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Science is often seen to provide substantial impacts beyond the 
community of scientists themselves—for technological prog-
ress, government function, basic human curiosity and more1–9. 

Given the potential benefits, many nations have built institutional 
architectures to support science through public investment, follow-
ing the logic of public goods10–12. Like a public park, which is funded 
by the government and can be visited for free, scientific research 
is substantially funded by governments, with its results placed 
in the public domain. This institutional design seeks to enable 
broad use of scientific ideas and avoid under-investment by pri-
vate actors (for further background on the nature of public goods, 
see Supplementary Note 3). Yet, in turning to public funding, this 
approach in part relies on the idea that public investment in science 
can match the public interest in science.

Although public investment in science is a central feature of the 
scientific ecosystem11–13, empirically examining the varied public 
uses of science and testing whether there is alignment between pub-
lic funding and public use has remained elusive, mainly owing to the 
difficulty in collecting systematic data. Moreover, the lack of mea-
surement has invited substantial scepticism. Indeed, many observ-
ers view scientific research as a cloistered or ‘ivory tower’ activity 
that rarely corresponds to the public interest14–18. For example, the 
‘two communities’ and ‘two cultures’ theories highlight substantial 
knowledge and interest gaps between scientists and policymakers, 
disconnecting scientific research from policy insights19–22 and sug-
gesting little relationship between the quality of research and its 
public usage20,23,24. Meanwhile, scientists may have peculiar interests, 
with little exposure to real-world problems or incentives to tackle 
them7,25. These potential gaps further animate root concerns over the 
public funding of science and its proper allocation26–29. For example, 
policymakers have long criticized the National Science Foundation 
for funding frivolous research and have called for greater trans-
parency around the relevance of science26,27. Some prominent aca-
demics and commentators, including Nobel-Prize winner Milton 
Friedman, have taken the position that the government should not 
fund science, favouring purely private sector research instead28,29.

In this Article, we advance a measurement framework to study 
public uses of science, the public funding of science and how public  

use and public funding relate. Building on prior research that con-
siders the use of science within a given public domain30–35, here we 
integrate five large-scale datasets that link scientific publications 
from all scientific fields to their upstream funding support and 
downstream public uses across three public domains. Our first 
dataset (D1) is scientific publications, using Microsoft Academic 
Graph (MAG)36, which is one of the largest bibliometric databases 
of scientific research in the world (Methods and Supplementary 
Note 1.1). Our second dataset (D2) leverages the Microsoft Bing 
search engine to collect about 6 million government documents 
available online across all branches of the US government37. Using 
a machine reading technology, we systematically identify aca-
demic publications that are referenced in these government docu-
ments and match these references to MAG. This pipeline allows 
us to collect a high-scale dataset on how government documents 
consume scientific knowledge (Methods and Supplementary Note 
1.2). In total, we identify 389,896 unique academic publications 
cited by 43,014 government documents. We further leverage a 
secondary policy documents database, Overton, to help validate 
results obtained from D2 (Supplementary Note 2.1). Our third 
dataset (D3) uses the Altmetric data31,32 to track academic publica-
tions covered by mainstream media reports. Matching these pub-
lications to the MAG data yields 724,849 unique papers covered 
by 2,701 media outlets (Methods and Supplementary Note 1.3). 
Building on prior work33–35,38, our fourth dataset (D4) links all pat-
ents granted by the US Patent and Trademark Office (USPTO) to 
the academic papers they reference, yielding 4,276,940 papers cited 
by 1,932,642 patents (Methods and Supplementary Note 1.4). Our 
main results focus on papers published between 2005 and 2014, a 
common period covered by all three datasets, resulting in 128,465, 
275,536 and 1,296,922 papers cited in government, news and pat-
ent documents, respectively. Finally, we integrate funding records, 
using the Dimensions39 dataset (D5), which includes 5 million 
projects funded by over 400 funding agencies worldwide and links 
each funded project with its resulting publications (Methods and 
Supplementary Note 1.5). The Methods section and Supplementary 
Notes 1 and 2 further detail the construction of each dataset and  
additional validations.
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results
Diversity in public use. Our first analyses measure the usage of sci-
entific research in the three public domains. To conduct this analy-
sis, we first leverage the MAG’s classification of papers across 19 
top-level fields. To account for cross-field differences in publication 
volume, we define a relative consumption index (RCI). For a given 
public domain (d) and scientific field (f), RCI measures the fraction 
of papers in the field consumed by that public domain, normalized 
by the same fraction calculated on all fields for that domain. That is,

RCIfd =
# papers in field f consumed by domain d/# papers in f
Total# papers consumed by domain d/Total# papers .

