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Stable, flexible, common, and distinct behaviors support rule-
based and information-integration category learning
Casey L. Roark 1,2✉ and Bharath Chandrasekaran1,2✉

The ability to organize variable sensory signals into discrete categories is a fundamental process in human cognition thought to
underlie many real-world learning problems. Decades of research suggests that two learning systems may support category
learning and that categories with different distributional structures (rule-based, information-integration) optimally rely on different
learning systems. However, it remains unclear how the same individual learns these different categories and whether the behaviors
that support learning success are common or distinct across different categories. In two experiments, we investigate learning and
develop a taxonomy of learning behaviors to investigate which behaviors are stable or flexible as the same individual learns rule-
based and information-integration categories and which behaviors are common or distinct to learning success for these different
types of categories. We found that some learning behaviors are stable in an individual across category learning tasks (learning
success, strategy consistency), while others are flexibly task-modulated (learning speed, strategy, stability). Further, success in rule-
based and information-integration category learning was supported by both common (faster learning speeds, higher working
memory ability) and distinct factors (learning strategies, strategy consistency). Overall, these results demonstrate that even with
highly similar categories and identical training tasks, individuals dynamically adjust some behaviors to fit the task and success in
learning different kinds of categories is supported by both common and distinct factors. These results illustrate a need for
theoretical perspectives of category learning to include nuances of behavior at the level of an individual learner.
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INTRODUCTION
Across a variety of problems in perception and cognition, there is
substantial variability across individuals. Individuals vary widely in
how well they can learn arbitrary perceptual categories1,2, solve
complex logic problems3, or learn a second language4–6. Across
such a variety of tasks, some individuals learn quickly while others
struggle to learn at all. Here, we investigate what underlies this
variability and what behaviors during learning are associated with
successful learning. Particularly, we focus on learning of two types
of artificial categories that have been proposed to be optimally
learned by separable cognitive and neural learning systems: rule-
based (RB) and information-integration (II) categories7.
RB and II categories are primarily distinguished from one

another based on their distributional structure7–9. RB categories
can be separated with decision boundaries that are orthogonal to
the dimensions (Fig. 1a, c), whereas II categories can be separated
with boundaries that are non-orthogonal to the dimensions (Fig.
1b, d). As a result of these differences in distributional structure,
the requirements for optimal learning are somewhat different.
Learning RB categories involves selective attention to the
individual stimulus dimensions to create and find rules that
separate the categories into quadrants (e.g., Category 1 is low on
both temporal and spectral modulation). In contrast, learning II
categories involves integration along the dimensions in a way that
cannot be easily verbalized by the learner (e.g., Category 1 is low
on temporal modulation except when it is not and then it has
medium levels of spectral modulation compared to Categories 2
and 3). In this case, making decisions based on the similarity to
other encountered stimuli may be a better overall strategy than
creating a rule10. Rather than only applying to artificial experi-
mental contexts, these types of categories may reflect the

structure of real-world learning problems that are either
distinguished by simple rules (e.g., differentiating tenor and bass
singers by pitch frequency range) or more complex rules that are
difficult to describe verbally (e.g., differentiating the sounds
/b/ and /p/ by whether the vocal cords vibrate while producing
the sound).
There are two opposing views about the nature of the

mechanisms supporting learning RB and II category structures.
Multiple systems theories (e.g., Competition between Verbal and
Implicit Systems [COVIS] theory11) posit that separate learning
systems are best suited for RB (explicit, hypothesis testing system)
and II (implicit, procedural learning system) learning9,11–26. In
contrast, single systems theories posit that a single system (e.g.,
exemplar, prototype models27–31) can account for both RB and II
category learning and suggest that dissociations seemingly
supporting multiple systems perspectives on learning have
significant methodological or theoretical limitations32–35.
Regardless of whether the evidence supports or refutes a

dissociation between RB and II category learning, much of the
existing work on RB and II category learning has focused on the
possible differentiation of these two learning systems using
manipulations that influence group means. As a result, not much
is understood about how the same individual learns RB and II
categories and whether the behaviors that support learning are
common or distinct across these types of categories. In the current
work, we introduce a taxonomy of behaviors during category
learning that enables a deeper investigation into learning and
examine whether behaviors are stable or flexible in a learner
across tasks and common or distinct to RB and II learning success.
Several prior studies have examined RB and II learning in the

same individuals. However, these studies have not compared
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behavior across tasks and, instead, focused on between-subjects
comparisons (musicians vs. non-musicians36; Parkinson’s Disease
patients vs. older adults vs. younger adults37), examined RB and II
learning in a task-switching context38, or focused on how
individual differences in cognitive abilities relate to RB and II
learning39. As a result, it is unclear how the same individual
approaches and learns RB and II categories. One possibility is that
an individual is highly stable in their behavior across different
category learning tasks, while an alternative possibility is that an
individual flexibly adjusts their behavior depending on the task
context or their current state.
To understand what might be commonly or distinctly related to

RB and II learning success, prior lines of work have focused on
individual differences in working memory (WM) capacity. The role
of WM in learning has been explored extensively40–43. The focus
on WM capacity in RB and II category learning stems from the
proposal in the COVIS theory that the explicit system selectively
relies on WM capacity and prefrontal cortex, where the implicit
system relies on striatal procedural learning mechanisms11. In line
with COVIS theory’s proposal that optimal RB learning involves the
explicit system, there is consistent evidence that WM relates to
successful RB learning39,44,45. The empirical evidence for the role
of WM in II learning is less clear. In line with COVIS theory’s
proposal that WM may be minimally involved in optimal II
learning11, some studies have found that higher WM has minimal
or negative impact on II learning46–49. However, others have found
that that higher WM is better for learning in general, regardless of
what type of category is being learned39,45,50–52. Importantly, even
when WM capacity has been found to be related to learning, the
explanatory power of WM is usually moderate, leaving substantial
unexplained variance in category learning ability39,45,53. There is

still much to be understood about what supports learning beyond
WM capacity.
An important component to understanding individual differ-

