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Using vaccine Immunostimulation/Immunodynamic
modelling methods to inform vaccine dose decision-making
Sophie J. Rhodes1, Jeremie Guedj 2,3, Helen A. Fletcher4, Thomas Lindenstrøm5, Thomas J. Scriba6, Thomas G. Evans7,
Gwenan M. Knight1 and Richard G. White 1

Unlike drug dose optimisation, mathematical modelling has not been applied to vaccine dose finding. We applied a novel
Immunostimulation/Immunodynamic mathematical modelling framework to translate multi-dose TB vaccine immune responses
from mice, to predict most immunogenic dose in humans. Data were previously collected on IFN-γ secreting CD4+ T cells over time
for novel TB vaccines H56 and H1 adjuvanted with IC31 in mice (1 dose groups (0.1–1.5 and 15 μg H56+ IC31), 45 mice) and
humans (1 dose (50 μg H56/H1+ IC31), 18 humans). A two-compartment mathematical model, describing the dynamics of the
post-vaccination IFN-γ T cell response, was fitted to mouse and human data, separately, using nonlinear mixed effects methods. We
used these fitted models and a vaccine dose allometric scaling assumption, to predict the most immunogenic human dose. Based
on the changes in model parameters by mouse H56+ IC31 dose and by varying the H56 dose allometric scaling factor between
mouse and humans, we established that, at a late time point (224 days) doses of 0.8–8 μg H56+ IC31 in humans may be the most
immunogenic. A 0.8–8 μg of H-series TB vaccines in humans, may be as, or more, immunogenic, as larger doses. The
Immunostimulation/Immunodynamic mathematical modelling framework is a novel, and potentially revolutionary tool, to predict
most immunogenic vaccine doses, and accelerate vaccine development.

npj Vaccines  (2018) 3:36 ; doi:10.1038/s41541-018-0075-3

INTRODUCTION
Vaccines are one of the most effective interventions in public
health.1 However, to progress a vaccine from discovery to
licensure can take decades and cost up to US$0.8 billion.2 With
costs so high, it is vital that development is made more efficient. A
primary goal in vaccine development is to establish optimal
vaccine efficacy, and vaccine dose amount (hereafter ‘dose’) is a
crucial factor in achieving this. The consequences of selecting the
wrong dose can lead to inadequate protection against disease,
and ultimately wasted resources and lives.
In humans, vaccine dose decisions are made based on dose

escalation trials, the dose range of which is based on experiments
in animals. In classical pre-clinical experiments, an initial dose is
tested and incrementally increased until the dose is no longer
considered safe. The resulting maximum safe dose is then scaled-
up to be applied in a clinical setting. Historically, pre-clinical dose
escalation experiments assume the response ‘saturates’, i.e.
increases, then plateaus, as vaccine dose is increased. Many
vaccines have progressed through developmental phases with
doses selected under this assumption.3,4

However, recent pre-clinical data suggest that this ‘saturating’
assumption may not always be correct. Studies in mice,5 and
humans,6 using the potential tuberculosis (TB) vaccine H4
adjuvanted with IC31® (H4+ IC31) have shown that lower vaccine
doses have higher immunogenicity and protective efficacy than

higher doses. We have recently shown that the IFN-γ
dose–response curve in mice, for the novel TB vaccine H56+
IC31, was peaked, not saturating,7 and an ongoing phase 1/2a
H56+ IC31 dose-ranging clinical trial will test this prediction in
humans (ClinicalTrials.gov No. NCT01865487). Similar non-
saturating dose–response curves have been observed in clinical
trials in HIV and Malaria vaccines using other adjuvants.8,9 These
data suggest that developing vaccines based on a ‘saturating
dose’ response curve assumption is likely to lead to sub-
immunogenic doses being selected for later stage vaccine
development, and risk efficacious vaccine discovery.
In contrast to vaccine development, drug development benefits

