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Global mass of buoyant marine plastics 
dominated by large long-lived debris
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Henk A. Dijkstra1 & Erik van Sebille1

The fate of plastics that enter the ocean is a longstanding puzzle. 
Recent estimates of the oceanic input of plastic are one to two orders 
of magnitude larger than the amount measured floating at the surface. 
This discrepancy could be due to overestimation of input estimates, 
processes removing plastic from the surface ocean or fragmentation and 
degradation. Here we present a 3D global marine mass budget of buoyant 
plastics that resolves this discrepancy. We assimilate observational data 
from different marine reservoirs, including coastlines, the ocean surface, 
and the deep ocean, into a numerical model, considering particle sizes of 
0.1–1,600.0 mm. We find that larger plastics (>25 mm) contribute to more 
than 95% of the initially buoyant marine plastic mass: 3,100 out of 3,200 
kilotonnes for the year 2020. Our model estimates an ocean plastic input of 
about 500 kilotonnes per year, less than previous estimates. Together, our 
estimated total amount and annual input of buoyant marine plastic litter 
suggest there is no missing sink of marine plastic pollution. The results 
support higher residence times of plastics in the marine environment 
compared with previous model studies, in line with observational evidence. 
Long-lived plastic pollution in the world’s oceans, which our model suggests 
is continuing to increase, could negatively impact ecosystems without 
countermeasures and prevention strategies.

An estimated 250 metric kilotonnes (250 million kilograms) of plastic 
pollution floats on the surface of the global ocean1,2. A much larger 
amount of plastic pollution is estimated to enter the ocean every year, 
on the order of 800–2,400 kilotonnes from rivers3 and 4,800–23,000 
kilotonnes from coastal regions4,5 (see Extended Data Fig. 1). We assess 
what causes the misalignment between the estimated plastic input and 
the total floating plastic mass by assimilating unprecedented amounts 
of observational data into a state-of-the-art three-dimensional (3D) 
global transport model for marine plastics, considering timescales on 
the order of decades (1980–2020). Our dataset includes concentrations 
in terms of both number (in n m−3 in the ocean and n m−1 on beaches) and 
mass (in g m−3 in the ocean and g m−1 on beaches). In total, we use 14,977 
measurements from the surface water, 7,114 from beaches and 120 from 
the deep ocean (for an overview, see Extended Data Fig. 2 and Extended 

Data Table 1). From 2,303 beach measurements, we additionally use 
the fraction of fishing-related items such as fishing nets. We expand 
on previous mass budget studies6 by increasing the model complex-
ity, incorporating numerous recently developed models for different 
processes affecting marine plastic transport: sinking via biofouling, 
beaching, turbulent vertical mixing and fragmentation. By using a 
Bayesian framework, our model results match well with both observed 
plastic concentrations across different marine reservoirs and differ-
ent size classes (Extended Data Fig. 3) and the latest understanding of 
processes removing plastic from the surface ocean.

Sinking of plastic particles probably plays an important role in 
removing plastic mass from the surface water6–8. Initially buoyant 
items can start sinking due to the growth of biofilm on their surface, 
on timescales of weeks to months9–11. We consider various biofouling 

Received: 15 August 2022

Accepted: 26 May 2023

Published online: 7 August 2023

 Check for updates

1Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht, the Netherlands. 2Forschungszentrum Jülich 
GmbH, Institute of Bio- and Geosciences, IBG-3 (Agrosphere), Jülich, Germany.  e-mail: m.kaandorp@fz-juelich.de

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-023-01216-0
http://orcid.org/0000-0003-3744-6789
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-023-01216-0&domain=pdf
mailto:m.kaandorp@fz-juelich.de


Nature Geoscience | Volume 16 | August 2023 | 689–694 690

Article https://doi.org/10.1038/s41561-023-01216-0

A 3D map of marine plastic litter
We estimate a total amount of initially buoyant plastics in the 3D global 
ocean of 3,200 kilotonnes (95% confidence interval: 3,000–3,400 kilo-
tonnes) for the year 2020 on the basis of our assimilated model. A 3D 
global map of the estimated marine plastic pollution for the complete 
modelled particle size spectrum (0.1–1,600.0 mm) is shown in Fig. 1. The 
largest fraction of plastic mass is located at the ocean surface: 59–62%. 
More than a third of the mass resides deeper in the ocean (36–39%) and 
the remainder is located on beaches (1.5–1.9%).

