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sciCAN: single-cell chromatin accessibility and gene expression
data integration via cycle-consistent adversarial network
Yang Xu 1, Edmon Begoli2,3 and Rachel Patton McCord 4✉

The boom in single-cell technologies has brought a surge of high dimensional data that come from different sources and represent
cellular systems from different views. With advances in these single-cell technologies, integrating single-cell data across modalities
arises as a new computational challenge. Here, we present an adversarial approach, sciCAN, to integrate single-cell chromatin
accessibility and gene expression data in an unsupervised manner. We benchmarked sciCAN with 5 existing methods in 5 scATAC-
seq/scRNA-seq datasets, and we demonstrated that our method dealt with data integration with consistent performance across
datasets and better balance of mutual transferring between modalities than the other 5 existing methods. We further applied
sciCAN to 10X Multiome data and confirmed that the integrated representation preserves biological relationships within the
hematopoietic hierarchy. Finally, we investigated CRISPR-perturbed single-cell K562 ATAC-seq and RNA-seq data to identify cells
with related responses to different perturbations in these different modalities.
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INTRODUCTION
Within the last decade, single-cell technologies have advanced our
understanding in a broad range of biological systems. Single-cell
RNA-seq and single-cell ATAC-seq, along with other single-cell
assays, have revealed distinct cellular heterogeneity at a
comprehensive level, from genomic variations to epigenomic
modifications and transcriptomic regulation1–5. Analyses based on
single-cell data have also provided reliable databases for
biomedical research and valuable references for medical dis-
covery. As the number of single-cell omics datasets grows, there is
increasing demand for fast and accurate computation. Conse-
quently, deep learning has become a trending topic in single-cell
data analysis. Much recent research has focused on developing
reliable and fast deep learning tools to accommodate the scaling
demand, such as cell-type annotation6, doublet identification7,
data de-noising8, and batch correction9.
Among all applications of deep learning in single-cell analysis,

data integration remains one of the grand challenges in the
community10,11. Multiple single-cell RNA-seq platforms were
simultaneously developed, leading to an initial focus on methods
to integrate datasets from different platforms. Batch effects are
usually the most prominent variation when datasets from different
sources are collected for integrative analysis, and this can obscure
meaningful biological information. Therefore, removing batch
effects is a critical step to reveal true biological variation and is
necessary for building batch-invariant and applicable single cell
atlases. So far, multiple methods have been proposed to address
this problem9,12–16. Among these integration methods, deep
generative models were extensively tested and demonstrated
their efficacy for learning discriminative representations from the
original high dimensional space. The most common generative
models are Variational Autoencoder (VAE). Variants of VAE models,
which differ in their sampling approaches, have been proposed to
learn representations for single-cell gene expression data9,17–20.
The core component of VAE is the use of reconstruction loss,

which encodes a sample in a representation that is drawn from a
certain distribution, for example, a Gaussian distribution. The use
of reconstruction loss also has an advantage of mapping noisy
data to high-quality data, which further extends the ability of
generative model to de-noise data or impute gene expression.
Instead of using VAE to learn representation for single-cell RNA-
seq data, two research groups simultaneously modified VAE to
address batch effects using an adversarial approach19,20. These
two methods, named scGAN and AD-AE, respectively, used
generative adversarial network (GAN) as the main framework for
learning the latent space that is not entangled with batch effects.
Starting from a VAE model, both scGAN19 and AD-AE20 introduced
adversarial domain loss into the generative model and transferred
the learning from reconstruction of data to diminishing of non-
biological variation. This approach turned out to be effective in
removing batch effects within single-cell gene expression data.
However, both scGAN and AD-AE solely focused on the use of

adversarial learning in single-cell RNA-seq data. Considering their
success in batch-effect correction, here, we aim to extend the use
of adversarial learning to single-cell data integration across
different modalities. In this study, we focus on modality
differences and develop an improved adversarial domain adapta-
tion approach to address multimodal data integration for
chromatin accessibility (ATAC-seq) and gene expression (RNA-
seq) data. Our method differs from both scGAN and AD-AE in that
it uses a cycle-consistent adversarial network to learn the joint
representation for both chromatin accessibility and gene expres-
sion data21. We term our method sciCAN (single-cell chromatin
accessibility and gene expression data integration via Cycle-
consistent Adversarial Network), which removes modality differ-
ences while keeping true biological variation. We previously
developed a deep learning method, SMILE, to perform integration
of multimodal single-cell data22. SMILE requires cell anchors for
integration. This limits the use of SMILE only to cases where
corresponding cells are known across modalities, as is true for
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joint profiling experiments. In contrast to SMILE, sciCAN does not
require cell anchors and thus can be applied to non-joint profiled
single-cell data. We first benchmarked our method with 5 existing
methods across 5 ATAC-seq/RNA-seq datasets, and we demon-
strate that our method deals with data integration with a better
ability to transfer cell type labels in both directions between
modalities than the other 5 methods. To demonstrate the
method’s utility in integrative analyses, we applied sciCAN to
joint-profiled peripheral blood mononuclear cells (PBMC) data by
10X Multiome platform and showed that the derived integrated
representation preserves the hematopoietic hierarchy at both
chromatin accessibility and gene expression levels. Finally, we
investigated CRSIPR-perturbed single-cell K562 ATAC-seq and
RNA-seq data, and we identified that some cells in both modalities
share common biological responses, even though the two
modalities were profiled with different gene perturbations.
Combining the results above, we expect our work will fill the
gap to allow generative models to be used in integrative analysis
of multimodal single-cell data.