from systematic, quantitative analysis through the application of
Pharmacokinetic/Pharmacodynamic (PK/PD) modelling. PK/PD
modelling employs mechanistic mathematical models to quantify
drug concentration dynamics in the host over time (PK) and drug
effect as the concentration varies (PD).10 Model-based drug
development (MBDD) is recognised as an efficient tool to
accelerate and streamline drug development, by minimising
developmental time and resources.11 MBDD has been established
for decades in the pharmaceutical industry12 and is often required
by regulatory agencies in all stages of drug development. As such,
MBDD is regularly used to establish optimal drug dose13 and
translate drug response dynamics between species.14
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PK/PD model-based methods have not been applied in vaccine
development for dose decision making.1 The application of
quantitative methods similar to that of MBDD, could lead to
better evaluation and translation of the vaccine dose–response
data from animals to humans, and accelerate vaccine
development.
Consequently, we propose the novel vaccine Immunostimula-

tion/Immunodynamic (IS/ID) modelling framework as a method to
inform vaccine dose decision making. Analogous to PK/PD
modelling, IS/ID modelling applies mathematical models to
describe the underlying mechanisms, the immune response
stimulation (IS) that produce the measured immune response
dynamics following vaccination (ID). Like PK/PD modelling, these
models are fitted to data using established statistical frameworks.
Mathematical models representing the immune response to
infection and vaccination, that could be considered suitable IS/
ID models exist (e.g. refs.15–17), but up until now, no such models
have been incorporated into a PK/PD style framework to inform
vaccine dose prediction.
In anticipation of the release of the dose-ranging clinical trial

data (NCT01865487), the aim of this work was to employ a novel
IS/ID model to translate H56+ IC31 TB vaccine IFN-γ immune
responses from mice to predict the most immunogenic dose in
humans. The IS/ID model described the IFN-γ response dynamics
of two CD4+ T cell populations induced following vaccination:
transitional effector memory (TEM) and resting “central” memory
(CM). Briefly, after primary vaccination, cells were recruited into
the TEM compartment, where they either transitioned into CM
type or entered into a terminal phase. Following revaccination,
this process is repeated. Simultaneously, CM cells replicated and
entered back to the TEM pool and eventually, the CM pool (see
Methods for description of the model, Fig. 1). We fitted our model
to IFN-γ data following two vaccinations with TB vaccine H56
adjuvanted with IC31 (H56+ IC31) in mice and humans, and H1+
IC31 data in humans. The model was then used to predict the
most immunogenic dose in humans.
Our analysis was in two stages. In analysis 1, the model was

fitted to the mouse data stratified by dose group and to the
limited dose data on humans. In analysis 2, we used our fitted
models to predict the most immunological dose in humans.

RESULTS
Analysis 1: Fitting the IS/ID model to the mouse data stratified by
dose group and the human data
In Analysis 1, our aim was to fit the IS/ID model (Fig. 1) to the
mouse IFN-γ response data stratified by dose group (analysis 1i)
and the human data (analysis 1ii) to quantify the IFN-γ response
dynamics. For analysis 1i, the best parameter set of the model, was
when the TEM to CM cell transition rate (βTEM) differed by mouse
dose group (Fig. 1, Table 1 and Table S1). Figure 2 shows the
model predicted IFN-γ response for the low (Fig. 2a), middle (Fig.
2b) and high (Fig. 2c) mouse dose groups (VPC and diagnostic
plots in Figures S1–S3). For analysis 1ii parameter estimates for all
free parameters (N= 5, Fig. 1) were established for the human
data (Table 1). Due to the smaller sample size of the human data,
parameters that determined the rate of transition of TEM to CM
cells (βTEM) and CM cells replication time (τ) were not identifiably
estimated (RSE column value > 30%). Figure 2d and the VPC
(Figure S4) shows that the model predicted IFN-γ responses from
this parameter set (Table 1) was a good description of the median
data, despite the wide variability over time of the human
responses. See Figures S5–S8 for further diagnostic plots and
model predictions for each participant. Model predictions for the
25th and 75th percentiles of the data (Fig. 2a–d) were not as well
estimated as the medians for both species because the parameter
standard deviations (to account for random effects due to
between subject variability (BSV) in response) were fixed at 0.5
throughout. Despite this, the VPC diagnostic plots show the model
predictions adequately cover the spread of the data (Fig. 2, S1 and
S4). These results imply the model is a good description of the IFN-
γ response dynamics for both species and that there is a
difference in the model parameters between the mouse dose
groups (analysis 1i).