These results, as well as the the estimated fluxes into and out of 
the marine environment, are summarized in the schematic overview 
in Fig. 2. We calculate a total marine plastic input of 500 kilotonnes 
per year (95% confidence interval: 470–540 kilotonnes for the refer-
ence year 2020), originating from coastlines (39–42%), from fishing 
activity (45–48%) and from rivers (12–13%). The total input we predict 
increases by about 4% per year, which is consistent with the esti-
mated increase in global plastic waste generation of about 5% per year  
(ref. 31) and with the observed increase of plastic concentrations in 
the Pacific Ocean30 and the North Atlantic Ocean32. Our calculated 
global riverine input of 57–69 kilotonnes per year is lower than previ-
ous estimates (800–2,700 kilotonnes per year (ref. 3)). The 190–220 
kilotonnes of input from coastlines is furthermore at least an order of 
magnitude smaller than previous estimates (4,800–12,700 kilotonnes 
per year (ref. 4)). These much lower input estimates for rivers and 
coastlines are consistent with recent modelling and observational 
studies6,23,33,34. The estimated input of 220–260 kilotonnes from fish-
ing activity is somewhat lower than previous estimates of 640 kilo-
tonnes per year35. Our modelled concentrations of fishing-related 
plastics are consistent with the observed amount of items on beaches 
(Supplementary Information section 1.2) and match qualitatively 
with review studies showing that the majority of plastic litter in the 

scenarios, including fouling–defouling cycles12,13. Model studies14,15 
have suggested that the majority (67–77%) of plastics reside on beaches 
or in coastal waters up to 10 km offshore. We therefore include models 
for beaching and resuspension of plastics back to the ocean16. Sur-
face measurements are currently the only large global observational 
datasets available in the ocean. Mixing of plastic particles in the water 
column is hypothesized to be an explanation for the relatively low 
estimates of plastic mass found in surface net trawls13,17. We account for 
this by resolving plastic transport three dimensionally, including the 
modelling of vertical turbulent mixing in the water column18.

Fragmentation plays an important role in explaining the increasing 
number of plastic particles for smaller particle sizes19,20 and can further-
more affect mass budget analyses by breaking down plastic items into 
particles smaller than typically measured sizes21. We therefore use a 
recently developed fragmentation model21, including a size spectrum 
of plastic particles (0.1–1,600.0 mm). This allows us to assimilate differ-
ent types of observations such as net trawls that capture mainly micro-
plastics (<5 mm, with a typical mesh size of 0.2 mm (ref. 22)), as well as 
measurements of larger plastics (>25 mm) from shipboard observations 
and beach clean-up campaigns. With this size spectrum, we can also more 
accurately link concentrations in terms of number of plastic particles to 
concentrations in terms of plastic mass, as a biased conversion between 
the two has been shown to have a big impact on mass budget estimates23.

We focus on plastics that are initially buoyant when entering the 
marine environment, such as polyethylene, polypropylene and poly-
styrene. These polymers have been shown to make up the majority of 
items in the ocean’s surface24, deeper layers25 and beaches26–28. This 
means we do not consider polymers denser than seawater such as 
polyvinyl chloride and polyethylene terephthalate, which are estimated 
to make up about 35–40% of the plastic mass entering the marine 
environment6,29,30.
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Fig. 1 | A map of the predicted plastic concentrations in the marine 
environment. a,b, The predicted concentrations (g m–2) of plastic items 
(0.1–1,600.0 mm) are shown for the most likely parameter estimates in the ocean 

surface (0–5 m depth) (a) and below the ocean surface (b). Predicted plastic 
concentrations on beaches (in purple to red in a, white delineation) are shown in 
terms of g m−1. The estimated concentrations are shown for the year 2020.
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open ocean originates from the ocean36 (for example, items such as 
nets, ropes and buoys).

