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Real-time detection of ammonium in soil pore water
Rotem Yupiter 1✉, Shlomi Arnon 2, Elad Yeshno1, Iris Visoly-Fisher3 and Ofer Dahan1

The development of technologies for continuous measurement of nitrogen forms in the soil is essential for optimizing the
application of fertilizers in agriculture and preventing water-resource pollution. However, there is no effective commercial
technology available for continuous monitoring of ammonium species in soil pore water. This work investigates an approach for
real-time measurement of ammonium in soil water using near-infrared transmission spectroscopy and partial least squares
regression (PLSR) for spectral analysis. The PLSR model was trained using soil pore water collected from various soils spiked with
ammonium to achieve a wide concentration range. The monitoring approach was then validated through transport experiments in
a soil column. The results demonstrated capabilities for real-time tracking of the temporal variation in soil ammonium
concentration and potential utilization in agronomical or environmental sensing.
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INTRODUCTION
The deterioration of natural water resources, such as ground and
surface waters, is often attributed to point and non-point sources
associated with industrial, urban, and agricultural activities.
According to United Nations World Water Development Report
20181, one of the leading causes of water-resource deterioration is
the excess application of fertilizers in agriculture. Excess fertilizer
application is commonly practiced worldwide to prevent nutrient
deficiency and consequent yield reduction. Unfortunately, excess
nitrogen (N) fertilizer in the soil cannot be utilized by the plants
and ultimately leaches down from the root zone through the
unsaturated zone (also termed vadose zone) to the ground
water2–5. Although on a global scale, agriculture is the largest non-
point source of N pollution of water resources, high levels of N are
also related to other pollution sources, such as landfills, animal
husbandry farms and wastewater-treatment facilities6–9. The
economic and ecological consequences of N pollution are
significant. Elevated concentrations of N species, i.e., above
drinking-water standards (EU; NO�

3 50 mg L–1; NO�
2 0.5 mg L–1;

NHþ
4 0.5 mg L–1)10, are considered hazardous and a health risk,

ultimately leading to disqualification of drinking-water wells. In
addition, natural discharge of polluted ground water to surface
water, such as rivers11,12, lakes13 and even oceans14, can ignite
large-scale algal blooms and eutrophication, which threaten
aquatic environments and marine life15–17.
Ammonium NHþ

4

� �
and nitrate NO3− are the most readily

accessible inorganic N forms for plant uptake18. They are limiting
factors for crop yield and therefore considered the main
components of N fertilizers. While nitrate is a stable mobile anion
that is easily transported in the soil, ammonium is a positively
charged ion which is subject to sorption. Its mobility and presence
in soil pore water is highly affected by its affinity for negatively
charged surfaces and lattice vacancies, which are present in
natural clay minerals such as vermiculite, montmorillonite, and
illite19,20. Due to its absorptive attraction to clay minerals,
ammonium transport in aerated soils is considered low and
strongly dependent on soil-oxidation conditions21. Over time,
these fixed ions can diffuse and are released from the clays back

into the pore water, allowing the roots and microorganisms to use
them22,23. Under cultivated field conditions, ammonium in the top
soil pore water can range from micrograms to hundreds of
milligrams per liter, depending on the crop species, fertilizer
application, and soil properties24,25. Accordingly, achieving proper
ammonium balance inside the root zone for maximum yield and
minimal loss is a challenging task. While agricultural soils are often
aerated, and the main pollution-causing N form is nitrate, under
anoxic conditions, ammonium can be a dominant species. Such
anoxic conditions may prevail in the presence of high organic
loads, as are often found under animal husbandry farms, landfills
or mega-industrial sites, or from septic effluents or even flooded
conditions, such as those prevailing under flooded rice pads.
Anoxic soil conditions may lead to very intensive transport of
ammonium across the unsaturated zone into the ground
water26–28. For example, the anaerobic reducing environment
underneath a waste landfill can release ammonium at very high
concentrations from the biodegradation of organic waste
matter29. These ions can then be transported from the waste
body to the unsaturated zone following precipitation events, and
can reach from dozens to thousands of milligrams per liter in the
soil pore water30. Similar conditions may prevail under animal
husbandry sites, where large quantities of ammonium can leach
down from dairy waste lagoons through the soil and deep
unsaturated zone31,32. In addition, when organic N and ammo-
nium levels exceed 10mg L−1 in water infiltrating through
managed aquifer recharge systems, N may leach into the
groundwater33. Accordingly, real-time detection of ammonium
in the soil is of high importance for both optimization of fertilizer
application and prevention of water-resource pollution.
Monitoring N species in the soil is key to preventing water-

