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Anderson’s groundbreaking discovery that the presence of 
stochastic imperfections in a crystal may result in a sudden 
breakdown of conductivity1 revolutionized our understand-
ing of disordered media. After stimulating decades of stud-
ies2, Anderson localization has found applications in various 
areas of physics3–12. A fundamental assumption in Anderson’s 
treatment is that no energy is exchanged with the environ-
ment. Recently, a number of studies shed new light on dis-
ordered media with dissipation14–22. In particular it has been 
predicted that random fluctuations solely in the dissipation, 
introduced by the underlying potential, could exponentially 
localize all eigenstates (spectral localization)14, similar to the 
original case without dissipation that Anderson considered. 
We show in theory and experiment that uncorrelated disor-
dered dissipation can simultaneously cause spectral local-
ization and wave spreading (dynamical delocalization). This 
discovery implies the breakdown of the commonly known 
correspondence between spectral and dynamical localization 
known from the Hermitian Anderson model with uncorrelated 
disorder.

In the famous Drude model23, electronic conductivity relies on 
the idea that moving electrons, understood as particles, are deceler-
ated by random collisions with the positive ions of the crystalline 
lattice, resulting in a diffusive motion. The discovery of quantum 
mechanics showed that electrons exhibit wave characteristics24. 
Consequently, Anderson included wave interference in the treat-
ment of electron dynamics and discovered an unexpected metal–
insulator transition, that is, lattice disorder can induce a sudden halt 
in the spatial spreading of the electron wavefunction1 (Fig. 1). Being 
general in its setting, Anderson’s model also applies for systems 
beyond electrons in solids25,26, such as electromagnetic waves5,6, 
matter waves27,28 and sound waves29. Both Drude’s and Anderson’s 
theories naturally assume conservation of energy and particle 
number within the system. However, most systems are dissipative 
and exchange energy or particles with their environment. A cele-
brated example of the interplay of disorder and an external energy 
exchange is Mott’s T−1/4 law for the conductivity of amorphous semi-
conductors at low temperatures13. Despite the presence of disorder, 
a phonon-assisted hopping between the localized electron states 
facilitates a spatial spreading of the electron wavefunction.

Recently, several studies provided new insight on this topic by 
proposing and theoretically analysing novel dissipative (that is 
non-Hermitian) settings of disordered systems15–22,30. These works 
suggest that the presence of dissipation in disordered systems leads 

to novel phenomena such as the tuneable localization of states17 or 
the appearance of so called ‘Anderson attractors’31. Broader atten-
tion was also paid to disorder in (open) finite-sized systems or sys-
tems with bulk absorption21,32–34, where (for example) the presence 
of dissipation impairs the weak localization. Another example is the 
emergence of necklace states in such frameworks, which leads to 
anomalous transmission through delocalized states with relatively 
short lifetimes19,35,36.

Whereas most of the previous works studied the influence of 
dissipation as an additional effect within an already disordered 
system, the wave dynamics in systems where the dissipation is 
not a mere addition but the source of disorder itself remain little 
discussed. Conversely, the presence of dissipation with a certain 
degree of randomness should be relevant for a multitude of real 
systems. Mathematically, the case of disordered (that is stochastic) 
dissipation can be described by random changes in the imaginary 
part of the potential and such a setting can represent a stochastic 
energy or particle exchange of the system with the environment. 
This setting also constitutes the direct non-Hermitian analogue14 of 
the Hermitian Anderson model, as the randomness is transferred 
from the real part of the potential to its imaginary part. In the con-
text of this work, we therefore dub this model the non-Hermitian 
Anderson model. Even though the mechanism of localization is 
qualitatively distinct and does not rely on the interference of mul-
tiple scattering paths14, numerical results showed that disorder 
solely in the imaginary part of a potential can also lead to expo-
nential localization of all eigenstates14,20. In a Hermitian system, 
under weak conditions37 that are always satisfied for uncorrelated 
disorder38, the pure point spectrum with exponential localization 
of all eigenstates (dubbed spectral localization) necessarily prevents 
wave spreading in the lattice; that is, spectral localization implies 
dynamical localization38. Only for certain correlated disorder, such 
as in the random dimer model39, is wave spreading still possible 
in the presence of spectral localization37. Conversely, dynamical 
localization implies spectral localization independently of disorder 
correlations, as a consequence of the Ruelle–Amrein–Georgescu–
Enss (RAGE) theorem. In open systems, where the dynamics is 
described by an effective non-Hermitian Hamiltonian or a master 
equation in Lindblad form, the complex nature of eigenvalues of 
the Hamiltonian or Lindbladian operators could break the corre-
spondence between spectral and dynamical localization even for 
uncorrelated disorder, such that the physics of wave dynamics in a 
system with stochastic dissipation remains an exciting, yet largely 
open, question.