Biological processes (such as biofouling) play an important role 
in the dynamics and export of plastic waste from the ocean surface. 
We estimate that 220 kilotonnes of plastics are exported to marine 
sediments per year, of which 6 kilotonnes are microplastics (<5 mm), 
which is close to the 7–420 kilotonnes of microplastics per year from 
previous modelling studies7. We estimate that 6,200 kilotonnes of ini-
tially buoyant plastics have ended up in marine sediments since 1950, 
which is less than a recent estimate of 25,000-900,000 kilotonnes  
(ref. 8) for all plastic (buoyant and non-buoyant). Plastic items with 
densities higher than seawater are not accounted for in our model, 
and hence sedimentation fluxes near source regions may be underes-
timated considerably. Our model shows that about half of the initially 
buoyant plastic particles in the marine environment experience so 
much biofouling that they start sinking or become neutrally buoyant. 
The large quantity of plastic particles in the deep ocean25, for a large 
part consisting of low-density polymers such as polyethylene and 
polypropylene, cannot be explained without this fouling.

We estimate a plastic sink of three kilotonnes per year at coastlines 
due to processes such as burial, clean-up efforts and direct ultraviolet 
degradation. In addition, a substantial amount of plastics are frag-
mented into particles smaller than 0.1 mm—about 73 kilotonnes per 
year. We estimate that 2.2% of plastics larger than 5 mm fragment into 
particles smaller than 5 mm per year, which is very close to previous 
model estimates of about 3% per year (ref. 14).

Dominant contribution of large plastic items
One of our key results is that the majority of plastic mass is contained 
in the large plastic items (>25 mm): 90–98% (2,800–3,300 kilotonnes). 
Microplastics (<5 mm) and plastics between 5 and 25 mm form the small 
remainder at 49–53 kilotonnes and 150–170 kilotonnes, respectively, 
which is on the same order of magnitude as previous estimates for small 
(0.3–200.0 mm) floating plastics (93–236 kilotonnes2). These findings 

are also consistent with an analysis of the Great Pacific Garbage Patch30, 
where it was found that microplastics (<5 mm) make up only 8% of the 
total plastic mass at the ocean surface.

Particle size distributions (Fig. 3a) reveal an increase in the total 
plastic mass with particle size according to a power law, up to an esti-
mated dominant particle size of about 0.4 metres. Few particles above 
this length scale are expected to enter the marine environment. The 
model results indicate that most of the plastic mass for particles smaller 
than 0.8 mm is below the ocean surface. The total plastic mass on coast-
lines is about an order of magnitude less compared with the surface and 
deep ocean for all particle sizes. The number of particles increases for 
decreasing particle size (Fig. 3b) according to a power law, as has been 
shown in previous observational studies19,37.

Our estimate of the total buoyant plastic mass for particles 
smaller than 5 mm (51 kilotonnes) is similar to previous studies (35.5 
kilotonnes1). However, our mass estimate for particles between 5 and 
200 mm, 700 kilotonnes, is much higher than previously estimated 
(30.6 kilotonnes (ref. 1)). This is even more so for particles larger than 
200 mm, where our estimate of 2,500 kilotonnes vastly exceeds the 
previously estimated 202.8 kilotonnes (ref. 1). This difference can be 
explained largely by the very broad size intervals used previously1.

As an example, it can be seen in Fig. 3 (left panel) that the larger 
particles around 200 mm by far dominate the total mass in the size 
range 4.76–200.00 mm, whereas these particles are very sparse in 
terms of total number (right panel). These large particles are therefore 
likely to be undersampled, causing an underestimation of the total 
mass. Biases in mass budget estimates due to incorrect usage of mean 
particle masses were also observed for riverine plastic studies23. The 
large differences in total mass estimates underline the importance of 
treating different particle sizes very carefully in mass budget studies: 
preferably a (semi-) continuous size spectrum should be used.