RESULTS
Overview of sciCAN and potential applications
We first show the model architecture of sciCAN, which contains
two major components, representation learning and modality
alignment (Fig. 1a). Encoder E serves as a feature extractor that
projects both high dimensional chromatin accessibility and gene
expression data into the joint low dimension space. For
representation learning, we use noise contrastive estimation
(NCE) as the single loss function to guide E to learn the
discriminative representation that can preserve the intrinsic data
structure for both modalities. For modality alignment, we use two
separate discriminator networks for two distinct uses. The first
discriminator network Drna is attached to E and is trained with
adversarial domain adaptation loss. Drna aims to distinguish which
source the latent space z extracted by E comes from, while E is
pushed to learn the joint distribution so that Drna is less able to
distinguish the modality source of latent space z. The second
discriminator network Datac follows a generator network G that
generates chromatin accessibility data based latent space z from
gene expression data. Adversarial training here will push G to find
a connection between chromatin accessibility and gene

expression data. Since the generated chromatin accessibility data
is based on the latent space z of real gene expression data, the
new latent space z’ of generated data should align with its
corresponding z of real gene expression data. Therefore, we add
cycle-consistent loss as demonstrated in cycleGAN method to
facilitate finding the connection between two modalities21. In
practice, we build E with fully connected layers, which are
followed by a batch normalization layer with Rectified Linear Unit
(ReLU) activation. Drna takes the 128-dimension z as input and
forwards it through a three-layer multi-layer perceptron (MLP) to
produce 1-dimension sigmoid activated output that predicts if the
input z comes from single-cell RNA-seq data. Differently, Datac

takes output from G and forwards the input through a three-layer
MLP to produce 1-dimension sigmoid activated output that
predicts if input is generated by G. G is a decoder structure, which
has two-layer MLP to restore dimension-reduced z to the original
dimension of input data. Instead of calculating NCE directly on z,
we further reduced z to 32-dimension output with linear
transformation and 25-dimension SoftMax activated output,
through two separated one-layer MLPs. This practice is the same
as our previous study, in which we demonstrated an effective
approach to learn discriminative representation for single-cell
data22. Once model training is done, we use encoder E to project
both modalities into the joint representation for downstream
analyses (Fig. 1b).

Benchmark of sciCAN with 5 existing integration methods
To demonstrate the performance of sciCAN in the task of data
integration, we first selected 3 methods for comparison that have
been extensively tested in integrating single-cell RNA-seq data23,
including LIGER14, Harmony15, and Seurat24. In addition to these
specialized methods for integration, we noticed the availability of
streamlined analysis tools for single-cell ATAC-seq data, including
ArchR25, MAESTRO26, and Cicero27. Of these, both ArchR and
MAESTRO include the ability to integrate ATAC-seq and RNA-seq
data, using Seurat directly (MAESTRO) or with further modifica-
tions to Seurat (ArchR). Thus, we included ArchR in our benchmark
test. As sciCAN shares the same architecture as SMILE to learn
representations for single-cell data and both methods are
proposed for data integration, we also included SMILE in our set
of methods to test. However, SMILE requires cell anchors across
modalities to learn the joint representation, while not all

a

Co-embedding
Downstream analysis

Label transferring
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Fig. 1 Overview of sciCAN and potential applications. a sciCAN model architecture. sciCAN contains two major components: representation
learning and modality alignment. The representation learning part of the model is highlighted in the red box, and the modality alignment
part in the purple box. Inputs of scATAC-seq and scRNA-seq have been preprocessed to have the same feature dimensions, so they can share
one single encoder E. The final total loss (L) is the sum of loss of representation learning in red and loss of modality alignment in purple. Of
note, calculation of NCE is independent for scATAC-seq and scRNA-seq data. b Downstream integrative analyses can include but are not
limited to co-embedding, co-trajectory, and label transferring.
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benchmark datasets include this information. Therefore, we used
Seurat to identify cell anchors so that SMILE could rely on these
anchors to integrate ATAC-seq and RNA-seq data. For the
benchmark purpose, we collected 5 datasets that consist of
distinct cellular systems. They are mixed cell lines28, human
hematopoiesis29, human lung30, mouse skin31, and mouse
kidney32, respectively. RNA-seq and ATAC-seq modalities may
have different numbers of cells and even different numbers of cell
types, except where both modalities were jointly profiled
(Supplementary Table 1).
We introduced two variants of silhouette score to measure

modality mixing and cell-type preserving, respectively. The first
metric, modality silhouette, evaluates how well two modalities
align, and it directly reports whether discrepancy between
chromatin accessibility and gene expression data is removed
(maximum alignment gives a score of 1). Across 5 datasets,
Harmony, Seurat, and sciCAN integrated chromatin accessibility
and gene expression data well, giving a larger modality silhouette
value. Among all methods, LIGER ranked the last in modality
mixing, with the worst modality silhouette values in 3 datasets

