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Observation of the quantum Gouy phase

Markus Hiekkamäki      , Rafael F. Barros    , Marco Ornigotti     & 
Robert Fickler    

Controlling the evolution of photonic quantum states is crucial for 
most quantum information processing and metrology tasks. Due to its 
importance, many mechanisms of quantum state evolution have been 
tested in detail and are well understood; however, the fundamental phase 
anomaly of evolving waves, called the Gouy phase, has had a limited number 
of studies in the context of elementary quantum states of light, especially 
in the case of photon number states. Here we outline a simple method for 
calculating the quantum state evolution upon propagation and demonstrate 
experimentally how this quantum Gouy phase affects two-photon quantum 
states. Our results show that the increased phase sensitivity of multi-photon 
states also extends to this fundamental phase anomaly and has to be 
taken into account to fully understand the state evolution. We further 
demonstrate how the Gouy phase can be used as a tool for manipulating 
quantum states of any bosonic system in future quantum technologies, 
outline a possible application in quantum-enhanced sensing, and dispel 
a common misconception attributing the increased phase sensitivity of 
multi-photon quantum states solely to an effective de Broglie wavelength.

The wave dynamics dictating the evolution of quantum states is of 
utmost importance in both fundamental studies of quantum systems 
and quantum technological applications. For photons, the evolution 
of their spatial structure has been the key in a plethora of promising 
techniques for quantum communication1,2, information processing3,4, 
simulation5 and metrology6. One particular feature of a converging 
wave travelling through its focus is the acquisition of an additional 
phase shift when compared with a collimated beam or a plane wave trav-
elling the same distance. This effect, which is known as the Gouy phase, 
was first observed and described by Gouy more than a century ago7,8. 
Although the phenomenon is well established and can be described 
through methods in physical optics9,10, the Gouy phase continues to be 
the topic of studies discussing its underlying physical origin by linking 
it to properties such as the geometry of the focus, geometric phases 
and the uncertainty principle9,11–18. In addition to the continued inter-
est aiming at providing an intuition for the phenomenon, this phase 
anomaly is often harnessed to realize tools in optics19–22.

Despite the Gouy phase being a general wave phenomenon, stud-
ies investigating its role in quantum state evolution have been limited to 
a few matter wave studies23–27 and spatially separated photon pairs28,29. 
Although these demonstrations use (locally) single quantum systems 

and thus observe the effect known for classical light waves, more com-
plex quantum states consisting of multiple identical quantum systems 
(that is, bosonic systems with multiple excitations) have not been 
studied before. We term the specific phase acquired by such quantum 
states the quantum Gouy phase.

In general, any phase accrued by a mode of a photonic quantum 
system leads to a photon-number dependent phase for the quantum 
state. This means that whereas a single photon or a classical field would 
acquire a phase ϕ upon propagation, when N-photons occupy the same 
mode (|N⟩), the quantum state is left with N times the same phase, that 
is, exp(iNϕ) |N⟩30. This increased phase sensitivity of photon number 
states is utilized in so-called N00N states, which have garnered popu-
larity due to their potential to push the sensitivity of measurements to 
what is considered the absolute physical limit31. N00N states can be 
compactly expressed for two orthogonal modes p and p′ as

|Ψ⟩ = 1

√2
(|N⟩p|0⟩p′ − |0⟩p|N⟩p′ ) . (1)

Hence, the enhancement in measurement sensitivity is enabled by the 
phase difference between the two components being N times the phase 
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(p = 0) and different higher-order radial modes in both the classical 
domain and the aforementioned quantum setting, that is, a N00N state 
superposition. By measuring the change in intensity and two-photon 
detection rate, respectively, observed in a single-mode fibre (SMF) 
scanned through the focus, we are able to directly observe the speed-up 
of the quantum Gouy phase.