ences in learning is identifying variability in behavior during
learning in addition to stable participant abilities like WM capacity.
Many studies have demonstrated that even within the same task,
participants vary in the strategies they use to
learn1,2,17,23,36,45,54–57. Studies grounded in the COVIS theory
typically rely on estimation of learning strategies using strategy
modeling approaches58–60. Through this framework, models reveal
how participants use the underlying stimulus dimensions to make
decisions about category identity and whether learners rely on
explicit or implicit learning mechanisms. However, there are
meaningful criticisms about estimation of learning strategies
through strategy modeling approaches and whether this actually
reflects the involvement of different systems in learning61,62. As a
result, there are theoretical reasons to move beyond learning
strategy to investigate individual differences in learning behavior.
With the goal of understanding individual differences in

learning behavior across tasks and which behaviors are associated
with RB and II learning, we present a taxonomy of behaviors
during category learning (Fig. 2). To complement prior
approaches, we examine how WM capacity and learning strategies
are associated with learning success in RB and II tasks. Going
beyond these prior approaches, we examine how an individual’s
behavior and learning success across different tasks are related to
the consistency of one’s learning strategy, learning speed, and
learning stability.
We examine learning success – the highest level of success a

learner achieves, controlling for dips in performance or lapses in
attention. We examine learning strategy – how a learner uses
underlying stimulus information to make decisions about category
identity. We move beyond examining the type of strategies
learners use to understand their strategy consistency – how
consistently learners apply whichever type of strategy they use
during learning. We examine learning speed – how quickly
learners reach a baseline level of performance. Learning speed
reflects the ability to quickly acquire workable, though likely
suboptimal, rules to define the categories. Faster learning speeds
may generally provide learners more ‘room to grow’ and improve
their accuracy further. Alternatively, faster learning speeds may be
unrelated to overall learning if participants stall in performance
and do not continue to improve. Finally, we examine learning
stability – streaks of correct responses while controlling for overall
accuracy. Higher learning stability (e.g., longer streaks of correct
responses) is generally thought to be reflective of learning, as
prior studies have used streaks of correct responses as an overall
measure of learning46,63–65. However, it is unclear if stability in
performance is related to overall learning when controlling for
number of overall correct responses.
This new taxonomy is particularly useful because we can

provide in-depth descriptions of category learning behavior and
make predictions about how these behaviors may be stable in an
individual or flexible to a task context and commonly or distinctly
related to success in RB and II tasks.
It is possible that these learning behaviors are stable in an

individual across tasks, reflecting a stable trait or behavioral
tendency. In highly controlled artificial category learning tasks, as
we will examine here, the tasks are supervised learning tasks with
identical feedback, goals, and stimulus dimensions. As a result,
there are many reasons to expect that the same person will
approach these highly similar tasks in similar ways – applying
similar learning strategies, learning similarly quickly, and having
similar stability in performance. In support of this prediction, there
is some evidence that people tend to use similar simple rule
strategies during learning regardless of what is optimal for the
task14,66. Here, we will investigate if the same person applies similar

Fig. 1 Category Distributions. Distributions for Experiment 1 (a, b)
and Experiment 2 (c, d). a, c Rule-Based and b, d Information-
Integration category structures varying in temporal modulation (Hz)
and spectral modulation (cyc/oct). Dashed lines reflect optimal
boundaries separating the categories that are either orthogonal
(rule-based) or non-orthogonal (information-integration) to the
underlying dimensions defining the stimuli.
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strategies and learning behaviors during RB and II tasks with
distinct learning demands.
Alternatively, these behaviors may be unrelated across tasks

and, instead, an individual may modulate their behavior depend-
ing on the specific task context. This prediction is well-aligned
with a dual systems perspective of learning and suggests that how

an individual behaves during learning will be modulated based on
what is optimal for learning (i.e., whether they are learning RB or II
categories). That is, participants will adjust their strategy, how
consistently they use their strategy and will differ in how quickly
they learn and how stable their performance is depending on
what is required of them in the task. Additionally, this prediction

Fig. 2 Taxonomy of Category Learning Behaviors. a Learning success with two representative learners who were more successful (92%
maximum cumulative accuracy) and less successful (46% maximum cumulative accuracy). b Illustration of the four possible learning strategies:
integration based on similarity, random guessing, two-dimensional (2D) or one-dimensional (1D) rules. c Strategy consistency for two
representative learners who had more consistent (92% maximum consistency) or less consistent (46% maximum consistency) strategies.
d Learning speed illustrated in two representative learners who had faster (0) or slower (282) speeds to reach the group median (black line).
Note that their learning success was relatively similar (72% and 62% respectively). e Learning stability as the number of correct responses in a
row divided by the total number of correct responses over a moving window of 50 trials with two representative learners who are more stable
(0.61 maximum stability) or less stable (0.32 maximum stability). Note that their learning success was relatively similar (92% and 90%
respectively).
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would also be well-aligned with a perspective that suggests a
heavy influence of a learner’s specific motivational or attentional
state within a specific task67–70. For example, a learner may be
highly motivated and attentive one day and less so on
another day.
Regardless of how these behaviors are related within an

individual as they complete different tasks, there are reasons to
expect that learning in RB and II tasks may be supported by
common behaviors. The underlying task and goals are identical. If
this supervised learning task, rather than the distributions of the
categories, is a major driver of behavior, we would expect to see
mostly common behaviors relating to success in RB and II tasks.
Specifically, learners may find varying levels of success with
different strategies and reach higher levels of success the more
consistently the apply a strategy, the faster they reach a baseline
level of performance, and the more stable their learning is
regardless of what kind of category they are learning.
In contrast, stemming from the dual systems perspective of

COVIS, there are reasons to expect that RB and II learning may be
supported by mostly distinct behaviors. If RB learning relies on the
explicit system, RB learning may be uniquely supported by
consistent use of explicit-system strategies, faster learning speeds,
earlier learning stability, and higher WM capacity. Explicit-system
strategies are optimal for RB learning7,11, faster learning speeds
may reflect use of explicit-system rules63,71, earlier learning
stability should be achieved if learners quickly find useful
explicit-system rules63,72, and higher WM capacity has been
consistently linked to better RB learning39,45,54,73. If II learning
relies on the implicit system, II learning may be uniquely
supported by consistent use of implicit-system strategies and
may be unrelated to learning speed, learning stability, or working
memory capacity. Implicit-system strategies are optimal for II
learning11, optimal II learning takes longer as it is reliant on slowly
building up stimulus-response associations7,74, and higher WM
capacity may not be beneficial for II learning46–49.

