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A method to estimate probability of disease and vaccine
efficacy from clinical trial immunogenicity data
Julie Dudášová 1,2, Regina Laube3, Chandni Valiathan 4,8, Matthew C. Wiener4,9, Ferdous Gheyas5, Pavel Fišer 6,
Justina Ivanauskaite6, Frank Liu 7 and Jeffrey R. Sachs 5✉

Vaccine efficacy is often assessed by counting disease cases in a clinical trial. A new quantitative framework proposed here
(“PoDBAY,” Probability of Disease Bayesian Analysis), estimates vaccine efficacy (and confidence interval) using immune response
biomarker data collected shortly after vaccination. Given a biomarker associated with protection, PoDBAY describes the relationship
between biomarker and probability of disease as a sigmoid probability of disease (“PoD”) curve. The PoDBAY framework is
illustrated using clinical trial simulations and with data for influenza, zoster, and dengue virus vaccines. The simulations
demonstrate that PoDBAY efficacy estimation (which integrates the PoD and biomarker data), can be accurate and more precise
than the standard (case-count) estimation, contributing to more sensitive and specific decisions than threshold-based correlate of
protection or case-count-based methods. For all three vaccine examples, the PoD fit indicates a substantial association between the
biomarkers and protection, and efficacy estimated by PoDBAY from relatively little immunogenicity data is predictive of the
standard estimate of efficacy, demonstrating how PoDBAY can provide early assessments of vaccine efficacy. Methods like PoDBAY
can help accelerate and economize vaccine development using an immunological predictor of protection. For example, in the
current effort against the COVID-19 pandemic it might provide information to help prioritize (rank) candidates both earlier in a trial
and earlier in development.
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INTRODUCTION
The protective efficacy of a vaccine (vaccine efficacy, “VE”) is
defined as the proportional reduction in risk of disease among
vaccinated subjects compared to control (placebo vaccinated)
subjects and is often assessed in randomized double-blinded
controlled clinical trials1. Compared to other drugs and biologics,
vaccine trials are particularly costly and lengthy2,3. This is due in
part to the number of subjects in the trials, the need to enroll
many healthy subjects (as opposed to those currently suffering
from a disease, who may be more motivated to participate), and
observation periods of months to years to accrue the number of
disease cases necessary to obtain a sufficiently precise estimate of
VE. An overview of statistical methods for VE assessment and
alternative trial designs can be found in Chen and Ting4.

What is a CoP?
In some trials, immune response post vaccination is evaluated in
addition to the primary clinical endpoint of disease. If a biomarker
provides an adequate prediction of protection from disease and is
measured sufficiently precisely, then it can be identified as a
potential immunological correlate of protection (“CoP”). Biomar-
kers predictive of protection have been discussed widely in the
literature. Authors and public health authorities5–8 use terms such
as “correlate of protection”, “surrogate of protection”, “immune
marker of protection”, “correlate of immunity”, and “correlate of
risk” with different definitions and sometimes in directly
contradictory ways.

In this work, the term “correlate of protection,” or “CoP,” is used
in accordance with the terminology of Plotkin and Gilbert6, in
which a CoP is a biomarker that can be used to reliably predict VE.
This was chosen because the biomarker used in the proposed
method can be a mechanistic CoP, a non-mechanistic CoP, an
absolute CoP, or a relative CoP. Supplementary Note 9 compares
various terminologies.

Why is CoP important?
Establishing and using CoPs in vaccine clinical development can
be valuable for (i) understanding the mechanism of protection, (ii)
identifying promising vaccine candidates, (iii) evaluating immu-
nogenicity in small-scale clinical trials, and assisting “go/no-go”
decisions (from early to late-stage clinical trials), (iv) reducing size
or duration of large-scale clinical trials, (v) providing endpoints for
use in bridging clinical trials (e.g., to show different formulations
are sufficiently similar or supporting the protection of additional
populations), and (vi) providing additional support in the
evaluation of vaccines by regulatory and public health authorities.
CoPs generally lead to faster development of effective vaccines9.

How can CoP be assessed?
Several approaches have been applied to search for a threshold of
the biomarker (immunogenicity measure) that discriminates
subjects likely to have disease versus those likely not to have
disease10–14, or to quantify the continuous relationship between
an immune response biomarker and protection from disease15–18.
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Continuous (“relative”) CoP versus thresholds (“absolute”
CoP)?
Use of the threshold model assumes that individuals who achieve
the threshold after vaccination are completely protected. Biomar-
kers for which this model is valid are termed “absolute
correlates”6. The relationship is more likely to be continuous,
and the majority of biomarkers are “relative correlates” in the
sense that higher values are quantitatively more protective than
lower values with occasional failures even at high levels and
occasional protection at lower levels6. Further, even if there were a
universal, absolute threshold for protection, assay variability would
result in the measured relationship being continuous.

Continuous CoP — history. Hobson et al.19 first analyzed a
quantitative relationship between a biomarker and the likelihood
of infection. Recently, Dunning16 proposed to use the logistic
function of log biomarker value to model the protection curve.
Furthermore, he provided a formula to calculate VE using the
protection curve and biomarker values of individuals in vaccinated
and control groups. Coudeville et al.20, building on Dunning’s
approach, estimated the level of clinical protection using a
random-effects model with covariates (allowing the inclusion of
multiple datasets in meta-analytical approach) and included
uncertainty in the estimation of the protection curve and
distributions of biomarker values to obtain not only a point
estimate of VE but also its confidence interval (“CI”)21. Other
authors22 have provided an excellent overview of approaches to
surrogate markers and proposed optimizing curve shape using
machine-learning methods while maintaining desirable statistical
properties; this very general approach minimizes the prediction
error for each observation with potentially complex prediction
functions.

What is a novel about the proposed approach?
Instead of a protection curve (or estimation of each event as in
Price22), the “PoDBAY” (Probability of Disease Bayesian Analysis,
Supplementary Note 8) framework proposed here uses a
probability of disease curve, following the original idea of Hobson
et al.19 This concept enables identification of the slope of the
curve and location of 50% protective biomarker value (as does the
protection curve), and also a third parameter, the probability that
a maximally susceptible (i.e., healthy and seronaive) individual
develops a disease, i.e., the maximum probability of disease. (This
probability is related to force of infection and placebo incidence
rate (“IR”).) We show how to calculate VE and its CI using the
probability of disease curve and distributions of the biomarker
value in vaccinated and control groups. Using examples based on
simulated data we study and compare properties of (i) the
proposed PoDBAY method, and (ii) the standard clinical outcome-
based VE estimation (using case-counts to estimate proportional
risk reduction). (Additional differences with previous work include
statistical methods enabling more general relationships between
the parameters, as discussed briefly in Results describing influenza
virus vaccine analysis and Supplementary Note 10.)

What is the benefit? Making decisions using PoDBAY. It is
important to clarify that this work cannot replace a formal
assessment and validation of immunological CoPs. However, if an
immunogenicity biomarker has been sufficiently validated as a
CoP using, e.g., some of the formal approaches8,23–28 (the first of
which was proposed by Prentice)29, PoDBAY can be used for
assisting important decisions in vaccine development by (i)
predicting VE in phase 1 when only immunogenicity data are
available, (ii) estimating VE in phase 2 and phase 3 and comparing
it to observed VE, (iii) using estimated VE as an alternative metric
(rather than arbitrary ratios of geometric mean titers) for lot
consistency or immunobridging, or (iv) predicting VE of a new

vaccine (for the same pathogen and sufficiently similar mechan-
ism), formulation, or geography, possibly replacing (or at least
reducing the size of) some large clinical trials.