We recommend that future plastic measurement campaigns and 
mass budget studies treat number and mass measurements more 
carefully. The amount of plastic particles increases exponentially for 
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decreasing particle sizes. Reporting the number of particles in observa-
tional studies can be unreliable when no strict lower limit of the particle 
size is used. This is especially true for visual observations (the main 
source of data for beaches38,39) as the lower detection limit probably 
varies per person. Measuring the total mass of items is more reliable 
in those cases as most of the plastic mass in the marine environment is 
contained in the larger particle sizes, which are more easily observed.

Implications of residence times for future 
projections
In summary, we find that the total amount of buoyant marine plastic 
litter, 3,000–3,400 kilotonnes, is much higher than previous estimates1, 
which for a large part can be explained by better representing large 
plastic object masses. We also find a plastic input into the marine envi-
ronment of 470–540 kilotonnes per year, at least an order of magnitude 
less than previous estimates3–5. The decreased input and increased 
standing stock suggest that there is no ‘missing sink’ for marine plastic 
pollution, which has been the focus of many recent papers7,23,33,40. Our 
mass budget estimate is consistent with observed plastic concentra-
tions in different marine reservoirs and with our latest understanding 

of processes removing plastic particles from the surface ocean, such as 
biofouling and sedimentation, beaching, fragmentation and mixing.

Our finding of a lower plastic input into the marine environment 
and a higher standing stock means that the residence time of plastics 
in the marine environment is much higher than previously estimated. 
For example, some studies41 predicted that given an instantaneous 
stop of plastic emissions, more than 95% of the plastic mass would be 
removed from the ocean surface within 1–2 years due to fragmentation 
and sinking. We show a similar analysis for a sudden stop of new plastics 
introduced into the marine environment in 2025 in Fig. 4 using our 
data-assimilated model. We expect that in this scenario only 10% of the 
plastic mass would be removed from the marine environment within 
2 years (orange line). The removal rate is expected to decrease rapidly 
over time as plastics move from coastal regions to the subtropical gyres. 
As there is no beaching and little sinking of marine plastics in these 
low algal areas compared with coastal waters11,13, the plastic particles 
become highly persistent (Supplementary Information section 1.3).

We estimate that the plastic input into the marine environment 
is probably still growing around 4% per year. Previous studies42 found 
no conclusive temporal trends regarding the amount of plastic lit-
ter in the marine environment. Establishing temporal trends is dif-
ficult due to the high variance in measured plastic concentrations43. 
Our estimated growth rate of 4% per year gives the best match with 
observational data over the past decades (Supplementary Informa-
tion section 1.5) but might change in the future under the influence of 
mitigation strategies and clean-up efforts. Without further mitigation 
strategies and clean-up efforts, our estimated growth rate of 4% per 
year has the potential to double the plastic standing stock within two 
decades, as shown in the inset in Fig. 4. The combination of a projected 
exponentially increasing input and long persistence of marine plastics 
means a likely increasing negative impact of marine plastic pollution 
on ecosystems in the future.

Online content
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Methods
We use a hybrid Lagrangian–Eulerian model to efficiently advect a 
virtual plastic tracer through the global ocean, under various envi-
ronmental forcings. First, we use Lagrangian simulations to advect a 
globally dense set of virtual plastic particles over a time span of one 
month. We run simulations for different particle sizes, different biofoul-
ing scenarios and different months. We then use each of these simula-
tions to construct transition matrices: linear systems that define the 
probability that plastic particles move from one grid cell of the ocean 
to another44,45. Parameterized sources and sinks for marine plastic pol-
lution are then directly added into the transition matrix model. This 
allows us to efficiently evaluate different source and sink scenarios, 
which is necessary during the data assimilation step where we calibrate 
the set of unknown parameters to optimally match the observational 
data. For a more detailed explanation, see Supplementary Informa-
tion (section 2.4). With the hybrid Lagrangian–Eulerian approach, we 
have a parsimonious model that can explain the sparse observed data 
with as few parameters as possible (16 in total; Supplementary Fig. 5).