Theoretical evolution upon propagation
In our measurement scheme, we expect the propagation to result in a 
photon number-dependent Gouy phase when the state |N⟩p is translated 
through a focus. To verify these expectations theoretically, we start 
with N photons occupying a monochromatic paraxial mode at a posi-
tion z = 0, with a complex field structure uℓp(ρ, 0). To translate the mode 
along the optical axis, we apply the translation operator ei ̂Pzz/ℏ to the 
mode in the angular spectrum representation, in which the quantized 
mode of light can be expressed as

where Fℓp(κ, 0) represents the normalized complex amplitude of the 
plane wave mode with transverse wave vector κ, and  is the cor-
responding operator density 37,38. After applying the translation oper-
ator, the mode takes the form

which is identical to the initial mode being propagated by z using the 
angular spectrum method (ASM)9,39. We thus see that the quantized 
mode evolves identically to a classical light field, that is, the propagated 
LG mode has an identical spatial structure uℓp(ρ, z) that only differs by 
the propagation-related changes to the wavefront curvature and beam 
radius. Due to the beam evolving according to the ASM, we can extract 
the Gouy phase evolution by defining a new mode b̂

†
ℓp(z)—which has 

the structure of the field after translation—without the accumulated 
Gouy phase, that is, . Using this new mode, we can 
express the mode after propagation as a single mode with a phase

â†ℓp(z) = b̂
†
ℓp(z)e−iΦG(z) . (5)

We can then simply state the Gouy phase evolution of an N-photon 
Fock state as

|N⟩ℓp;0 → e−iNkz−iNΦG(z)|N⟩ℓp;z , (6)

difference between the underlying modes. More importantly, using 
such a N00N state configuration allows for the study of the speed-up 
of the quantum Gouy phase compared with the classical case.

In the present work we describe theoretically how an N-photon 
number state evolves upon propagation and verify experimentally the 
speed-up of the quantum Gouy phase with two-photon N00N states 
through interference in the transverse structure of a bi-photon. We 
further show that the quantum Gouy phase speed-up can be applied 
to super-resolving longitudinal displacement measurements using 
the quantum Fisher information (QFI) formalism and solidifying its 
link to the uncertainty interpretation of the Gouy phase12. Finally, we 
show that our results for N-photon states cannot be simulated by clas-
sical light with a λ/N wavelength, demonstrating that the often-used 
effective de Broglie wavelength approach for multi-photon states, 
although useful in specific cases32–34, is not always accurate. As such, 
our work brings the fundamental wave feature of the Gouy phase to 
the quantum domain, thereby opening the path to its utilization in 
quantum technological applications through its unique quantum state 
manipulation properties.

Probing the quantum Gouy phase
An interferometric measurement scheme can be used to observe 
the quantum Gouy phase of N-photons. We chose to use the 
transverse-spatial modes of paraxial light beams as the different arms of 
the interferometric scheme, where one mode acts as the required refer-
ence arm. More specifically, we used Laguerre–Gaussian (LG) modes, 
which are a family of orthogonal solutions to the paraxial wave equation 
in cylindrical coordinates35. In the case of a classical monochromatic 
field, the Gouy phase of these modes evolves as35

ΦG(z) = −(2p + |ℓ| + 1) arctan (2(z − z0)
kw2

0

) , (2)

where z is the propagation distance, k is the wavenumber, ℓ is an integer 
giving the number of orbital angular momentum quanta per photon, 
p is a positive integer defining the radial transverse structure of the 
field, w0 is the beam waist defining the transverse extent of the beam 
at its focus, and z0 gives the position of the beam focus along the opti-
cal axis. As the Gouy phase depends on the mode order S = 2p + ∣ℓ∣ + 1, 
its anomalous phase behaviour can be observed through the change 
of the transverse structure during propagation when the light is in a 
superposition of spatial modes of different mode orders36. For radial 
modes, which are LG modes with ℓ = 0, this change results in a vary-
ing intensity along the optical axis (as can be seen in Fig. 1a); thus, to 
probe the quantum Gouy phase and distinguish it from its classical 
counterpart, we study the superposition of a Gaussian reference mode 
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Fig. 1 | Observing the quantum Gouy phase through a changing on-axis 
interference along the propagation direction. a, Conceptual image of the 
observation scheme. The image displays the intensity structure of a 
superposition of a radial mode with p′ = 4 and a Gaussian reference (p = 0) at 
different distances from the focus. The inset shows the intensity of the field on 
the optical axis. b, Intensity of a classical light beam prepared in the same 