(Fig. 2a). Though all 6 methods diminish the difference between
chromatin accessibility and gene expression, that does not
necessarily indicate that they learned to represent the distinctness
of each cell-type. To evaluate this, we used cell-type silhouette,
which quantifies how well the joint representation reflects the
data structure by distinguishing cell-types (a value of 1 is ideal).
Here, we used the author-reported labels as the ground truth. All
other 5 methods, except sciCAN, reported the last-ranked cell-type
silhouette in the 5 datasets at least once (Fig. 2a). Though ArchR
performs integration upon infrastructure of Seurat, we observed
noticeable difference between ArchR and Seurat. Different from
Seurat that maps connections between RNA-seq and ATAC-seq
data as whole, ArchR only does the “subspace” mapping25, and
this “subspace” mapping is highly influenced by a good
estimation on correspondence between RNA-seq “subspace” and
ATAC-seq “subspace”. Considering the goal of a good balance
between modality mixing and cell-type preserving, sciCAN shows
the most consistent integration performance across the 5 datasets
among all methods.
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Fig. 2 Benchmarking of sciCAN against other 5 existing integration methods. a Integration evaluation by modality and cell-type silhouette
scores across 5 datasets. x axis corresponds to modality silhouette score and y axis to cell-type silhouette score. Ideal integration should be
located in the top right corner of each dot plot. To generate the dot plot, we randomly subsample 20% of the cell population to calculate both
modality and cell-type silhouette scores for each method and each dataset. b Integration evaluation by F1 scores across 5 datasets. Upper
panel corresponds to label transferring from RNA-seq to ATAC-seq (RtoA) while lower panel indicates label transferring from ATAC-seq to RNA-
seq (AtoR). Boxplots are plotted based on F1 scores for all cell types in that dataset. The median value is marked with a horizontal line within
the box, and the “X” mark represents the macro F1 score, which is the average of F1 scores for all cell types. Whiskers show minimum and
maximum value and top and bottom of the box show 25th and 75th percentile respectively. c Benchmark ranking across 5 datasets. In each
category, methods are ranked based on their scores from best (red, low number ranking) to worst (blue, high number ranking).
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Next, we focused on label transferring. Here, our goal is that the
user could rely on the integrated space to predict cell-type labels
for data from a single modality, given availability of cell-type labels
from the other modality. We found Seurat has overall the best
performance for label transferring from RNA-seq to ATAC-seq (Fig.
2b). This may relate to the design of Seurat. Different from the
other 3 methods, Seurat inherently uses gene expression data as
reference data and projects chromatin accessibility data to the
gene expression space. In contrast, sciCAN has overall the best
performance of label transferring from ATAC-seq to RNA-seq (Fig.
2b). Among all methods, LIGER shows the worst performance
regarding label transferring (Fig. 2b). Visual inspection of the
integration also indicates that Harmony, Seurat, and sciCAN show
overall better integration performance than the other 3 methods
(Supplementary Figs. 1–5). Finally, we ranked these 6 integration
methods in both tasks of data integration and label transferring
and got the ranking for overall performance (Fig. 2c). In 4 out of 5
datasets, sciCAN was ranked in the top 3 methods in both tasks of
data integration and label transferring. sciCAN was ranked highest
overall 3 times and Harmony 2 times. A statistical comparison of
benchmarking metrics confirmed that while sciCAN does not
always significantly outperform other methods on all metrics, it
has the best consistent performance in label transferring between
modalities, particularly when starting from ATAC-seq data.
(Supplementary Table 2).
The default architecture of sciCAN shown in Fig. 1 has RNA-seq

data playing the central role, primarily because RNA-seq data
usually shows greater discriminative power than ATAC-seq in
terms of cell-type identification22,24,33–35. We wondered if this
setup is critical to good integration by sciCAN. Thus, we switched
the roles of RNA-seq and ATAC-seq data in the model training.
Indeed, the ATAC-centered sciCAN model is consistently less
accurate than RNA-centered sciCAN, suggesting discriminative
representation learning benefits from taking advantage of the cell-
type discriminative power of RNA-seq (Supplementary Fig. 6). We
also evaluated the contribution of each loss in the final sciCAN
model in two joint-profiled datasets of different size and
complexity. We found that the different coefficients of the loss
functions do not have major impact on model performance.
However, larger coefficients for Latac returned the worst outcomes
compared to other loss coefficient sets we tested (Supplementary
Table 3). This evaluation further supports the idea that taking
advantage of the discriminative power of scRNA-seq returns better

integration. Combining the results above, we conclude that the
RNA-centered sciCAN shows consistently good integration per-
formance across different cellular systems.