Outline. In the “Methods” section we introduce a continuous
model that infers the probability of disease from the immune
response biomarker values of diseased and non-diseased subjects.
We then describe how the probability of disease model can be
combined with the distributions of observed immune response
biomarkers in vaccinated and control groups to estimate VE and
its CI. This section also presents simulation methods used to
qualify the accuracy and precision of the VE estimate as well as the
reliability (calibration) of its CI.
Results of the simulations and the general properties of the

method are described in the Results section. The method is
illustrated using clinical trial data from influenza virus, zoster virus,
and dengue virus vaccines. VE estimates obtained by PoDBAY and
by the standard method (using case counts to estimate
proportional risk reduction) are compared.
The “Discussion” section highlights the main conclusions and

implications for vaccines research and development.

RESULTS
Overview of results
PoDBAY relates the probability of disease (“PoD”) to a CoP
(generally referred to below as “titer”) via a decreasing sigmoid
function. This “PoD curve” is typically created with titer data
observed early in clinical trials (e.g., 1-month post vaccination) and
is used to estimate VE (based on these data from the same or
other trials). Details and caveats are in the “Methods” section.
This section first shows the properties of PoDBAY for simulated

data using a range of trial sizes, VEs, and CoP properties. The
simulations demonstrate that PoDBAY estimates of VE are typically
accurate and more precise than the standard (case-count)
estimates of VE, enabling them to contribute to more sensitive
and specific development decisions than threshold-based (“abso-
lute”) CoP or case-count-based methods. PoDBAY is then applied
to influenza virus, zoster virus, and dengue virus vaccines, and the
VE estimates (PoDBAY predictions of VE) are compared with VEs
estimated using the standard case-count estimation. For all three
vaccine examples, the PoD fit indicates a substantial association
between the biomarkers and protection, and efficacy estimated by
PoDBAY from relatively little immunogenicity data is predictive of
the standard estimate of efficacy, demonstrating how PoDBAY can
provide early assessments of VE. In addition, the last example
illustrates how PoDBAY can also provide potentially informative VE
estimates for (demographic) subgroups of subjects.

Simulations
In order to illustrate PoDBAY and to test how it behaves in a wide
range of conditions, the method is first applied to simulated data.
The specific data sets used for the examples based on clinical data
are described in the following section.

Data generation and parameter estimation. Datasets are gener-
ated for a range of different trial scenarios where the underlying
truth is set, as described in “Methods”. Generated titers are
distributed lognormally. The parameter values provided in Table 1
lead to four different values of true VE:

● 53%, if et50 ¼ 7;meanðtvaccinatedÞ ¼ 8 (hereinafter referred to
as “simulation scenario A”),

● 66%, if et50 ¼ 6;meanðtvaccinatedÞ ¼ 8 (hereinafter referred to
as “simulation scenario B”),

● 69%, if et50 ¼ 7;meanðtvaccinatedÞ ¼ 9 (hereinafter referred to
as “simulation scenario C”),
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● 80%, if et50 ¼ 6;meanðtvaccinatedÞ ¼ 9 (hereinafter referred to
as “simulation scenario D”).

The absolute values of the parameters can be chosen arbitrarily
due to invariance implied by the forms of the equations and
distributional assumptions, only the coefficients of variation and
different efficacies impact results. The values chosen here represent a
range of behaviors likely to be of most interest, as they cover the
ranges of behaviors relevant to efficacies above 50% and to the
examples below using actual clinical trial data (described below for
influenza virus, zoster virus, and dengue virus vaccine analysis).
PoD curve and VE estimation accuracy are evaluated as described

in “Methods”. One thousand trials are simulated, and estimated
values are compared to true parameters underlying generated data.
Parameter estimates from PoDBAY (Supplementary Tables 1 and 2,

and Supplementary Note 5) demonstrate that PoDBAY can
appropriately estimate the PoD curve in all these scenarios. High
values of γ cause the PoD curve to approach the traditional PoD
curve used with a CoP: the step-function underlying the threshold-
based approach in which subjects above et50 are completely
protected, and those below it are not at all protected. Supplementary
Tables 1 and 2 and the results below from simulations (and those
from clinical data examples in the Results section on influenza virus,
zoster virus, and dengue virus vaccine analysis) show that we can
determine the smooth curves even with relatively little data. The
resulting PoDBAY estimates improve substantially VE-based decision-
making (such as “go/no-go” to the next development phase) by
improving VE estimation precision over that of threshold-based CoP
VE estimates (data not shown), just as the CoP-based VE using
PoDBAY (hereinafter referred to as “CoP-based VE”) improves it over
case-count methods (below).

Accuracy of VE point estimation. Supplementary Figure 1 and
Supplementary Tables 1 and 2 show consistency in accuracy of the
PoD curve estimates across the four different simulation scenarios.
True values of the PoD curve parameters fall into corresponding
interquartile ranges and are close to the estimated median values.
Moreover, with an increasing number of subjects in a simulated
trial, increasing accuracy and decreasing variance of the estimated
parameters are observed.
Figure 1 and Supplementary Tables 3 and 4 show that medians

of both case-count and CoP-based VE estimates are close to the
true VE in all simulation scenarios (“unbiased estimates”). The CoP-
based VE estimates have narrower interquartile ranges and lower
variances compared to the case-count VE estimates. The
difference between the two methods is greater when there are
fewer subjects in a simulated trial.

The value of parameter pmax is a function of the IR of the disease
in the control population as shown in Eq. (1).

pmax ¼ IRcontrol
1

AUCcontrol
; (1)

where

AUCcontrol ¼
Z

P diseasejtcontrolð Þ � P tcontrolð Þdt;

with
P diseasejtcontrolð Þ given as PoDðtÞ in Eq. (3) with parameter value

pmax ¼ 1, and
P tcontrolð Þ representing the estimated probability density func-

tion for observed log2 titers in the control (placebo) population.
By varying the value of pmax, the IR and therefore the number of

disease cases in a simulated trial can be increased or decreased.
To investigate the effect of a number of disease cases in simulated
trial on the accuracy of the proposed method, 1000 smaller trials
(N= 3000) were simulated for each of five variants of simulation
scenario C (true VE= 69%) with pmax = 0.01; 0.02; 0.03; 0.04; 0.05.
As shown in Fig. 2, CoP-based VE has been estimated accurately
(any bias is small, as the median is within 1% of true VE) in trials
with a number of disease cases higher than seven. As the number
of diseased subjects increases, the estimated efficacies are closer
to the true VE. The variance of case-count VE estimates is larger
than the variance of CoP-based VE estimates, especially in the
trials with a low number of disease cases.

The precision of VE point estimation. Root mean squared error
(“RMSE”, Eq. (8)) and relative root mean squared error (“RRMSE”,
Eq. (9)) are calculated for both the CoP-based VE and the case-
count VE estimates as described in Methods. Table 2 shows lower
values of RMSE and RRMSE for the CoP-based VE estimates
compared to the case-count VE estimates, indicating higher
precision of the PoDBAY method. The precision of both methods
increases with an increasing number of subjects in a simulated
trial.