We find that the public uses of science are diverse, with many 
fields showing substantially specialized usage in public domains 
(Fig. 1). Computer science, materials science, mathematics and 
engineering (Fig. 1d,i–j) present substantially larger RCI val-
ues for patents than for government or news. By contrast, envi-
ronmental science and geology (Fig. 1f,h) contribute relatively 
strongly in government and media documents compared with 
patents. Finally, physics, chemistry, medicine and biology present 
a broader range of use (Fig. 1b,c,k,l). Among all fields, biology is 
the only one over-represented across all three channels, dem-
onstrating a uniquely general relevance to these broad domains  
beyond science.

Social sciences, by contrast, exhibit a visibly different pattern of 
public use. The social sciences are strongly consumed in govern-
ment and media domains while showing systematically low usage in 
patents (Fig. 1m–q). Economics sees especially strong government 

use, while psychology, sociology and political science see relatively 
strong media use. Arts and humanities (philosophy, art and history; 
Fig. 1r–t) are relatively under-represented in all three domains.

Specialization in public use further appears at subdomain lev-
els (Supplementary Fig. 6). For government, different agencies 
consume very different scientific research. For example, the US 
Department of Treasury draws especially on economics and busi-
ness research, the US Department of Energy draws especially on 
geology and engineering and the US Department of Defense draws 
unusually on history. Different patenting fields further exhibit 
highly specialized relationships with specific scientific fields. By 
contrast, in media, while The Washington Post draws unusually 
heavily on political science research, mainstream media sources in 
general are more consistent in the fields they report, with especially 
strong and widespread interest in medicine and psychology.

The specialization in public use is further accompanied by sub-
stantial differences in time lags in the use of science by the different 
public domains. Whereas the news media places a particular focus 
on very recent work, the government and inventive domains have 
wider reach into prior discovery (Supplementary Note 4.5). For 
example, in the news media, 63% of citations to scientific articles 
cover research papers published within the year. By contrast, gov-
ernment documents and patent inventions draw more widely over 
past work, with a median citation lag of 10 years between scientific 
publication and use (Supplementary Fig. 7). Importantly, while the 
public domains differ considerably in time lags, we find that the 
RCI comparisons are extremely similar when considering either  
the recent decade of scientific publications (Fig. 1) or the stock 
of scientific publications over a substantially longer history  
(Supplementary Fig. 8), indicating that the results in Fig. 1 are  
robust controlling for time lags.

Overall, these results highlight a large set of specialized relation-
ships between specific domains of public use and specific fields of 
scientific research. From a public goods perspective, if we think 
of scientific fields as akin to a series of national parks, we see that 
each park is embedded in particular communities of public use. 
Collectively, these parks spread across diverse regions of knowledge 
and are accessed by diverse segments of the public. A few fields, 
especially biology, receive visitors at relatively intense rates from a 
broad range of public domains—a ‘Yellowstone Park’ of science.

Scientific impact and public use. Our second set of results examine 
whether the public domains tend to consume ideas that scientists 
themselves consider impactful. Longstanding arguments suggest 
that the public is not well equipped to evaluate science and may draw 
on poorly established scientific ideas, which would undermine the 
public good benefits of science20,23,24. Continuing the national parks 
metaphor, scientists may be primarily focused in a hard-to-reach 
backcountry, whereas the typical visitor may not have the tools 
to access this terrain nor gravitate to the same areas the scientists 
themselves consider attractive. To further examine public use, we 
therefore consider, at the article level, the alignment between pub-
lic use and scientific use. Specifically, we calculate the probability 
of being a hit paper within science, defined as those papers in the 
top 1% of citations within the same field and year, and examine the 
relationship to usage in the public domains (Methods and Fig. 2b). 
We find that papers referenced in public domains have a remarkably 
high likelihood of being hit papers within science. Papers cited by 
government documents, news or patents exhibit hit rates of 14.1%, 
18.0% and 9.1%, respectively, all large multiples of the baseline rate 
of 1%. Further, papers referenced in the intersection of different 
domains tend to be exceptionally impactful in science. For papers 
referenced in two public domains, approximately half are hit papers. 
Papers referenced by both government documents and news media 
have a hit rate of 45.1%. The results are broadly similar if we exam-
ine the intersection between government documents and patents 
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Fig. 1 | Diversity in public use. a–t, Different scientific fields experience 
distinct and typically specialized public uses. The usage metric RCI for 
the three public domains are presented for each field (b–t). The dashed 
triangles represent a null model where each paper has the same chance 
to be used (a). The colour scheme highlights four high-level areas of 
research—the physical sciences, life sciences, social sciences, and ecology 
and earth sciences—following the four major clusters of science detected 
by ref. 62 and suggesting commonalities in patterns of public use within 
these four areas.
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(38.7%) or news and patents (46.1%). A paper consumed in all 
three domains is a hit paper in science at a staggering 72.8 times the 
baseline rate. Reversing the exercise, we also see that, as the citation 
percentile of a paper rises, the probability for public use increases 
steeply, with extremely sharp increases at the very top of the citation 
distribution (Supplementary Figs. 9 and 10).