Integration learned by sciCAN preserves the hematopoietic
hierarchy
The hematopoietic hierarchy has been extensively studied
through single-cell analysis. Independent studies using scRNA-
seq or scATAC-seq alone also confirmed that the cellular hierarchy
of the hematopoietic system is observed at both chromatin
accessibility and gene expression levels36–40. Thus, hematopoietic
data can be a good example for us to verify whether the learned
integration is biologically meaningful. In our benchmark above, all
6 methods showed decent integration for human hematopoiesis.
However, when we inspected how well the learned integration
preserved known cellular relationships, we found that only LIGER,
sciCAN and SMILE highlighted distinct groups of biologically
related cell types, while the other 3 methods returned weak
correlations and showed some closely related cell types as
distantly separated (Supplementary Fig. 7). To demonstrate that
sciCAN indeed learns biologically meaningful integration, we
performed further investigation into the hematopoietic hierarchy.
Instead of using scRNA-seq and scATAC-seq data that were
profiled separately, as the dataset we used in the benchmark, we
utilized a jointly-profiled human PBMC dataset obtained through
the 10X Multiome platform, which enables us to evaluate the
integration with ground truth. Blinding ourselves to cell pairing
information, our first task is co-embedding RNA-seq and ATAC-seq
and performing co-trajectory analysis to evaluate whether the
joint representation learned by sciCAN preserves the hemato-
poietic hierarchy at both chromatin accessibility and gene
expression levels. Indeed, PAGA, a trajectory inference tool for
single-cell data, constructed a hematopoietic stem cell (HSC)-
centered trajectory with the 128-dimension joint representation
learned by sciCAN41. We also confirmed that progenitor cells
surround the HSCs and branch towards their differentiated cells,
and their lineage commitments at both chromatin accessibility
and gene expression levels can be explained by the same gene
signatures (Fig. 3b and Supplementary Fig. 8).
Given that the integrated representation learned by sciCAN

preserved the hematopoietic hierarchy, we next asked if we could
infer transcriptional dynamics between chromatin accessibility
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Fig. 3 Integration learned by sciCAN preserves hematopoietic hierarchy. a Co-trajectory analysis via PAGA using joint representation
learned by sciCAN. Each dot is the sum of all cells annotated as the same cell type. Trajectory is visualized using RNA-seq (upper panel) and
ATAC-seq (lower panel), separately. b Enrichments of signature genes for 3 different lineages using both RNA-seq (top) and ATAC-seq (bottom)
data. Colorbar indicates gene expression (top) or gene activity level (bottom), respectively.

Y. Xu et al.

4

npj Systems Biology and Applications (2022)    33 Published in partnership with the Systems Biology Institute



and gene expression across the trajectory from progenitor to
differentiated cells. To do so, we borrowed and transformed the
concept of RNA velocity into activity-expression velocity. In the
original RNA velocity concept, positive velocity is inferred when an
increase in unspliced transcripts is followed by up-regulation in
spliced transcripts42,43. This idea was further extended to velocity
analysis of nuclear mRNA vs cytoplasmic mRNA44, and of more
compact vs less compact chromatin regions45. Here, we reframed
this analysis into activity-expression velocity. We found that the
trajectories of the resulting velocity calculation follow the
expected hematopoietic differentiation (from stem and progenitor
to differentiated type) when we calculate positive velocity as an
increase in gene expression first, followed by an increase in gene
activity (accessibility). This directionality suggests that in this
system gene expression may be activated first, followed by a
chromatin state encoding of this expression pattern as the new
cell type is established. Given the joint representation, we
predicted gene expression based on gene activity. Then, we used
the true activity matrix and the predicted expression matrix to
compute the activity-expression velocity with scVelo46. Taking
advantage of the ground truth from the cell pairing information,
we also performed the same analysis using the true activity matrix
and true expression matrix. We found that velocity computed with
the predicted expression data resembles and correlates well with
the velocity computed with true expression data, in accordance

with the correlation between predicted and actual expression
(Supplementary Fig. 9). Consistent with co-trajectory analysis,
velocity with predicted expression data revealed that MK/E
progenitor cells move towards erythroblasts while G/M progenitor
cells move towards monocytes (Supplementary Fig. 9). Combining
the results above, we concluded that sciCAN preserves meaningful
biological information within the learned joint representation.