Data assimilation
Parameters defining sources, transport and sinks of plastic pollution 
are given a plausible range (the Bayesian ‘prior’) in accordance with cur-
rent understanding of these processes as discussed in the next sections. 
Gaussian probability density functions are used to define the ranges, 
where the 95% confidence intervals define the lower and upper param-
eter estimates. Measurements contain an error due to both instrument 
errors (for example, differences between campaigns in sampling) and 
representation errors (for example, due to unresolved scales and pro-
cesses46). Measurement error is estimated by calculating variograms of 
the observational data6,47. We use an ensemble smoother with multiple 
data assimilation to update the model parameter values with the observa-
tional data48. An ensemble of 55 members (iterated 8 times) is used to esti-
mate the most likely posterior parameter values and confidence intervals. 
The ensemble members are furthermore used to quantify uncertainty 
ranges for the estimated plastic concentrations and fluxes. The modelled 
plastic concentrations represent a mean state, where subgrid-scale vari-
ability is not captured. We estimate the subgrid-scale variability from the 
model–observation mismatch after the data assimilation procedure. 
The subgrid-scale variability is accounted for in the uncertainty ranges 
by performing a Monte Carlo analysis6, where the plastic concentrations 
in each ensemble member are perturbed 100 times.

Lagrangian model
To generate the transition matrices, we advect virtual plastic particles 
three dimensionally in the global ocean using OceanParcels49, with the 
Mercator Ocean PSY4 analysis product at 1/12° resolution as forcing50. 
This forcing product has been assimilated with various data sources 
(including altimetry, sea surface temperature, salinity and temperature 
vertical profile data) and includes freshwater fluxes51. Particles are 
released horizontally on a hexagonal grid with an average hexagon edge 
length of 22 km and vertically at 12 logarithmically spaced depth layers 
between 0.5 m and 5,000 m. This release is repeated every month for 
five years (2015–2019). Transport is resolved for six different particle 
sizes (diameter) using an increment of a factor 4 (0.1 mm, 0.4 mm, 
1.6 mm, 6.4 mm, 26 mm, 102 mm). These particles experience a varying 
amount of influence from vertical turbulent mixing, which can affect 
their horizontal dispersion52. Analysis showed that of these sizes, the 
largest particles (102 mm) experience negligible effect from vertical 
mixing in the water column due to their high buoyancy. This is therefore 
the largest particle size for which we calculate the advection in Ocean-
Parcels. We assume similar transport for larger particles (up to 1.6 m) 
when constructing the transition matrices (‘Transition matrix model’ 
section) since these all remain at the ocean surface. Recent studies have 
shown that simply adding the Stokes drift velocity53 or a windage term30 
to Lagrangian particle simulations representing plastic transport does 

not increase the match with observational data, which was verified in 
a preliminary analysis. These effects are therefore not included in our 
model. Lagrangian particle simulations usually include a stochastic (dif-
fusive) term54 to account for missing subgrid-scale effects (for example, 
submesoscale eddies). This stochastic term is not included as the tran-
sition matrices calculated from the Lagrangian transport (‘Transition 
matrix model’ section) already introduce diffusion in the dynamics45. 
Transport is resolved for four different vertical transport scenarios 
under influence of turbulence and biofouling as described in the next 
section. The total number of particle trajectories across all simulations 
for the different months, sizes and transport scenarios is 1.7 billion.

Vertical motions. We consider four different scenarios for the vertical 
behaviour of plastic particles in the ocean. In all four scenarios, vertical 
diffusion due to turbulence is included, using a Markov-0 random walk 
model18 forced by the PSY4 vertical diffusivity fields.

