots) under a strong 
flashlight. The top view of the terahertz intensity (middle) and cross-sectional 
(right) profiles captured by the THz-FPA clearly indicate the presence of defects, 
which causes terahertz scattering and variations in coating thickness around the 
defective regions. A uniform coating thickness of 100 μm is measured for the 
healthy regions of the battery electrodes.
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readout integrated circuits would substantially increase the imaging 
speed, SNR and bandwidth. These advancements could bring us much 
closer to realizing the untapped potential of the terahertz spectrum 
for numerous applications.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-023-01346-2.

References
1.	 Yang, X. et al. Biomedical applications of terahertz spectroscopy 

and imaging. Trends Biotechnol. 34, 810–824 (2016).
2.	 Sun, Q. et al. Recent advances in terahertz technology for 

biomedical applications. Quant. Imaging Med. Surg. 7, 345–355 
(2017).

3.	 Son, J.-H., Oh, S. J. & Cheon, H. Potential clinical applications of 
terahertz radiation. J. Appl. Phys. 125, 190901 (2019).

4.	 Liu, H.-B., Zhong, H., Karpowicz, N., Chen, Y. & Zhang, X.-C. 
Terahertz spectroscopy and imaging for defense and security 
applications. Proc. IEEE 95, 1514–1527 (2007).

5.	 Kowalski, M., Kastek, M., Walczakowski, M., Palka, N. & 
Szustakowski, M. Passive imaging of concealed objects in 
terahertz and long-wavelength infrared. Appl. Opt. 54,  
3826–3833 (2015).

6.	 Tzydynzhapov, G. et al. New real-time sub-terahertz security body 
scanner. J. Infrared Milli. Terahz Waves 41, 632–641 (2020).

7.	 Zeitler, J. A. et al. Terahertz pulsed spectroscopy and imaging in 
the pharmaceutical setting—a review. J. Pharm. Pharmacol. 59, 
209–223 (2010).

8.	 Alves-Lima, D. et al. Review of terahertz pulsed imaging for 
pharmaceutical film coating analysis. Sensors 20, 1441  
(2020).

9.	 Patil, M. R., Ganorkar, S. B., Patil, A. S. & Shirkhedkar, A. A. 
Terahertz spectroscopy: encoding the discovery, instrumentation, 
and applications toward pharmaceutical prospectives. Crit. Rev. 
Anal. Chem. 52, 343–355 (2020).

10.	 Naftaly, M., Vieweg, N. & Deninger, A. Industrial applications of 
terahertz sensing: state of play. Sensors 19, 4203 (2019).

11.	 Tao, Y. H., Fitzgerald, A. J. & Wallace, V. P. Non-contact, 
non-destructive testing in various industrial sectors with terahertz 
technology. Sensors 20, 712 (2020).

12.	 Liebermeister, L. et al. Terahertz multilayer thickness 
measurements: comparison of optoelectronic time and 
frequency domain systems. J. Infrared Milli. Terahz Waves 42, 
1153–1167 (2021).

13.	 Qin, J., Ying, Y. & Xie, L. The detection of agricultural products and 
food using terahertz spectroscopy: a review. Appl. Spectrosc. Rev. 
48, 439–457 (2013).

14.	 Afsah‐Hejri, L., Hajeb, P., Ara, P. & Ehsani, R. J. A comprehensive 
review on food applications of terahertz spectroscopy and 
imaging. Compr. Rev. Food Sci. Food Saf. 18, 1563–1621 (2019).

15.	 Afsah-Hejri, L. et al. Terahertz spectroscopy and imaging: a review 
on agricultural applications. Comput. Electron. Agric. 177, 105628 
(2020).

16.	 Jackson, J. B. et al. A survey of terahertz applications in cultural 
heritage conservation science. IEEE Trans. THz Sci. Technol. 1, 
220–231 (2011).

17.	 Cosentino, A. Terahertz and cultural heritage science: 
examination of art and archaeology. Technologies 4, 6 (2016).

18.	 Guillet, J.-P. et al. Art painting diagnostic before restoration with 
terahertz and millimeter waves. J. Infrared Milli. Terahz Waves 38, 
369–379 (2017).

19.	 Shen, Y. C. et al. Detection and identification of explosives using 
terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 
241116 (2005).

20.	 Zhong, H., Redo-Sanchez, A. & Zhang, X.-C. Identification 
and classification of chemicals using terahertz reflective 
spectroscopic focal-plane imaging system. Opt. Express 14, 
9130–9141 (2006).