We first test the taxonomy of learning behaviors in Experiment
1 and then further test the generalizability and replicability of the
taxonomy in Experiment 2. As the paradigms and predictions are
identical across experiments, we present results together and
highlight when results do or do not replicate across experiments.
In both experiments, we examine RB and II auditory category
learning in the same individuals in two separate sessions. We use
the taxonomy of behaviors during category learning to assess the
stability and flexibility of behaviors in the same individual across
tasks and to identify the common and distinct behaviors
supporting RB and II learning.

RESULTS
Summary of experiments
In Experiment 1, 86 (36 F, M= 25.4 years, SD= 5.04 years)
participants learned both RB and II categories (Fig. 1a, b) across
two sessions separated by at least a week. We first examine how
an individual’s behavior is related across RB and II category
learning to understand within-subject variability in learning. We
then examine how these behavioral metrics relate to success in a
way that is common or distinct across the two tasks. Finally, we
assess the possible contribution of order effects by examining
carryover effects in both accuracy and strategies. We did not
exclude any participants based on performance.
Experiment 2 served as a replication and extension. The

experimental design differed in three ways: (1) the same stimulus
distributions were used for RB and II categories to eliminate
potential concerns about biases in results stemming from
differences in category distributions75, (2) we trained participants
for an additional 100 trials (600 trials total) to give participants a
better chance to learn, and (3) we directly asked participants after
each task how they determined which sounds belonged to which
categories. We did not analyze the response data here but provide
the data on OSF for the benefit of other interested researchers. In

Fig. 3 Learning success across tasks. For Experiment 1 (a–c) and Experiment 2 (d–f), a, d Cumulative accuracy over a moving window of 50
trials, first plotted at trial 50. The solid black line reflects mean over all subjects at each trial timepoint. Colored lines reflect variability across
individuals. The dashed black line reflects median level of performance within the task (Experiment 1: II: 48%, RB: 42%; Experiment 2: II: 42%,
RB: 38%). b, e Learning success as maximum cumulative accuracy across all timepoints for individual subjects. Error bars reflect s.e.m.
c, f Correlation between maximum accuracy in the RB and II tasks. Error ribbon reflects s.e.m.
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Experiment 2, 93 (38 F, M= 30.1 years, SD= 4.66 years) partici-
pants learned both RB and II categories (Fig. 1c, d) across two
sessions separated by at least a week. We examine the same
measures for Experiment 2 as Experiment 1.

Which behaviors are flexible or stable in across tasks?
To understand how behaviors are related across RB and II tasks in
the same individual, we compared overall learning success (Fig. 3),
learning strategies and the consistency of the application of those
strategies (Figs. 4 and 5), learning speed (Fig. 6), and learning
stability (Fig. 7). These measures provide information of both how
well participants learn and how they learn in these two similar
tasks with distinct requirements.

Learning success. To understand how well participants learned in
the RB and II tasks, we computed their cumulative accuracy over a
moving window of 50 trials (Fig. 3a, d). This provides information
about how performance evolves over time and demonstrates that
there is wide variability across individuals. We computed
participants’ overall learning success as the maximum value of
this cumulative accuracy. In Experiment 1, participants tended to
have higher learning success in the II task (M= 67%) compared to
the RB task (M= 62%, t(85)= 3.55, p= 0.00063, d= 0.38, 95% CI
[2.00, 7.11]; Fig. 3b). Learning success was strongly correlated
across the RB and II tasks (r(84)= 0.64, 95% CI [0.50, 0.75],
p < 0.001; Fig. 3c). This pattern directly replicated in Experiment
2 – performance was significantly better in the II task (M= 61%)
compared to the RB task (M= 57%, t(92)= 4.37, p= 0.000033,

d= 0.45, 95% CI [2.19, 5.85]; Fig. 3e) and success was strongly
correlated across tasks (r(92)= 0.67, 95% CI [0.55, 0.77], p < 0.001;
Fig. 3f).

Consistency of learning strategies. Using strategy models includ-
ing decision bound models59,60, we examined participants’
learning strategies across the 10 blocks of 50 trials in Experiment
1 (Fig. 4a) and 12 blocks of 50 trials in Experiment 2 (Fig. 5a).
Specifically, we identified whether learners used one-dimensional
(1D) rules (1D-Temporal or 1D-Spectral) or two-dimensional (2D)
rules (2D-Simple or 2D-Complex), hypothesized to be linked to the
explicit learning system, an integration strategy combining the
dimensions in a way that is difficult for learners to describe
verbally and hypothesized to be linked to the implicit learning
system (Integration), or a random guessing strategy (Random).
In both experiments, for both RB and II tasks, participants

primarily used 2D and 1D strategies to separate the stimuli into
categories. The most common strategy for the RB task was the
optimal 2D-Simple rule strategy, using simple conjunctive rules
along both dimensions. The 2D-Simple rule strategy is optimal for
RB categories in that the best 2D strategy can yield the highest
accuracy in this task (Table 1; Experiment 1: 97%; Experiment 2:
100% vs. 25% chance). In contrast, the Integration strategy is
optimal for II categories (Experiment 1: 95%; Experiment 2: 100%).
Even if a participant used a suboptimal strategy during learning,
the optimal strategies are always 2D-Simple rules for the RB task
and Integration for the II task because the feedback participants
receive is aligned with these optimal strategies. The most