Analysis 2: Use fitted mathematical models in analysis 1, and a
vaccine dose allometric scaling assumption, to predict the human
immune response dynamics and predict the most immunogenic
dose in humans
Our aim in analysis 2 was to predict human IFN-γ response
dynamics for further doses, based on the mouse dose-dependent

Fig. 1 a Conceptual schematic of the mechanisms of the immune response dynamics of two IFN-γ secreting CD4+ T cell populations after
primary and re-vaccination to be captured by the IS/ID mathematical model. Dashed arrows correspond to T cell dynamics as a result of only
revaccination. b Gaussian equation describing the TEM cell recruitment parameter δ. c Table of key model parameters. Model parameters are
either fixed to a value from literature (μTEM and RCM), to an assumed value (βCM) or free to be estimated using NLMEM (βTEM, τ, and the
parameters that comprise δ (a, b, c)). Asterisked parameter symbols correspond to those resulting from only revaccination. The IS/ID model
equations can be found in the supplementary material
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responses. In analysis 1i, we showed the estimated parameter that
determined the rate of transition of TEM to CM cells (βTEM) was
different over the mouse dose groups. In analysis 2, we aimed to
establish the population βTEM value vs. dose curve (for simplicity,
we omit the BSV of βTEM). In order to fully define this curve, we
included βTEM for zero H56+ IC31 dose which we assumed was
close to zero (with all other model parameters in Table 1) as the
IFN-γ response profile for zero dose is flat (Figure S11). We used a
peaked curve to describe the population βTEM vs. dose curve and
predicted further values for βTEM for mouse doses ranging
0.01–50 μg H56+ IC31 (see supplementary for model and Figure
S9, Table S2). Assuming a dose allometric scaling factor of ten, we
calculated the percentage changes in mouse βTEM values from the
5 μg to all other doses in the 0.01–50 μg range (Table S2). We
applied these percentage changes to the estimated value of βTEM
for the 50 μg H56/H1+ IC31 human response data (analysis 1ii,
Table 1) to predict the human βTEM values across a human dose
range of 0.1–500 μg H56+ IC31 (Table S2). Using these βTEM
values in the IS/ID model, we predicted human dose–response
curve at a late time point (Fig. 3), which suggested the most
immunogenic human dose was 8 μg H56+ IC31 (Fig. 3). In line
with the proposed range of dose allometric scaling factor for the
H-series, when the scaling factor was varied from 1 to 10, the
range of most immunogenic doses was 0.8–8 μg H56+ IC31 (Fig.
3 for scaling factors 1, 5 and 10). These results imply that, based on
the mouse dose–response data and accounting for the potential
variation of the H56 mouse to human vaccine dose scaling factor,
a low dose (between 0.8–8 μg H56+ IC31) in humans may be
more immunogenic than higher doses. This should now be
verified clinically.

DISCUSSION
In this work, mathematical models were successfully fitted to
animal and human TB vaccine IFN-γ data. Based on the changes in
model parameters by mouse H56+ IC31 dose and by varying the
dose allometric scaling factor between mouse and humans, we
established that, at a late time point (224 days) doses of 0.8–8 μg
H56+ IC31 in humans may be the most immunogenic.
Preliminary empirical results from the phase 1/2a clinical dose

ranging study of H56+ 500 nmol IC31 (ClinicalTrials.gov no.
NCT01865487) may support our model predictions (unpublished,
personal communication, Thomas Scriba). These preliminary trial
findings from NCT01865487 suggest that doses 5, 15 and 50 μg
H56+ IC31 were equally immunogenic in healthy, BCG vaccinated
participants, and therefore developers have decided to use 5 μg
H56+ IC31 in future clinical trials, rather than 50 μg in previous
trials. If these preliminary findings are confirmed, they may
support the utility of IS/ID modelling. It must be noted, that these
results are preliminary, and empirical samples sizes were small.
A key strength of this work was the application of mathematical