21.	 Charron, D. M., Ajito, K., Kim, J.-Y. & Ueno, Y. Chemical mapping 
of pharmaceutical cocrystals using terahertz spectroscopic 
imaging. Anal. Chem. 85, 1980–1984 (2013).

22.	 Wang, X., Cui, Y., Sun, W., Ye, J. & Zhang, Y. Terahertz real-time 
imaging with balanced electro-optic detection. Opt. Commun. 
283, 4626–4632 (2010).

23.	 Wang, X., Cui, Y., Sun, W., Ye, J. & Zhang, Y. Terahertz polarization 
real-time imaging based on balanced electro-optic detection.  
J. Opt. Soc. Am. A 27, 2387–2393 (2010).

24.	 Usami, M. et al. Development of a THz spectroscopic imaging 
system. Phys. Med. Biol. 47, 3749–3753 (2002).

25.	 Blanchard, F. & Tanaka, K. Improving time and space resolution in 
electro-optic sampling for near-field terahertz imaging. Opt. Lett. 
41, 4645–4648 (2016).

26.	 Zhao, J., E, Y., Williams, K., Zhang, X.-C. & Boyd, R. W.  
Spatial sampling of terahertz fields with sub-wavelength  
accuracy via probe-beam encoding. Light Sci. Appl. 8, 55  
(2019).

27.	 Shang, Y. et al. Terahertz image reconstruction based on 
compressed sensing and inverse Fresnel diffraction. Opt. Express 
27, 14725–14735 (2019).

28.	 Stantchev, R. I., Yu, X., Blu, T. & Pickwell-MacPherson, E. Real-time 
terahertz imaging with a single-pixel detector. Nat. Commun. 11, 
2535 (2020).

29.	 Zanotto, L. et al. Time-domain terahertz compressive imaging. 
Opt. Express 28, 3795–3802 (2020).

30.	 Shrekenhamer, D., Watts, C. M. & Padilla, W. J. Terahertz  
single pixel imaging with an optically controlled dynamic  
spatial light modulator. Opt. Express 21, 12507–12518  
(2013).

31.	 Al Hadi, R. et al. A 1 k-pixel video camera for 0.7–1.1 terahertz 
imaging applications in 65-nm CMOS. IEEE J. Solid-State Circuits 
47, 2999–3012 (2012).

32.	 Nemoto, N. et al. High-sensitivity and broadband, real-time 
terahertz camera incorporating a micro-bolometer array with 
resonant cavity structure. IEEE Trans. THz Sci. Technol. 6, 175–182 
(2016).

33.	 Locatelli, M. et al. Real-time terahertz digital holography with a 
quantum cascade laser. Sci. Rep. 5, 13566 (2015).

34.	 Yamagiwa, M. et al. Real-time amplitude and phase imaging of 
optically opaque objects by combining full-field off-axis terahertz 
digital holography with angular spectrum reconstruction.  
J. Infrared Milli. Terahz Waves 39, 561–572 (2018).

35.	 Humphreys, M. et al. Video-rate terahertz digital  
holographic imaging system. Opt. Express 26, 25805–25813 
(2018).

36.	 Berry, C. W., Wang, N., Hashemi, M. R., Unlu, M. & Jarrahi, M. 
Significant performance enhancement in photoconductive 
terahertz optoelectronics by incorporating plasmonic contact 
electrodes. Nat. Commun. 4, 1622 (2013).

37.	 Yardimci, N. T. & Jarrahi, M. High sensitivity terahertz detection 
through large-area plasmonic nano-antenna arrays. Sci. Rep. 7, 
42667 (2017).

38.	 Wang, N., Cakmakyapan, S., Lin, Y.-J., Javadi, H. & Jarrahi, M.  
Room-temperature heterodyne terahertz detection with 
quantum-level sensitivity. Nat. Astron. 3, 977–982 (2019).

39.	 Turan, D. et al. Wavelength conversion through plasmon- 
coupled surface states. Nat. Commun. 12, 4641 (2021).

http://www.nature.com/naturephotonics
https://doi.org/10.1038/s41566-023-01346-2


Nature Photonics | Volume 18 | February 2024 | 139–148 148

Article https://doi.org/10.1038/s41566-023-01346-2

40.	 Wang, H. et al. Deep learning enables cross-modality 
super-resolution in fluorescence microscopy. Nat. Methods 16, 
103–110 (2019).