Fig. 4 Learning strategies across tasks in Experiment 1. For Experiment 1 (a) Strategies across blocks. Colors reflect different classes of
strategies, which are binned by frequency. Connections between blocks show how strategies changed across blocks. b Alluvial plot showing
the strategies the same participants used in the final block of the RB and II tasks. c Consistency of strategy application measured as the
percent of a participant’s responses that were accounted for by the best-fitting model/strategy. 100% consistency would reflect that the
participant clearly applied this strategy with no exceptions in any trials. 25% consistency would reflect a relatively poor fit of the model to the
participant’s data. Consistency is only measured for non-random strategies. Mean is shown as the black line and individual data is shown in
colored lines. d Correlation between final-block consistency in the RB and II tasks. Error ribbon reflects s.e.m.
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common strategy for the II task was the 1D rule strategy,
particularly along the temporal modulation dimension (1D-
Temporal). While this strategy is not optimal, the best 1D rule
strategy can still yield moderate accuracy in this task (Experiment
1: 65%; Experiment 2: 55%).
To understand how learning strategies were related across RB

and II tasks in the same individual, we examined the types of
strategies participants used in the final blocks of the two tasks
(Figs. 4b and 5b). In both experiments, we found that strategies
were generally unrelated across the two tasks, whether consider-
ing the specific strategy subclass (e.g., Integration, 2D-Simple, 2D-
Complex, 1D-Temporal, 1D-Spectral, Random; Experiment 1: 78%
different; Experiment 2: 65% different) or more general strategy
class (e.g., Integration, 2D, 1D, Random; Experiment 1: 56%
different; Experiment 2: 49% different).
However, some types of strategy combinations were more

common than others. Among all participants in Experiment 1, 22%
used a 2D-Simple strategy in the RB task and 1D-Temporal
strategy in the II task (11% in Experiment 2), 21% used a 2D-
Simple strategy in the RB task and a 2D-Complex strategy in the II
task (13% in Experiment 2), and 15% used a 1D-Temporal strategy
in both tasks (20% in Experiment 2). Another common strategy in
Experiment 2 was using a 2D-Simple strategy in both tasks (13% in
Experiment 2 and 6% in Experiment 1). Other strategy combina-
tions accounted for between 0% and 6% of participants in both
experiments. In all, we found that participants tended to use
different strategies across RB and II tasks, adjusting their behavior
based on the feedback they receive.

We were also interested in understanding how consistently
participants applied whatever learning strategy they used. We
calculated their strategy consistency as the proportion of their
responses in a block that were accounted for by the best-fitting
strategy. Perfect consistency (100%) would indicate that they
applied that strategy consistently regardless of whether the
strategy was optimal or suboptimal. In contrast, a consistency of
25% would mean that they inconsistently applied their strategy,
and the best-fitting strategy was not a good fit to the data (i.e.,
capturing responses around chance levels: 25% for four cate-
gories).
Overall, we found that participants varied in the consistency of

their strategy application, but generally became more consistent
over the course of training (Figs. 4c and 5c). We compared how
consistently the same participant applied their strategies across RB
and II tasks by examining the correlation between their final-block
consistency across tasks (Figs. 4d and 5d). Note that consistency
cannot be calculated for those using random strategies, so
participants using a random strategy in either task were not
included in the analyses (Experiment 1: N= 6; Experiment 2:
N= 10). In Experiment 1, there were no significant differences in
strategy consistency across RB and II tasks (t(79)= 1.15, p= 0.25,
d= 0.13, 95% CI [−1.43, 5.38]) and consistency was moderately
correlated across the in RB and II tasks (r(78)= 0.43, 95% CI [0.23,
0.59], p < 0.001). This pattern replicated in Experiment 2, with no
significant differences in strategy consistency across tasks
(t(83)= 0.84, p= 0.40, d= 0.092, 95% CI [−1.65, 4.06]) and
consistency was moderately correlated across tasks (r(82) = 0.47,

Fig. 5 Learning strategies across tasks in Experiment 2. For Experiment 2 (a) Strategies across blocks. Colors reflect different classes of
strategies, which are binned by frequency. Connections between blocks show how strategies changed across blocks. b Alluvial plot showing
the strategies the same participants used in the final block of the RB and II tasks. c Consistency of strategy application measured as the
percent of a participant’s responses that were accounted for by the best-fitting model/strategy. 100% consistency would reflect that the
participant clearly applied this strategy with no exceptions in any trials. 25% consistency would reflect a relatively poor fit of the model to the
participant’s data. Consistency is only measured for non-random strategies. Mean is shown as the black line and individual data is shown in
colored lines. d Correlation between final-block consistency in the RB and II tasks. Error ribbon reflects s.e.m.
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95% CI [0.28, 0.62], p < 0.001). Even when participants used
different types of strategies across RB and II tasks, the consistency
with which they applied whichever strategy they used was
positively correlated across tasks. See supplementary materials
for evidence that our results do not depend on using the same
data to estimate strategy and calculate strategy consistency.

Learning speed. We next examined how quickly participants
learned to distinguish the categories and reach the group median
level of performance (Fig. 6a, c). We calculated learning speed as
the point in the moving window of 50 trials where the learner first
met or exceeded the group median performance over the entire
task. We normalized learning speed by the group median for the
two tasks in both experiments separately (Experiment 1: RB:
Mdn= 42%, II: Mdn= 48%; Experiment 2: RB: Mdn= 38%, II:
Mdn= 42%) to control for inherent differences in difficulty across
the tasks and experiments. We then inverted the scores so higher
values reflect faster learning speeds. A learning speed of zero
indicates that the learner reached the median level of perfor-
mance within the first 50 trials. Additional decreases in speed
reflect the additional number of trials that it took for the learner to
reach the median level of performance. Ten participants in
Experiment 1 and six participants in Experiment 2 who never
reached the median level of performance were excluded from the
analyses (Experiment 1: both tasks, N= 2, RB task only, N= 2, II
task only, N= 6; Experiment 2: both tasks, N= 1, RB task only:
N= 1, II task only: N= 3). Many learners had the fastest possible
learning speed (0) in at least one of the tasks. Due to the nature of

the distribution of learning speeds across tasks, we calculated the
Spearman’s rank correlation to understand the relationship of
speed across tasks.
On average, in Experiment 1, participants reached the median

performance after 59 trials in the RB task and 62 trials in the II task.
Learning speed was not significantly different in the RB and II tasks
(t(75)= 0.23, p= 0.82, d= 0.026, 95% CI: [−20.2, 25.5]) and
learning speed was weakly monotonically related across the two
tasks (spearman’s ρ= 0.33, p= 0.0032; Fig. 6b). This pattern nearly
replicated in Experiment 2. Participants reached the median
performance after 52 trials in the RB task and 65 trials in the II task
on average. Learning speed was not significantly different across
tasks (t(87)= 0.98, p= 0.33, d= 0.10, 95% CI [−13.7, 40.2]). In
contrast to Experiment 1, learning speed was not significantly
monotonically related across the two tasks (spearman’s ρ= 0.18.
p= 0.086; Fig. 6d).