resource pollution. Soil analysis is a broad discipline that includes
a variety of tools for managing fertilizers in agricultural areas and
for identifying pollutants during their transport through the
unsaturated zone34. Unfortunately, lack of in situ, rapid, low-cost,
robust, and high-resolution technologies for the characterization
of soil N makes it difficult to detect these pollutants accurately.
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Optical spectroscopy based on reflectance analysis offers a
good solution as a base technology for real-time soil analyses35.
The method is rapid, non-destructive, non-polluting, can be done
onsite, and is capable of determining several properties simulta-
neously if broad-wavelength bands are used36. However, optical
reflectance is not designed to track soil pore water, which is
subject to sudden changes in chemical composition and nutrient
exchange during different stages of the plant growing phases,
irrigation and fertilizer application. Measuring pore water offers a
glimpse into these rapid soil processes and is thus better adapted
to being a real-time sensor. Tuli et al.37 used this alternative
strategy by measuring nitrate in pore water with UV absorbance
spectroscopy in porous cups (suction lysimeters). A similar
approach was recently suggested by Yeshno et al.38, who
measured nitrate concentration in a flux of flowing soil pore
water obtained continuously from a porous interface in the soil
root zone. Their technology was based on UV light absorption
measurement in an optical flow cell connected to a soil
porewater-sampling system. Special analysis of the absorption
spectrum enabled reducing dissolved organic carbon interference
of nitrate absorption and determining a site-specific wavelength.
The integrated system enabled real-time continuous measure-
ment of nitrate concentration in soil pore water and detection of
rapid changes in ion concentration in the macro soil environment.
However, the fate of ammonium, which is also a major nutrient for
agriculture and a potential pollutant of water resources, remained
unknown.
Ammonium has a few spectral signatures in the near infrared

(NIR) range (800–2500 nm; 12,500–4000 cm–1) due to overtones
and combination bands of fundamental vibrations. However, NIR
transmission spectroscopy can be limited when applied to
solutions because water molecules H2Oð Þ have strong and broad
absorption bands in the NIR range. Accordingly, other molecular
bonds that absorb light at the same wavelengths, such as N–H,
C–H and O–H, can be masked by the strong absorption of water.
This effect can cause significant analytical interference because
transmission spectroscopy is based on quantifying the changes in
absorbance intensity. Hence, accurate analysis of water samples
with NIR techniques must consider other important parameters
that can increase the signal intensity, such as light pathlength and
specific wavebands39.
This manuscript presents a technique for ammonium detection

in soil pore water using NIR absorption spectroscopy. We used a
specific NIR band (2100–2300 nm) with strong absorption of

dissolved ammonium ions. The spectral data were analyzed with
the partial least squares regression (PLSR) algorithm to quantify
ammonium concentration in soil pore water. The trained model
was based on spiked pore water from different agricultural soils.
Once the analytical ammonium model was established, the
concept was tested and validated in a soil-column experiment.
This approach lays the foundation for the development of a
monitoring system for continuous real-time measurement of soil
ammonium concentration.

RESULTS AND DISCUSSION
Ammonium spectral profile
Determining the correlation coefficient (R2) between absorption
values and the concentration of a specific analyte in a standard
solution is a common technique for identifying specific absorption
bands. We calculated the R2 values for a batch of ammonium
standard solutions and absorption intensity in the NIR range
(Fig. 1). Some R2 values—around 1450 nm, 1950 nm, and above
2350 nm—showed large variability because of strong water-
absorption intensity. These wavelengths are associated with,
respectively, the first overtone of the OH-stretching band (2v1,3),
the OH combination band (2v1,3+v2)40 and the fundamental
vibrations (v1,3) of water molecules (H2O). These water vibrations
absorb a large portion of the NIR light going through the sample,
and strongly mask other molecules that could potentially be
detected. The wavelength band between 2100 and 2300 nm
showed the highest correlation coefficients, with R2 > 0.92
(p < 0.01) and consequently, was optimal for building a calibration
model (noted as PLSR model range in Fig. 1). This band is
associated with a strong N–H combination band and has also
been observed and used in biological studies of cell culture and
fermentation41–45. Although the absorption bands at 1490, 1590,
and 1800 nm presented R2= 0.61, 0.35 and 0.72, respectively, they
were not included, to make a more compact model. These were
associated with overtones and another combination band of
N–H46.
A graphical analysis of the spectrum (2100–2300 nm) divided

into groups based on soils from different sites revealed high
variability across the groups (Fig. 2). The variability was caused by
the diverse chemical composition of the samples collected from
various agricultural soils. These variations were both expected and
important, as one of our primary goals was to train a model with a
large spectral pool. Univariant (single-wavelength) calibration
approaches would not be suitable here, because they rely on a
single value that might be biased, resulting in mismatched results.