superposition as in a, with a Gaussian waist w0 = 25 μm and z0 = 0. c, Spatially 
varying two-photon probability for a two-photon N00N state prepared in the 
same radial modes as in a and b. To make this structure visible, we post-select for 
cases in which the two photons exist in the same position using the projection 
P(x, y, z) = |〈Ψ(z)|2〉x,y|2. For b and c, the intensities/probabilities are calculated on 
a plane cutting through the optical axis (see a for reference).
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which explicitly contains the photon number dependent Gouy phase 
evolution. See Supplementary Section 1 for a detailed derivation.

Experiment
We first prepared laser light in a superposition of the Gaussian reference 
mode and one of the higher-order radial modes. The structuring of the 
laser beam was performed with a single hologram on a spatial light 
modulator (SLM) by using a holographic method commonly known 
as mode carving40. After structuring, the beam was imaged one focal 
distance away from a 75 mm lens, which performs an optical Fourier 
transform on the transverse structure while focusing39. As the trans-
verse structure and its Fourier transform are identical for LG modes, the 
beam structure at the focus was identical to the structure carved at the 
SLM, up to a phase factor of π between the superposed LG modes, which 
needed to be accounted for with odd values of the radial index19,20. To 
measure the Gouy phase-induced change in the interference along the 
optical axis, we placed an SMF at the focus and moved it longitudinally 
using a stage with a computer controlled piezo actuator. The laser 
source was a continuous-wave diode laser operating at 810 nm and the 
SLM used for structuring the light was wavefront corrected using the 
method described in ref. 41. Furthermore, to get the generated modes 
as close as possible to the correct transverse structure at the desired 
beam radius, we employed an additional Gaussian correction in the 
mode carving that minimized any effect of the initial Gaussian beam 
structure in the carved mode (see Supplementary Section 5).

For a classical field, we can extract the theoretically expected 
measurement results simply by calculating the overlap of the Gaussian 
eigenmode of the SMF and the normalized transverse structure of the 

scalar field  Thus, for laser light, 

the amount of laser power coupled into the fibre is proportional to

PL ∝ ||Ap(z) − e−iθAp′ (z)||
2, (7)

where Aj(z) refer to the overlap between the normalized radial mode j, 
at a distance z from its focus, and the normalized Gaussian eigenmode 
of the fibre. To see the Gouy phase dependence of the detection prob-
ability, the above equation can then be stated as

PL ∝ [|Ap|2 + |Ap′ |2 − 2|Ap||Ap′ | cos(ΔΦG(z) − θ + ϕ(z))],

where the term ϕ(z) is an extra phase contribution from the curvature of 
the wavefront acquired upon propagation. However, as the wavefront 
curvature is very small near the optical axis, the only substantial con-
tribution to the phase of the overlaps Aj(z) comes from the Gouy phase 
difference ΔΦG(z). Thus, scanning the fibre through the focus results 

in a signal that oscillates as cos (2(p′ − p) arctan ( 2(z−z0)
kw2

0

)) underneath 

some envelope function defined by the z-dependence of the 
overlap functions.

For the measurements, we kept the reference mode (that is, a 
Gaussian mode with radial index p = 0) fixed and varied the index p′ of 
the probe mode between 1 and 4, which lead to four unique measure-
ment scenarios with differing Gouy-phase contributions. The measured 
data can be found on the top row of Fig. 2. The measurements follow 
the probability introduced above very well, which we verified by fitting 
curves that match equation (7) to the data. In each fit, we fixed the mode 
field diameter of our fibre to the 5 μm specified by the manufacturer 
and only had four fitting parameters: an overall scaling factor of the 
function, the beam waist w0, focal position z0 and the z-independent 
phase offset θ. The average adjusted R2 value of the fits was 0.986, 
meaning that the data correspond well with the theoretical model.