Utility of VE point estimation. The relative performance of the
case-count VE estimation and the CoP-based VE estimation is also
evaluated using utility as described in Methods. Utility represents
an estimate of how often the PoDBAY estimate is closer to the true
value of VE than the case-count VE estimate. Because the results
are above 50%, the PoDBAY method outperforms the case-count
method for all simulation scenarios and both population sizes
(Table 3).

Coverage probability of VE CI. To qualify the estimation of the CIs,
coverage probability was assessed for the most frequent situation:
a trial where immunogenicity is only available for a subset of
subjects. (See Methods and Supplementary Note 1 for the
algorithm modifications.) Table 4 summarizes the coverage
probabilities of the case-count and the CoP-based VE CI estimates.
An increasing number of subjects in a simulated trial slightly
improves the coverage probability of CoP-based VE CIs. However,
even smaller trial (N= 3000) simulation results show good
coverage probabilities for all simulation scenarios and both
methods.

Width of VE CI. Using results of 1000 simulated smaller trials (N=
3000), we explore widths of CIs for both methods. The width of a
CI is calculated as the lower bound subtracted from the upper
bound of the estimated CI. As shown in Fig. 3 and Supplementary
Figure 2, the CoP-based VE CIs are narrower than the case-count
VE CIs in 90% of simulated trials (blue). The median width of the
CoP-based VE CIs is 30, while the median width of the case-count
VE CIs is 43.

Table 1. Parameter values used to set the truth for simulated data.

Parameter Values Tested

pmax 0.03

et50 6; 7

γ 7

Number of subjects, N 3000; 30,000

Number of subjects in the vaccinated group 2000; 20,000

Number of subjects in the control group 1000; 10,000

Mean log2 titer in the vaccinated group,
meanðtvaccinatedÞ

8; 9

Mean log2 titer in the control group, meanðtcontrolÞ 5

The standard deviation of log2 titers in the
vaccinated group

2

The standard deviation of log2 titers in the
control group

2
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Illustrations using clinical trial data
In each of the following three cases, we will outline the data used
to create a PoD curve, summarize the immunogenicity data used
with that curve to predict the VE, and compare the resulting
calculated efficacy to previously published values.

Influenza vaccines
The adjuvanted trivalent inactivated influenza virus vaccine
(“ATIV”, Novartis Vaccines) VE against proven influenza infections
was evaluated in a randomized, double-blind, 3-arm, comparative
trial that also included non-adjuvanted trivalent inactivated
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Fig. 2 Accuracy of VE estimation when increasing the number of disease cases in a simulated trial. Number of subjects in simulated trial N
= 3000, simulation scenario C, true VE= 69%, pmax = 0.005, 0.01; 0.02; 0.03; 0.04; 0.05. The values of pmax were chosen to make a similar
number of cases for each group. As expected, some sets with fewer than seven cases do not allow estimation of a PoD curve, and so the
lowest category is restricted to seven to 10 cases. More details can be found in Supplementary Note 7. Interpretation of box plot: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. The common horizontal line represents the
true VE used in the simulation.
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interquartile range; points, outliers. The common horizontal line represents the true VE used in the simulation.
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influenza virus vaccine (“TIV”, Novartis Vaccines and GlaxoSmithK-
line Biologicals), and control in 4707 subjects30. Case-count
estimate of VE against A/H3N2 in subjects 6–72 months of age
for season 2008/2009 was 89% (95% CI: 78–95%) for ATIV and 40%
(95% CI: 9–60%) for TIV. Included in this trial was an immuno-
genicity subset of 777 subjects, documenting their post-
vaccination influenza hemagglutination inhibition (“HI”) titers
and disease status31. (We estimated case-count VE and 95% CI
as described in Methods (Standard method: Case-count VE) using
numbers of confirmed cases of influenza in TIV vs. control groups,
44/1772 vs. 41/993, reported in Table 1 of Pinheiro et al.32)
A PoD curve can be estimated (Fig. 4) using individual-level HI

antibody titers to A/H3N2 at day 50 post dose 2 in diseased and
non-diseased subjects 6–72 months of age for season 2008/2009
from the immunogenicity subset. The dataset consists of titers of
all diseased (22 subjects), and all non-diseased (755 subjects) in
the immunogenicity sub-study.
The CoP-based VE estimate for ATIV is 85% (95% CIs: 63–97%),

based on the estimated PoD curve and influenza HI titers at day 50
post dose 2 in the ATIV group and control group. The CoP-based
VE estimate for TIV is 37% (95% CIs: 21–60%), based on the
estimated PoD curve and influenza HI titers at day 50 post dose 2
in TIV and control groups.
Black et al. used an immunogenicity dataset30,31 to evaluate HI

titer in children as a CoP. In this analysis, the compliance with the
Prentice criteria is verified, and subsequently, an H3N2 antibody
titer (day 50) protection curve (probability of protection curve,
“PoP curve”) is estimated and used for the calculation of H3N2
antibody titer levels associated with clinical protection rates of
50%, 60%, 70%, 80%, and 90%. To compare these published
results with our results, the PoD curve estimated in this section
describing the influenza vaccine was converted to a protection

curve in analogy to the work by Dunning16 as described in Eq. (2).

PoP tð Þ ¼ 1� PoD tð Þ
pmax

; (2)

where
PoD tð Þ represents the probability of disease curve as given in

Eq. (3), and pmax represents the probability of disease when log
titer ≤ 0.
Both estimates of the protection curve are provided in Fig. 5.

Despite the different mathematical functions used for protection
curve estimation, the function values at titer values corresponding to
50% protection rate and higher are comparable (see Fig. 5).
Therefore, children’s protective levels of influenza H3N2 antibody
titer estimated by our framework (Supplementary Table 5) are very
similar to those obtained by Dunning’s method along with the
implied clinical and decision-making considerations. In addition to
differences induced by the different functional forms for the PoD
curve, the difference in CIs is mostly due to PoDBAY including
between-trial variability, as well as the non-parametric bootstrap
method for calculating CIs (instead of assuming a multivariate normal
distribution of parameter estimates). In contrast, Dunning’s method16

includes only the parameter uncertainty and uses the multivariate
normal assumption via the variance–covariance matrix.
The titer threshold value of 110 established by Black et al.31

for, e.g., 50% protection is very close to that estimated here (113).
However, the resulting estimates of VE and its CI can be quite
different between the PoDBAY and threshold-based approaches
to CoP-based VE estimation. For example, if a vaccine yields titers
slightly above the 50% protection threshold for 90% of the
population, and just below the 50% level for others, the
threshold-based method will give a substantial overestimate of
VE= 90%, whereas the PoDBAY approach (and Dunning’s) would
give a more accurate estimate close to VE= 50%.
In addition, estimates of VE for ATIV and TIV are within 5% of

the standard case-count VE estimate (Table 6). CIs of CoP-based
VE estimates contain the case-count efficacies for both ATIV and
TIV. Similarly, the point estimates of CoP-based VE fall within the
CIs of case-count VE. This comparison between estimates of VE
and corresponding CIs provides support to the use of PoDBAY for
pediatric influenza vaccines, as well as additional support to the
influenza HI titer being correlated with protection in children.
This example of inactivated influenza virus vaccine also

illustrates one of the most important advantages of CoP-based
VE estimation. Even though the case-count VE estimation is based
on a trial30 six times larger than the immunogenicity sub-study31

used for CoP-based VE estimation (4707 vs. 777, as above), the CIs
of ATIV VE is for both case-count estimate and CoP-based estimate
very similar, and, in the case of TIV VE, the CoP-based VE CI is even

Table 2. Precision of the CoP-based VE estimation and the case-count VE estimation based on results from 1000 simulated trials.