sciCAN identifies common responses after CRISPR
perturbation
Combining single-cell sequencing with CRISPR enables a systema-
tic examination of cellular response to genetic perturbation. Dixit
et al. first introduced Perturb-seq to identify single-cell cellular
response at the expression level after CRISPR perturbation47. Then,
Perturb-ATAC was introduced to profile single-cell chromatin
accessibility after CRISPR perturbation48. Nevertheless, a CRISPR-
coupled joint-profiling single-cell assay has not been introduced.
Therefore, multiple modality data integration is needed to
determine how single cell responses to genetic perturbation
compare at the transcriptomic and chromatin accessibility levels.
We performed computational integration via sciCAN to create a
joint view of cellular response after CRISPR perturbation. We
selected single-cell K562 RNA-seq data from Perturb-seq and
single-cell K562 ATAC-seq data generated by Spear-ATAC47,49.
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Fig. 4 sciCAN identifies common response after CRISPR perturbation. a Visualization of single-cell CRISPR-perturbed K562 RNA-seq and
ATAC-seq data via UMAP. Cells are colored by identified cell clusters (left) and modality source (right). b Spearman correlation between RNA-
seq and ATAC-seq profiles of cells in different clusters in both modalities. Gene expression or gene activity matrix was averaged by cell
clusters. c Shared gene signatures of the 3 cell clusters in both modalities. Differential gene activities or expression were identified through
‘Wilcoxon’ test in Scanpy package. d Ranking of sgRNA representation in each cluster (blue = C0, orange = C1, green = C2) in both RNA-seq
(left) and ATAC-seq (right) data. Genes perturbed in both experiments are highlighted. e Gene signatures of cells targeted by sgELE1, sgYY1,
and sgGABPA in cell cluster 1. f Genes whose activity patterns distinguish cells in cluster 0 and cluster 2 among cells in these clusters perturbed
by the same gRNAs.
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Notably these two studies used quite different sgRNA sets, sharing
only 3 gene targets (sgELF1, sgYY1, and sgGABPA), so the
integration cannot simply group like targets, but instead will be
challenged to find similar biological responses to different gene
perturbations. First, sciCAN enabled us to co-embed and co-cluster
RNA-seq and ATAC-seq data, and we identified 3 distinct clusters
(Fig. 4a). Next, we asked if the co-clustering makes sense in terms
of gene signatures that lead to these clusters. Though the two
studies used different sgRNA sets, we found gene activities of
these 3 clusters have strong correlation to the gene expression
profiles of the corresponding clusters in RNA-seq (Fig. 4b). This
correlation surpasses the cellular correlation calculated with 5
benchmark datasets in which known cell types are present in both
ATAC-seq and RNA-seq modalities (Supplementary Fig. 10).
Further, cells within each cluster shared gene signatures in both
expression and accessibility (Fig. 4c). This suggests that cells may
have similar responses to different CRISPR-perturbations. Next, we
ranked sgRNA targets for each cluster to find out which genes
were perturbed in the cells that ended up in each cluster. In RNA-
seq data, cells targeted by sgELF1, sgYY1, and sgGABPA tended to
fall in cluster 1 (Fig. 4d). However, even though these three genes
were also targeted in ATAC-seq, the cells targeted by these
sgRNAs were fairly evenly distributed across clusters in scATAC-
seq data (Fig. 4d and Supplementary Table 4). We reason that
cellular responses to perturbation at the chromatin accessibility
level may be more variable than the responses at the gene
expression level. Indeed, none of the ATAC-seq cell clusters have
strongly dominant sgRNA targets (Supplementary Table 4). To
further investigate this discrepancy, we separated out cells that
were targeted by the common targets sgELF1, sgYY1, and sgGABPA
for a closer examination. We found that cells targeted by sgELF1,
sgYY1, and sgGABPA that fall into cluster 1 in both RNA-seq and
ATAC-seq do have a distinct gene expression and activity
signature compared to cluster 0 and 2, even though these cells
were perturbed by the same sgRNAs (Fig. 4e). This suggests that
there are different subsets of cells that respond to the same
perturbation in different ways. Shifting our focus to clusters 0 and
2 overall, it is surprising that cells in these two clusters share the
same top 5 sgRNAs (sgCEP55, sgOGG1, sgPTGER2 sgCAPBP7,
sgCIT), in RNA-seq but are perturbed with completely different
sgRNAs in ATAC-seq (Supplementary Table 4). To understand what
makes cluster 0 and 2 different, we performed a differential gene
activity test using cells targeted by the top 5 sgRNAs in cluster 0
and 2 ATAC-seq data. We then examined cells targeted by the
shared top 5 sgRNAs in cluster 0 and 2 RNA-seq, and we found
that the differential genes we identified through ATAC-seq could
partially explain the different clustering of these cells in RNA-seq
(Fig. 4f). That is, there are distinctive patterns of gene activity
between C0 and C2 cells that correlate with distinctive expression
of the corresponding genes in these clusters. These distinctive
patterns define subsets of cells that cluster separately even
though they were targeted with the same sgRNA. Therefore, our
integrated representation of these two independent datasets
allows us to gain a better understanding of two subpopulations of
cells that respond differently to the same gene perturbation.