After first verifying the method’s viability using a laser and showing 
the effect of the Gouy phase on a classical interference pattern along 
the optical axis, we extended the measurement scheme to observe 
the quantum Gouy phase. Following the same general idea, we now 
generated different two-photon N00N states between a reference 
Gaussian mode (p = 0) and higher-order radial modes, and studied the 
two-photon interference pattern along the optical axis. To prepare such 
a N00N state, we first generated photon pairs through spontaneous 
parametric down-conversion (see Supplementary Section 5 for more 
information) and then shaped each of the two photons individually 
into a well-defined superposition of the wanted radial modes using 
two holograms performing two different mode carvings. Once each 
of the photons was structured, we directed the photons into the same 
beam path using a beamsplitter. As demonstrated in ref. 6, once in the 
same beam path, indistinguishable photons bunch into the desired 
spatial mode N00N state given in equation (1). A simplified sketch of 
the two-photon experimental set-up can be seen in Fig. 3.

To calculate the N-photon coincidence probability, we project the 
radial mode N00N state |Ψ(z)⟩ onto the state where all of the photons 
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Fig. 2 | Comparison of on-axis interference along the propagation direction 
for classical light and two-photon N00N states. The error bars show the mean 
value ± s.d., solid lines are fits, and the insets show images of the corresponding 
radial modes with index p′. The upper row contains laser data with 100 
repetitions per measurement point, whereas the lower row shows two-photon 
coincidence measurements. Each two-photon data point was corrected for 
accidental coincidence detection and measured 25 times with an integration 

time of 28 s for p′ = {1, 2,4} and 24 s for p′ = 3. The fits are nonlinear least-
squares fits of the form described in the main text. We aimed to keep the beam 
waist radius at 25 μm in all measurements to keep the data comparable; however, 
the fits show that the beam waist was slightly larger for higher-order modes, 
varying between 24.95 μm and 26.81 μm. A negative stage position labels that the 
SMF collecting the light was between the focus and the lens.
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have been coupled successfully into the SMF P = ∣〈Ψ(z)∣N〉SMF∣2. Assum-
ing that we produce perfectly balanced N00N states of radial modes 
with a phase offset θ, the N-photon detection probability can be 
reduced to the form

P = 1
2
||AN

p (z) − e−iθAN
p′ (z)||

2
. (8)

As before, we can express this coincidence probability as

P = 1
2
[|Ap|2N + |Ap′ |2N − 2|Ap|N|Ap′ |N cos(NΔΦG − θ + Nϕ(z))],

which is similar to the detection probability of the classical field, lead-
ing to an oscillating interference underneath some envelope function. 
However, in the above equation we see the photon number-dependent 
scaling for both the frequency of the oscillation as well as the envelope 
term. Note that a probability curve with half the amplitude but the same 
shape can also be observed for photon pairs prepared similarly without 
bunching. Thus, to verify that we generate radial mode N00N states in 
our experiment, we prepared the two photons in the corresponding 
radial mode superpositions and showed that the probability of coupling 
both of the photons into the SMF roughly doubles when the photons are 
made indistinguishable in time, which is a clear signature of bunching 
(see Supplementary Fig. 2 for the measured data). See Supplementary 
Sections 2 and 3 for detailed derivations of the detection probabilities.