Coexistence of dynamical delocalization 
and spectral localization through stochastic 
dissipation
Sebastian Weidemann   1,4, Mark Kremer   1,4, Stefano Longhi2,3 and Alexander Szameit   1 ✉

Nature Photonics | VOL 15 | August 2021 | 576–581 | www.nature.com/naturephotonics576

mailto:alexander.szameit@uni-rostock.de
http://orcid.org/0000-0002-0090-1760
http://orcid.org/0000-0003-2597-7259
http://orcid.org/0000-0003-0071-6941
http://crossmark.crossref.org/dialog/?doi=10.1038/s41566-021-00823-w&domain=pdf
http://www.nature.com/naturephotonics


LettersNATuRe PHoTonIcs

In this work, we show that the mere presence of uncorrelated 
static dissipation that is randomly distributed in a one-dimensional 
(1D) space leads to exponential localization of all eigenstates, but 
does not necessarily prevent wave spreading; that is, we show the 
breakdown of the correspondence between spectral and dynami-
cal localization in the non-Hermitian Anderson model. This highly 
non-trivial result is deeply rooted in the stochastic distribution of the 
lifetimes of localized states in such a way that the localized eigenstate 
with the longest lifetime can be found statistically anywhere in the 
system. By using numerous different disorder realizations, we can 
extract and quantify not only the exponential localization, but also 
the spatial spreading. It is important to note that the non-Hermitian 
Anderson model fundamentally differs from Mott’s consider-
ations13: the exchange of energy or particles with the environment 
is included in our non-Hermitian Hamiltonian and the stochastic 
dissipation causes not only the spatial spreading, but simultane-
ously evokes spectral localization. Moreover, against all intuition, in 
the non-Hermitian Anderson model disorder in the real part of the 
potential is not required, as opposed to the Hermitian case. We for-
mulate a theoretical model that can describe the observed dynami-
cal delocalization by dynamic population changes of eigenstates that 
can be spatially separated by distances far beyond the localization 
length (Fig. 1). For strong disorder, our model also quantitatively 
captures the amount of spatial spreading. We experimentally verify 
our predictions in an optical system with controllable dissipation 
consisting of coupled optical fibre loops, where the light propaga-
tion corresponds to the time evolution of a single-particle wave-
function within a double-discrete 1 + 1D mesh lattice.

We start by developing an analytic model for the wave dynamics 
in a system with stochastic dissipation. Our approach considers a 
general, time-independent 1D lattice with ψn as the field amplitude 
at lattice site n. Anderson considered real lattice site potentials—that 
is, the Hermitian case—and found that for a random potential all 
eigenstates can become exponentially localized and, consequently, 
spatial spreading is prevented. In contrast, we consider complex 
potentials and the imaginary part of the potential randomly changes 

in space. This corresponds to the presence of dissipation that is  
randomly distributed on the lattice sites. The real part of the poten-
tial does not have to be disordered. To derive the wave dynamics, we 
also assume that all eigenstates are exponentially localized. While 
this assumption has been numerically predicted14, we experimen-
tally confirm the exponential localization in this work. To theoreti-
cally buttress this conjecture, we also analytically derive the spectral 
localization from the stochastic dissipation for a special case of the 
Hatano–Nelson model15 (Supplementary Section 6).

When leaving the realm of Hermitian systems, the question of 
how the wave spreading may be defined arises, as the total prob-
ability is not a conserved quantity anymore. For instance, disentan-
gling energy transport from energy exchange is a general problem 
of open systems. In all following considerations, we are therefore 
taking the position of an observer who has no a priori knowledge 
about the initial intensity or losses within the system. Hence, we 
follow the procedure of single-photon experiments in the field of 
non-Hermitian physics40–42, where non-detection events (for exam-
ple, the loss of photons due to dissipation) are not part of the statis-
tics. Mathematically, this corresponds to a normalization of the total 
probability at each observation time.