Simulation scenario True VE Method RMSE, % (cf. Equation (8)) RRMSE, % (cf. Equation (9))

N= 3000 N= 30,000 N= 3000 N= 30,000

A 53% CoP-based 7.23 2.23 13.55 4.18

Case-count 15.36 4.41 28.78 8.27

B 66% CoP-based 6.46 1.90 9.82 2.88

Case-count 13.69 3.79 20.81 5.76

C 69% CoP-based 7.13 2.15 10.29 3.10

Case-count 11.33 3.24 16.37 4.68

D 80% CoP-based 5.49 1.64 6.85 2.05

Case-count 9.26 2.62 11.56 3.27

Table 3. Relative performance of the case-count VE and the CoP-
based VE estimation, based on 1000 simulated trials.

Simulation scenario True VE Method Utility, %

N= 3000 N= 30,000

A 53 CoP-based 73.1 71.8

B 66 CoP-based 74.2 70.4

C 69 CoP-based 66.8 64.4

D 80 CoP-based 69.1 68.0
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narrower than the case-count VE CI (Table 6). This illustrates how
earlier data from smaller data sets can be leveraged to accelerate
development.

Zoster vaccine
Zostavax (Merck Sharp & Dohme Corp., a subsidiary of Merck &
Co., Inc., Kenilworth, NJ, USA) is one of two currently available

vaccines for the prevention of herpes zoster (shingles) which is
caused by the reactivation of latent varicella-zoster virus (“VZV”).
The phase 3 Shingles Prevention Study (“SPS”)33 involved
38,543 subjects and showed that Zostavax had a case-count
estimated VE of 51.3% (95% CI: 44.2–57.6%) (Table 2)34. An
immunogenicity sub-study of SPS that enrolled 1,395 subjects is
described in detail by Levin et al.35 It has been previously shown
that fold rise in antibody titers is a predictor (non-mechanistic,
relative CoP) for Zostavax VE under the causal-association
paradigm (principal stratification)36, effectively using a VE curve
approach (which does not require a test for conditional
independence relative to vaccination status).
The immunogenicity data consist of a fold rise in titers of all

evaluable diseased (32) and non-diseased (1296) subjects in the
immunogenicity sub-study (only data from the subjects in the
immunogenicity sub-study were used in estimating the PoD
curve). The random sampling of fold rise values of non-diseased
subjects for determining PoD curve point estimate as described in
Supplementary Note 1 is performed accounting for the total
number of person-years at risk (3594).
We estimate the PoD curve using individual-level fold rise in

VZV antibody titers of diseased and non-diseased subjects in the
vaccinated group measured at baseline and week 6 post
vaccination by glycoprotein ELISA in the immunogenicity sub-
study of SPS. We use values from vaccinated patients as-is:
because the control group has (by definition) no change of assay,
any measured change is the result of assay drift (or pathogen
exposure). Thus, the impact of assay noise (drift) in the prediction
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Fig. 4 Estimated relationship of influenza HI log2 titer and
probability of disease. The solid line represents the point estimate
of PoD curve; dashed lines represent limits of 95% CI. The estimate
includes data on control, ATIV and TIV.

Table 4. Coverage probability (%) of case-count VE and CoP-based VE CIs estimation, based on 1000 simulated trials with an immunogenicity subset
for a subset of subjects including all disease cases plus 10% of N, with N the number of subjects in the trial.

Simulation scenario True VE Method N= 3000 N= 30,000

Confidence levels Confidence levels

95% 90% 80% 95% 90% 80%

A 53% CoP-based 96.6 93.1 83.0 95.3 91.7 82.8

Case-count 94.5 89.6 80.3 94.0 89.5 80.0

B 66% CoP-based 95.4 90.7 81.5 94.5 89.2 80.6

Case-count 94.7 88.7 77.5 95.3 89.7 79.3

C 69% CoP-based 96.6 91.4 81.0 96.0 90.5 78.9

Case-count 94.9 90.0 79.9 94.6 89.2 78.1

D 80% CoP-based 95.5 91.3 81.8 95.1 90.8 80.5

Case-count 95.8 89.7 81.0 95.5 89.8 79.5
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C, true VE= 69%. Red color represents negative CI widths difference, i.e. those in which case-count VE CI width is smaller than that of CoP-
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is reduced by assuming all values of fold rise in titers of diseased
and non-diseased placebo subjects are replaced with the value 1
(log2 fold rise equal to 0). (The assay values drifted significantly
higher than 1 in the control group, thus inappropriately
decreasing the expected control IR and estimated VE.)
To obtain CoP-based VE, the estimated PoD curve (shown in Fig.

6) and fold rise in VZV antibody titers in the vaccinated group
measured at baseline and week 6 post vaccination are used for the
calculation of the numerator of the fraction in Eq. (6). As the log2
fold rise in antibody titers is, under our assumption, equal to 0 for
all subjects in the control group, the denominator of the fraction is
assigned the value of estimated pmax. The CoP-based VE is 50.5%
(95% CI: 40.6–61.0%). While this VE estimate was produced using a
fold rise in antibody titers as the predictor, the use of absolute
titers produces similar results (data not shown).
The point estimate of the CoP-based VE, 50.5% (95% CI:

40.6–61.0%), is nearly identical to the case-count estimate of
51.3% (95% CI: 44.2–57.6%)34, and the CI of Zostavax CoP-based
VE is not much wider than the case-count VE CI, despite being
based on data from 29 times fewer subjects (1328 vs. 38,501) and
32 times fewer person-years at risk (case-count VE estimation uses
115,939 person-years at risk in the whole SPS study, CoP-based VE
estimation uses 3594 person-years at risk in the immunogenicity
sub-study, Table 6).
While the VE of the Zostavax vaccine may decrease over time34,

VZV antibody titers measured by glycoprotein ELISA assay have
been shown to be relatively constant35. This is an example of how
an assay predicting protection can be correlated to (or predictive

of) the mechanism of protection when measured at an early time
point, while not being correlated with the strength and durability
of immune memory and durability of protection. The PoDBAY
framework cannot capture or predict the durability of protection
in this situation (using VZV antibody titers).