The use of high-impact papers is not only common across dif-
ferent public domains, it also appears universal across research 
areas. Papers covered by public domains tend to be highly cited in 
all scientific fields (Fig. 2c–e). These findings remain similar when 
varying the threshold for hit papers to the top 5% or 10% citations 
(Supplementary Note 4.4 and Supplementary Figs. 11 and 12). We 
also repeat our analyses for papers produced by United States-based 
researchers, arriving at the same conclusions (Supplementary  
Fig. 13). While government, media and patenting documents may 
cite science for a variety of reasons and our reference-based mea-
sures are proxies for uses of science22,40,41, we see that the science 
referenced in public domains is not in conflict with what scientists 
themselves consider important; rather, impactful papers defined by 
these communities show substantial overlap. This finding stands 
in contrast to concerns over knowledge gaps, where the govern-
ment and media in particular may be poorly positioned to assess 
high-impact scientific work or distinguish it from low-impact sci-
entific work20,23,24,31,42. Considering the findings, one may note that, 
in each of these public domains, the initial step beyond science 
involves an intermediary—via the journalist in media, the inventor 
or other domain expert in patenting, the potential policy expert in 
government—all of whom may bring specialized capacities to bear 
in selecting what science they bring forth into their domain. The 
broader public use—among those who read a news article, use an 
invented product or experience a policy—will then depend upon 
these intermediaries, who may help bridge the knowledge gap. 
Overall, the public use of science, while marked by substantial spe-
cialization in use across research areas, presents a striking univer-
sality, where diverse public domains all draw on the highest-impact 
scientific papers within each field.

We further fine-grain the 19 broad research fields of papers into 
294 subfields as indexed by MAG, and calculate the RCI score for 

each subfield in a given public domain. We visualize each field’s 
RCI values, locating each field within a common triangle to com-
pare each field’s tendency toward usage in specific public domains  
(Fig. 3a). Fields in social science as well as arts and humanities are 
mostly used in media and government, whereas fields in science 
and engineering spread out widely within the triangle, again high-
lighting the field-level specialization yet collective diversity in the 
public uses of science.

Public use and public funding. Together, these results raise a cen-
tral question: To what degree does the funding input for science 
relate to the field’s public use? The majority of scientific research 
is supported by public investment, which aims to advance not only 
science itself but also broader public interest41. The National Science 
Foundation, for example, formally introduced broader impacts as a 
key criterion for evaluating grant proposals in 1997. Here we focus 
on US-funded projects and use D5 to calculate the average funding 
per paper in a given subfield as a proxy for public investment costs 
per unit of output.

We find that the public investment per paper differs dramatically 
across fields, spanning over five orders of magnitude. Yet comparing 
average funding per paper with RCI in each domain reveals sub-
stantial correlations between funding and the use of science across 
all three public domains, with R2 = 0.159 for government, 0.272 for 
news and 0.376 for patents (Fig. 3b–d, Methods and Supplementary 
Table 1). To further test if the uncovered correlation is due to the 
heterogeneity in field size or parent field, we add the number of 
papers in the subfield as well as parent field fixed effects (for the 19 
higher-level fields) into the regression, finding the strong correla-
tion with RCI persists (P < 0.001 in all three cases). Notably, across 
the three domains, the representation of subfields in government 
documents has the lowest predictive power for funding, suggesting 
that public investments in science better reflect the overall public 
interest captured by media or patents. We further include funding 
from non-governmental sources or focus on papers by US research-
ers only, finding our conclusions remain the same (Supplementary 
Notes 4.1 and 4.2, Supplementary Figs. 19 and 20 and Supplementary 
Tables 4–7).
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Fig. 2 | Public use and scientific use. The public tends to consume exceptionally high-impact science from all fields and in all three public domains, 
indicating alignment between public use and scientific use. a, Usage by domain for papers published from 2005 to 2014. The area of each subset is 
proportional to the square root of the paper count in the corresponding public domain. b, Hit rates for papers cited in at least one, two or three public 
domains. Hit papers are defined as those receiving citation counts, within science, in the top 1% within the field and year. c–e, Hit rates for each of the 19 
fields consumed by government documents (c), news media (d) and patents (e). In all fields, and in all three domains, the consumed papers tend to have  
hit rates within science many times larger than the baseline rate of 1% (dashed line).
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Most strikingly, a simple linear regression model combining 
the three RCI values together yields a surprisingly high degree of 
agreement with funding, with an R2 of 0.647 (Fig. 3e, Methods and 
Supplementary Table 2), providing at minimum a 72% increase 
in predictive power compared with using any of the three public 
domains alone. These results suggest that each public domain pro-
vides independent predictive power for understanding the alloca-
tion of public investment in science. The uncovered high predictive 
power of this analysis is especially striking given many complex 
factors and processes at work in appropriations, budget setting and 
grant review43–48. Although each research field differs substantially 
in its relative role and contribution in science and beyond, the com-
bination of their impacts beyond science powerfully predicts fund-
ing, suggesting that, ultimately, what the public uses, what scientists 
use and what is funded are remarkably consistent.