In this approach, it is crucial to evaluate the relative population of 
eigenstates during the temporal evolution. Here, the stark contrast 
with the Hermitian case emerges, as the non-Hermitian character of 
the lattice causes the population of the eigenstates to change during 
evolution, even for an infinitely extended lattice. Consequently, the 
mere fact that all eigenstates are localized does not necessarily hinder 
spatial spreading. We show this by considering the eigenvalue spec-
trum. After exciting the lattice with a single-site excitation, the popu-
lation of the states is determined by weight factors that are governed 
by the overlap between the initial single-site excitation and the expo-
nentially localized eigenstates. Hence, a weight factor is proportional 
to exp(−d/lc), where d is the distance between the excited site and the 
centre of the state, and lc the localization length of the exponentially 
localized state (Fig. 2a). Moreover, due to the random character of 
the lattice, the weight factor of each eigenstate j experiences a phase 
oscillation of the form exp(−iRe(λj)t), where λj is the eigenvalue of 
the corresponding state at time t. As all eigenvalues of the eigenstates 
possess different imaginary parts, the weight factor of each state is 
also modified by a term exp(Im(λj)t), such that its population, rel-
ative to other eigenstate, changes over time. Let us assume that at 
time t = 0 primarily the eigenstate with eigenvalue λ0 ∈ C is excited, 
whereas the weight factor of another state, with eigenvalue λd and 
localization centre at position d, is smaller by the factor exp(−d/lc). 
Since the imaginary part can be associated with the decay rate of the 
eigenstate, one can conclude that if Im(λd) > Im(λ0), then the state 
with eigenvalue λd, corresponding to a lower decay rate, will become 
dominant at a time tchange, which is given by

exp(−d/lc) exp((Im(λd)− Im(λ0))tchange) ≈ 1. (1)

At this point, for t > tchange, the weight factor of the eigenstate 
with eigenvalue λd exceeds that of the initially excited eigenstate 
with eigenvalue λ0 such that the relative population maximum has 
changed from the excited state to the second one in spite of the 
localization (Fig. 2a). These dynamic changes in the relative eigen-
state population and the fact that the eigenstate with the longest 
lifetime can be found anywhere in the lattice form the basis for the 
dynamical delocalization we discuss here. In an infinitely expanded 
setting, the localized eigenstates with the highest population can 
statistically be found at distances from the initial position that can 
far exceed the localization length of the eigenstates and therefore the 
second moment of the position operator can become unbounded, 
which is in stark contrast to the Hermitian case.

For strong disorder, our model allows us to analytically quan-
tify the disorder-induced spreading of the average wavefunction. 
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Fig. 1 | Localization and wave spreading in disordered lattices. Consider 
an initially localized single-particle wavefunction in an infinitely extended 
lattice with uncorrelated disorder. Top: in a Hermitian system, disorder 
can lead to Anderson localization, which is characterized by localized 
eigenstates and the average distribution 

⟨

|ψ|2
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 of the wavefunction 
remains localized around the initial position. Because only eigenstates 
close to the initial position are considerably populated, spatial spreading 
is suppressed. Bottom: in a system with random dissipation, that is, 
non-Hermitian disorder, the eigenstates can also become localized, 
yet dominantly occupied eigenstates can be found arbitrarily far away 
from the initial position. Hence 

⟨
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⟩

 temporally broadens (dynamical 
delocalization), which is in strong contrast to the Hermitian case. The 
dashed lines schematically show the envelope of the wave packet, while 
grey arrows indicate the flow of excitation.
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To this end, we compute the probability Pn(t) that the population 
maximum has changed from an initial lattice site n = 0 to a site n 
at time t. Due to the stochastic dissipation, the imaginary parts 
of the eigenvalues are randomly distributed and follow a distribu-
tion function f(ρ). The probability of a transition of the population 
maximum to position n, where the state has an imaginary part of 
the eigenvalue in the range (ρ,ρ + dρ), is then determined by the 
joint probabilities that all other states j ≠ n are not dominant yet, 
hence Im(λj)t− |j|/lc < ρt− |n|/lc. Here, we assume that the imagi-
nary parts of the eigenvalues of different states are independent sto-
chastic variables with the same distribution f(ρ). This assumption 
is particularly valid as long as the eigenstates extent only over a few 
sites, which is the case for strong and uncorrelated disorder. The 
transition probability can then be calculated via