DISCUSSION
In this study, we designed an adversarial approach for the
integration of single-cell chromatin accessibility and gene expres-
sion data. By benchmarking our method against 5 existing
integration methods in 5 ATAC-seq/RNA-seq datasets, our showed
that sciCAN and Seurat have overall superior performance of data
integration. However, sciCAN shows good mutual label transfer-
ring either from RNA-seq to ATAC-seq or from ATAC-seq to RNA-
seq, while this mutual information is lost via Seurat integration. In
cases where researchers may want to translate ATAC-seq to RNA-
seq for inferring gene expression, sciCAN would have an

advantage over Seurat. We further demonstrated that sciCAN
can be applied to different integrative analyses, like co-trajectory,
activity-expression velocity, and co-clustering of CRISPR screens.
All these results demonstrate that sciCAN could empower
integrative single-cell analysis for biological discoveries.

METHODS
Representation learning
Deep metric learning has shown effective representation learning
without supervision. Chen et al. used a simple framework to learn
visual representations in a self-supervised manner50. They
duplicated each image into two counterparts through image
perturbation. The goal of learning is to maximize the consistency
of any paired replicates in the latent space z. To achieve this goal,
NCE is applied as the loss function as shown in (1). In an N-sample
batch, there will be 2 N samples through data augmentation, and
each augmented image i has its corresponding counterpart j
which is the same, despite the added image perturbation. Then,
cos quantifies the cosine similarity of image i and j/k in the latent
space z. Chen et al. demonstrated that this simple framework
turns out to be a highly effective way to learn the discriminative
representation without supervision. We adapted this approach in
our previous study and showed the sample framework can
produce discriminative representations for single-cell data22. (See
this previous SMILE study for in-depth details of how perturba-
tions are added to duplicated data). Because of the property of
this metric learning, our method is fully unsupervised. Users do
not need to provide cell-type labels to start model training.

li;j ¼ � log
expðcosðzi ; zjÞ=τÞ

P2N
k¼1 expðcosðzi; zkÞ=τÞ

(1)

Domain adaptation
Generative models with adversarial domain adaptation were
successfully shown to transfer targets to source style and have
general applications in image translation51. Recently, both
scGAN19 and AD-AE20 incorporated adversarial domain adaptation
into a generative model for removing batch effects within single-
cell expression data. For both studies, the goal is to find a batch-
invariant representation for single-cell gene expression data from
various sources. To achieve this, they stacked a discriminator to
the encoder and trained the discriminator to distinguish which
source the cell comes from using the latent space z projected by
the encoder. Adversarial training, in this case, will push the
encoder to approximate the joint distribution and become
capable of projecting cells with data from different modalities to
the same integrated representation. Here, we also used domain
adaptation to train a discriminator to identify the modality source
while the encoder is pushed to diminish modality difference.

Cycle-consistent adversarial network
Besides the use of adversarial domain adaptation above, we
further introduced a cycle-consistent adversarial part. This practice
stems from a method called cycleGAN, which presented a high-
performing outcome for the task of transferring image styles from
one domain to another21. The success of establishing a connection
between two image domains relies on the concept called “cycle
consistency”. Starting from the original image, a generator
network translates the image to the other domain. Then, a
second generator network translates the image back to its original
domain. Through this cycle, the translated-back image should be
the same as the original image. Based on this information,
adversarial training of generators can establish a reversible
connection between two image domains. Different from the goal
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of cycleGAN, we aim to learn joint representation instead of
translating chromatin accessibility to gene expression or vice
versa. However, the fundamental concept is the same: we
establish a cycle from encoder to generator, and from generator
back to encoder. Then, the cycle-consistency loss is applied at the
level of latent space z.

Data preprocessing
All methods benchmarked in our study require anchoring genes
for integration. We used a common practice that transforms the
sparse ATAC-seq peak matrix to a gene activity matrix26,52,53. Here,
we briefly explain the rationale behind this transformation. RNA-
seq measures gene expression, so in a matrix of single-cell gene
expression data, each row represents one cell, and each column
contains expression values of one gene. The whole matrix
represents gene expression levels of all genes across all cells.
ATAC-seq, on the other hand, quantifies how accessible genomic
loci are to regulatory proteins. Therefore, in a matrix of single-cell
chromatin accessibility data, each row is one cell (the same as
single-cell gene expression data) and each column contains
accessibility values of one genomic locus. The sum of accessibility
values of all genomic loci upstream of and within one gene body
may relate to the potential of transcription of that gene. Therefore,
to convert ATAC-seq data to a form that can be compared to RNA-
seq data (a matrix of cells by genes), all accessibility peaks
upstream of and within each gene body are summed to represent
gene activity. In the converted gene activity matrix, each row is
one cell, and each column is accessibility values of one gene.
Therefore, after conversion, we can do a simple filtering and
reordering to match features of chromatin accessibility and gene
expression data. The Signac package provides this conversion
process, and we ran the code available at https://satijalab.org/
signac/articles/pbmc_vignette.html53. After we have both a gene
activity matrix and a gene expression matrix, we normalize both
modality data with (Log+ 1)-transformation, which adds 1 as a
pseudo count to the matrix before log-transformation. Then, we
identify the top 3000 highly variable genes (HVG) for each
modality and use all identified HVG as features for integration. To
identify the top 3000 HVG, we use Scanpy by calling the
highly_variable_genes function54.