PLSR model and limit of detection
PLSR is a statistical technique used for predictive modeling. The
technique is similar to multiple linear regression, but it is
particularly effective when there are a large number of predictor
variables (also known as “features”) and a small number of
observations. PLSR aims to find the linear combination of
predictor variables that is most strongly correlated with the
response variable. This is achieved by constructing a set of “latent
variables” (LVs), which are linear combinations of the predictor
variables, and using these LVs as predictors in a multiple linear
regression model. One advantage of PLSR is that it can handle
multicollinearity, where two or more predictor variables are highly
correlated. PLSR can identify the most important latent variables
and use them to make predictions, rather than being influenced
by the noise introduced by multicollinearity.
Here, we used PLSR to predict the concentration of ammonium

from spectral analyses of pore water samples. The PLSR model was
trained on spectra (2100–2300 nm) of chemically heterogeneous
pore water samples (n= 106). Given the relatively small number of
samples, we assumed that this would be sufficient to build an

Fig. 1 Defining the prediction model boundaries. Left y axis:
correlation values between ammonium concentration and absor-
bance values for each specific wavelength. Right y axis: water
absorption in the NIR spectrum.
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accurate prediction model. It is important to note that using a
training set with a larger sample size would yield a more accurate
predictive model. However, since this work was aimed at
developing a method that could be further used for the
development of a dedicated sensor for in situ measurement of
ammonium in the field, minimizing pre-preparation and sample
number was also an important consideration.
The first necessary step was to find the optimal number of LVs

using the explained variance and mean squared error of
prediction (MSEP) (Fig. 3a, b). Overfitting caused by choosing a
large number of LVs might lead to a PLSR model that includes
noise in the data, resulting in a biased training model, whereas a
number of LVs that is too small could result in information loss.
The results showed that with 2 LVs, the explained variance in the

spectra is >98%. This was not surprising, since we used a broad
wavelength with strong ammonium absorption (Fig. 1). The
explained variance term only supports the estimation of the
minimum number of LVs, and not the optimal number. The
minimum MSEP value was obtained with 6 LVs; however, the
change in the error dropped dramatically after 4 LVs, suggesting
this as a more optimal number of LVs (Fig. 3b). Note that in the
column-transport experiment, we also checked the PLSR model
with 6 LVs and found that our estimation of 4 LVs gives better
results.
The 4-LV PLSR model was evaluated with adjusted correlation

coefficient ðR2adjÞ and root mean square error (RMSE) by regressing
the observed on the predicted responses (concentrations). The
results were R2adj ¼ 0:985, root mean squared error of calibration

Fig. 3 Characterization of the PLSR model. a Variance explained in the spectra, b mean MSEP values for each latent variable in the model,
c regression of all model-predicted concentrations on known (observed) values, and d validating the model with 80% training (calibration) set
and 20% testing (prediction) set.

Fig. 2 Spectral data of soil porewater samples used for the training model. Heterogeneous composition of the samples is represented by
different spectral signatures at the same concentrations.
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(RMSEC)=30.5 (mg L–1) and p < 0.01 (Fig. 3c). For validation, the
model was trained with 80% of the data (calibration set) and was
tested on the remaining 20% (prediction set). The results from the
calibration set were R2adj ¼ 0:983, RMSEC= 30.5 (mg L–1) and
p < 0.01 (Fig. 3d, black points). The prediction set results were
R2adj ¼ 0:995, root mean squared error of prediction (RMSEP)=19.1
(mg L–1) and p < 0.01 (Fig. 3d, cyan points). The R2adj values of the
trained PLSR model were >0.98. However, The RMSE values were in
the dozens of milligrams per liter. From an analytical perspective,
the presented methodology may not demonstrate high accuracy.
However, for fertilized agricultural soils and sites prone to
ammonium contamination, it may be satisfactory. Nevertheless,
this PLSR model for optical measurements of ammonium needs to
be refined at a finer scale in order to achieve higher accuracy.
The motivation for assessing the limit of detection (LOD) was to

define the lowest ammonium concentration that can be reliably
detected in a solution using this approach. The LOD was tested
using Allegrini and Olivieri’s technique47, which was adapted to
the PLSR model and follows the International Union for Pure and
Applied Chemistry (IUPAC) standards. The LOD results were
1.40–2.62 mg L–1 (LODmin–LODmax) (Supplementary Fig. 1). This
range specifies that concentrations below the LODmin cannot be
detected, while those above the LODmax may be, in a high
confidence of level (p < 0.05). Concentrations between these
values (1.40 < y < 2.62) need to be carefully tested. Use of a more
sensitive device or a different spectral band might have resulted in
a different LOD, but these were not tested here. The results
emphasize how well the model may be modified to lower
concentrations and so may be more adapted to shallow
agricultural soils where these concentrations are more prevalent.
All of the results and information on the LOD calculations can be
found in Supplementary Methods.

Real-time ammonium breakthrough experiment
Real-time measurement of ammonium transport in two soil
columns was tested with the trained PLSR model. One column
was filled with sandy loamy soil (SL) and the other, SL mixed with
compost (SLM) in a 10% weight ratio, to determine the impact of
soil organic matter and other natural soil-water constituents on
ammonium transport and spectral properties. The columns were
irrigated daily with fresh water or ammonium solution, and the
porewater samples were collected from the column 3–4 times a
day using special customized low-dead-volume suction cups to
track the ammonium breakthrough (Fig. 4a, c).
Water content (WC) and electrical conductivity (EC) in the soil