First, we consider plastic particles that remain positively buoyant, 
with a rise velocity that is dependent on the particle size17. Spherical 
particles55 with a density of 1,010 kg m−3 are used as a baseline, giving the 
best match with experimentally determined rise velocities of particles 
found in the marine environment (Supplementary Fig. 9). In reality, 
environmental plastics have a range of densities and shapes37. For a 
given particle size in the model, we take a linear combination of the six 
differently sized baseline particles to model an assemblage of particles 
with different rise velocities. This linear combination is calibrated dur-
ing the data assimilation procedure to give an optimal match with the 
observational data (see the Supplementary Information section 2.3 for 
further details). Using spherical particles as a baseline keeps the rise 
velocity model consistent with our biofouling implementation13 and 
keeps the calculation procedure computationally cheap (as opposed 
to some recent iterative procedures for calculating rise velocities of 
non-spherical particles17,56 that would add extra computational costs).

Second, we include two scenarios for biofouling using a recently 
developed Lagrangian model13. Biochemistry fields from the Mercator 
Ocean BIOMER4 analysis product are used at 1/4° resolution. Biofilm 
on plastic particles is gained via collisions and growth with algae in 
this model and is lost via respiration. Biofilm loss via grazing and viral 
lysis is neglected to keep the amount of free model parameters limited 
since this effect is suggested to be minor13. Due to the growth and loss 
of biofilm, plastic particles can oscillate vertically in the water column. 
This potential oscillatory behaviour has not yet been experimentally 
observed. We therefore also include a scenario where the fouling of 
particles is permanent, neglecting the respiration loss term. In our 
fourth scenario, particles become neutrally buoyant due, for example, 
to a balance in the fouling and defouling processes or to slightly nega-
tively buoyant particles reaching an equal-density isopycnal surface.

Transition matrix model
The statistics of the Lagrangian particle transport (probabilities that 
particles move from one grid cell of the ocean to another) are stored in 
transition matrices, with time windows of 30 days. The Uber H3 grid is 
used to construct the transition matrix bins horizontally, where each 
cell has an edge length of approximately 60 km. Each horizontal bin is 
furthermore divided vertically into four depth bins, with boundaries 
at 0, 5, 50 and 500 m deep and at the ocean floor. Additional cells are 
introduced into the transition matrix system representing the coastline 
segments inside the coastal cells (Supplementary Fig. 11) to model 
transport between the ocean and beaches. The resulting transition 
matrices have a size of 121,000 × 121,000.

In the next two sections, we discuss how sources, transport and 
sinks of marine plastics are parameterized in the transition matrix 
model. We touch on plausible ranges for each parameter value as these 
are used to define the prior probability density functions in the Bayes-
ian analysis when assimilating observational data into the model (Sup-
plementary Information section 1.4).
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Parameterization of sources. We consider three major types of marine 
plastic pollution sources in our model: rivers, coastlines and fishing 
activity30. For a global overview, see Extended Data Fig. 1.

Current estimates of riverine plastic inputs vary widely. Global 
estimates based on modelling studies calibrated to observational 
data range from 1,150–2,410 kilotonnes per year (ref. 57) to 800–2,700 
kilotonnes per year (ref. 3). However, it was recently argued that these 
values might be overestimates23, giving a much lower estimate of about 
6.1 kilotonnes per year. Reasons for potential overestimations are (1) 
biases in conversion from number concentrations to mass concentra-
tions due to too-high particle mass estimates and (2) the mixing of 
different sampling techniques without accounting for varying lower 
size detection limits.

We use the most recent global estimate of riverine inputs3, given 
that they find a reasonable correlation to observational riverine data 
(R = 0.86) and their data are publicly available. We take possible biases 
into account by scaling the total input with a factor Sriv., where the 
bounds of this prior are chosen to capture both the high-end (2,700 
kilotonnes per year (ref. 3)) and low-end (6.1 kilotonnes per year  
(ref. 23)) estimates.

For coastal mismanaged plastic waste (MPW), we make use of a 
global MPW dataset per country4 in terms of kilotonnes per year per 
capita. Combined with the estimated population density within 50 
kilometres from the coast58, this gives us the coastal MPW per unit area 
per year. A parameter Spop. defines the relative input of coastal MPW 
with respect to the total riverine input.