Discussion
One source of this alignment could be that science follows the pub-
lic interest. For example, scientists may prioritize or innately share 
areas of interest, such as coronavirus disease 2019 (COVID-19), 
where there is enormous public demand for solutions and where 
scientific attention has surged30,49,50. Another source could be that 
some scientists or science institutions are especially good at pro-
moting their interests to the public, influencing what the pub-
lic sees and funds. For example, one may wonder if high-prestige 
journals, eminent authors or funding for a paper drive attention 
to specific research. To test this, we further consider fine-grained, 
paper-level regressions that include journal fixed effects, author 
fixed effects and paper-level funding indicators. We find that the 
results are very similar, regardless of these controls (Supplementary 
Note 4.6, Supplementary Table 8 and Supplementary Figs. 21–23).  
Indeed, the relative attention to different fields (Fig. 1), the  

alignment between public use and high-impact science (Fig. 2) and 
the alignment with public funding (Fig. 3) all appear robust after 
accounting for journal placement, the scientists who produced the 
work or the funding status of the specific paper. Thus, while some 
scientists, journals or funders may have advantages in reaching the 
public, the forms of alignment we see appear primarily as features 
of a research area, rather than the specific promotion opportuni-
ties from a journal, scientist or funding. More generally, numerous 
mechanisms, institutional factors and policies may be at work in 
producing, increasing or reducing use and alignment, and unpack-
ing these mechanisms is an exciting area for future work.

Altogether, the analysis probes quantitatively key features of the 
public use and funding of science. Measuring the usage of scien-
tific research outside science itself, we uncover enormous diversity 
and specialization in how different fields of scientific enquiry are 
linked to different public domains. Yet, despite these differences, 
the different public domains (and subdomains) universally draw 
on highly cited papers within science, indicating that public use is 
strongly aligned with what scientists themselves consider impactful. 
And, critically, the public usage of scientific fields across the diverse 
domains provides simple yet powerful predictors for the level of 
public investment in each field.

Note that, although the three domains each represent an impor-
tant dimension of the public space, they do not cover all domains 
that science may impact. Even within each of the three domains we 
studied, there may be consumption of science through channels that 
go beyond our datasets. For example, scientists and their ideas can 
appear through television, in congressional testimony and in pri-
vate sector consulting. Scientific ideas may also enter industry and 
government through social networks, through the hiring of scien-
tists, and through influencing managerial practices (Supplementary 
Fig. 24), which may augment and alter perspectives on the public 
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use of specific research fields. While there is much still to explore, 
this paper introduces a quantitative framework to examine public 
uses of science at the individual paper level, both across all scien-
tific fields and diverse public domains, revealing individually spe-
cialized and collectively diverse uses, universality in impact and 
a remarkable alignment between the funding of science and its  
public use.

As society’s support of science depends on a public goods 
model11,13, and as legislators have called for more transparency in 
the usage and value of scientific funding51, the framework devel-
oped in this paper provides an empirical tool, offering quantita-
tive evidence to inform discussions around public interest features 
of science. The allocation of science funding involves chains of 
decisions by individuals and groups with different perspectives 
and priorities. These considerations range from legislative com-
mittees and the goals of individual political representatives, to 
funding agency leaders, to within-agency mechanisms that often 
incorporate insights from scientists, interacting in a complex pro-
cess that must bridge across distinct communities. As such, one 
might expect a substantial disconnect between what is eventu-
ally funded and forms of public interest; metaphorically, funding 
of public parks in ways weakly related to public use. Yet, despite 
the massive diversity in the public uses of science and a complex 
funding process, there is remarkable alignment in the end result. 
What the public uses and what scientists themselves use are closely 
consistent. And the funding of science closely tracks quantifiable 
public use. These results suggest the connections between the ivory 
tower and the real world appear more aligned than is commonly  
imagined.

methods
Microsoft Academic Graph (D1). The publication and citation data are primarily 
obtained from Microsoft Academic Graph (MAG)36,52. MAG is among the largest 
open-source citation databases thus far and contains records of 209 million 
documents. We inter-linked different data tables to obtain the author, affiliation, 
year, publication venue and field information for each paper. Data pre-processing 
and summary statistics are further documented in Supplementary Note 1.1.