columns were continuously monitored throughout the experi-
ment with a time domain transmissometer (TDT) sensor. The
hydraulic and chemical conditions in the two soils were very
different, because the compost in the soil is expected to increase
the water retention, salinity and dissolved organic carbon. As
expected, the mean volumetric WC in the SL was 15% and 19.3%
before and after irrigation events, respectively (Fig. 4b, d), whereas
in the SLM column, the mean WC was much higher, reaching
20.75% and 28.15% before and after the irrigation cycles,
respectively. The EC values of the water samples from the SL
column were almost insignificant and ranged between 0.01 and
0.5 dS m−1, whereas in the SLM column, the values were much
higher and ranged between 0.2 and 1.1 dS m−1 throughout the
experiment, signifying salinity release from the compost (Supple-
mentary Fig. 2). The mean pH values in both columns were
relatively similar, 7.42 ± 0.05 and 7.49 ± 0.05 in the SL and SLM
columns, respectively. However, the initial total organic carbon
(TOC) values were drastically different, 7 and 147mg L–1 for the SL
and SLM soils, respectively.
Along with the standard laboratory analysis, the ammonium

concentration in the soil pore water, as predicted by the PLSR-

Fig. 4 Ammonium breakthrough curves in soil columns. a, c Breakthrough curves of ammonium in the sandy loam soil (SL) and SL mixed
with 10% compost (SLM) columns, respectively, obtained from the optical technique and standard laboratory procedure. b, d Daily WC
fluctuations in both columns. e Regression plot of the optical vs. laboratory measurements.
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trained model for the NIR spectroscopic analysis, presented
ammonium breakthrough curves in the soil columns (Fig. 4). A
clear appearance of ammonium breakthrough appeared after 2.5
and 3.5 days in the SL and SLM soil columns, respectively. The
ammonium breakthrough in the SLM was significantly retarded
compared to the breakthrough in the SL soil due to the high
organic content of the former. Six days after initiation of the
ammonium application, the concentration in the SL column
reached a maximum of ~900mg L–1 and the irrigation water was
replaced with tap water. Note that the maximum concentration in
the SLM column reached only 705 mg L–1. Immediately after
switching back to fresh water, a reduction in ammonium
concentration was observed, with an expected delay in the SLM
column. Ammonium retardation in both soils is related to fixation
and absorption to both minerals and organic matter in the soil.
Therefore, ammonium mobility in the soil is dictated by the
degree of absorption saturation. Although ammonium transport in
soil is of great interest, in this study, we focused on the optical
analytical procedure and not on the transport process.
Through these long-term measurements, we got the compara-

tive results (R2= 0.98, RMSE= 31.2 mg L−1 and p < 0.01 in the SL
column; and R2= 0.98, RMSE= 28.4 mg L−1 and p < 0.01 in the
SLM column; Fig. 4e). The validation data points for the
ammonium measurements were based on the total N (TOC/TN).
At 900mg L–1 of ammonium, a few ppm of nitrate is not a
significant concern. However, since ammonium can be trans-
formed to nitrate through nitrification in soil and the ammonium
concentration was lower at other stages of the experiment, it was
important to determine the actual concentrations of all N forms.
An ion chromatograph was used to measure the concentration of
nitrate and nitrite in five samples from each column. In the SL
column, nitrate concentrations ranged from 0.5 to 1 mg L–1

(0.2–0.8% of TN) and nitrite concentrations ranged from 0.5 to
2.6 mg L–1 (0.4–3% of TN). In the SLM column, which contains
more organic matter, nitrate concentrations were higher, ranging
from 0.7 to 18 mg L–1 (2.8–8.6% of TN), and nitrite concentrations
ranged from 1.1 to 12 mg L–1 (1.6–7.3% of TN).
The ammonium concentration range studied here was rather

high, reaching 1000mg L–1. Although in aquatic environments,
the concentration range that is considered highly polluted is in
the range of a few to tens of milligrams per liter, in intensively
fertigated soils, and under landfills and manure ponds, the
concentration may reach hundreds of milligrams per liter23,29,31.
Nevertheless, a low-concentration PLSR model can be built to
adapt the approach to aquatic environments and less intensively
fertigated soils.

METHODS
Optimizing waveband for the PLSR model
To optimize the optical band for our PLSR model, we performed a
correlation coefficient (R2) test using standard solutions of
ammonium chloride salt (NH4Cl; Merck EMSURE®) in double-
distilled water. The dilutions were 31, 62, 125, 250, 500,
1000mg L–1 to cover a wide range of concentrations. The samples

were measured under the whole NIR spectrum (1000–2500 nm)
using a Cary® 5000 UV–Vis–NIR (Agilent) spectrometer. The
correlation coefficient was calculated for each wavelength
separately. R2 values were calculated using the Microsoft Excel
RSQ function.