Pn (t) =
∞

∫

|n|
tlc

dρf (ρ)
∏

j=0,±1,±2,±3… ̸=n

ρ+ |j|−|n|
tlc
∫

−∞

dρf (ρ) . (2)

The product of the inner integrals represents the probability 
that all other states j ≠ n have a decay rate smaller than ρ. The outer 
integral takes into account the probability that the considered state 
at distance n and time t has an eigenvalue ρ that is large enough 
to observe the transition of the population maximum within the 
observation time. Note that Pn(t), and hence the spatial wave 
spreading, is determined by f(ρ). Importantly, we did not use a spe-
cific lattice structure for the derivation of equation (2) and therefore 
this expression should hold true for a variety of different settings. 
The presence of stochastic dissipation can provide the exponential 
localization of states and also determines a non-trivial distribution 
function f(ρ).

As a common quantity with which to characterize the wave 
spreading, we consider the time evolution of the second moment 
M2 (t) =

∑
n n

2 |ψn (t)|
2 for a wave packet that is initially localized 

at n = 0. Here |ψn (t)|
2 is the normalized population at site n (not to 

be confused with the nth eigenstate). Since disorder is by its nature 
stochastic, we employ statistical tools to capture underlying physics. 
We therefore consider the average second moment, which can be 
calculated via ⟨M2 (t)⟩ =

∑
n n

2Pn, with 〈·〉 denoting an averaging 
over a set of random disorder realizations. Its slope, the spreading 
coefficient s = d logM2(t)

d log t , is a general measure of wave delocalization. 
For comparison, ballistic spreading is characterized by a coefficient 
of s = 2, whereas for diffusive spreading one finds s = 1. For suffi-
ciently strong disorder, such that our assumptions hold, our analyti-
cal model yields a slope of s → 4/3, which is dubbed super-diffusive 
(Fig. 2b). The exact value of s is determined by f(ρ), which, in turn, 
depends on the disorder implementation (Supplementary Fig. 5) 
such that one can obtain a triangular distribution with s▵ → 4/3 but 
also a rectangular distribution for which we find s▢ → 1. The ana-
lytical results are in excellent agreement with the numerical evalua-
tion of equation (3), which describes our experimental platform and 
will be introduced below. This agreement is remarkable, especially 
because the analytic model and the numerical propagation are two 
completely independent methods for estimating s. For weak disor-
der, our numerical data suggest that s increases and reaches the bal-
listic regime when the disorder ceases (Fig. 2b). Note that while the 
predicted unbounded second moment of the position operator is 
a hallmark of diffusive behaviour, it is open to discussion whether 
to consider the observed (non-Hermitian) dynamical delocal-
ization as diffusion or not. This question is rooted in the general 
problem of distinguishing particle motion from particle exchange 
in open systems and it may be solved in a generalized concept of 
non-Hermitian diffusion.

Now we turn to the experimental demonstration of our theoreti-
cal findings. For our studies, we employ classical light propagation 
in coupled optical fibre loops43,44. They form a 1D photonic lattice 
with precisely tuneable parameters as a model for the evolution of 
single quantum particles and wave dynamics in a variety of lattice 
systems45–48. The ability to adjust the strength of dissipation at will 
enables the implementation of nearly arbitrary complex potentials, 
especially the discussed case of stochastic dissipation. To study the 
interplay of eigenstate localization and wave spreading, we evalu-
ate the light propagation that arises from single-site excitations of 
the lattice, which corresponds to the evolution of a single-electron 
wavefunction that is initially localized at a specific atom.