We estimate plastic loss per fishing hour by scaling a globally 
estimated fishing hours dataset59 with a parameter Sfis. that defines the 
relative input of fishing-related plastic with respect to the total riverine 
input. The prior bounds for Spop. and Sfis. are defined using previously 
estimated input ranges for different waste categories30. This gives 
2.7–7.3 times the riverine input for coastal MPW and 0.2–2.0 times the 
riverine input for fishing-related plastic.

Larger items make up the majority of plastic mass found in the 
marine environment30,33, while small fragments dominate in terms of 
the number of particles22. It is not yet well known which particle size 
dominates new plastic items introduced into the marine environment. 
We parameterize the plastic input size using a log-normal distribu-
tion, capturing the dominant sizes of plastic packaging in municipal 
solid-waste sorting facilities (about 0.2 m (ref. 60)) and the dominant 
sizes of plastic items found in rivers (about 0.2–0.3 m (refs. 61,62)) (see 
Supplementary Information section 2.1 for more details).

Plastic waste generation has increased exponentially the past 
decades31. We use an exponential function to parameterize the pos-
sibility that this has led to an increasing amount of waste entering the 
ocean. The midpoint estimate for the exponential growth rate (GRin) 
prior is calibrated to plastic waste production estimates31, and the 
lower bound is set to zero to allow for the possibility of no increased 
input into the ocean (for example, due to more efficient collection and 
processing of waste).

Parameterization of transport and sinks. The four different vertical 
transport scenarios (‘Vertical motions’ section) yield four different 
transition matrices. We assume particles in the ocean are an assembly 
of these four scenarios. How much each scenario contributes is param-
eterized using three fractions—fof (oscillatory fouling/defouling), fpf 
(permanent fouling) and fnb (neutrally buoyant)—with the remaining 
fraction being the positively buoyant particles. In the case of perma-
nent fouling, we keep track of particles hitting the ocean floor (which 
is one of our sinks), in which case they are classified as ‘sedimented’ 
and removed from the system. Prior bounds for fpf are set to 1.7–97.0% 
by comparing previous estimates of plastic seafloor export7 with the 
estimated plastic mass at the ocean surface1. The remaining fractions 
are given equal prior probabilities, with the maximum fraction values 
set to 95%.

The transition matrix contains separate cells for the coastline 
segments. The probability that plastic particles beach (move from 
a coastal ocean cell onto the dry land) is parameterized using a  
beaching timescale τbeach(refs. 6,15). The prior probability density  
function for τbeach is defined on the log10 of the value to cover a wide 
range of (positively valued) possibilities. Parameter bounds are based 
on previous findings6, with a midpoint estimate of 100 days and a 
lower bound set to 25 days. Resuspension timescales determining 
how quickly differently sized plastics move from the beach to the 
ocean are based on experimental findings63. A probability premoval is 
defined for plastics being removed from beaches (for example, due 
to burial33, clean-up efforts or direct degradation of plastic material 
such as oxidation64). We use a previously determined removal rate 
of 0.2% per month as the midpoint estimate21 and allow it to vary an 
order of magnitude, capturing the removal rates from other global 
mass budget studies40 (0.8–4.0% per month). This is the second ‘sink’ 
in which particles are permanently removed from our simulations.

The coastline length inside each grid cell, necessary to calculate 
litter concentrations per unit length of beach, is computed using the 
natural Earth dataset65. Coastlines have a fractal structure, which can 
lead to different alongshore lengths in beach surveys compared with 
the discrete map data. We use a correction factor40 to account for 
the 1.27 fractal dimension of coastlines66. The typical beach survey 
resolution is set to 100 m, and the coastline segment resolutions are 
calculated directly from the natural Earth map data. To account for the 
fact that less litter might beach in grid cells with only a small amount 
of coastline, a parameter lbeach,min is introduced. Below this value, the 
beaching probability decreases linearly down to zero.