Model training
We trained sciCAN in all datasets for 100 epochs. The learning rate
starts from 0.005 with 0.0005 weight decay. All weights in the
sciCAN model are updated through stochastic gradient descend-
ing. In the NCE loss function, temperature τ is a crucial parameter
that affects discriminative power of the final representation. We
set as τ = 0.15 for the 32-dimension linear-transformed output
and τ = 0.5 for the 25-dimension SoftMax activated output, which
is consistent to the practice in our previous study22. Detailed
training code is also provided on sciCAN GitHub (https://
github.com/rpmccordlab/sciCAN).

Integration via LIGER
Multimodal single-cell data integration by LIGER was demon-
strated in its published tutorial14. We used default parameters to
perform integration of chromatin accessibility and gene expres-
sion data, and the final dimension of integrated representation by
LIGER is 20 for all 5 benchmark datasets. Briefly, LIGER uses
integrative nonnegative matrix factorization (iNMF) to identify
metagenes that are shared between ATAC-seq and RNA-seq55.
These metagenes are a weighted matrix of factor loadings of
observed gene expression/activity. Then, cell loadings of these
metagenes are used to perform joint clustering and other
downstream analysis. Ideally, representations of cells from both

modalities after iNMF should have been integrated in the same
latent space and can be visualized via tSNE or UMAP56,57.

Integration via Harmony
Harmony is the second integration method benchmarked in our
study. Originally, Harmony was designed to correct batch effects
within single-cell RNA-seq datasets15. Later, the use of Harmony in
multimodal single-cell data integration was discussed in
reviews58,59. Meanwhile, a batch-correction benchmark study
showed that Harmony was ranked among the top 3 methods,
with LIGER and Seurat, for integrating single-cell RNA-seq data23.
Therefore, we included Harmony in our benchmarking of multi-
modal single-cell data integration. Harmony learns the joint
representation through an iterative k-means clustering, and the
outcome is a linear correction function that transforms the original
principal components (PCs) to the batch-corrected PCs. Batch
information is necessary to guide Harmony to distinguish what
variation should be diminished during the k-means iterations.
Principally, to integrate chromatin accessibility and gene expres-
sion data, modality information serves as the same role of batch
information. Again, we used the default procedure of Harmony, in
which we reduced the whole dataset into the first 30 PCs.

Integration via Seurat
Seurat uses canonical correlation analysis to learn the shared
latent space between two modalities. This approach is different
from LIGER, Harmony, and our method, in a way that Seurat will
first identify confident cell pairs between the two modalities. Then,
Seurat uses these paired cells as anchors to learn a mutual
neighborhood graph. Finally, it computes a projection that brings
all other cells to this shared latent space. Because of its “anchor”
design, Seurat needs pairwise computation of anchor points when
datasets come from more than two sources. Since we only deal
with the modality difference between chromatin accessibility and
gene expression in this study, we do not need to perform pairwise
computation of anchor points with Seurat. For benchmarking, we
ran Seurat v3 with the tutorial on https://satijalab.org/seurat/
archive/v3.0/atacseq_integration_vignette.html, and the final
dimension of integrated representation by Seurat would be 50.

Integration via ArchR
ArchR uses Seurat as infrastructure to integrate RNA-seq with
ATAC-seq data. Different from Seurat, ArchR constrains the
mapping from ATAC-seq to RNA-seq in a “subspace”. An initial
unconstrained mapping was done through Seurat. This step is
aimed to estimate what clusters in ATAC-seq have good
correspondence to a certain number of clusters in RNA-seq. Then,
the “subspace” or constrained mapping will only project a number
of clusters in ATAC-seq onto their corresponded clusters in
RNA-seq.

Integration via SMILE
We previously developed SMILE to integrate multimodal single-
cell data when cell anchor information was obtained from co-
assay profiling. Because sciCAN and SMILE share the same
architecture to learn lower dimension hidden space for single-
cell data, SMILE also generate 128-dimension hidden space. To use
SMILE for integration in this situation, we had to rely on external
tool, like Seurat, to identify cell anchors. Once cell anchors
identified, SMILE was trained based on anchored data and
projected the rest of unanchored data into the joint representa-
tion space. A tutorial can be found at SMILE GitHub (https://
github.com/rpmccordlab/SMILE).
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Activity-expression velocity
Activity-expression velocity was calculated with scVelo46. We
replaced the spliced layer with the gene activity matrix and the
unspliced layer with the gene expression matrix. To estimate first
and second moments, we used the 128-dimension joint space
learned by sciCAN, instead of PCA space.