The working principle of our experimental platform is to let 
optical pulses propagate in a pair of unequally long fibre loops, 
which are connected by a beam splitter (Fig. 3a). A detailed dis-
cussion of the full set-up is presented in the Methods. The pulse 
dynamics in the loops can be mapped onto the light evolution in a 
1 + 1D double-discrete lattice, as shown in Fig. 3b and discussed in 
Supplementary Section 1. The light evolution is governed by a set of 
coupled equations44
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Fig. 2 | Theory of lattices with stochastic dissipation. a, Eigenstate 
population scheme of the analytic model. The exponentially localized 
eigenstates of a lattice with dissipative disorder exhibit eigenvalues 
λn with different imaginary parts. Initially, the left state is dominant. If 
Im(λn) > Im(λ0), the state at site n will become dominant at some time tchange, 
which depends on the localization lengths l0,ln and the distance d of the two 
states. Around tchange, there is a rapid spatial transition of the most dominantly 
populated eigenstate from the left to the right. b, Analytically (equation (2)) 
and numerically (equations (3) and (4)) extracted spreading coefficient 
s(W) as a function of the non-Hermitian disorder strength W. Our analytical 
predictions agree very well with the numerical data for strong disorder, where 
the model assumptions hold. The error bars (see Supplementary Section 4) 
capture ±1 s.d. of s(W). For weaker disorder, our numerical data suggest that 
the spreading coefficient increases as the eigenstates become less localized. 
Ballistic and diffusive spreading are shown for comparison.
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um+1
n = Gu√

2

(
umn+1 + ivmn+1

)
eiφu

vm+1
n = Gv√

2

(
iumn−1 + vmn−1

) (3)

where umn  denotes the amplitude at lattice position n and time step 
m on left-moving paths and vmn  is the corresponding amplitude on 
right-moving paths. The quantities φu and Gu,v = Gu,v (n,m) are 
degrees of freedom to control the imaginary and the real parts of 
the lattice potential, respectively. As such, our platform can model 
Hermitian and non-Hermitian disorder by choosing either φu or 
Gu,v as a random variable.

Single-site excitations can be either v0n = δ0n or u0n = δ0n. The 
squared modulus of the wavefunction |ψn (t)|

2 is represented by 
the normalized light intensity distribution |un (t)|2 + |vn (t)|2 
within the lattice. The time t corresponds to the time step m, that 
is un (t) = umn . For the characterization of the investigated features, 
it is sufficient to use the light intensity distribution of one fibre  
loop, since the differences between the loops are only on a local 
scale and these vanish upon averaging, which we numerically con-
firmed. For this reason, all experimental data and the correspond-
ing numerical data are based on the intensity distribution |un (t)|2 
in the u loop.

In the homogeneous, disorder-free lattice Gu = Gv = 1, φu = 0, a 
single-site excitation yields the well-known ballistic spreading of the 
wavefunction24 (left panel of Fig. 3c). As a result, the initially local-
ized wave packet quickly becomes delocalized and acquires a high 
probability to be found far away from its initial position. Now we 
consider the two cases with disorder. In the conventional Hermitian 
case, disorder is commonly realized by a time-independent but 
spatially random real part of the potential49. We realize the random 
changes in the real part of the potential by drawing φu ∈ [−W,W]  
for each lattice site n from a uniform probability distribution 
with disorder strength W. In accordance to previous studies50,51, a 
single-site excitation in such disordered lattice (here with Wφ = 0.7π) 
undergoes repeated scattering at the potential fluctuations, leading 
to a superposition of destructively interfering waves in such a way 

that previously extended states localize at the initial position (mid-
dle panel of Fig. 3c). This process is the Anderson localization.

Within the non-Hermitian model, disorder is represented by a 
stochastic energy or particle exchange with the environment; that is, 
random changes in the imaginary part of the potential. The imagi-
nary potential fluctuations are given by

Gu,v = eiγ , γ ∈ [−iW, iW] (4)

and are also drawn from a uniform probability distribution for each 
lattice site. While mathematically this distribution also includes 
gain, the results do not depend on whether a purely passive sys-
tem or a system with gain and loss is chosen, which also has been 
confirmed in earlier theoretical works14. We find, numerically, with 
equation (3) and in the experiments, that a single-site excitation 
localizes due to the non-Hermitian disorder Wγ = 0.19 (right panel 
of Fig. 3c), which is in agreement with the predicted localization of 
eigenstates. Yet, we observe a spatial change of the eigenstate popu-
lation in agreement with the prediction of our theoretical model, 
yielding on average the dynamical delocalization. Remarkably, the 
distances between the dominant eigenstates can substantially exceed 
the localization length of the individual eigenstates. This demon-
strates that in non-Hermitian systems even extremely small over-
laps between the localized eigenstates can suffice to substantially 
influence the temporal evolution of the wavefunction. Moreover, 
not only the average, but also the individual experimental light evo-
lutions, agree very well with the numerical propagation of equation 
(3) (Supplementary Fig. 2).