modelling techniques to vaccine data that are rarely explored
quantitatively. We used established, robust quantitative and
statistical frameworks (compartmental mathematical models with
NLMEM18) to explore and translate the complex biological
dynamics between species, giving an early example of the utility
of IS/ID modelling. We present here the first example of the
allometric mapping between vaccine immune dynamics between
mice and humans through the mapping of estimated model
parameters between the two species.
Although vaccine IS/ID modelling is analogous to drug PK/PD

modelling, there are key differences between the two. For
example, we do not use data on how the vaccine distributes in
the body (PK), but the stimulation of the immune response as a
result of the vaccine exposure (IS) and the resulting response
dynamics (ID). The similarity is the use of mathematical models to
represent the biological processes and the statistical framework
used for model parameter estimation.Ta
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We made the following key assumptions in this work. Our model
was a highly simplified version of the complexities of the T cell
response following vaccination. Our model assumes a linear
progression from TEM to CM cell phenotype.19–21 However, an
alternative model has been suggested, whereby TEM and CM cells
are initiated simultaneously after vaccination.22–24 These assump-
tions were necessary to avoid over-parameterisation given the data
sample sizes available to us. See supplementary discussion for
further model structure assumptions and their impact (Table S3).
Unlike drug dose–response, which is commonly saturating,10 we

observe a peaked dose–response curve for H56+ IC31 which we
show in ref. 7 As an explanation of this, Lindenstrøm et al. showed
that T cells after high dose of H56+ CAF01 tended more towards
an exhaustive state, i.e. reduced functional avidity and increased
differentiation into a terminal state.25 Our results reflect this, as the

rate at which TEM cells (terminal, short-lived) transition to CM cells
(long-lived) was lower for higher doses; increasing the amount of
terminal cells and minimising the magnitude of response.
There were weaknesses in our work. Small data sample sizes

meant we had to firstly, group the mouse dose data in analysis 1,
limiting our conclusions on the full range of doses we tested.
Secondly, due to the small human dataset (N= 18), one of the
model parameters was not identifiably estimated, therefore the
results of the model fit to the human data should be approached
with caution.
There are several areas for future research. The current (antigen)

dose allometric scaling factor between mouse and humans for the
H-series vaccines is assumed to be 10.26–28 A dose allometric
scaling factor between mouse and human of 10 has also been
used for other vaccines29–35 or between 1 and 5,36–45 which

Fig. 2 Empirical and model predicted number of IFN-γ secreting CD4+ T cells over time for a low dose group (0.1–1 µg H56+ IC31), b middle
dose group (5 µg H56+ IC31), c high dose group (15 µg H56+ IC31) and human dose group (50 µg H56+ IC31). Grey points correspond to
number of IFN-γ secreting CD4+ T cells measured over time by ELISPOT assay (in mouse splenocytes A, B and C and PBMC in d) after receiving
two vaccinations of H56+ IC31 (day 0 and 15, for mice, day 0 and 56 for humans). Median responses over time are marked by a blue triangle,
the 75th percentile responses by an orange triangle and the 25th percentile responses by a purple triangle. The model prediction (total cells)
fitted to the data in the fitting framework (parameters in Table 1) is plotted against the median data (blue line). The orange and purple dashed
lines are the model prediction (total cells) of the 75th and 25th percentiles of the data, a result of the variation in the estimated parameters
(standard deviation fixed to 0.5 for all parameters (Table 1))
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supports our range of dose allometric scaling factors (1–10).
However, to our knowledge no formal assessment of this scaling
factor has been undertaken. Our long-term aim is to use IS/ID
modelling to predict a likely human dose that can be easily
confirmed based only on mouse dose–responses data. However,
in the early stages, without extensive allometric knowledge of
vaccine responses, this will be an iterative process between
modelling and empirical validation before we can achieve this.
We use the frequency of IFN-γ secreting CD4+ T cells measured