Data description
We collected unpaired chromatin accessibility and gene expres-
sion from 5 studies for benchmarking28–32. ATAC-seq and RNA-seq
data in data 1 (Cell lines) and data 4 (Mouse skin) have the same
number of cells and cell-types. This is because SNARE-seq and
SHARE-seq simultaneously profile chromatin accessibility and
gene expression features from the same cells28,31. Experimentally,
each cell in ATAC-seq has its corresponding cell in RNA-seq in
SNARE-seq and SHARE-seq data. However, in our study, we blind
ourselves to this paired information for all 6 methods. For the
other 3 datasets, data from ATAC-seq and RNA-seq were collected
separately on different groups of cells. Therefore, they do not
necessarily consist of the same number of cells and do not
necessarily share the same cellular components. Cell-type
annotations were also annotated separately by the authors, and
the author-reported annotations serve as ground truth for
integration evaluation. We also collected a joint-profiled human
PBMC data by 10X Multiome platform to demonstrate that
integration by sciCAN preserves biological information. Finally, we
collected two independent CRISPR-perturbed single-cell K562
datasets that profiled chromatin accessibility49 and gene expres-
sion47, respectively. The brief description and citations for these 7
datasets are shown in Supplementary Table 1.

Evaluation
To evaluate integration by each method, we proposed 4 metrics:

Modality and cell-type silhouette score. As we mentioned before,
sciCAN and SMILE reduce each dataset into 128-dimension spaces,
while LIGER reduces the data to 20 dimensions, Harmony to 30,
and both Seurat and ArchR to 50. Since the final dimensions of the
integrated representations by the 6 methods are not the same, we
further used Uniform Manifold Approximation and Projection
(UMAP) to reduce them into 2-dimensions with the same UMAP
running parameters60. Then, we calculated modality and cell-type
silhouette scores on the 2D UMAP spaces. A typical silhouette
score S ranges from −1 to 1. To better reflect the integration
outcome, we define modality silhouette as 1-abs(S) and cell-type
silhouette as (1+ S)/2. Of note, we used different labels to
calculate modality and cell-type silhouette. For modality silhou-
ette, the label used is modality information. A good integration
should have chromatin accessibility and gene expression data
largely overlapped. Therefore, the absolute value of S should be
close to zero (regardless of sign), and we then subtract the
absolute value of S from 1 so that the best score will have a value
of 1. For cell-type silhouette, we used the author-reported
annotation label to calculate S and then scale the output to the
range from 0 to 1. Thus, cell-type silhouette of 1 indicates the best
integration that preserves cell-type structure.

F1 score from RNA-seq to ATAC-seq, and from ATAC-seq to RNA-
seq. A useful integration of modalities should have the ability to
transfer cell type labels from one datatype to another, either from
RNA-seq to ATAC-seq or from ATAC-seq to RNA-seq. Given cell-
type label availability from a single modality, the user should be
able to predict cell-types for the other modality, with a fair
accuracy. To evaluate how friendly the joint representation is for
label transferring, we trained a Support Vector Machine (SVM)
classifier with one modality and tested it with the other modality.

The choice of SVM is simply based on a constant superior
performance of SVM classifier across datasets. Then, we used
macro F1 and F1 score for each cell type to evaluate SVM
classifiers trained with different joint representations by these 6
methods. Macro F1 score is the average of F1 scores for all cell-
types, and it can help us reveal if integration is good for non-major
cell-types. This is because cell-types are not balanced in most
single-cell data and revealing non-major cell-types is critical for
most single-cell analysis. A high macro F1 score can suggest that
integration is also good for non-major cell-types. Meanwhile,
individual F1 scores for all cell type also report which cell-type
prediction is the hard case and what is the highest F1 score the
classifier can reach to.

Metric aggregation and ranking
Across all 5 datasets, we first used Scell�type, Smodality , F1RtoA, and
F1AtoR to compare sciCAN with each of other 5 methods with
wilcoxon test. P value lower than 0.01 indicates sciCAN has better
performance in that specific metric. To aggregate all metrics and
rank performance of integration, we first aggregated modality and
cell-type silhouette scores given the calculation Soverall ¼
0:7 ´ Scell�type þ 0:3 ´ Smodality . This metric aggregation gives more
highlight on how well the integration method preserve biological
information instead of simply overlapping two modalities. To rank
performance of label transferring, we aggregated macro F1 (RtoA)
and macro F1 (AtoR) as the calculation F1overall ¼ 0:5 ´
F1RtoA þ 0:5 ´ F1AtoR. We expect a good integration should enable
a mutual label transferring from both directions. For the overall
ranking, we further got the final score Roverall ¼ 0:5 ´
Soverall þ 0:5 ´ F1overall .

DATA AVAILABILITY
All datasets used in our study are from previously published studies. The data
accession in Gene Expression Omnibus or processed data link can be found in
Supplementary Table 1.

CODE AVAILABILITY
sciCAN code is provide on GitHub, with its own repository (https://github.com/
rpmccordlab/sciCAN).
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