Dengue vaccine
CYD-TDV is a recombinant, live, attenuated, tetravalent dengue
vaccine. In a phase 2b study conducted in Thailand37,38,
4002 subjects were assigned to vaccine or control. CYD-TDV is
immunogenic and protective in subjects who had previously
suffered a dengue infection, but less immunogenic in subjects
who are dengue seronegative, as observed in phase 3 trials39–41.
(Immunogenicity subset size, case-count VE estimates, and other
information are shown in Table 6.) We estimate PoD curves for
serotype 1 (“DENV1”) and serotype 2 (“DENV2”) using data for the
19 cases caused by DENV1 and the 48 caused by DENV2. This
allows CoP-based estimation of overall VE, as well as estimation
specifically for the seronegative (or seropositive) populations. This
work does not report a new overall VE against DENV1 or DENV2: it
will show that the phase 2b data37,38 predict (using PoDBAY) VE
consistent with the observed phase 3 VE results39,41. Because there
was a considerably lower observed prevalence of serotype 3
(“DENV3”) and serotype 4 (“DENV4”)38, there were too few cases of
these serotypes to allow PoD estimation for them. (The low
prevalence is likely to have been compounded by higher VE
against DENV3 and DENV439,41.)
For each of DENV1 and DENV2, individual PRNT50 antibody titers

28 days post dose 3 for all diseased subjects37 and for an
immunogenicity subset of non-diseased subjects38 are used for
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Fig. 6 Estimated relationship of log2 fold rise in VZV antibody
titers post vaccination with Zostavax to probability of disease.
The solid line represents the point estimate of PoD curve; dashed
lines represent limits of 95% CI.
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Fig. 7 Estimated relationship of DENV1 antibody log2 titer to
probability of disease. The solid line represents the point estimate
of PoD curve; dashed lines represent limits of 95% CI.
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probability of protection. Estimated relationship of influenza HI
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the solid line represents the point estimate of PoP curve; dashed
lines represent limits of 95% CI) and Dunning’s method (red; the
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probability of disease. The solid line represents the point estimate
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PoD curve estimation (Figs. 7 and 8) using the extended method
described in Supplementary Note 1.
For DENV1, the CI of the PoD curve and the CI of its et50 are

considerably larger than for DENV2. This is due to the lower
number of disease cases for DENV1 (see above). Titer levels
associated with clinical protection rates of 50% against DENV1 and
DENV2 are estimated to be 98 and 246 (2et50 , see Table 5)
suggesting different protective levels for different serotypes of
dengue virus. However, because the CI of et50 for DENV1 is so wide
and contains the point estimate of et50 for DENV2, such a claim is
inconclusive.
The CoP-based VE is estimated for DENV1 and DENV2 using the

corresponding PoD curve estimate and corresponding DENV
antibody titers measured 28 days post dose 3 in vaccinated and
control groups. The estimates of CoP-based VE are 40% (95% CI:
22–61%) and 40% (95% CI: 26–57%), for DENV1 and DENV2,
respectively.
Estimated DENV1 and DENV2 PoD curves using data from phase

2b Thailand study are further used to predict CYD-TDV VE using
the titers observed in two phase 3 studies conducted in Asia39 and
Latin America41. The numbers of subjects enrolled, case-count VE,
immunogenicity subset sizes, and predicted CoP-based VE in Asia
and Latin America studies are summarized in Table 6.
We predict CoP-based VE for Latin America study in seropositive

and seronegative subpopulations for DENV1 and DENV2 using
corresponding PoD curve estimates from Thailand 2b study and
corresponding DENV antibody titers in seropositive and serone-
gative subpopulations41. Predicted CoP-based VE for DENV1 in the
seropositive subpopulation is 10% (95% CI: −19 to 19%) and for
DENV1 in the seronegative subpopulation is 27% (95% CI: 7–60%).
The apparent reversal (of efficacy for seropositive versus
seronegative) can be explained by the large uncertainty (reflected
in the large CI) on the PoD curve, which results from the low
number of DENV1 disease cases in the Thailand study. Predicted
CoP-based VE for DENV2 in the seropositive subpopulation is 49%
(95% CI: 35–56%) and in the seronegative subpopulation is 26%
(95% CI: 19–54%). Case-count efficacies for seropositive and
seronegative subpopulations in the Asia study39 were not
published for individual serotypes, however, the overall efficacies
across serotypes that were published do show substantial
differences between the seropositive and seronegative popula-
tions in the Asia study:39 case-count efficacy combining all four
serotypes was 74% (95% CI: 53–86%) in seropositive subjects and
36% (95% CI: −27 to 67%) in seronegative subjects.
While a CoP for DENV has not been yet established, recent

advances in research toward its identification as well as remaining

Table 5. Results of PoD curve estimation for real vaccines.

PoD curve
parameter

Parameter
estimate

95% CI

Influenza virus pmax 0.063 0.034–0.155

γ 7.379 2.292–45.951

et50 6.824 2.567–8.784

Zoster pmax 0.012 0.008–0.018

γ 5.994 2.070–52.948

et50 0.706 0.382–0.991

Dengue,
serotype 1

pmax 0.009 0.005–0.037

γ 6.078 2.034–32.862

et50 6.616 2.183–8.575

Dengue,
serotype 2

pmax 0.023 0.017–0.036

γ 28.655 6.344–36.994

et50 7.945 6.546–8.387
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challenges were summarized by Katzelnick et al.42 and have also
been studied by Salje et al.43, and by Moodie et al.44 These
investigations suggest that PRNT50 DENV antibody titers measured
28 days post dose 3 are likely to be a relative correlate of
protection. According to our results (generated from a smaller
data set), these titers are predictive of protection by CYD-TDV for
serotype 1 and serotype 2 (and, thus, are a relative CoP at least for
those serotypes). Of course, results from CYD-TDV (e.g., para-
meters for the PoD curve) may not be directly applicable to other
dengue vaccines, as even a very useful (predictive) CoP can have
PoD parameters that are mechanism dependent. Also, this analysis
does not demonstrate that the antibody titers predict the
likelihood of disease independent of vaccination status: this could
not be assessed because the data37 used to generate the PoD
curve were not labeled with vaccine status.
In the case of DENV1, point estimates of VE based on PRNT50

DENV antibody titers are consistently approximately 10–20
percentage points lower than case-count VE estimates across all
analyzed trials, but all point estimates fall within the case-count
method’s CI and CIs of CoP-based VE and case-count VE overlap
considerably.
DENV2 VE estimates based on antibody titers are ~10

percentage points higher than case-count VE estimates in both
phase 3 trials and their CIs overlap substantially. CoP-based VE CI
is more than four times narrower than case-count VE CI while
being based on the same number of subjects (3760 subjects in the
whole phase 2b study, Table 6).
There is a large discrepancy in DENV2 estimated efficacies

obtained by the case-count method for the Thailand phase 2b trial
and phase 3 trials. In Thailand’s phase 2b study, the case-count
method estimated the VE to be 9%. However, when the vaccine
was tested in larger phase 3 trials, the case-count method
estimated the VE to be between 35 and 45%. This discrepancy in
estimated efficacies is not uncommon with the case-count
method: the PoDBAY method consistently estimated the DENV2
VE to be approximately 40% for both the phase 2b and the two-
phase 3 trials (Table 6).
To understand the likelihood of such a large difference in CoP-

versus standard-VE, simulated data were generated using true VE
40% to mimic the properties of the Thailand phase 2b study. One-
thousand instances of a phase 2b trial were generated, and the VE
was estimated using the case-count method and the PoDBAY
method. For roughly 8% of the 1000 simulated trials, the case-
count method estimated a VE of less than 9% when in fact the
underlying true VE was 40%. Therefore, when conducting a
vaccine trial with a small number of subjects, there is a significant

risk of a clinically relevant discrepancy between case-count-
estimated efficacy and true efficacy.
Figure 9 shows that for a large proportion of instances where