To validate the key aspects of our theoretical considerations,  
we study the localization properties of the populated states. To 
obtain the profile of the eigenstates, we measure the intensity 
distribution of an initially localized excitation at a large observa-
tion time. This is repeated for different disorder realizations. The  
acquired intensity distributions are then averaged after they are spa-
tially shifted to share the same centre of mass to avoid the ambigu-
ity of the positions of the populated eigenstate. The result (Fig. 4a) 
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clearly shows the exponential localization by a linear decay in the 
logarithmic scale.

In the next step, we quantify the properties of the average 
wave spreading that occurs due to the population changes of the 
exponentially localized states. Therefore, we evaluate the time 
evolution of the second moment M2(t) for an excitation initially 
localized at n = 0. Here, M2(t) is a random variable that changes 
with every disorder realization. Consequently, the data that are 

extracted from the experiments contain the second moments of 
different disorder realizations, from which we then derive the 
mean ⟨M2(t)⟩ and the standard deviation σ(M2(t)). These quanti-
ties allow us to draw statistically meaningful conclusions for the 
spatial spreading of the wavefunction. In Supplementary Section 3,  
we also evaluate the statistical movement of the wavefunc-
tion’s centre of mass to further characterize the change in the  
eigenstate population.

The experimental results (Fig. 4b) clearly demonstrate that the 
average wave spreading in the presence of non-Hermitian dis-
order can fundamentally differ from the Hermitian case, even 
though in both cases all eigenstates are exponentially localized. 
Furthermore, the experimental data successfully match the numeri-
cal results obtained from equation (3) within the range of 1 s.d. of 
the expected statistical fluctuations. From the monotonic increase 
of M2(t), one can conclude that the dissipative disorder facilitates a 
spreading coefficient of the average wavefunction comparable to a 
super-diffusive system, which is in strong contrast to the Hermitian 
case, where the mean of the second moment quickly saturates and 
the average wavefunction is predetermined to remain localized for-
ever at its initial position.

These results pose the question of what happens when both the 
real and the imaginary parts of the potential are subject to random 
changes. Uncorrelated disorder in the real part of the potential 
leads to Anderson localization and completely suppresses transport, 
whereas uncorrelated disorder in the imaginary part of the potential 
can induce spreading through dynamical delocalization. Our exper-
imental data show that the spectral localization, initially induced 
by Anderson localization, does not necessarily lead to a suppres-
sion of non-Hermitian wave spreading as the stochastic dissipation 
still facilitates a change in the eigenstate population (Supplementary  
Fig. 7). Furthermore, while our results lay the foundation for 1D 
systems with non-Hermitian disorder, recent theoretical stud-
ies investigate a possible Anderson localization transition in 3D  
systems with non-Hermitian disorder22,52.