Learning stability. Finally, we calculated learning stability in a
moving window of 50 trials as the longest streak of correct
responses over the previous 50 trials, normalized by the total
number of correct responses over those 50 trials (Fig. 7a, d).
Higher values indicate higher performance stability. For example,
if two participants responded correctly on 40 of 50 trials, their
accuracies would both be 80%, but their learning stability would
differ based on the maximum number of trials that were correct in
a row (e.g., 40/40 correct trials were in a row, stability= 1; 20/40
correct trials were in a row, stability= 0.5). As a result, stability is
independent from overall performance. In Experiment 1, there

Fig. 6 Learning speed across tasks. For Experiment 1 (a, b) and Experiment 2 (c, d), a, c learning speed calculated as the point in the moving
window of 50 trials where the learner first met or exceeded the group median for that task over all timepoints (Experiment 1: II: 48%, RB: 42%;
Experiment 2: II: 42%, RB: 38%). Scores are inverted so higher values reflect faster learning speeds. Zero reflects that they reached this level of
performance within the first 50 trials, with additional decreases in speed reflecting the additional number of trials it took for the learner to
reach the median level of performance. Ten participants in Experiment 1 and five participants in Experiment 2 were excluded because they
never reached the median in at least one task. Error bars reflect s.e.m. b, d Correlation between learning speed in the RB and II tasks, with
spearman’s ρ reported.
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were no significant differences in stability across RB (M= 0.43) and
II tasks (M= 0.44, t(85)= 1.09, p= 0.28, d= 0.12, 95% CI [−0.050,
0.015], Fig. 6b). Learning stability was unrelated across tasks
(r(84)=−0.090, 95% CI [−0.30, 0.12], p= 0.41; Fig. 6c). The results
directly replicated in Experiment 2 – there were no significant
differences in stability across RB (M= 0.43) and II tasks (M= 0.41,
t(92)= 0.98, p= 0.33, d= 0.10, 95% CI [−0.014, 0.043]; Fig. 6e) and
learning stability was unrelated across tasks (r(91)= 0.061, 95% CI
[−0.14, 0.26], p= 0.56; Fig. 6f).
In summary, during RB and II learning, participants did not

significantly differ in accuracy, applied whichever strategy they
used at no different levels of consistency, and did not differ in
their speed to reach a median level of performance. These
behaviors are consistent within an individual across different tasks,
reflecting a stable trait or tendency. However, the same individual
also tailored their strategy to the task and learning stability was
unrelated across tasks. This may indicate that these behaviors are
flexibly modulated by the task and/or by the learner’s state.

Which behaviors support success in RB and II tasks?
We next examine which behaviors support success in RB and II
tasks and whether these are common or distinct across tasks. We
examine whether common or distinct consistent strategies relate
to performance across tasks (Fig. 8) and whether learning speed,
stability, and individual differences in working memory capacity
are related to learning outcomes in similar ways across tasks
(Fig. 9).

Learning strategies and strategy consistency. Is using a particular
type of strategy more beneficial for learning RB and II categories?
As a reminder, the optimal strategy class for RB categories is 2D-
Simple rules, whereas the optimal class for II categories is
Integration. Importantly, even if participants are using an ‘optimal’
strategy, they may vary in how successfully they apply that
strategy. Here, we ask if a particular type of strategy is associated

with better learning success for RB and II categories (Fig. 7a, c).
Because there were a mixed number of participants using
different strategies, we focus on the strategies used by a
substantial number of participants (RB: 2D-Simple and 1D-
Temporal; II: 2D-Simple, 1D-Temporal, and 2D-Complex).
Across both experiments in the RB task, participants who used

an optimal 2D-Simple strategy (Experiment 1: M= 65%, Experi-
ment 2: M= 56%) did not have significantly different levels of
success from those using a 1D-Temporal strategy (Experiment 1:
M= 59%, t(63.6)= 1.91, p= 0.061, d= 0.44, 95% CI [−0.26, 11.3];
Experiment 2: M= 58%, t(61.9)= 0.68, p= 0.50, d= 0.16, 95% CI
[−3.10, 6.32]). Even so, there was a wide range of success with
either of these strategies and some participants found high levels
of success with an optimal 2D-Simple strategy.
Across both experiments in the II task, there were significant

differences in learning success based on learners’ strategies
(Experiment 1: F(2, 73)= 18.8, p < 0.0001, ηG

2= 0.34; Experiment 2:
F(2, 81)= 9.50, p < 0.0001, ηG2= 0.19). According to Bonferroni-
corrected post-hoc tests, participants who used 2D-Complex or
1D-Temporal strategies had significantly higher accuracy than
participants who used 2D-Simple strategies (ps < 0.001; Experi-
ment 2: ps < 0.012). In Experiment 1, participants who used 2D-
Complex strategies also had significantly higher accuracy than
participants who used 1D-Temporal strategies (p= 0.040), but
these were not significantly different in Experiment 2 (p= 0.43).
In summary, different strategies are associated with learning

success in the RB and II tasks. Specifically, in the RB task,
participants’ accuracies were not significantly different when they
used an optimal 2D-Simple strategy or a 1D-Temporal strategy. In
the II task, participants were the most successful when they used
either 2D-Complex or 1D-Temporal strategies. We note that very
few participants across either experiment used an Integration
strategy in either task, even though this strategy was optimal in
the Integration task. We return to this point in the Discussion.
We next examined the relationship between strategy consis-

tency and learning success for the RB and II tasks separately

Fig. 7 Learning stability across tasks. For Experiment 1 (a–c) and Experiment 2 (d–f), a, d learning stability calculated as the longest streak of
correct responses over the previous 50 trials, normalized by total number of correct responses over those 50 trials. Mean is shown as a black
line and individual data is shown as colored lines. b, e Learning stability as maximum stability in each task for each participant and the group
mean. Error bars reflect s.e.m. c, f Correlation between learning stability in the RB and II tasks. Error ribbon reflects s.e.m.
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(because the tasks have different optimal strategies) using linear
regression models (Fig. 7b, d). As before, we limited our analyses
to strategies used by a substantial number of participants. In the
RB task, the optimal 2D-Simple strategy was treated as the
baseline and in the II task, the 2D-Complex strategy was treated as
the baseline. In the RB task, the more consistently participants
used a 2D-Simple strategy, the more successful they were
(Experiment 1: βconsistency= 0.83, SE= 0.072, p < 0.0001; Experi-
ment 2: βconsistency= 0.64, SE= 0.12, p < 0.0001). The relationship
between consistency and success when using 1D-Temporal
strategy was significantly weaker than when using a 2D-Simple
strategy (Experiment 1: βconsistency*1D=−0.61, SE= 0.18,
p < 0.0001; Experiment 2: βconsistency*1D=−0.56, SE= 0.20,
p= 0.0075).
In the II task, the more consistently participants used a 2D-