using the ELISPOT assay as our chosen immune response readout
to reflect the current convention in TB vaccine development for
dose selection. Although a controversial choice, IFN-γ is a cytokine
shown to be associated with control of infection or decreased risk
of TB disease.5,46 Flow cytometry could provide information on
other cytokine types, which could be incorporated into a more
complex network model which can provide better understanding
of T-cell dynamics. For example, flow cytometry could be
conducted to characterise the relative number of complex
phenotypic cell types (TEM or CM) over time to further
parameterise this model, specifically the transition rate from
TEM to CM, βTEM. Additionally, data on innate cell processes
enable us to adapt the immunostimulation parameter (∂) to be
biological representative rather than a statistical curve.
In this work, we did not consider different human subpopula-

tions based on geographic location, age, HIV positive status or
Latent TB Infection. Additionally, we did not consider an
alternative route of administration or change of adjuvant dose.
This was due to lack of data and in order to maintain a simple first
example of IS/ID modelling. When data are available and provided
the same IS/ID model is appropriate, the model can be re-fitted to
the data and the further subpopulations treated as population
covariates. In general, the IS/ID framework is adaptable to any
vaccine data, provided a model can be developed to represent the
immune mechanism elicited.
IS/ID modelling could be used to explore the effects of timing of

a subsequent vaccination, providing insight into the opportune
time to boost vaccine responses, which can then be empirically
verified, a common task in MBDD.

In summary, using a mathematical model within a new IS/ID
framework, we predicted that low doses of H-series TB vaccine
may increase immune response in humans based on animal data.
Forthcoming empirical clinical evaluations may support this
prediction. We have illustrated that mathematical modelling
may be a novel and potentially revolutionary tool to predict most
immunogenic vaccine dose, and accelerate vaccine development.

METHODS
Data
Full details of mouse IFN-γ response data are in ref.7 Briefly, female CB6F1
mice were given five doses, 0.1, 0.5, 1, 5, or 15 μg H56 adjuvanted with
100 nmol IC31® (supplied by SSI on behalf of Valneva Austria GmBH; hereafter
designated H56+ IC31) plus a control dose of 0 μg H56+ IC31, at day 0 and
15. Data on the number of H56 antigen stimulated IFN-γ secreting CD4+
T cells (in spot forming units (SFU)) per 1 million splenocytes measured by an
ex vivo IFN-γ Enzyme-Linked ImmunoSpot (ELISPOT) assay, were taken at
eight time points over 56 days (Figure S11 and supplementary methods).
Mouse dose groups were: low (0.1, 0.5 and 1 μg H56+ IC31), middle (5 μg
H56+ IC31) and high (15 μg H56+ IC31). This plot shows a trend in the
longitudinal IFN-γ profile by dose (Figure S11).
Human IFN-γ response data was pooled from phase I clinical trials for the

vaccines H56+ IC31 (,47 ClinicalTrials.gov no. NCT01967134) (N= 8) and
H1+ IC31 (48 ClinicalTrials.gov no. NCT00929396) (N= 10). H1 is comprised
of a subset of the H56 antigens.49 For both vaccine trials, primary
vaccination was administered intramuscularly on day 0 and revaccination,
day 56, both at a dose of 50 μg of the vaccine antigen (H1 or H56) and
500 nmol IC31 in healthy, BCG vaccinated participants (hereafter, H56/
H1+ IC31). IFN-γ responses were measured using ELISPOT in SFU per 1
million Peripheral Blood Mononuclear Cells (PBMC), taken until day 224
(Figure S12). Further trial information can be found in Table S4.
The adjuvant dose remained constant across antigen dose for both

species (100 and 500 nmol IC31 in mice and humans, respectively).
Data collection for mice and humans was conducted in accordance with

ethical approval provided by parties outlined in the supplementary
methods (data section).