41.	 de Haan, K., Rivenson, Y., Wu, Y. & Ozcan, A. Deep-learning-based 
image reconstruction and enhancement in optical microscopy. 
Proc. IEEE 108, 30–50 (2020).

42.	 Krimi, S. et al. Highly accurate thickness measurement of 
multi-layered automotive paints using terahertz technology.  
Appl. Phys. Lett. 109, 021105 (2016).

43.	 Lin, X. et al. All-optical machine learning using diffractive  
deep neural networks. Science 361, 1004–1008  
(2018).

44.	 Li, J. et al. Spectrally encoded single-pixel machine vision using 
diffractive networks. Sci. Adv. 7, eabd7690 (2021).

45.	 Yardimci, N. T., Turan, D. & Jarrahi, M. Efficient  
photoconductive terahertz detection through photon  
trapping in plasmonic nanocavities. APL Photonics 6, 080802 
(2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturephotonics
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Photonics

Article https://doi.org/10.1038/s41566-023-01346-2

Methods
THz-FPA fabrication process
The THz-FPA was fabricated on an LT-GaAs substrate with a carrier 
lifetime of 0.3 ps (Fig. 1, inset). Supplementary Fig. 2 shows the fabrica-
tion process flow. The plasmonic nanoantennas were patterned using 
electron-beam lithography, followed by the deposition of 3/47 nm Ti/
Au and lift-off. The dipole-shaped nanoantennas have a 100 nm width 
and 180 nm periodicity along the z axis and have an arm length and 
tip-to-tip gap size of 20 μm and 500 nm, respectively, along the x axis. 
Output traces and contact pads were patterned by photolithography, 
followed by 20/180 nm Ti/Au deposition and lift-off. A 290-nm-thick sil-
icon nitride anti-reflection coating was deposited by plasma-enhanced 
chemical vapour deposition. Shadow metals were formed on the 
anti-reflection coating by photolithography, 10/90 nm Ti/Au deposi-
tion and lift-off. The fabricated THz-FPA consists of 283,500 plasmonic 
nanoantennas covering a 2.4 mm × 1.7 mm area.

Terahertz time-domain imaging setup
A Ti:sapphire laser (Coherent Mira 900) was used to generate optical 
pulses with an 800 nm central wavelength, 135 fs pulse width and 76 MHz 
repetition rate. The optical beam was split into two branches. One branch 
pumped a plasmonic photoconductive terahertz emitter46 to generate 
terahertz pulses. The other branch pumped the THz-FPA. The optical 
pump power incident on the terahertz emitter and FPA was 660 and 
500 mW, respectively. For the experimental setup used for Fig. 2b–e, two 
parabolic mirrors were used to collimate and focus the generated tera-
hertz radiation onto the active area of the THz-FPA after interacting with 
the imaged object. The objects were axially placed ~1.1 mm away from the 
active area of the THz-FPA using a high-refractive-index semiconductor 
substrate (Supplementary Fig. 5a). For the experimental setup shown 
in Fig. 5, the imaged objects were placed at a 20 cm axial distance from 
the active area of the THz-FPA. One parabolic mirror and one terahertz 
objective lens (TeraLens, Lytid) were used to collimate and focus the 
terahertz radiation onto the THz-FPA after interacting with the imaged 
objects and providing a demagnification factor of ~2.76 (Supplementary 
Fig. 5b). An optical delay stage was used to vary the optical path difference 
between the optical pump and terahertz beams incident on the THz-FPA. 
The time-domain terahertz electric field was obtained by measuring 
the photocurrent of the FPA pixels as a function of the optical delay. The 
frequency-dependent amplitude and phase of the terahertz signal were 
calculated by taking the Fourier transform of the time-domain data.

THz-FPA data acquisition system
A custom-made readout circuit was built for data readout from the 
THz-FPA. The circuit consists of a field-programmable gate array 
development board (Basys 3, Digilent) controlling four 16-channel 
multiplexers (ADG1206, Analog Devices), which sequentially direct the 
FPA outputs to a transimpedance amplifier (DLPCA-200, FEMTO). The 
transimpedance amplifier converts the FPA photocurrent outputs into 
voltage signals, which are then sampled by a lock-in amplifier (MFLI, 
Zurich Instruments) and routed to a computer for post-processing. 
The THz-FPA outputs at each temporal point are captured in 164 μs.