US government documents (D2). To quantify references to scientific articles in the 
government domain, one needs to construct a large-scale dataset of government 
documents that can be linked to the scientific papers. The task has been difficult in 
part because government documents are spread across many sources. Furthermore, 
although a substantial fraction of such documents may cite scientific literature, 
such citations do not follow a common structure.

Our data collection starts with a list of 6 million URLs under the.gov domain, 
which is the domain name for government agencies and contains the vast majority 
of US government entities. We downloaded these pages using an automatic crawler 
and focused on all PDF files in this set, extracting the references cited in these 
files using Science Parse53, an open-source tool for reference string extraction. 
We then matched this list to the MAG with a search engine-like system using 
title, journal, author and publication year information. Supplementary Note 1.2 
documents technical details of this data pipeline. We also perform additional 
validation analysis using Overton, an independent dataset of policy documents 
(Supplementary Note 2.1).

Altmetric dataset (D3). To study references to scientific publications in the 
news media, we use a dataset offered by Altmetric31,32,54. This dataset records 
approximately 26.2 million papers with at least one news media or social media 
mention. We then merge paper information with MAG. A vast majority (22.1 
million) of such publications in the Altmetric database have unique digital object 
identifiers (DOI). We find that 17.2 million (78%) of the DOIs can be matched to 
records in MAG.

USPTO patent database (D4). To study references to scientific publications in 
patents, we build on prior work and use a high-scale mapping from USPTO 
patents to MAG papers, which includes approximately 31.7 million citation pairs 
between patents and papers35,38, from both the front page and full text of the 
patents. To classify patents into technology classes, we use the Cooperative Patent 
Classification system, drawn from PatentsView, a data platform based on USPTO 
bulk data55 (Supplementary Note 1.4). Combining the two files provides technology 
class information for 97.5% of patents that reference scientific articles. The small 
share of missing technology class cases corresponds to patents recently granted, 
which have not been updated in our data.

Dimensions scientific funding data (D5). To understand how research funding 
from various sources is allocated into different scientific fields, we leverage 
research funding data from Dimensions39,56, which includes approximately 5 
million research projects supported by over 400 funding agencies worldwide.  
To be consistent with the rest of our analysis, we focus on projects funded 
during the same 10-year period (2005–2014). A unique opportunity provided 
by Dimensions is a linkage table between supporting grants and resulting 
publications, which allows us to categorize the field of each grant according  
to its resulting publications. Together we link 292,875 funded projects with  
at least one publication (for detailed descriptions of our linkage procedure, see 
Supplementary Note 1.5).

Citation percentiles and hit papers. While citations are widely used as a proxy 
for scientific impact2,9,57–59, direct comparison of citation counts received by papers 
across time and field can be problematic without normalization60. We therefore 
calculate citation percentiles for papers within the same publication year and 
field. Here, following prior studies33,47,61, we define ‘hit papers’ (also known as 
‘home runs’) as papers ranking in the top 1% of citations received. We further 
test robustness of these results by tuning the threshold from 1% to 5% or 10% 
(Supplementary Note 5.3 and Supplementary Figs. 11 and 12).

Regression models. To understand the association between public use and 
funding for different scientific fields, we use linear regression models (ordinary 
least squares). We first note that all three RCI measures are highly skewed 
(Supplementary Fig. 5a–c), prompting us we take the natural logarithm, ln RCI, 
in our linear regressions (Supplementary Fig. 5d–f). The same transformation is 
taken on the average funding per paper. The variables are defined as follows:

Dependent variable. lnYi, defined as the natural logarithm of average funding per 
paper for the level-1 field i.

Predictors of interest. We examine the extent to which different impact measures 
can predict funding, including ln RCIji for the three public domains. To  
include all data points in the regression, for the rare cases when an impact measure 
is 0, we add 1 to avoid zeros in the logarithm. We further include the natural 
logarithm of the number of papers published in the 10-year period, ln pi, as a 
control variable.

Fixed effects. To control for the possibility that fields under different broad 
categories may have specific funding and public use norms, we introduce Ffi,  
fixed effect terms for each level-0 field. Specifically, Ffi = 1 if the level-1 field i  
is a child field of the level-0 field f according to MAG’s classification structure.  
Note that some level-1 fields belong to two level-0 fields simultaneously  
(for example, mathematical physics is the child field of both mathematics  
and physics).

We start with bivariate regressions examining the relationship between each 
RCI (that is, for government, media or patenting) and average funding (Fig. 3b–d, 
Supplementary Table 1 and Models 1–3). That is,

lnYi = βj ln RCIji + εi .

In multivariate regressions, we further include controls for heterogeneity in 
field size or parent field fixed effects (Supplementary Table 2 and Models 4–6).