For the N00N state measurements, we used the same set of radial 
modes in superposition with the reference Gaussian mode leading 
to the data shown on the bottom row of Fig. 2. As before, the data 
follow very well the theoretically expected curves, verifying the 
above-presented equations and their described behaviours. Fits of 
equation (8) to the data—with the same parameters as in the classi-
cal case—resulted in an average adjusted R2 value of 0.951. The slight 
imperfections in the data can all be accounted for by imperfections 
in the alignment, imaging, the SMF eigenmode, spatial mode genera-
tion and errors in the stage position. Aside from the errors in the stage 
positions, all of these can be effectively categorized as contaminations 
of our state space by modes not included in the theoretical analysis. 
Hence, our results demonstrate that the quantum Gouy phase leads to 
a speed up in the accumulated phase upon propagation and also modu-
lates the underlying envelope function. As we will discuss next, both 

features shed new light on the fundamental understanding of the Gouy 
phase, as well as hint at quantum enhanced metrology applications.

Quantum Fisher information
As the quantum Gouy phase evolves faster with a larger number of 
photons, one application could be super-sensitive measurements of 
longitudinal displacement. This prospect can be investigated by calcu-
lating the QFI achieved through translation, which is of the form31,42–44

FQ(|ψ(z)⟩) =
4
ℏ2 Δ

2 ̂Pz| ψ. (9)

When calculating this variance for the radial mode N00N state |Ψ(z)⟩, 
we get the QFI

FQ(|Ψ(z)⟩) = 2N (Δ2kz|p + Δ2kz|p′ )

+N2(⟨kz⟩p − ⟨kz⟩p′ )
2
,

(10)

where Δ2kz∣i and ⟨kz⟩i are the variance and average of kz for mode i, 
respectively, calculated using the angular spectrum of the correspond-
ing mode. It is worth noting that the QFI does not depend on z, as the 
angular spectrum of a mode only acquires a phase structure upon 
translation. From equation (10), we can see that the second term of the 
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Fig. 4 | Comparing measured two-photon count rates with simulations of 
classical fields of different wavelength and mode order. a,b, The data shown 
(black dots) and their fits (grey solid lines) correspond to the two-photon N00N 
state measurements with probe modes p′ = 3 (a) and p′ = 4 (b). The error bars 
are calculated from 25 repetitions and present the mean value ± s.d. The dashed 
and dotted lines show simulated values for a 405 nm laser with two different 
mode orders and beam waists. For the blue dashed curves, the beam radius of the 
405 nm field is matched to the 810 nm mode of the photons at the focusing lens. 
For the red dotted curves, the Rayleigh length is matched to the 810 nm mode 
while doubling the radial mode order p′ = {6,8}. Equation (7) with a scaling 
factor was used to calculate the curves for the classical 405 nm beam and the SMF 
mode field diameters were scaled to match the change in mode radius (that is, 

w405
fibre

=
w405
0

w810
0
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). The curves match well near the focus; however, the blue 

dashed curve does not exhibit the same fringe pattern and the red dotted curve 
has a larger relative amplitude outside the focal region. Hence, the quantum 
Gouy phase behaviour cannot be exactly reproduced by simply changing the 
wavelength and mode order.
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Fig. 3 | Simplified drawing of the experimental set-up. Two photons with 
Gaussian beam profiles were sent to separate sections of an SLM where they were 
independently structured into orthogonal superpositions of radial modes. These 
photons were then probabilistically overlapped using a beamsplitter, after which 
they bunched into a radial mode N00N state6. Finally, this two-photon N00N 
state was focused down to a 25 μm Gaussian beam waist radius and coupled 
into a SMF (with a mode field diameter of 5 μm) that was scanned through the 
focus (from behind the focus towards the lens). The two-photons were then 
probabilistically split into two single-photon avalanche diodes (SPAD), and we 
post-selected on both of the detectors detecting a photon at the same time using 
a coincidence counter (CC). See the main text and Supplementary Section 5  
for more details.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 16 | December 2022 | 828–833 832