Soil solution collection and spiking procedure for the training
model
Ammonium measurements in soil pore water combining NIR
absorption spectroscopy with the PLSR algorithm requires the
development of a training model based on a collection of samples
with known ammonium concentrations and varying chemical
composition. Four agricultural soils from the southern Israel
coastline were used: (i) organic greenhouse soil based on compost
fertilization, (ii) conventional greenhouse soil based on industrial
fertilizers, (iii) soil from an open cultivated field of mixed crops,
and (iv) sandy soil mixed with commercial compost (Table 1). The
soils were packed into a 45-cm long and 29-cm diameter column.
A customized small-volume ceramic suction cup was placed at
25 cm depth. The columns were irrigated daily with tap water, and
soil pore water was collected using the suction cups. The soil pore
water collected from each of the columns was separated into 27
vials (a total of 106 samples), 4 mL per sample. Each vial was
spiked with a different amount of standard solution made up of
Merck EMSURE ammonium chloride (NH4Cl) salt dissolved in tap
water (EC of 270 μS). Spikes consisted of 1–1000 mg L–1 to cover a
wide range of concentrations, from a minimum reflecting natural
conditions to a maximum matching that following fertilization
events48. The ammonium concentrations in the pore water were
corrected based on the ratio of ammonium (NHþ

4 ) to ammonia
(NH3) and a pH–temperature table.

NIR measurements and data processing
All NIR spectra were measured in the Cary 5000 UV–Vis–NIR
spectrometer equipped with a PbS detector. Water solutions can
be measured at NIR wavelengths by increasing the signal-to-noise
ratio; this is done by reducing the light pathlength in a narrow-
width cuvette, and by selecting the best wavelength region39.
Therefore, a thin 1-mm pathlength fused quartz cuvette with
0.4 mL volume was used to measure the spiked solutions. The first
absorption scan for optimizing the wavelength was between 1000
and 2500 nm with a spectral resolution of 1 nm. After the
optimization, we only scanned the 2000–2500 nm range, at a
scan rate of 300 nmmin–1 with spectral resolution of 0.5 nm.
Baseline correction was performed with double-distilled water as a
reference.
To average the noise produced by the spectrometer, each

sample was scanned three times and the mean spectrum was
calculated. Then, the spectral data were smoothed with a
Gaussian-weighted moving average filter with 21-point window
size. Smoothing was performed using the MATLAB R2019a
smoothdata function.

Table 1. Initial total organic carbon (TOC) and ammonium concentrations in the collected soil pore water.

Location Soil Site type Ammonium (mg L–1) TOC ± SD (mg L−1) pH

Zikim Loam Organic greenhouse 2.00 257.4 ± 0.6 6.84

Zikim Sandy loam Conventional greenhouse 0.44 63.2 ± 0.5 6.55

Afek Clay soil Open cultivated field ND 136.2 ± 0.3 6.88

Sde Boker Sandy loam Mixed sandy soil and compost ND 14.0 ± 0.2 7.41

ND not detected.
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PLSR model
A multivariant statistical PLSR algorithm was developed to predict
the ammonium concentration in soil pore water from the spectral
absorption data in the NIR wavelength range. The algorithm
projects the original spectral dataset (xi also denoted as
“predictors”) and the chemical concentrations (y also denoted as
“responses”) of the solution, to smaller orthogonal and uncorre-
lated dimensions, also known as LVs, and finds the maximum
covariance between those parameters49.
This chemometric technique is widely used for soil analysis,

because it can quantify several properties or chemical values, and
can find underlying patterns or relationships from overlapping
spectral peaks50. Moreover, this method has several advantages
over other regression techniques such as principal component
regression (PCR), because the algorithm considers both the
predictors and the responses and calculates them simultaneously.
This creates a smaller and more compact model than PCR; it also
handles missing data better and takes into consideration errors in
the predictors51. Other techniques, such as deep learning
convolutional neural network, have no significant advantages
over PLSR when using particularly small-size training models
(n < 1400) and the computation costs are higher52.
In practice, the LVs can be used to predict the concentration of

ammonium in new samples based on their spectral profiles using
the PLSR. This can be done using Eq. 1:

y ¼ x1b1 þ x2b2 ¼ xibi þ ε (1)

where the predictors (x1, x2, etc.) are combined with their
corresponding coefficients (b1, b2, etc.) to predict the responses
(y). The error term (ε) represents the difference between the
predicted response and the actual response. To calculate the LVs
and the regression coefficients Eqs. 2 and 3 can be used:

T ¼ XW (2)

B ¼ YT (3)

Here the LVs (T) are calculated from the predictors (X – spectral
dataset) and the weights (W). The regression coefficients (B) are
calculated from the responses (Y) and the LVs. These LVs and
coefficients iteratively estimated through a process of weighted

least squares regression models until they maximize the explained
variance in the responses. The number of LVs is a user-defined
parameter. In this work the PLSR model was built using the
MATLAB 2019a plsregress function.

PLSR training and validation
The optimal number of PLSR LVs was evaluated with the MSEP
values. We calculated these values for each number of LVs using
five fold cross-validation and 100 Monte-Carlo repetitions. After
the number of LVs was set, we validated our training model with a
test set. The spectral data observations were divided into 80%
training and 20% testing. Then we built our PLSR model with 80%
of the spectral profiles and tested it on the remaining 20% of the
observations. The training and testing datasets were evaluated
with R2adj, RMSEC for the training, and RMSEP for the testing.