Phase object fabrication process
The phase objects were fabricated on a high-resistivity silicon sub-
strate. Supplementary Fig. 7 shows the fabrication process flow. A 
thin layer of silicon dioxide was first grown on the silicon substrate 
using thermal oxidation. Then, the object patterns were transferred 
onto the silicon dioxide layer by photolithography and silicon dioxide 
etching. Deep reactive ion etching was used to create the trenches in 
the silicon substrate, with the silicon dioxide layer being the etch mask. 
The depth of the silicon trenches was controlled by the etching time. 
Finally, the silicon dioxide layer was removed through buffered oxide 
etching. The depth of the silicon trenches was measured by a Dektak 
6M profilometer, which provides a 1 nm depth resolution.

Data preparation for deep neural network training and testing
The generation of ground-truth images was automated using a MAT-
LAB R2020a code that takes the etch mask (.dxf file) of the fabricated 
objects and outputs their thickness map with a resolution of 10 μm 
in both x and z directions, based on morphological image processing 
operations47. Since the relative position of the objects with respect to 
the active area of the THz-FPA is subject to change during the experi-
ments, we implemented an algorithm that estimates the 2D relative 
location of the objects and accordingly shifts the high-resolution 
ground-truth images. For the estimation of the object location, we 
followed a two-step procedure. In the first step, the high-resolution 
ground-truth images were downsampled to a Cartesian grid defined 
by the physical pixel size of our FPA, that is, 240 μm × 270 μm. For 
each spectral component detected within the 0.5–1.0 THz range, we 
computed the normalized cross-correlation function between the 
detected amplitude channels and the downsampled, low-resolution 
ground-truth model. The spectral component exhibiting the highest 
correlation coefficient was selected as the reference for the second fine 
adjustment step, and the location of the peak correlation coefficient 
was used for the coarse alignment.

Since image alignment accuracy beyond the physical pixel size 
was required to accurately train the PSR networks, we adapted a greedy 
strategy for fine alignment. Each ground-truth high-resolution image 
was shifted to 24 × 27 different positions with 10 μm steps around its 
coarsely estimated location computed in the first step. At each position, 
the ground truth was downsampled using bilinear interpolation to the 
physical resolution of the FPA and compared with the amplitude chan-
nel of the reference spectral component determined in the first step. 
Out of 24 × 27 = 648 normalized cross-correlations, we determined the 
best alignment position as the one providing the highest correlation 
coefficient, providing us an estimate of the relative object location with 
respect to the FPA at a spatial sampling rate much higher than the size 
of the physical pixels. All of these steps constitute a one-time effort 
used for training our PSR networks.

To super-resolve the images of the spatially structured silicon 
samples placed at an axial distance of 1.1 mm from the THz-FPA, we 
constructed a dataset containing 343 measurements; out of these 343 
measurements, we reserved 68 measurements corresponding to 35 
unique samples for blind testing (Fig. 2b), whereas the remaining 275 
measurements were used to train the PSR network. In these 68 measure-
ments constituting the blind testing dataset shown in Fig. 2, there were 
two major groups of objects labelled as set A with 54 measurements and 
set B with 14 measurements. The 54 measurements contained in set A 
were distributed over 27 unique object patterns, and for each of these 
object patterns, the training set contained measurements produced by 
the same 2D pattern although fabricated with different etch thickness 
levels. The samples in set B, on the other hand, did not only differ from 
the training samples in terms of the etch thickness contrast but their 
2D patterns were also unique, not included in the training set. Preserv-
ing this training/testing partition ratio (275/68), we also created three 
additional datasets (Supplementary Fig. 9). Although the samples in 
set B of these three new blind testing datasets were the same as the one 
shown in Fig. 2, the samples in set A were different and complementary 
to each other in terms of material thickness contrasts. To super-resolve 
the images of the spatially structured silicon samples placed at an axial 
distance of 20 cm from the plane of the THz-FPA, we constructed an 
experimental dataset containing 151 far-field measurements, reserved 16 
measurements corresponding to 16 unique samples for blind testing and 
used the remaining 135 measurements to train the PSR neural network.

PSR network architecture
Figure 2a illustrates the architecture of the deep neural network for 
PSR. In this study, we used a CNN inspired by the upsampling arm of 
U-Net48. Although we investigated the performance of other CNN archi-
tectures proven to provide high-quality super-resolved images, for 

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-023-01346-2

example, SRResNet49, SRCNN50 and ESPCN51, the architecture shown in 
Fig. 2a outperformed these architectures based on our THz-FPA results.