Article https://doi.org/10.1038/s41566-022-01077-w

QFI has Heisenberg scaling. As we show in Supplementary Section 4, 
this term relates to the Gouy phase difference between modes p and 
p′. Hence, radial mode N00N states along with their quantum Gouy 
phase properties should be able to enhance the sensitivity of longitu-
dinal displacement measurements. However, although these states 
provide benefits such as intrinsic interferometric stability when trans-
lating the mode along z, the spatial extent of the modes change, mak-
ing it challenging to devise a real measurement capable of saturating 
the QFI at any z. The form of equation (10) also shows that it could be 
possible to engineer different spatially structured quantum states to 
measure different physical parameters. Due to the form of the QFI, the 
key feature that needs to be optimized in such state engineering should 
be maximizing variance of a specific momentum of the quantum state. 
For example, this would mean maximizing the variance in orbital angu-
lar momentum for rotation sensing6 or linear momentum for sensing 
the longitudinal position (see equation (9)). See Supplementary Section 
4 for derivations of the QFI and the Fisher information calculated for 
the projection used in our experiment.

Momentum uncertainty
In addition to showing the potential for Heisenberg scaling, there is an 
interesting connection between the QFI and the uncertainty interpreta-
tion of the Gouy phase that fundamentally links the potential change in 
the spread of the transverse momentum to the evolution of the Gouy 
phase12. Feng and Winful also noted that a larger momentum spread of 
higher-order modes results in a bigger Gouy phase shift12. As the Gouy 
phase is increased by the photon number N, which is accompanied by a 
photon number-dependent momentum spread, as can be seen in equa-
tion (10), our results make a further connection between the quantum 
Gouy phase and its uncertainty interpretation. Similarly to ref. 12, one 
can further link this behaviour to a tighter spatial confinement of the 
photons which can be made visible, for example by measuring the 
spatial extent of the N-photon state as shown in Fig. 1c).

The de Broglie wavelength of light
Finally, our results show that the behaviour of a two-photon N00N 
state cannot be replicated simply by switching to a classical field with 
half the wavelength. The difference is clear if we note that the Gouy 
phase has a nonlinear dependence on the wavenumber, which means 
that simply ascribing an effective de Broglie wavelength λ/N to the 
N-photon state does not produce the correct quantum Gouy phase. 
This is in contrast to the phase accrued by a non-converging field upon 
propagation as well as arguments discussed in such a context32–34. To 
investigate this fundamental difference in more detail, in Fig. 4 we 
plotted the measured data for two radial mode N00N states, along 
with overlap curves calculated for classical 405 nm modes with two 
different mode orders and waists. From these comparisons we see that 
the effect is not reproduced by a simple switching of the wavelength 
or doubling of the mode order.

Based on the comparison in Fig. 4 and equation (6) the only exact 
description of the N-photon Fock state evolution seems to be that it 
evolves as the underlying mode, taken to the power of N. Although 
doubling the mode order and halving the wavelength seems to repli-
cate quite well the shown two-photon behaviour. As the state evolves 
as the mode taken to power N, this evolution of the N-photon quantum 
state results in a more rapid phase change and tighter confinement of 
the N-photon. Both of these features have been taken advantage of in 
different studies and experiments. Either in the form of N00N-state 
super-resolution measurements30,45 or in increasing the confinement46.

Conclusion
In summary, we have verified theoretically and experimentally that 
the increased phase sensitivity of multi-photon quantum states also 
extends to the fundamental phase anomaly of converging waves called 
the Gouy phase. We have shown through single-path interferometric 

measurements along the optical axis that two-photon N00N states 
experience twice the Gouy phase when travelling through a focus. 
As the Gouy phase is a fundamental feature of converging waves, our 
results should apply broadly to quantum states of any bosonic system. 
Moreover, as the Gouy phase is an important factor in systems such as 
optical cavities46,47, and a powerful tool in various applications such 
as mode sorters and mode converters19–21, our results can be widely 
utilized in applications in quantum optics and quantum information 
science. In addition to providing a tool for quantum state manipula-
tion, we showed that our results allow Heisenberg-limited scaling in 
measurements of the longitudinal displacement and, as such, might 
inspire new superresolution measurement schemes.