Trained PLSR model testing with real-time data
The PLSR model was tested using a new set of data derived from
spectral measurements of porewater samples collected during a
column-transport experiment. These samples contained unknown
concentrations of ammonium and therefore were optimal for our
model validation. We used the 2100–2300 nm spectra of each
sample, and the regression coefficients (bi) computed during the
training phase to predict the unknown ammonium concentra-
tions. Then the ammonium concentrations from our model were
compared to those from standard laboratory analysis and were
evaluated with R2adj and RMSE.

Ammonium-transport experiment
A column experiment was conducted to test the applicability of
the new methodology for continuous measurements of ammo-
nium in soil. Two columns, 45 cm long and 29 cm diameter, were
packed with two soils: SL and SLM (SL with 10% weighted
commercial compost; Humus Factories Ltd.). The columns were
drained by creating a continuous hydraulic gradient with mineral
wool that was placed at the bottom of the column, into a 0.5-m
long and 2.54-cm diameter drainage pipe (Fig. 5). A customized
ceramic suction cup and WC sensor (Digital TDT® SDI-12, Acclima)
were placed at a depth of 25 cm depth from the top of the soil

Fig. 5 Column setup. Illustration of the experimental column setup for measurement of ammonium transport in soil. The ‘optional path’
shows how to apply the approach with a real-time field sensor for measuring ammonium in the soil pore water.
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column (Fig. 5). The columns were irrigated daily with 1 L
(equivalent to 15.8 mm) of tap water. Once the daily oscillations
in soil WC stabilized, the irrigation water was replaced with
1000mg L–1 ammonium solution (EMSURE NH4Cl salt mixed with
tap water). Soil pore water was collected from the suction cups
3–4 times per day and the NIR absorption spectrum was optically
measured in the Cary 5000 UV–Vis–NIR spectrometer. Note that
soil pore-water sampling depends on soil water potential which
vary between the irrigation cycles. Therefore, porewater sampling
sequence is not evenly distributed. The Acclima TDT soil-moisture
sensor was used to measure the soil bulk EC and WC at 15-min
time resolution intervals using a Campbell Scientific CR300
datalogger. The column’s wetting and drainage cycles were
designed to mimic the natural unsaturated soil conditions of
irrigated soil with daily volumetric WC fluctuation ranging
between 15 and 30%. In this experiment, we deliberately used
sandy loam soils with low clay content, to reduce the ammonium
ion adsorption mechanism and obtain faster breakthrough curves.

Chemical analysis
All of the pH values in this work were measured using a pH meter.
TOC and TN were estimated with a multi N/C® 2100 s (Analytic
Jena AG) TOC/TN analyzer. Ammonium concentrations in the pore
water from the four agricultural sites were measured using
Nessler’s reagent and absorbance at 425 nm in a TECAN Infinite®
M200 spectrometer. A Thermo Scientific Dionex™ ICS-5000 ion
chromatograph was used to measure nitrate and nitrite in the
ammonium-transport experiment.

DATA AVAILABILITY
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author on reasonable request.

Received: 13 September 2022; Accepted: 8 March 2023;

REFERENCES
1. UNESCO. The United Nations world water development report 2018: Nature-Based

Solutions for Water (2018).
2. Smith, K. A., Jackson, D. R. & Pepper, T. J. Nutrient losses by surface run-off

following the application of organic manures to arable land. 1. Nitrogen. Environ.
Pollut. 112, 41–51 (2001).

3. Kurtzman, D., Shapira, R. H., Bar-tal, A., Fine, P. & Russo, D. Nitrate fl uxes to
groundwater under citrus orchards in a Mediterranean climate: Observations,
calibrated models, simulations and agro-hydrological conclusions. J. Contam.
Hydrol. 151, 93–104 (2013).

4. Turkeltaub, T., Kurtzman, D. & Dahan, O. Real-time monitoring of nitrate transport
in the deep vadose zone under a crop field-implications for groundwater pro-
tection. Hydrol. Earth Syst. Sci. 20, 3099–3108 (2016).

5. Weissman, G. et al. Increased irrigation water salinity enhances nitrate transport
to deep unsaturated soil. Vadose Zo. J. 19, 1–16 (2020).

6. Driscoll, C. T. et al. Nitrogen pollution in the northeastern United States: sources,
effects, and management options. Bioscience 53, 357–374 (2003).

7. Carey, R. O. & Migliaccio, K. W. Contribution of wastewater treatment plant
effluents to nutrient dynamics in aquatic systems. Environ. Manag. 44, 205–217
(2009).

8. Baram, S., Kurtzman, D., Ronen, Z., Peeters, A. & Dahan, O. Assessing the impact of
dairy waste lagoons on groundwater quality using a spatial analysis of vadose
zone and groundwater information in a coastal phreatic aquifer. J. Environ.
Manag. 132, 135–144 (2014).

9. Aharoni, I., Siebner, H., Yogev, U. & Dahan, O. Holistic approach for evaluation of
landfill leachate pollution potential – From the waste to the aquifer. Sci. Total
Environ. 741, 140367 (2020).