Complex strategy, the more successful they were (Experiment 1:
βconsistency= 0.82, SE= 0.19, p < 0.0001; Experiment 2: βconsistency=
0.79, SE= 0.15, p < 0.0001). The more consistently participants
used a 1D-Temporal strategy, the more successful they were; this
relationship was not significantly different from 2D-Complex in
Experiment 1 (βconsistency*1D-T=−0.29, SE= 0.23, p= 0.22), but
was significantly weaker in Experiment 2 (βconsistency*1D-T=−0.56,
SE= 0.18, p= 0.0033). In contrast to the RB task, consistency in
using a 2D-Simple strategy was unrelated to success in the II task
and this was significantly weaker than the 2D-Complex strategy in
both Experiment 1 (βconsistency*2D-S=−0.92, SE= 0.38, p= 0.017)
and Experiment 2 (βconsistency*2D-S=−0.54, SE= 0.19, p= 0.0064).
In all, these results demonstrate that the strategies participants

use and the consistency of applying a particular strategy are
distinctly related to success in the RB and II tasks. For RB tasks, the
more consistently one applied a 2D-Simple strategy the more
successful they were, and this relationship was stronger than for
the 1D-Temporal strategy. For II tasks, the more consistently one
can apply either a 1D-Temporal or 2D-Complex strategy (but not
2D-Simple), the more successful they were. Consistent application
of the 2D-Complex strategy was most robustly associated with II
learning success.

Learning speed, stability, and working memory capacity. Next, we
examined how our measures of learning speed, stability, and
general WM capacity were related to RB and II learning success
using linear regression models.
For both RB and II tasks and in both experiments, learning

speed was positively related to learning success (Fig. 9a, d;
Experiment 1: βspeed= 0.084, SE= 0.016, p < 0.0001; Experiment 2:
βspeed= 0.046, SE= 0.010, p < 0.0001). The faster one reached
median level of performance, the better their ultimate learning
accuracy. The relationship between learning speed and success
was not significantly different across RB and II tasks (Experiment 1:
βspeed*II=−0.017, SE= 0.020, p= 0.40; Experiment 2: βspeed*II
= 0.014, SE= 0.014, p= 0.30). Quickly reaching some relatively
achievable baseline level of performance gives participants ‘room

to grow’ and continue to improve their accuracy, regardless of
which type of category they were learning.
For both RB and II tasks and in both experiments, learning

stability was unrelated to learning success (Fig. 9b, e; Experiment 1:
βstability= 6.12, SE= 14.7, p= 0.68; Experiment 2: βstability=−6.93,
SE= 10.1, p= 0.50) and was not significantly different across RB
and II tasks (Experiment 1: βstability*II= 6.52, SE= 21.1, p= 0.76;
Experiment 2: βstability*II=−9.27, SE= 16.8, p= 0.58). Having long
streaks of correct responses, controlling for overall accuracy, was
not associated with better learning in either task. This indicates
that initial learning does not depend on when correct responses
are made, only that correct responses are made.
For both RB and II categories and in both experiments, WM

capacity was positively related to learning success (Fig. 9c, f;
Experiment 1: βWM= 0.34, SE= 0.069, p < 0.0001; Experiment 2:
βWM= 0.19, SE= 0.069, p= 0.0067) and was not significantly
different across RB and II tasks (Experiment 1: βWM*II=−0.11,
SE= 0.098, p= 0.25; Experiment 2: βWM*II=−0.047, SE= 0.098,
p= 0.63). The higher one’s WM capacity, the better their ultimate
learning accuracy, regardless of the type of category.

Order effects
As these experiments used within-subjects designs with cate-
gories situated in the same stimulus space, we tested for carryover
effects in both accuracy and strategies to understand what, if
anything, participants brought from their first task experience to
the second task. As a reminder, we attempted to control for
carryover effects by having participants complete the tasks in two
sessions separated by at least one week. In terms of accuracy,
participants might either have higher accuracy in the second task
based on general familiarity with the stimulus space or,
alternatively, participants might have lower accuracy in the
second task because they first needed to unlearn the categories
they learned in the first session.
We compared average accuracy within the first 50 trials in both

tasks based on whether participants completed the task first or
second. In Experiment 1, there was an early slight benefit to
performing a task second compared to first with an average
accuracy increase of 4.33% in the RB task (t(81.5)= 1.89, p= 0.063,
d= 0.41) and 6.43% in the II task (t(78.4)= 2.55, p= 0.013,
d= 0.55). However, this effect was short-lived (Fig. 10a). After
around 100 trials, there were no substantial differences in
accuracy in the tasks regardless of the order in which participants
completed the tasks. In Experiment 2, there were no significant
differences in performance for the first task and the second task,
with an average difference of 1.31% in the RB task (t(87.8)= 0.71,
p= 0.48, d= 0.15) and 0.16% in the II task (t(86.9)= 0.078,
p= 0.94, d= 0.016) with no clear difference across trials (Fig. 10d).
Next, to understand if there were any differences in strategies in

the two tasks based on the order in which participants completed
the tasks, we compared the strategies participants used in the first
block of both tasks (Fig. 10b, e). In Experiment 1, the strategies

Table 1. Highest possible accuracies of different strategies.