Immune response mechanism to be represented by the
mathematical vaccine IS/ID model
We assumed the mechanisms of the IFN-γ response dynamics were
attributed to two CD4+ T cell populations induced following vaccination:
TEM23 which had effector functionality (activated to produce IFN-γ24) and
were short-lived and resting CM (Fig. 1). We used an ordinary differential
equation model to describe these mechanisms. Conceptually, we assumed
following primary vaccination, cells were recruited as transitional cells and
entered the TEM cells population (TEM) at rate δ. TEM cells then either died,
at rate μTEM, or transitioned into CM cells at rate βTEM. CM cells were assumed
not to die over the short duration modelled (60 and 250 days in mice and
humans, respectively). Following revaccination, transitional cells entering the
TEM population were again recruited at rate δ, and CM cells replicated at a
rate RCM for τ days. The time that replication occurred for, τ, was dependent
on the CM population size at time of revaccination. Following replication, CM
cells were recruited back to a TEM pool at rate βCM. As with primary
vaccination, TEM cells transition to CM cells at rate βTEM following
revaccination. As stimulation of T cell responses is delayed following
vaccination (due to immune processes such as vaccine antigen trafficking
and presentation50,51) and does not last indefinitely,51 we assumed the TEM
cell recruitment rate, δ, was nonlinear. δ was initiated at time of primary and
re-vaccination and was assumed to be the same at both vaccination points.
As CM cells are known to be essentially non-proliferating in the host

until stimulated by antigen;22 we assumed they contributed to IFN-γ
production, because the ELISPOT assay uses the vaccine antigens to
stimulate all potentially IFN-γ secreting CD4+ T-cells. To reflect this, the
IFN-γ immune response predicted by the mathematical model was
assumed equal to the sum of the number of TEM and CM cell populations
over time. To account for the potential non-zero baseline responses, the
initial TEM cell count was fixed at the median cell count for mice and
humans, separately.
The death rate of the TEM cells (μTEM) was fixed to values found in

literature for mice52 and humans,53 separately. For both species, the
replication rate of the CM cells, RCM, was fixed to one replicate every 10 h22

and the transition rate to TEM pool following replication post

Fig. 3 Human predicted H56+ IC31 dose vs. IFN-γ response curve at
a late time point (day 224) based on the mouse dose ranging data.
Red points are the predicted median number of total IFN-γ secreting
CD4+ T cells by the IS/ID model for a range of doses. The green
vertical dashed line is the most immunogenic dose in the
dose–response curve, the value of which is underlined in the x-
axis. Each panel shows the results for dose allometric scaling factors
of 10, 5 and 1 (for the whole range of scaling factors 1–10, see Figure
S10)
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revaccination, βCM, was assumed to be fast at a value of 10 cells per day. All
other parameters were free to be estimated. For a conceptual schema of
the assumed mechanisms and parameter value description, see Fig. 1.

Model fitting
The model was fit to the ELISPOT data for both mouse and humans, to
quantify the IFN-γ response dynamics. Model fitting was achieved by
estimating the values of the free parameters that best describe the IFN-γ
response data using nonlinear mixed effects modelling (NLMEM)18 and the
SAEM algorithm implemented in the software Monolix v. 4.3.3.54 SAEM
uses maximum likelihood methods to estimate the model parameters that
best describe the population typical IFN-γ response and the BSV.18 For a
technical description of NLMEM see the supplementary methods. The
NLMEM statistical model was as follows. A combined residual error model
was chosen to describe the random effects due to within subject variability
of the responses and no correlations of the random effects were
considered necessary in the analysis (data not shown). Model parameters
were considered well estimated if their relative standard error (RSE) was
<30%.55 The standard deviations of the model parameters that describe
the random effects due to BSV, were not estimated (fixed) at 0.5 unless
there was power to do so once the population typical parameter estimates
were well estimated (see supplementary methods for further description).
Model selection was carried out using Bayesian Information Criteria (BIC)

value assessment, where a lower BIC value was indicative of a better fit.
Evaluation of the model’s ability to describe the data was assessed
primarily using the visual predictive check (VPC) and further diagnostic
plots (see supplementary methods for description).
Firstly, to determine a form for the recruitment of TEM cells (parameter δ,