We further investigate the joint predictive power of the three RCIs (Fig. 3e, 
Supplementary Table 2 and Model 7):

lnYi =
∑

j
βj ln RCIji + εi

which shows that each measure contributes independently and substantially to 
explaining the variation in funding.

Finally, we add further control variables into Model 8 (Supplementary Table 2 
and Model 8):

lnYi =
∑

j
βj ln RCIji + βp ln pi +

∑

f
βfFfi + εi

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
MAG raw data are publicly available at https://docs.microsoft.com/en-us/
academic-services/graph/. MAG-USPTO linkage data are publicly available at 
https://doi.org/10.5281/zenodo.3575146. Those who are interested in raw data of 
Altmetric and Dimensions should contact Digital Science directly. Those who are 
interested in raw data of Overton should contact Open Policy Ltd directly. The 
de-identified data necessary to reproduce main plots and statistical analyses are 
freely available at https://kellogg-cssi.github.io/science_public.
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Code availability
Government document data are collected with web crawler programs (customized 
bash code and Science Parse v1). Raw datasets are further linked using customized 
code in Python 3 and Elasticsearch 7.0. Data are analysed with customized code in 
Python 3 and Stata 14.0 using standard software packages within these programs. 
The code necessary to reproduce main plots and statistical analyses is freely 
available at https://kellogg-cssi.github.io/science_public.

Received: 21 April 2021; Accepted: 19 May 2022;  
Published online: 7 July 2022

references
 1. Disraeli, B. Inaugural Address Delivered to the University of Glasgow Nov. 19, 

1873 (Longmans, Green, and Co., 1873).
 2. Wang, D. & Barabási, A.-L. The Science of Science (Cambridge Univ. Press, 

2021).
 3. Merton, R. K. The Sociology of Science: Theoretical and Empirical Investigations 

(Univ. of Chicago Press, 1973).
 4. Gibbons, M. The New Production of Knowledge: The Dynamics of Science and 

Research in Contemporary Societies (Sage, 1994).
 5. Mokyr, J. The Gifts of Athena: Historical Origins of the Knowledge Economy 

(Princeton Univ. Press, 2002).
 6. Etzkowitz, H. & Leydesdorff, L. The dynamics of innovation: from National 

Systems and “Mode 2” to a Triple Helix of university–industry–government 
relations. Res. Policy 29, 109–123 (2000).

 7. Committee on Prospering in the Global Economy of the 21st Century, 
National Academy of Sciences & National Academy of Engineering Institute 
of Medicine. Rising Above the Gathering Storm: Energizing and Employing 
America for a Brighter Economic Future. (National Academies Press, 2014).

 8. Hjort, J., Moreira, D., Rao, G. & Santini, J. F. How Research Affects Policy: 
Experimental Evidence from 2,150 Brazilian Municipalities. Report No. 
0898-2937 (National Bureau of Economic Research, 2019).

 9. Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).
 10. Jefferson, T. No patent on ideas. Letter to Isaac McPherson (1813).
 11. Arrow, K. in The Rate and Direction of Inventive Activity: Economic and  

Social Factors (National Bureau of Economic Research) 609–626 (Princeton 
Univ. Press, 1962).

 12. Stiglitz, J. E. Knowledge as a global public good. Global Public Goods 1, 
308–326 (1999).

 13. Stephan, P. E. The economics of science. J. Econ. Lit. 34, 1199–1235 (1996).
 14. Jewkes, J. The Sources of Invention (Springer, 1969).
 15. Gibbons, M. & Johnston, R. The roles of science in technological innovation. 

Res. Policy 3, 220–242 (1974).
 16. Landau, R., Rosenberg, N. & National Academy of Engineering. The Positive 

Sum Strategy: Harnessing Technology for Economic Growth (National 
Academies Press, 1986).

 17. Mansfield, E. Academic research and industrial innovation. Res Policy 20, 
1–12 (1991).

 18. Klevorick, A. K., Levin, R. C., Nelson, R. R. & Winter, S. G. On the sources 
and significance of interindustry differences in technological opportunities. 
Res Policy 24, 185–205 (1995).

 19. Caplan, N. The two-communities theory and knowledge utilization. Am. 
Behav. Sci. 22, 459–470 (1979).

 20. Dunn, W. N. The two-communities metaphor and models of knowledge use: 
an exploratory case survey. Knowledge 1, 515–536 (1980).

 21. National Research Council. Knowledge and Policy: The Uncertain Connection 
(The National Academies Press, 1978).

 22. National Research Council. Using Science as Evidence in Public Policy 
(National Academies Press, 2012).

 23. Landry, R., Lamari, M. & Amara, N. The extent and determinants of the 
utilization of university research in government agencies. Public Adm. Rev. 
63, 192–205 (2003).