10. The European Parliament and the Council of the European Union. Directive (EU)
2020/2184 of the European Parliament and of the Council. Off. J. Eur. Union 2019,
1–62 (2020).

11. Wang, X. L., Lu, Y. L., Han, J. Y., He, G. Z. & Wang, T. Y. Identification of anthro-
pogenic influences on water quality of rivers in Taihu watershed. J. Environ. Sci.
19, 475–481 (2007).

12. Singh, B. & Craswell, E. Fertilizers and nitrate pollution of surface and ground
water: an increasingly pervasive global problem. SN Appl. Sci. 3, 1–24 (2021).

13. Ding, J. et al. Identifying diffused nitrate sources in a stream in an agricultural
field using a dual isotopic approach. Sci. Total Environ. 484, 10–18 (2014).

14. Howarth, R. W. Coastal nitrogen pollution: a review of sources and trends globally
and regionally. Harmful Algae 8, 14–20 (2008).

15. Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused
hypoxia. Biogeosciences 7, 585–619 (2010).

16. UNEP and WHRC. Reactive Nitrogen in the Environment: Too Much or too Little of
a Good Thing. United Nations Environ. Program. 1–56 (2007).

17. Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phyto-
plankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).

18. Masclaux-Daubresse, C. et al. Nitrogen uptake, assimilation and remobilization in
plants: Challenges for sustainable and productive agriculture. Ann. Bot. 105,
1141–1157 (2010).

19. Wen, Q.-X. & Cheng, L.-L. Fixation and release of ammonium. in Nitrogen in Soils of
China. 67–86 (Springer Dordrecht, 1997).

20. Nieder, R., Benbi, D. K. & Scherer, H. W. Fixation and defixation of ammonium in
soils: a review. Biol. Fertil. Soils 47, 1–14 (2011).

21. Li, J., Zhang, J. & Ren, L. Water and nitrogen distribution as affected by fertigation
of ammonium nitrate from a point source. Irrig. Sci. 22, 19–30 (2003).

22. Baethgen, W. E. & Alley, M. M. Nonexchangeable ammonium nitrogen con-
tribution to plant available nitrogen. Soil Sci. Soc. Am. J. 51, 110–115 (1987).

23. Briones, A. M. Jr et al. Ammonia-oxidizing bacteria on root biofilms and their
possible contribution to N use efficiency of different rice cultivars. Plant Soil 250,
335–348 (2003).

24. Bryla, D. R. & Machado, R. M. A. Comparative effects of nitrogen fertigation and
granular fertilizer application on growth and availability of soil nitrogen during
establishment of highbush blueberry. Front. Plant Sci. 2, 46 (2011).

25. Kabala, C., Karczewska, A., Gałka, B., Cuske, M. & Sowiński, J. Seasonal dynamics of
nitrate and ammonium ion concentrations in soil solutions collected using
MacroRhizon suction cups. Environ. Monit. Assess. 189, 304 (2017).

26. Wells, N. S., Hakoun, V., Brouyère, S. & Knöller, K. Multi-species measurements of
nitrogen isotopic composition reveal the spatial constraints and biological drivers
of ammonium attenuation across a highly contaminated groundwater system.
Water Res. 98, 363–375 (2016).

27. Du, Y., Ma, T., Deng, Y., Shen, S. & Lu, Z. Sources and fate of high levels of
ammonium in surface water and shallow groundwater of the Jianghan Plain,
Central China. Environ. Sci. Process. Impacts 19, 161–172 (2017).

28. Jiao, J. J. et al. Abnormally high ammonium of natural origin in a coastal aquifer-
aquitard system in the pearl river delta, China. Environ. Sci. Technol. 44,
7470–7475 (2010).

29. Buss, S. R., Herbert, A. W., Morgan, P., Thornton, S. F. & Smith, J. W. N. A review of
ammonium attenuation in soil and groundwater. Q. J. Eng. Geol. Hydrogeol. 37,
347–359 (2004).

30. Aharoni, I., Siebner, H. & Dahan, O. Application of vadose-zone monitoring system
for real-time characterization of leachate percolation in and under a municipal
landfill. Waste Manag. 67, 203–213 (2017).

31. Ham, J. M. Seepage losses from animal waste lagoons: a summary of a four-year
investigation in kansas. Am. Soc. Agric. Eng. 45, 983–992 (2002).

32. Baram, S., Arnon, S., Ronen, Z., Kurtzman, D. & Dahan, O. Infiltration mechanism
controls nitrification and denitrification processes under dairy waste lagoon. J.
Environ. Qual. 41, 1623–1632 (2012).

33. Mienis, O. & Arye, G. Long-term nitrogen behavior under treated wastewater infil-
tration basins in a soil-aquifer treatment (SAT) system.Water Res. 134, 192–199 (2018).

34. Dahan, O. Vadose zone monitoring as a key to groundwater protection. Front.
Water 2, 1–9 (2020).

35. Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. & Skjemstad, J.
O. Visible, near infrared, mid infrared or combined diffuse reflectance spectro-
scopy for simultaneous assessment of various soil properties. Geoderma 131,
59–75 (2006).

36. Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M. & Wetterlind, J. Visible and near
infrared spectroscopy in soil science. Adv. Agron. 107, 163–215 (2010).

37. Tuli, A., Wei, J.-B., Shaw, B. D. & Hopmans, J. W. In situ monitoring of soil solution
nitrate: proof of concept. Soil Sci. Soc. Am. J. 73, 501–509 (2009).

38. Yeshno, E., Arnon, S. & Dahan, O. Real-time monitoring of nitrate in soils as a key
for optimization of agricultural productivity and prevention of groundwater
pollution. Hydrol. Earth Syst. Sci. 23, 3997–4010 (2019).

39. Jensen, P. S. & Bak, J. Near-infrared transmission spectroscopy of aqueous solu-
tions: Influence of optical pathlength on signal-to-noise ratio. Appl. Spectrosc. 56,
1600–1606 (2002).

R. Yupiter et al.

7

Published in partnership with King Fahd University of Petroleum & Minerals npj Clean Water (2023)    25 



40. Büning-Pfaue, H. Analysis of water in food by near infrared spectroscopy. Food
Chem. 82, 107–115 (2003).

41. Hall, J. W. et al. Near-infrared spectroscopic determination of acetate, ammonium,
biomass, and glycerol in an industrial Escherichia coli fermentation. Appl. Spec-
trosc. 50, 102–108 (1996).

42. McShane, M. J. & Coté, G. L. Near-infrared spectroscopy for determination of
glucose, lactate, and ammonia in cell culture media. Appl. Spectrosc. 52,
1073–1078 (1998).

43. Arnolda, S. A. et al. At-line monitoring of a submerged filamentous bacterial
cultivation using near-infrared spectroscopy. Enzym. Microb. Technol. 27, 691–697
(2000).

44. Cervera, A. E., Petersen, N., Lantz, A. E., Larsen, A. & Gernaey, K. V. Application of
near-infrared spectroscopy for monitoring and control of cell culture and fer-
mentation. Biotechnol. Prog. 25, 1561–1581 (2009).

45. Petersen, N. et al. In situ near infrared spectroscopy for analyte-specific mon-
itoring of glucose and ammonium in Streptomyces coelicolor fermentations.
Biotechnol. Prog. 26, 263–271 (2010).

46. Fastelli, M., Comodi, P., Maturilli, A. & Zucchini, A. Reflectance spectroscopy of
ammonium salts: implications for planetary surface composition. Minerals 10,
1–22 (2020).

47. Allegrini, F. & Olivieri, A. C. IUPAC-consistent approach to the limit of detection in
partial least-squares calibration. Anal. Chem. 86, 7858–7866 (2014).

48. Sato, S., Morgan, K. T., Ozores-Hampton, M. & Simonne, E. H. Spatial and temporal
distributions in sandy soils with seepage irrigation: I. Ammonium and nitrate. Soil
Sci. Soc. Am. J. 73, 1044–1052 (2009).

49. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics.
Chemom. Intell. Lab. Syst. 58, 109–130 (2001).

50. P. Leone, A., A. Viscarra-Rossel, R., Amenta, P. & Buondonno, A. Prediction of soil
properties with PLSR and vis-NIR spectroscopy: application to Mediterranean
Soils from Southern Italy. Curr. Anal. Chem. 8, 283–299 (2012).

51. Dunn, K. G. Latent variable modelling. In Process Improvement using Data
315–391 (2020).

52. Ng, W., Minasny, B., de Sousa Mendes, W. & Melo Demattê, J. A. The influence
of training sample size on the accuracy of deep learning models for the
prediction of soil properties with near-infrared spectroscopy data. Soil 6,
565–578 (2020).

ACKNOWLEDGEMENTS
This research was funded by the KAMIN Framework Israel Innovation Authority, grant
no. 67854. The M.Sc. scholarship was funded by the Israel Water Authority,

agreement no. 45018446553. We would like to express our gratitude to Michael
Kugel for supporting all technical and theoretical aspects of this research.

AUTHOR CONTRIBUTIONS
Conceptualization – R.Y.; Experimental setup – R.Y., E.Y., O.D.; Analysis – R.Y., S.A., I.V.-F.;
Writing – R.Y., S.A., O.D.; Project supervision – S.A., O.D.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41545-023-00243-z.

Correspondence and requests for materials should be addressed to Rotem Yupiter.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

R. Yupiter et al.

8

npj Clean Water (2023)    25 Published in partnership with King Fahd University of Petroleum & Minerals

https://doi.org/10.1038/s41545-023-00243-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Real-time detection of ammonium in soil pore water
	Introduction
	Results and discussion
	Ammonium spectral profile
	PLSR model and limit of detection
	Real-time ammonium breakthrough experiment

	Methods
	Optimizing waveband for the PLSR model
	Soil solution collection and spiking procedure for the training model
	NIR measurements and data processing
	PLSR model
	PLSR training and validation
	Trained PLSR model testing with real-time data
	Ammonium-transport experiment
	Chemical analysis

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