1D-temporal rule (%) 1D-spectral rule (%) 2D-simple rule (%) 2D-complex rule (%) Integration (%) Random (%)

Experiment 1

Rule-based 49 49 97 50 97 21–29a

Information-integration 65 65 50 89 95 21–29a

Experiment 2

Rule-based 52 54 100 54 100 21–29a

Information-integration 55 58 52 76 100 21–29a

a95% cumulative probability over 300 trials with probability of correct response at 0.25, if a person was randomly guessing, they could expect to be correct on
21–29% of trials with 95% cumulative probability based on binomial probability distribution.
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participants used in the RB task significantly differed based on
whether participants completed the task first or second (Fisher’s
exact test, p= 0.00030) – when completing the RB task first, 65%
of participants used an optimal 2D-Simple strategy, compared to
43% when completing the RB task second. When completing the
RB task second, 43% used a 1D-Temporal strategy, compared to
13% who completed the RB task first. However, in Experiment 2,
there were no significant differences in the strategies participants
used in the RB task based on the task order (p= 0.45). For both
experiments, the strategies participants used in the II task did not
significantly differ based on task order (Experiment 1: p= 0.92;
Experiment 2: p= 0.49). Because the differences did not replicate
in Experiment 2, we believe that the differences in RB strategy
based on task order in Experiment 1 may be an idiosyncratic effect
of these participants, rather than reflecting true order effects.
Finally, to understand whether the strategies directly carried

over across the tasks, we examined the strategy they used in the
final block of the first task and first block of the second task (Fig.
10c, f). In Experiment 1, 53% of participants used a different
general strategy (Integration, 2D, 1D, Random) and 67% of
participants used a different specific strategy subclass (Integration,
2D-Simple, 2D-Complex, 1D-Temporal, 1D-Spectral, Random)
across tasks. In Experiment 2, 43% used a different general
strategy and 53% used a different strategy subclass. This pattern is
highly similar to a control comparison of strategies in the first
block of the first task and the final block of the second task
(Experiment 1: 55% different general strategy, 72% different
strategy subclass; Experiment 2: 56% different general strategy,
67% different strategy subclass). As a result, we do not believe that
participants directly transferred their strategies from the first to
the second task and, instead, tailored their strategies to the
specific task.
In summary, in Experiment 1 we observed small, fleeting task

order effects on accuracy even when separating sessions by over a
week to minimize these effects. These effects were relatively small
and disappeared around 100 trials in training and were not

present in Experiment 2. While we found some differences in
block 1 strategies depending on task order, this was limited to the
RB tasks and did not replicate in Experiment 2. There was no clear
carryover of strategies from the first task to the second task.

DISCUSSION
This study had three primary goals – (1) to describe a taxonomy of
behaviors during category learning (Fig. 2), (2) to identify which
behaviors are stable or flexible in the same individual across tasks,
and (3) to identify whether these behaviors commonly or
distinctly relate to learning success for RB and II categories. All
together, we found evidence for both stable and flexible
individual behavior in category learning (Fig. 11a) as well as both
common and distinct factors supporting RB and II learning (Fig.
11b). We replicated the main results from Experiment 1 in
Experiment 2 with different learners and categories with identical
distributions.
Across perceptually similar auditory categories and procedurally

identical tasks, some behaviors were stable within a learner across
tasks (learning success, strategy consistency), whereas others were
flexible across tasks (learning speed, learning strategies, learning
stability). The primary focus of the literature on RB and II category
learning has been to illustrate a dissociation (or lack thereof)
between the types of categories at the group level7,8,51. The
present investigation demonstrates that there are differences in
how the same individual solves very similar category learning
problems, highlighting the necessity for considering learning
mechanisms at the level of an individual learner.
Regardless of how learners approached the learning tasks,

overall learning outcomes were strongly correlated – better
learners were better learners across different tasks. The ability to
be successful across different kinds of tasks may relate to some
task-independent stable trait abilities such as WM capacity.
Supported by our own findings, individuals with higher WM

Fig. 8 Relationship between learning strategies, strategy consistency, and success. For Experiment 1 (a, b) and Experiment 2 (c, d),
a, c learning success based on final-block strategy for across the two tasks. Error bars reflect s.e.m. b, d Relationship between final-block
strategy consistency and learning success based on the final-block learning strategy.
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capacity tend to have better learning outcomes across a wide
array of tasks, including category learning39,45,47,49,53,54,56.
It is also possible that learning success is related to some

internal, self-defined performance target that is specific to and
stable for an individual learner. We did not inform participants
about the highest possible accuracy in each of the tasks. While we
assumed that their goal was to reach the highest possible
accuracy, it is possible that each learner determined their own
internal goal for performance level, monitored by their experi-
enced ratio of correct to incorrect feedback. Once participants
reached their internal goal, they may have been disincentivized or
unmotivated to further improve their performance76–78. Some
learners may be more motivated to push beyond their self-defined
performance benchmark goals (explicit or implicit), whereas
others may be content to maintain a certain level of perfor-
mance78. This ability could be related to stable individual
differences in in intrinsic motivation79 or need-for-cognition80,81,
wherein participants might be intrinsically motivated to perform
well on these tasks because the challenge itself is rewarding.
It is also possible that some learners may have believed that

high levels of accuracy were impossible to reach in these difficult
tasks. This belief may have led participants to understand the
highest possible accuracy they could achieve in the second task as
whatever level of performance they achieved in the first task. As a
result, learners may have sought to reach that same accuracy in
the second task, but not improve beyond that, regardless of how
well they performed. This could be driven by a performance bias82

or by their own beliefs about their ability to perform in these
tasks83. If instead learners were explicitly informed that near-
perfect accuracy was possible or had been otherwise further
incentivized to reach high levels of accuracy (e.g., with a
performance-contingent bonus), this may have increased overall
learning success. Future work could examine how participants’
beliefs about what is possible during a task (whether true or false)
influence learning.