 24. Snow, C. P. Science and Government (Harvard University Press, 2013).
 25. Langrish, J., Gibbons, M., Evans, W. G. & Jevons, F. R. Wealth from 

Knowledge: Studies of Innovation in Industry (Springer, 1972).
 26. Hatfield, E. Proxmire’s golden fleece award. Relationship Research News 4,  

5–9 (2006).
 27. Coburn, T. The National Science Foundation: Under the Microscope. (Senator 

Tom Coburn, 2011).
 28. Ridley, M. The Evolution of Everything: How New Ideas Emerge. 

(HarperCollins, 2015).
 29. Kealey, T. The case against public science. Cato Unbound 5 https://www.

cato-unbound.org/2013/08/05/terence-kealey/case-against-public-science/ 
(2013).

 30. Yin, Y., Gao, J., Jones, B. F. & Wang, D. Coevolution of policy and science 
during the pandemic. Science 371, 128–130 (2021).

 31. Thelwall, M., Haustein, S., Larivière, V. & Sugimoto, C. R. Do altmetrics 
work? Twitter and ten other social web services. PLoS ONE 8, e64841 (2013).

 32. Costas, R., Zahedi, Z. & Wouters, P. Do “altmetrics” correlate with  
citations? Extensive comparison of altmetric indicators with citations  
from a multidisciplinary perspective. J. Assoc. Inf. Sci. Technol. 66,  
2003–2019 (2015).

 33. Ahmadpoor, M. & Jones, B. F. The dual frontier: patented inventions and 
prior scientific advance. Science 357, 583–587 (2017).

 34. Fleming, L., Greene, H., Li, G., Marx, M. & Yao, D. Government-funded 
research increasingly fuels innovation. Science 364, 1139–1141 (2019).

 35. Marx, M. & Fuegi, A. Reliance on science: worldwide front-page  
patent citations to scientific articles. Strategic Management Journal 41, 
1572–1594 (2020).

 36. Wang, K. et al. Microsoft Academic Graph: when experts are not enough. 
Quant. Sci. Stud. 1, 396–413 (2020).

 37. Kosack, S. et al. Functional structures of US state governments. Proc. Natl 
Acad. Sci. USA 115, 11748–11753 (2018).

 38. Marx, M. & Fuegi, A. Reliance on Science by Inventors: Hybrid Extraction of 
In-Text Patent-to-Article Citations (National Bureau of Economic Research, 
2020).

 39. Herzog, C., Hook, D. & Konkiel, S. Dimensions: bringing down barriers 
between scientometricians and data. Quant. Sci. Stud. 1, 387–395 (2020).

 40. Weiss, C. H. The many meanings of research utilization. Public Adm. Rev. 39, 
426–431 (1979).

 41. Bornmann, L. What is societal impact of research and how can it be 
assessed? A literature survey. J. Am. Soc. Inf. Sci. Technol. 64, 217–233 (2013).

 42. Selvaraj, S., Borkar, D. S. & Prasad, V. Media coverage of medical journals: do 
the best articles make the news?. PLoS ONE 9, e85355 (2014).

 43. Boudreau, K. J., Guinan, E. C., Lakhani, K. R. & Riedl, C. Looking across and 
looking beyond the knowledge frontier: intellectual distance, novelty, and 
resource allocation in science. Manag. Sci. 62, 2765–2783 (2016).

 44. Bromham, L., Dinnage, R. & Hua, X. Interdisciplinary research has 
consistently lower funding success. Nature 534, 684–687 (2016).

 45. Ginther, D. K. et al. Race, ethnicity, and NIH research awards. Science 333, 
1015–1019 (2011).

 46. Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in 
science. Proc. Natl Acad. Sci. USA 112, 14760–14765 (2015).

 47. Wang, Y., Jones, B. F. & Wang, D. Early-career setback and future career 
impact. Nat. Commun. 10, 1–10 (2019).

 48. Yin, Y., Wang, Y., Evans, J. A. & Wang, D. Quantifying the dynamics of 
failure across science, startups and security. Nature 575, 190–194 (2019).

 49. Hill, R., Yin, Y., Stein, C., Wang, D. & Jones, B. F. Adaptability and the pivot 
penalty in science. Available at SSRN 3886142 (2021).

 50. Else, H. How a torrent of COVID science changed research publishing–in 
seven charts. Nature 588, 553–554 (2020).

 51. Hearing: The science of science and innovation policy. Committee on Science 
and Technology (2010).

 52. Wang, K. et al. A review of Microsoft Academic Services for science of 
science studies. Front. Big Data 2, 45 (2019).