the case-count method estimated very low VE, the PoDBAY
method estimated a VE that was closer to the true VE of 40% (as
set up in the simulation). This is visible in the vertical spread of the
red points (and all points) being smaller than their horizontal
spread. This phenomenon suggests that there is a chance that the
case-count method could lead to a “no-go” decision after a phase
2b trial, even when the vaccine is efficacious. On the other hand,
there is a much smaller chance of making an unwarranted “no-go”
decision using the PoDBAY method. Moreover, the CoP-based VE
estimate based on the Thailand phase 2b study is closer to the
estimated efficacies for the two-phase 3 studies, a reminder (cf.
Fig. 4) that the CoP-based VE is more independent of trial size
than case-count VE.
For all three dataset examples, the VE estimated by PoDBAY is

consistent with the case-count estimate of VE. For influenza virus
and zoster, this confirms previous work30,31,36 showing that
biomarkers used for the estimations are correlated with protec-
tion. For dengue, where a CoP has not been established, the
consistency between case-count- and CoP-based VE estimates
suggests a dengue virus neutralizing antibody titer is likely to be a
CoP and encourages further efforts toward its evaluation. The
statistical efficiency of the PoDBAY method is evident from the
similar or narrower CIs obtained from a much smaller immuno-
genicity subset of patients in those studies.

DISCUSSION
Why can a continuous (“relative”) CoP be better than
thresholds (“absolute” CoPs)?
Important decisions in vaccines research and development
traditionally require a threshold-based CoP to be identified as a
biomarker (subjects with titers above the threshold are considered
completely protected). This threshold-based CoP is often not
available. However, internal decisions have been facilitated by
requiring a geometric mean biomarker value (and, sometimes,
lower bound of a CI) to be above a threshold.
Both of these threshold-based decisions are sensitive to outlier

effects and their decision criteria may not be directly related to
clinical significance. PoDBAY integrates the whole distribution of
biomarker values with clinically relevant information, providing a
framework to more accurately and precisely estimate VE and its CI.
This allows decisions to be made using clinical and public-health-
based targets for VE (and CI lower bound). PoDBAY can be applied
to analyze both absolute and relative CoPs. As shown in the
influenza virus vaccine analysis, PoDBAY can produce substantially
different efficacy (and CI) estimates than typical threshold-based
absolute CoP estimation. Further, PoDBAY does not require that
either titers or PoD curve parameters fit standard distributional
assumptions (such as multivariate normality). The importance of
considering both the mean and variability of the value was
suggested also by Nauta et al.45.

PoDBAY versus case-count?
When applied to simulated data and real trial data, PoDBAY
accurately predicted VE and had the significant benefit of
providing higher precision VE (narrower CIs) than that of case-
count VE (for the same number of subjects). In addition, PoDBAY
outperformed the case-count VE estimation in terms of precision
as shown (in simulations) by the RMSE, RRMSE, and utility:
estimated VE values were closer to the true value in a larger
percentage of simulations compared to the case-count method.
The higher precision VE (narrower CIs) was obtained while
preserving well-calibrated CIs (coverage probability). Of course, if
the PoD model is not correct, the method may produce biased
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Fig. 9 Case-count VE substantially underestimates VE in a
substantial portion of trials; PoDBAY eliminates most of these
outliers. Point estimates of CoP-based VE and case-count VE in
1000 simulated trials, with true VE set to 40% and a number of
subjects N= 3760. Simulated trials with case-count VE < 9% are
shown in red.
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results, but additional simulations have shown that VE estimates
are relatively insensitive to misspecification of the curve shape
(data not shown, see also Dunning17).

What is the benefit? Making “go/no-go” decisions using
PoDBAY
One example of the potential impact of these results is the implied
improvement in a decision (e.g., on whether to continue
development of a vaccine candidate) made by requiring
estimated efficacy to be above a given threshold.
Non-clinical immunogenicity (and, sometimes, protection) data

often provide the evidence enabling a vaccine candidate to be
tested in clinical trials. Adding a translational version of PoDBAY
(e.g., using data from animal challenge studies to understand titer
levels that provide protection in appropriate model species) is
effectively an extra layer of risk reduction. Here, in addition to
immunogenicity (often defined as a statistically significant
difference between titers of animals receiving control and vaccine)
and/or evidence of protection in model species, continued
development of the vaccine candidate would also require
confidence in the relationship between the titer and protection.
(Such confidence should be supported in any use by, for example,
a PoD with a negative slope.) This could further justify clinical
testing, prioritize among candidates, or prevent testing of a
candidate with a low probability of efficacy.
A decision to bring a candidate from phase 1 to phase 2 has

sometimes been based on the statistical significance of the
difference between control and vaccinated populations, or on
potentially arbitrary rules (based, for example, on assay variability)
such as at least two- or four-fold increase in geometric mean titer.
Here, PoDBAY can provide an additional criterion to support the
decision, increasing the likelihood that a good candidate would
progress and that a poor candidate would not. Use of PoDBAY for
this decision (progression to phase 2) would require more
evidence (for the PoD relationship) than for the decision to
progress to phase 1: there is a need to ensure that the potential
benefit warrants the larger number of subjects and increased
resource use.
To make a decision to proceed to phase 3, an even stronger

case should be made. This would best be done in a proof of
concept phase 2 trial accruing a small number of cases collected
to demonstrate the likely efficacy and (again through, e.g., a PoD
curve with negative slope) the likely existence of a CoP. As another
approach, evidence for a CoP has also been provided using
challenge experiments in multiple model species (potentially
including humans), and then showing that the PoD relationship
can be appropriately translated to clinical application46–48. This
approach also used summary-level data and model-based meta-
analyses to provide evidence of a biomarker’s predictive power.
When performing these and other analyses, applying results
(especially parameters for the PoD curve) for one vaccine directly
to other vaccines for the same pathogen should be done only with
the utmost care, as even a very useful CoP can have PoD
parameters that are mechanism-dependent.
In order to use a CoP-based VE estimate to justify filing for

approval requires strong and sufficiently independent clinical
evidence. This would likely be from a previous trial. It would also
require sufficient evidence that the CoP is, by itself, sufficiently
predictive. The latter evidence could include the conditional
independence (of PoD from vaccine status) required by the
Prentice criteria29, if not additional evidence of robustness to the
other factors mentioned as part of the formal assumptions and
related statistical considerations49. Because demonstration of the
Prentice criteria often requires substantially more cases than
estimating a PoD curve, it is often possible only in phase 3 and
beyond.

Because the precision (and utility metric) of the CoP-based VE is
higher than that of case-count, the estimate is more likely to be on
the correct side of a decision threshold—whether the correct side
is above (a vaccine that should be developed), or below (efficacy is
too low, and development should be stopped or candidate should
be modified) that threshold. Further, the ability of PoDBAY to
estimate VE more precisely (with a narrower CI) can be particularly
impactful, as many “go/no-go” decisions rely on the lower limit
of a CI.
Simulation results (Supplementary Note 6) show that the

decisions using PoDBAY have more power while still controlling
the type I (“false positive”) error rate. In addition, when a CoP-
based VE estimate can be used, the decision (relying on either a
point estimate of VE or the lower limit of VE CI) will in general have
higher accuracy—both sensitivity and specificity. This enables
better-informed “go/no-go” decisions in vaccines research and
development.
Specifically, results of phase 2 trial simulations show that when

true VE is 40%, there is a 3× lower chance to make unwarranted
“go” decision using PoDBAY than with case-count. (Details of
phase 2 and 3 simulations can be found in Supplementary Note 6.)
Similarly, when true VE is 60%, there is a 3× lower chance to make
unwarranted “no-go” decision when using PoDBAY. Similarly, in
phase 3 the chance of an incorrect decision is several-fold higher
using case-count than using PoDBAY. The phase 3 trial simulation
results also show that there is a smaller chance of making
unwarranted false positive “go” decisions with PoDBAY than with
case-count, with only a small chance of such an error using either
approach.