Fig. 1) we tested two nonlinear equations in the model fitted to the pooled
mouse data; a Gaussian equation and a gamma probability density function
(PDF) equation. We also tested the replacement of rate δ with a naïve T cell
compartment, whereby naïve cells replicate for τN days before transitioning to
TEM at rate βN (for mathematical description of the forms, see supplementary).
All parameters within the forms of δ were to be estimated. When the δ forms
were fitted to the mouse data (for primary and revaccination), the lowest BIC
value was with the Gaussian equation (Fig. 1, Table S5):

a � e
� t�bð Þ2

2c2 þ e
� t� bþtrð Þð Þ2

2c2

� �

where a is a scalar, b, the Gaussian equation mean, c, the variance, t is time,
measured in days and tr is revaccination time measured in days. When this
form was used on the pooled mouse data, the model predicted the data
well (Table S6, Figures S13–S14). We also conducted a likelihood sensitivity
analysis of the model parameters on the pooled mouse data (Figure S15
and Table S7).

Model code availability
The Monolix code (MLXTRAN code) used to fit the IS/ID model to the data
is available in the supplementary methods.

Analyses
Analysis 1: Fitting the IS/ID model to the mouse data stratified by dose group
and the human data. In analysis 1, we aimed to fit the IS/ID model to the
mouse data stratified by dose group (analysis 1i) and the human data
(analysis 1ii). We used the likelihood ratio test (LRT) compared to the
pooled mouse fit (see supplementary) to identify which model parameters
should be stratified by dose group. The human data set was pooled across
vaccine H1+ IC31 and H56+ IC31, as the two vaccines are known to have
a similar immunological profile47 (see Table S8 for analysis on the human
data stratified by vaccine type to validate this assumption).

Analysis 2: Use fitted mathematical models in analysis 1, and a vaccine dose
allometric scaling assumption, to predict the human immune response
dynamics and predict the most immunogenic dose in humans. In analysis 2,
the estimated model parameters identified for the dose groups in mice
and for the one dose in humans (analysis 1) were used to predict the IFN-γ
response in humans for a range of doses. We followed the steps:

1. We used a statistical model to represent the change in the mouse
dose-dependent population parameter(s) (DDPP(s) for ease) values
by dose (estimated in analysis 1i). We then extrapolated further
DDPP(s) values for doses in a range of 0.01–50 μg of H56+ IC31. For
simplicity, BSV of the DDPP(s) will be excluded in this analysis.

2. As the current (antigen) dose allometric scaling factor between
mouse and humans for the H-series vaccines is assumed to be 10,26–
28 we calculated that the human dose range, based on the mouse
dose range in step 1 (0.01–50 μg H56+ IC31) and this scaling factor,
was 0.1–500 μg H56+ IC31.

3. As we assumed a scaling factor of 10, the 50 μg H56/H1+ IC31 dose
given to humans was equivalent to the 5 μg H56+ IC31 dose group
in the mice. We calculated the percentage change between the
mouse DDPP(s) values for the 5 μg H56+ IC31 dose and the mouse
DDPP(s) values for remaining doses between 0.01 and 50 μg H56+
IC31 (found in step 1).

4. To translate the changes in mouse DDPP(s) to the human dose
range, we applied the percentage changes found in step 3 to the
corresponding human DDPP(s) found in analysis 1ii (for the 50 μg
H56/H1+ IC31 dose).

5. Finally, to establish the long-term human dose–response curve and
‘most immunogenic’ human dose we applied the human DDPP(s)
found in step 4 into the IS/ID model to predict the IFN-g responses.

To further this analysis and as the dose allometric scaling factor for the
H-series could potentially be between 1 and 10 (personal communication,
T Evans), we repeated steps 2–5 assuming this range of scaling factor.

Data availability
The mouse and human data used in this paper is publicly available through
publication (ref.7 for mouse and refs.47,48 for human). Figures of the raw
data used in the analysis are in Figures S11 (mouse) and S12 (human).
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