 53. AI2. Science Parse https://github.com/allenai/science-parse (2019).
 54. Adie, E. & Roe, W. Altmetric: enriching scholarly content with article‐level 

discussion and metrics. Learn. Publ. 26, 11–17 (2013).
 55. PatentsView http://www.patentsview.org (2019).
 56. Hook, D. W., Porter, S. J. & Herzog, C. Dimensions: building context for 

search and evaluation. Front. Res. Metrics Anal. 3, 23 (2018).
 57. Garfield, E. & Merton, R. K. Citation Indexing: Its Theory and Application in 

Science, Technology, and Humanities. Vol. 8 (Wiley New York, 1979).
 58. Price, D. J. D. S. Networks of scientific papers: the pattern of bibliographic 

references indicates the nature of the scientific research front. Science 149, 
510–515 (1965).

 59. Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. 
Science 342, 127–132 (2013).

 60. Radicchi, F., Fortunato, S. & Castellano, C. Universality of citation 
distributions: toward an objective measure of scientific impact. Proc. Natl 
Acad. Sci. USA 105, 17268–17272 (2008).

 61. Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in 
production of knowledge. Science 316, 1036–1039 (2007).

 62. Rosvall, M. & Bergstrom, C. T. Multilevel compression of random walks on 
networks reveals hierarchical organization in large integrated systems. PLoS 
ONE 6, e18209 (2011).

acknowledgements
We thank I. Shen, D. Eide and all members of Microsoft Academic group for their 
invaluable help and J. Trefethen at Open Philanthropy for his comments. This work 
uses data sourced from Altmetric.com and Dimensions.ai through researcher access 
plans. D.W. is supported by the Air Force Office of Scientific Research under award 
numbers FA9550-17-1-0089 and FA9550-19-1-0354, National Science Foundation grant 
SBE 1829344, the Alfred P. Sloan Foundation G-2019-12485 and Peter G. Peterson 
Foundation 21048. Y.Y. is supported in part through the computational resources 
and staff contributions provided for the Quest high-performance computing facility 
at Northwestern University, which is jointly supported by the Office of the Provost, 

Nature HumaN BeHaviour | VOL 6 | OCTOBER 2022 | 1344–1350 | www.nature.com/nathumbehav 1349

https://kellogg-cssi.github.io/science_public
https://www.cato-unbound.org/2013/08/05/terence-kealey/case-against-public-science/
https://www.cato-unbound.org/2013/08/05/terence-kealey/case-against-public-science/
https://github.com/allenai/science-parse
http://www.patentsview.org
http://www.nature.com/nathumbehav


Articles Nature HumaN BeHaviOur

the Office for Research and Northwestern University Information Technology. The 
funders had no role in study design, data collection and analysis, decision to publish or 
preparation of the manuscript.

author contributions
D.W., B.F.J. and K.W. conceived the project and designed the experiments; Y.Y. and 
Y.D. collected data; Y.Y. performed empirical analyses with help from D.W., B.F.J., Y.D. 
and K.W.; all authors discussed and interpreted results; Y.Y., B.F.J and D.W. wrote the 
manuscript; all authors edited the manuscript.

Competing interests
K.W. and Y.D. were employees of Microsoft Corporation when the study was conducted. 
Y.Y., B.F.J. and D.W. declare no competing interests.

additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41562-022-01397-5.

Correspondence and requests for materials should be addressed to 
Dashun Wang or Benjamin F. Jones.

Peer review information Nature Human Behaviour thanks Carolin Haeussler, Paula E. 
Stephan and the other, anonymous, reviewer(s) for their contribution to the peer review 
of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Nature HumaN BeHaviour | VOL 6 | OCTOBER 2022 | 1344–1350 | www.nature.com/nathumbehav1350

https://doi.org/10.1038/s41562-022-01397-5
http://www.nature.com/reprints
http://www.nature.com/nathumbehav


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Benjamin F. Jones and Dashun Wang

Last updated by author(s): May 19, 2022

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Government document data is collected with web crawler programs (customized bash code and Science Parse v1). Raw datasets are further 
linked using customized code in Python 3 and Elasticsearch 7.0.

Data analysis Data is analyzed with customized code in Python 3 and Stata 14.0 using standard software packages within these programs. The code 
necessary to reproduce main plots and statistical analyses is freely available at https://kellogg-cssi.github.io/science_public.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

MAG raw data is publicly available at https://docs.microsoft.com/en-us/academic-services/graph/. MAG-USPTO linkage data is publicly available at https://
doi.org/10.5281/zenodo.3575146. Those who are interested in raw data of Altmetric and Dimensions should contact Digital Science directly. Those who are 
interested in raw data of Overton should contact Open Policy Ltd directly. The deidentified data necessary to reproduce main plots and statistical analyses is freely 
available at https://kellogg-cssi.github.io/science_public.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.
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robustness checks, finding our main conclusions remain the same.
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