When is PoDBAY most reliable?
When there is sufficient evidence that the immune response
biomarker is a CoP, PoDBAY is an attractive time- and cost-
effective option as it can accurately predict VE on a shorter time
scale while using significantly fewer subjects than counting clinical
endpoint assessments. Such evidence includes fundamental
virology and immunology and should be supported at least by
in vitro or (non-clinical) in-vivo evidence of the biomarker being
predictive of reductions of symptoms and/or viral load.
The use of the biomarker can then be further substantiated by

the strength (“goodness-of-fit”) of the PoD model (e.g. the p-value
of non-null parameter values) relating biomarker to clinical case
probability, and by the degree to which standard- and CoP-VE are
sufficiently close when estimated using different data. Here, as
explained above, the definition of “sufficiently close” will depend
on the phase of the study, the potential clinical impact of an
incorrect decision, etc., and sufficiency can also be supported by
evidence that the PoD holds across multiple dose-levels, formula-
tions, or even vaccines. As discussed in Methods (Data collection
and assumptions) and Supplementary Note 10, the method
formally requires assuming that the PoD relationship is indepen-
dent of other factors (demographic, immunological, or experi-
mental); however, standard techniques provide straightforward
extensions to PoDBAY for identifying and quantifying the impact
of any such factors.
Furthermore, CoPs and related surrogate marker paradigms are

always used with consideration of a risk-benefit tradeoff. Also,
immunogenicity markers that are not putative CoPs have been
successfully used for applications such as bridging between
populations and lots; use in bridging (also between formulations)
might not require the highest standards of proof (such as needed
for CoP-based filing). Vaccines have even been approved based
purely on immunological endpoints that were not CoPs, but for
which there was strong mechanistic evidence directly connecting
Ab titers to protection50.
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Implications for COVID-19 vaccine development
Methods like PoDBAY can help accelerate and economize vaccine
development in the current effort against the COVID-19 pandemic,
as they can provide information for prioritizing (ranking)
candidates both early in development and earlier in a trial. For
example, information from trials (including non-clinical and clinical
with approved/candidate vaccines or with intravenous immuno-
globulin) can be leveraged to estimate a PoD curve. (This requires
assuming, for example, that serum neutralizing titers (“SN”) would
be sufficiently predictive to at least rank order candidates correctly
most of the time.) If several candidates are tested and SN data
become available, the distributions of predicted efficacies for the
candidates can be compared, and the comparisons used to focus
resources on the most promising. In addition, Bayesian adaptive
strategies51 and master protocols52 can also be informed using
these techniques, where early stage information on cases and
titers may also help define and/or refine the PoD curve, thus
enabling immunogenicity information to be used fairly and more
confidently to compare potential candidates.

Future research
Future work should investigate how PoDBAY behaves in several
conditions including: with a bacterial vaccine, when a larger data
set is available (such as that from the CYD-TDV phase 3 studies44),
if its principle assumption of the biomarker being a CoP is
violated, as well as on extending PoDBAY to multiple predictors
and using the PoDBAY framework for testing conditional
independence. Systematic analysis of the sensitivity of PoDBAY
to PoD curve model misspecification analogous to Dunning17 and
the use of model selection or model weighting schemes32,53,54

could help quantify misspecification-related risks. Such risk
analyses also need to consider identification of potential PoD
factors other than titer (e.g., conditional independence tests) and
their potential for confounding VE estimation, as well as the
potential impact of other factors and the considerations related to
multiple-trial settings.

METHODS
Data collection and assumptions
In a typical clinical trial, subjects are randomly assigned to receive one or
more dose(s) of vaccine or placebo, and the occurrence (or non-
occurrence) of disease in each subject is recorded over a subsequent
surveillance period.
Serum samples are collected in all subjects during one common time

window (e.g., 40 ± 10 days) after vaccination (and, if needed, at baseline,
i.e., before vaccination) and assayed. (In the frequent case that only a
subset of subjects is assayed for biomarker values, the data must be
carefully upsampled to properly represent actual IRs. Supplementary Note
1 describes this extension of the method in more detail.) Without loss of
generality, we refer to the assay (or biomarker) as “titer,” since neutralizing
antibody titer is often used.
The implementation of the method described here assumes that the

surveillance period is equal for all subjects, although in some situations this
can be relaxed. We also assume that titer is a CoP, meaning that the titer
level after vaccination is associated with protective immunity regardless of
treatment group (in other words, that the vaccine’s effect on the disease
goes completely through the titer; as discussed further in the Discussion
section, for practical use this assumption only needs to hold approxi-
mately). This work does not consider the potential influence of other
demographic, immunological, or experimental factors (sometimes termed
“covariates”); Supplementary Note 10 discusses how straightforward
extensions for identifying and quantifying any such influence can be
made using standard techniques that are widely used even in regulatory
decision-making55.
All software was written in and produced using R statistical software

version 3.5.2.

Proposed PoDBAY method
Estimation of probability of disease curve and its CIs. The PoD is modeled
as a decreasing sigmoid function of the log titer (log-transformed titer), as
illustrated in Fig. 10 and Eq. (3), and can be performed on blinded data (i.e.,
requires information about subject disease status and immunogenicity
biomarker values, but not on the treatment). The PoD can be thought of as
the expected IR per subject for a given observation period for a large
group of subjects with titer t: equivalently it is the probability a vaccine
recipient with antibody titer t would have the disease during the study
period (and with “disease” defined using the relevant study endpoint).
While the amplitude of this function (represented below by pmax) can vary
with time (due to, e.g., seasonally varying force of infection), if placebo and
vaccine arms of a trial are simultaneous (as is typical), such variation
cancels out in all efficacy calculations that follow and thus can be safely
ignored. Similarly, geographic variation can be ignored if the arms are co-
located.