Each grey arrow in Fig. 2a represents a convolutional block that 
consists of three convolutional layers. If we denote the number of 
channels at the input (output) of a convolutional block c by N i

c  (N o
c ), 

then the number of channels is decreased at the output by half, that is, 
N o
c = N i

c

2
. This reduction in the number of channels is achieved by the 

three convolutional layers in cth block, where the number of channels 
at the input and output of each of these convolution operations is given 
as (N i

c ,
N i
c+N o

c

2
), ( N i

c+N o
c

2
, N

i
c+N o

c

2
) and ( N i

c+N o
c

2
,N o

c ). In addition, between each 
convolutional block, there is a 2 × 2 bilinear upsampling operation. We 
used four convolutional blocks interconnected through three linear 
upsampling operations. Including the first convolutional layer that 
takes Nλ-amplitude channels concatenated with the 7 × 9 low-resolution 
thickness estimate ILRt  and the output layer (Fig. 2a, blue arrow), our 
neural network consists of a total of 14 convolutional layers.

To overcome overfitting, we introduced data augmentation as 
part of the training forward model, in the form of random vertical and 
horizontal flipping of the input amplitude and thickness estimate 
channels. In addition, we employed random 90° rotations, with an addi-
tional resampling procedure (using bilinear interpolation) due to the 
non-symmetric structure of our FPA considering the number of pixels in 
the x and z directions. Although the random flipping and 90° rotations 
prevented overfitting and improved the generalization performance 
of the PSR network, to further enhance our super-resolution imaging 
performance, we adapted a simple yet effective data augmentation 
technique, namely, MixUp52,53. The MixUp technique creates linear 
combinations of input and output pairs based on a random variable 
ẟ in the range [0, 1] drawn from a Beta(α, α) distribution. In this study, 
α was taken as 0.2. With Xq and Xp denoting the input data sensors for 
the qth and pth experimental measurements, respectively, the MixUp 
technique created a new input, namely Xqp:

Xqp = δXq + (1 − δ)Xp. (1)

Similarly, the corresponding ground-truth image ISRqp  was generated/
augmented:

ISRqp = δISRq + (1 − δ)ISRp , (2)

where ISRq  and ISRp  represent the ground-truth images corresponding to 
the data tensors Xq and Xp, respectively. All the ground-truth images ISR 
are measured by the Dektak 6M profilometer.

We trained our PSR networks using a structural loss function L 
based on the mean squared error as

L = 1
MN

M
∑
m=1

N
∑
n=1

||ISR [m,n] − ISR
′
[m,n]||

2
. (3)

Here ISR
′
 defines the inference of the PSR network with M × N output 

pixels.
The image quality metric, PSNR, which was directly related to the 

mean squared error, was computed as

PSNR = 20log10 (
T
√L

) , (4)

where T denotes the etch depth of the ground-truth object measured 
by the Dektak 6M profilometer.

To compute the other image quality metric, SSIM, we used the 
following equation:

SSIM = 1
W

W
∑
w=1

(2μI SRw
μI SRw

′ + C1) (2σI SRw I SRw
′ + C2)

(μI SRw
2 + μI SRw

′ 2 + C1) (σI SRw
2 + σI SRw

′ 2 + C2)
, (5)

where the terms μISRw  and μISRw
′ denote the local mean computed for each 

8 × 8 window w, scanned over the ground-truth thickness image ISR and 
the super-resolved image at the output of the PSR network ISR′, respec-
tively. Similarly, σISRw  and σISRw ′ denote the corresponding local standard 
deviations with σISRw ISRw

′ representing the local cross-covariance between 
the corresponding windows from ISR and ISR′. As suggested in its original 
implementation54, we convolved both ISR and ISR′ with an 11 × 11 trun-
cated, circularly symmetric Gaussian filter with a standard deviation 
of 1.5 before computing equation (5). The constant factors in equation 
(5), that is, C1 and C2, were computed as (K1T)2 and (K2T)2, where  
T denotes the ground-truth material thickness contrast. The multiplica-
tive terms K1 and K2 were set to be 0.01 and 0.03, respectively, following 
the original implementation54.

Data availability
All the data and methods needed to evaluate the conclusions of this 
work are present in the Article and its Supplementary Information. 
Additional data are available from the corresponding author upon 
request.

Code availability
The deep learning models and codes used in this work are from stand-
ard libraries and scripts that are publicly available via TensorFlow at 
https://pypi.org/project/tensorflow-gpu/1.15.0/.
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