A hallmark of the Hermitian Anderson model with uncor-
related disorder is the equivalence between spectral localization 
and dynamical localization37,38, that is, exponential localization of 
all eigenstates by uncorrelated on-site potential disorder implies 
the absence of wave spreading in the lattice and vice versa. Here 
we predicted and observed, using a photonic lattice platform, the 
breakdown of this equivalence caused by uncorrelated stochastic 
dissipation. We further experimentally demonstrated that sto-
chastic dissipation not only facilitates wave spreading but can also 
simultaneously be the origin of spectral localization. Our results 
can be applied in principle to numerous platforms beyond pho-
tonics, such as matter waves, acoustic waves and electrons. As 
every real-world system is subject to dissipation and disorder, we 
anticipate that our findings will inspire an extended understanding 
and control of localization and wave spreading in a variety of clas-
sical and quantum physical settings. Furthermore, we anticipate 
that the illuminated links between the observed spatial spreading 
and conventional (Hermitian) diffusion could contribute to the 
development of a new and generalized non-Hermitian concept  
of diffusion.
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moment M2(m). For a large number of disorder realizations, the numerical 
data converge to the shown line for stochastic dissipation. The grey area 
shows ±1 s.d. of expected statistical fluctuations, which arise from using 
only 40 disorder realizations instead of a much larger set. Ballistic and 
diffusive spreading are shown for comparison. The experimental and 
numerical data are obtained for the case of a fixed disorder strength 
Wγ = 0.19; the dependency of s on W can be found in Fig. 2b.
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Methods
Experimental set-up. Each experimental run starts by injecting a single 50 ns 
pulse into the longer fibre loop, which is coupled to a shorter fibre loop by a 
50:50 beam splitter (Fig. 3a). The input pulse is cut out of a continuous wave 
signal from a distributed feedback laser (JDS Uniphase, 1,550 nm) with a Mach–
Zehnder intensity modulator (SDL Integrated Optics Limited). An acousto-optical 
modulator is then used as a pulse picker. In the coupled fibre loops, the initial 
pulse repeatedly splits at the central beam splitter and, after several round trips, 
multipath interference between the emerging sub-pulses takes place. In each fibre 
loop an acousto-optical modulator (Brimrose) is placed to manipulate the pulse 
amplitudes, which allows us to emulate the disordered dissipation. The outputs 
of the acousto-optical modulators are aligned to the 0th diffraction order to 
avoid frequency shifts of the propagating light. Light is injected into the loops or 
coupled out by fused fibre couplers (AC Photonics). The light intensity is measured 
using photodetectors (Thorlabs). Single mode fibres (Corning Vascade LEAF EP) 
were used to extend the propagation time for each loop to approximately 27 µs. 
By adding a fibre optic patch cable in one of the loops, a 70–120 ns difference in 
propagation time is induced, such that one has a long and a short loop. A phase 
modulator (iXblue Photonics) in the shorter loop manipulates the phase of 
propagating pulses and thereby controls the real part of the lattice potential. An 
erbium-doped fibre amplifier (Thorlabs) in each loop compensates for propagation 
losses (for example, insertion losses and detection losses) and allows us to maintain 
a high optical signal-to-noise ratio. The amplification scheme is balanced between 
both loops such that the multipath interference is not altered. The fibre amplifiers 
are optically gain clamped by injecting a high-power continuous wave laser signal 
(JDS Uniphase, 1,538 nm) into the amplifier via a wavelength division multiplexing 
coupler (AC Photonics). Bandpass filters (WL Photonics) suppress optical noise 
from the amplified spontaneous emission and remove the laser signal that was 
injected for the optical gain clamping. All fibre components are designed for 
operation at 1,550 nm wavelength and employ standard single mode fibres, for 
example SMF28 or comparable. The polarization state of the propagating light is 
controlled via mechanical polarization controllers. The polarization needs to be 
aligned in front of polarization-sensitive components to obtain a high interference 
contrast. Arbitrary waveform generators (Keysight Technologies, 33,622 A) 
generate all electrical signals that drive the modulators.

Data acquisition. To measure the statistical behaviour of the wave dynamics in 
the presence of dissipative disorder, 40 random realizations of dissipative disorder 
were generated in MATLAB and then converted into a waveform signal, which 
is applied to the amplitude modulators by the arbitrary waveform generators. 
To obtain the squared modulus of the lattice site amplitudes in the presented 
datasets, we performed a time-resolved measurement of pulse intensities with 
a photodiode (Thorlabs) in the shorter fibre loop. The output voltages of the 
photodiode are amplified with a logarithmic amplifier (FEMTO HLVA-100) and 

afterwards sampled with an oscilloscope (R&S RTO1104). With the time scales Δt 
and T of the fibre loop arrangement, one can map the acquired voltage signal onto 
the discrete 1 + 1D grid (m,n) in which the measured pulse intensities represent 
the squared modulus of the lattice site amplitude for the respective propagation 
step m and lattice position n. Each measurement features an additional noise 
measurement in which the lattice excitation is turned off. In the post-processing, 
these noise data are subtracted from the data in which the lattice was excited.

Data availability
All experimental data that have been used to produce the results reported in this 
manuscript are available in an open-access data repository53.
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