Aside from these possible technological applications, we have 
linked the speed-up of the Gouy phase in the quantum domain to an 
increased spread in the momentum of an N-photon state. Hence, our 
results show that the uncertainty interpretation of the phase anomaly12 
holds true in the quantum domain. Finally, due to the nonlinear rela-
tion between the Gouy phase and the wavenumber, our results unam-
biguously demonstrate that an N-photon state cannot be rigorously 
modelled by using a classical field with a wavelength λ/N. However, 
our results suggest that an additional N-fold increase in the mode 
order can approximate the effect of the quantum Gouy phase when 
the beam Rayleigh lengths are matched. This hints at a possible link 
between an N-photon state and the Nth harmonic of a classical field, 
which introduces an increase of the mode order and decrease of the 
beam waist, in addition to doubling the frequency. Thus, our study 
not only outlines possible applications using the quantum features of 
spatially structured photons, it also sheds new light on the fundamental 
understanding of the Gouy phase, a property intrinsic to all systems 
described by converging or diverging waves.
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acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-022-01077-w.
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Methods
Source
The photon pair source uses a 12-mm-long, type-0 periodically 
poled potassium titanyl phosphate nonlinear crystal that is pumped 
by a 133.5 mW continuous-wave 405 nm free-space laser. The 
down-converted photons are filtered through a 3-nm-wide bandpass 
filter centred around 810 nm, and coupled into separate single-mode 
fibres. Before the single-mode fibres, one photon is sent through an 
adjustable delay line. The rate of photon pairs after the single-mode 
fibres is roughly 3 MHz (correcting for accidentals, efficiency and 
nonlinearity of detectors).

Spatial mode manipulation
The spatial structures of the photons were modulated with a Holoeye 
Pluto-2 SLM. To independently shape each photon, a pair of amplitude 
and phase modulating holograms were displayed on the phase-only 
SLM. The amplitude modulation was implemented using a method that 
spatially changes the efficiency of the holograms grating. The N00N 
states were created by structuring the photons in equal and orthogonal 
superpositions of the two modes in the N00N state. A detailed figure of 
the experimental system is shown in the Supplementary Fig. 2 and more 
experimental details are given in Supplementary Section 5. The Gauss-
ian beam waist of the photon spatial modes was roughly 774 μm before 
they were focused down to the final SMF (Thorlabs 780HP FC/PC).

Detection
The single-mode fibre to which the final state of light was projected 
on was scanned around the focus using a translation stage with a com-
puter controlled piezo actuator (Thorlabs PIA13). A coupling stage 
(xyz-control) and a mount with tip/tilt controls was placed on top of 
the translation stage to allow maximum control of the alignment of the 
fibre. As the manufacturer of the piezo actuator stated that the step size 
of the actuator might differ depending on the direction, the actuator 
was scanned in the same direction in all measurements. The typical step 
size provided by the manufacturer (20 nm per piezo step) was used in 
the data processing. To detect the photon pair, a fibre beamsplitter 
was used to probabilistically split the photons. Subsequently, two 
single-photon avalanche photodiodes (Laser Components Count-T) 
were used in combination with a coincidence counter (IDQ ID900) 
to post-select for two-photon detections occurring between the two 
detectors. The coincidence window used to determine coinciding 
detections was τ = 1 ns and the accidental coincident detections were 
calculated using the approximate formula R1R2τ, where Ri refer to single 
photon detection rates in the two detectors. For measuring the cou-
pling efficiency of laser light, two power meters were used. The first 
one was placed in one output of a fibre beamsplitter, which split the 
light coming out of the laser into two outputs. The power recorded with 

this power meter was used to monitor the output power of the laser as 
a reference signal. The second output of the fibre beamsplitter was fed 
to the spatial mode manipulation set-up. To record the classical signal, 
the second power meter was placed directly after the final SMF. The 
final data is calculated as the power in the second power meter divided 
by the power in the first one to eliminate the effects of possible laser 
power fluctuations from the data.

Data availability
Source Data are provided with this paper.
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