We assume fragmentation of plastic items is dominant on beaches 
due to higher temperatures, oxidation, ultraviolet radiation and 
mechanical abrasion20,29,67,68. Previous studies69 show that neglecting 
ocean fragmentation is justified as long as plastics fragment at the same 
rate or slower in the ocean compared with on beaches. A fragmenta-
tion model21 is used here to simulate how plastic items break down 
into smaller particles over time. Parameters to be estimated are the 
fragmentation rate λf and the shape factor dN, which is used to represent 
the dimensionality of plastic items21 (2 for flat objects, 3 for cubes and 
non-integer values for mixtures of differently shaped objects). For 
plastic items, the fragmentation rate is still not well known. Parameter 
bounds for λf are based on the experimental data20 (up to 1.9 × 10−4 d−1) 
and previous model results21 (down to 2.9 × 10−5 d−1) and are defined on 
the log10 of the value to cover a wide range of possibilities. Bounds for 
dN are based on observational data of plastic particle sizes and masses 
(Supplementary Information section 2.2). Fragmentation is the third 
sink for plastic particles in our simulations, where they are removed 
when reaching a size smaller than 0.1 mm.

In our model, we consider a full size spectrum from 0.1 to 
1,600.0 mm, using increments of a factor 2. Lagrangian particle trans-
port is resolved for six sizes (0.1–102.0 mm, ‘Lagrangian model’ sec-
tion). For intermediate sizes in the spectrum, the available transition 
matrices are interpolated linearly. For larger plastics (>0.1 m), similar 
transport is assumed as these particles remain predominantly at the 
ocean surface. We model the particle size distribution both in terms of 
the number of particles and in terms of mass (see ref. 21 for more 
details). This way, we can quantify which particle size contributes most 
of the marine plastic pollution. For smaller plastic particles, data are 
available on typical masses70,71. For bigger items, the particle mass mp 
is extrapolated from the particle length lp using mp ∝ ldN

p , consistent 
with the fragmentation model. See Supplementary Information section 
2.2 for more details.

Data availability
The datasets generated during the current study are available in the 
Utrecht University Yoda repository with the identifier https://doi.
org/10.24416/UU01-LDAGQN72.
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Code availability
Codes used to conduct the experiment are available in the Utrecht 
University Yoda repository with the identifier https://doi.org/10.24416/
UU01-LDAGQN72.
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Extended Data Fig. 1 | Three major sources of marine plastic pollution. Rivers3, shown using grey to black circles; coastal mismanaged plastic waste4, shown in red 
to purple; and fishing activity59, shown in blue.
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Extended Data Fig. 2 | Observational data across different marine reservoirs used to assimilate into the numerical model. The markers show the locations of the 
available observational data, from neuston net measurements at the ocean surface (blue dots), visual observations of large plastic items (>0.2m, blue circles), the deep 
ocean (orange diamonds), and beaches (orange triangles).
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Extended Data Fig. 3 | Scatter plots for modelled versus measured plastic 
concentrations. a,e, Measurements for separate size classes at the ocean 
surface25,72. b,f, Measurements for small plastics (>0.2 mm) and large plastics 
(>0.2 m) at the ocean surface. c,g, measurements below 5 m depth. d,h, 
Measurements from beaches. a–d, Number concentrations (n m−3 in the ocean 

and n m−1 on beaches). e–h, Mass concentrations (g m−3 in the ocean and g m−1 on 
beaches). The 1:1 line is shown using the dashed black line, the expected amount 
of measurement error ( ± 2σ) is shown using the dashed red lines. The Pearson R 
correlation coefficients between the modelled and measured concentrations are 
given in the supplementary information, Table S1.
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Extended Data Table 1 | Overview of the observational data used to calibrate the numerical model

To account for the fact that net trawl data can be biased due to wind mixing, the Kukulka correction factor74 is applied using ERA5 reanalysis wind speeds75 Data for large plastic items at the 
ocean surface (>0.2 m) come from previous studies using visual observations1,76. For beach measurements, MDMAP39 and OSPAR38 observations are included in terms of n m−1, focusing on 
larger plastic items (>25 mm and >500 m respectively). These datasets contain information on the type of litter items. Plastic litter types containing words such as ‘fish’, ‘rope’, or ‘net’ are 
categorized as fishing related items, which is used to calculate a minimum percentage of fishing related plastics per measurement location.
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