PoD tð Þ ¼
pmax if t � 0

pmax �
et50
tð Þγ

1þ et50
tð Þγ if t > 0;

8<
: (3)

where t represents log titer value, pmax represents the maximum
probability of disease when log titer ≤ 0, et50 represents the log titer
value for which the probability of disease is half of pmax, and γ represents
the slope of the curve.
The logarithm of titer is used here because raw titer values are typically

lognormally distributed56, and titers are often represented by their log2
values. The PoD curve could also use titers or fold rise in titers from
baseline rather than log titers. (The cutoff of log titer ≤ 0 is an arbitrary
choice for computational convenience and does not impact the method:
since titers are generally defined as dilution factors, they are always at least
1, so that the log titer > 0. In the event a different assay form is used, a
simple change of units can be used to ensure log titer > 0. The cutoff could
be also generalized to log titer ≤ c, probably as a prespecified user input
based on assay properties, but also potentially fit with data if supported by
data and the application.)
Three models (piece-wise linear, logistic, and piece-wise exponential)

were used to simulate data that were subsequently fit by the three-
parameter sigmoid model defined in Eq. (3). The results (data not shown)
indicated that the proposed model is flexible and can fit the data well, as
the assumption of the specific three-parameter sigmoid in Eq. (3) had
relatively little effect on the precision and accuracy of VE estimation. Due
to this finding and its agreement with similar work by other authors (e.g.,
Dunning17), this work did not prioritize model selection or weighted model
combination mechanisms and related goodness-of-fit evaluation32,53,54.
To estimate parameters of the PoD curve, a maximum likelihood

estimation (“MLE”) method is used. The basic principle is to start with the
assumption that Eq. (3) holds, and to first find the parameter values that
make it most likely (among all choices of parameters) that the observed
data would occur (the “maximum likelihood estimate,” or MLE). This
likelihood, L, is calculated, using the PoD curve, Eq. (3), and the disease
status of all subjects, with Eq. (4).

LogL ¼
X

diseased

log PoD tð Þð Þ þ
X

non�diseased

log 1� PoDðtÞð Þ; (4)

Here, PoDðtÞ is given in Eq. (3), and the sum over diseased subjects uses
the values of t for the subjects who had the disease during the observation
period, and analogously for the other sum and non-diseased subjects. Eq.
(4) is analogous to that used commonly for logistic regression and has the
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Fig. 10 The PoD curve and its parameters. Sigmoid relationship
between log titer and probability of disease (PoD curve).
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intuitive property that, if all the PoD values of the first (diseased) term are
as high as possible (close to pmax, such as when all the titers are much
lower than et50), and all the PoD values of the second (non-diseased) term
are as low as possible (as when the titers are much higher than et50), then L
will be as large as possible. The optimal parameters are those that
maximize the log-likelihood (5).

p�max; et
�
50; γ

� ¼ argmax
pmax ; et50 ;γ

log Lð Þ (5)

The L-BFGS-B algorithm57 is used for the optimization. This method (MLE
estimate of the parameters in Eq. (3)) is very similar to logistic regression but
has an extra parameter representing the maximum probability of disease (for
those with lowest titers), and a slightly different shape for the sigmoidal curve.
(Dunning’s original work16 used MLE to get the two parameters of inverse
logit function α, β and the parameter (λ) analogous to pmax.)
The parameter values in Eq. (5) give the “point” or “central” estimate of the

PoD curve. The CI around the PoD curve is estimated using a non-parametric
bootstrap, as explained in Supplementary Note 2.

Estimation of VE and its CI. Based on the estimated PoD curve and the
estimated probability density function for observed log titers, the expected
rate of disease in the vaccinated and control groups can be calculated and
used for VE estimation as shown in Eq. (6).

CoP-based VE ¼ 1� E PoDvaccinated½ �
E PoDcontrol½ � ; (6)

where

E PoDvaccinated½ � ¼
Z

P diseasejtvaccinatedð Þ � P tvaccinatedð Þdt;

E PoDcontrol½ � ¼
Z

P diseasejtcontrolð Þ � P tcontrolð Þdt;

where E PoDx½ � represents expected rate of disease in group x (vaccinated
or control), P diseasejtxð Þ ¼ PoD tð Þ (Eq. (3)), with titers t for subjects in
group x, and P txð Þ represents estimated probability density function for
observed log titers in group x.
The above estimate of VE is a point estimate based on CoP and is

obtained using the central estimate of the PoD curve defined in Methods
(Estimation of probability of disease curve and its associated CIs). The
calculation of the CI of CoP-based VE is described in Supplementary
Note 3.

Standard method: case-count VE
VE is routinely estimated using case counts to estimate the reduction in IR
in vaccinated relative to control subjects as described in Eq. (7).

case-count VE ¼ 1� IRvaccinated
IRcontrol

; (7)

where

IR ¼ number of diseased subjects
number of all subjects

:

To obtain the CI of VE estimated in Eq. (7), a 2 by 2 contingency table is
constructed for the number of subjects in each of the combinations of
vaccinated or control and diseased or non-diseased, and the Wald
method58 for calculating the CI of the relative risk can be used. In specific
trials, other estimates of risk reduction (and its CI) can be used to account
for person-years at risk, and covariates such as location, ethnicity, and age.
The principles involved and expected results (relative to PoDBAY) will still
be represented appropriately by the methods used here.

Clinical trial simulations to compare proposed method and
case-count VE (standard) method
To assess the accuracy and precision of the proposed method, its
performance relative to the case-count method, and the coverage
probability of the CI estimation, three steps are followed (see Fig. 11):
Step 1: Assumed true values are assigned to PoD curve parameters (pmax,

et50, γ) and log titer distribution parameters (mean, sd, assuming normal
distribution) for the vaccinated and control group.
Step 2: Log titer data are generated for the whole vaccinated and

control population using random sampling from true distributions. Disease
status is assigned to each subject randomly using the probability of
disease defined by the true PoD curve. Case-count VE and its CI are
estimated as described in Methods (standard method: case-count VE).
Step 3: Individual titers of all diseased and all non-diseased subjects are

used to estimate PoD curve parameters and their CIs, as described in
Methods (Estimation of probability of disease curve and its CIs). The
probability density function parameters for the vaccinated (resp. control)
group are estimated using the titers of vaccinated (resp. control) subjects.
CoP-based VE and its CI are estimated, as described in Methods (estimation
of VE and its CI).
Steps 2 and 3 are repeated 1000 times to yield 1000 estimates of case-

count VE with corresponding CIs, 1000 PoD curve parameter combinations,

Fig. 11 Clinical trial simulation workflow. Steps used to assess accuracy and precision of the proposed method.
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and 1000 estimates of CoP-based VE with corresponding CIs. (Increasing
the number of replicates did not substantially change the results—as
expected for such an analysis of 1000 Bernoulli trials.) Point estimates of
case-count VE and CoP-based VE are compared to the true VE to evaluate
the accuracy of both methods. Point estimates of PoD curve parameters
are compared to the true values of PoD curve parameters to evaluate the
accuracy of PoD curve estimation. Root mean squared error (Eq. (8)) and
relative root mean squared error (Eq. (9)) of case-count VE estimates and
CoP-based VE estimates are calculated to evaluate precision of both
methods. Because efficacy is always between 0 and 100%, RMSE enables a
useful absolute comparison between models whose errors are measured in
units of efficacy.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNsim

i¼1 VEtrue � VEestimated;i
� �2

Nsim

s
; (8)

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNsim
i¼1

VEtrue�VEestimated;i

VEtrue

� �2

Nsim

vuut ¼ RMSE
VEtrue

;
(9)

where Nsim is the number of simulations performed.
One measure of the relative performance of two estimation methods is

utility, defined here as a percentage of cases when CoP-based VE estimate
is closer to the true value of VE than the case-count VE estimate. To
understand the reliability (accuracy) of the CI boundaries, the “coverage
probability” of case-count VE CI estimates and CoP-based VE CI estimates
are calculated for confidence levels of 80%, 90%, and 95%. The coverage is
the percent of simulations in which the true efficacy falls within the CI,
which should be (for example) 80% for the 80% CI. Widths of case-count VE
CI and CoP-based VE CI are compared.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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