Regardless of the type of strategies participants used, how
consistently they applied those strategies was moderately
correlated across tasks. Strategy consistency may be related to
an individual’s explore-exploit tendencies84–86. For example,
someone who very consistently applies a strategy (regardless of
how good of a strategy it is), may be exploiting known
information. In contrast, someone who applies a strategy
inconsistently may be exploring different kinds of strategies or
specific criteria within the same class of strategy (e.g., placement
of a decision boundary). As a result, when we define a strategy
based on an entire block of responses (as we must do with current
applications of strategies implemented here), we may be missing
quick shifts in strategies that could reflect more exploratory
strategy behavior. This kind of exploratory behavior may be good
for learning over time compared to exploiting or consistently
applying a suboptimal strategy.
Strategy consistency may also relate to lapses in attention or

impoverished memory of one’s current strategy. That is, if
participants are distracted on a given trial, they likely will not
consistently apply the strategy they are holding in mind. Similarly,
if participants forget what their in-mind strategy was, they may
not apply the strategy consistently across trials. In future research,
it would be informative to increase precision of the estimation
strategies participants are using, how they switch between them
at a more rapid timescale38,87, and how strategy consistency
relates to explore/exploit tendencies across individuals. These
questions may be particularly well-suited for online physiological
measures (e.g., pupillometry) that may capture rapid processes
that may be difficult to observe directly from behavior.
In contrast to learning success and strategy consistency,

learning strategies were mostly unrelated across tasks – most
people used different strategies during II and RB learning. It is
important to note that RB and II categories had different optimal
strategies, and this was explicitly part of the experimental design.
Participants should have altered their strategies to perform well in
the tasks. However, this was not an inevitability. Participants could

Fig. 9 Relationship between learning speed, stability, and working memory and success. For Experiment 1 (a–c) and Experiment 2 (d–f),
relationship between learning success and learning speed (a, d), learning stability (b, e), and working memory capacity (indexed by OSPAN
score; c, f) across the RB and II tasks.

C.L. Roark and B. Chandrasekaran

11

Published in partnership with The University of Queensland npj Science of Learning (2023)    14 



have shown some biases to use strategies that could have carried
over across tasks. Instead, learners flexibly changed their strategy
to fit the demands of the task.
In another context, we may have expected more similarities in

strategies across tasks. For example, in an experiment where
learners learn RB categories in two different stimulus spaces (e.g.,
spectral-temporal ripples as examined here and nonspeech tones
varying in pitch frequency/duration), it would have been much
more likely that learners would use the exact same type of
strategy (e.g., 2D-Simple rules) to learn the different tasks. Here, by
examining tasks with different optimal strategies we were able to
demonstrate that participants were not simply inclined to do what
they did before in the other task and, instead, sought out new
solutions to the new task problem in the same stimulus space.
The use of different strategies may have also been implicitly

encouraged by the task instructions. At the beginning of the
second session, participants were explicitly told that the upcom-
ing task was different from the first task they completed: “Today,
you will be doing a very similar task to what you did last time. You
will learn four new categories of sounds using feedback. The
sounds may sound similar to what you heard before, but the
categories are different. Be sure to listen carefully to learn the new
categories.” The explicit instruction and awareness that the
categories were different across sessions may have encouraged
participants to use different strategies across tasks. That is, this
may have been an explicit cue to limit the influence of their
learning in the first task because this knowledge would conflict
with the current task. This is reminiscent of findings from problem
solving where, unless otherwise instructed, participants may apply
the same strategy from a prior problem, even when it is not useful
for solving a second problem88–90. The ability to limit the influence
of prior strategies reflects the ability relinquish prior knowledge
that may not be helpful in the current task, which likely relates to
cognitive flexibility91. Future work should elaborate on the effect
of the specific relationship (i.e., align or conflict) between two
tasks to understand how strategies are related across tasks.

We found that learning speed was somewhat flexible across
tasks, with a weak correlation between learning speeds across
tasks in Experiment 1 and no significant correlation in Experiment 2.
We defined learning speed somewhat arbitrarily based on the
number of trials it took to reach median performance for a given
task. Many participants quickly reached this benchmark within the
first 50 trials in at least one of the tasks. Several variables could
determine how quickly a learner reaches this group baseline
performance that could depend more on the task and less on the
learner, leading to speed being flexible across tasks. For example, if
a learner was more engaged with the task from the beginning, they
could reach the baseline faster. If participants were encouraged to
explore different kinds of strategies, they may reach the baseline
slower but may be ultimately able to learn better92. Finally, it is
possible that learners may have stumbled upon a strategy that
initially helped them reach this baseline level of performance in a
given task, but this discovery might be spontaneous and depend
on the task, rather than some active strategy on behalf of the
learner.
Finally, we found that learning stability was not significantly

correlated across the two tasks, which could be related to the
modest learning performance in these tasks. Overall, participants
generally had very short streaks of correct responses in all tasks
(Experiment 1: RB: M= 8.66 trials, II: M= 10.1 trials; Experiment 2:
RB: M= 7.37 trials, II: M= 7.75 trials). While correct streaks, on
average, increased over the course of learning, especially among
those who performed well, streaks were still short compared to
what would be expected if participants learned very well and had
highly stable performance. If we examined learning when
accuracy was very high, stability would likely be more reflective
of lapses in attention (e.g., low stability reflects many attention
lapses) with infrequent incorrect responses among long streaks of
correct responses.
Additionally, it is likely that idiosyncrasies in stimuli could have

affected the measure of learning stability. Stimuli were randomly
selected across trials and differed in how difficult they were to

Fig. 10 Order effects across experiments. For Experiment 1 (a–c) and Experiment 2 (d–f), a, d Cumulative accuracy based on the order the
tasks were completed. Error ribbons reflect s.e.m. b, e Learning strategies in the two tasks based on the order the tasks were completed.
c, f Learning strategies in the final block of the first task and the first block of the second task.
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categorize (i.e., distance from other categories). Even if someone
had a high streak of correct responses, they may have broken the
streak due to either an attentional lapse or because of random
selection of a particularly difficult stimulus. These different sources
of errors that may disrupt streaks of correct responses should be
considered in future studies.
In summary, in initial learning, stability measures may be

dependent on idiosyncrasies in the stimuli and accuracies may be
too low to observe meaningful streaks. However, it is possible that
learning stability may be stable in an individual learner across
tasks at later stages of learning when overall performance is much
higher and correct streaks are longer. At later stages of learning,
stability could reflect lapses in attention or general distractibility91.
In the Introduction, we outlined separate possibilities for either

mostly common or mostly distinct behaviors supporting RB and II
learning. In the ‘mostly common’ view, common behaviors should
support both RB and II learning because the underlying task is
fundamentally the same (e.g., categorizing sounds in a supervised
learning task; single system views of category learning). In
contrast, in the ‘mostly distinct’ view, distinct behaviors should
support RB and II learning due to differences in the fundamental
mechanisms supporting learning (e.g., dual systems views of
category learning). We found evidence of both common and
distinct factors that supported RB and II category learning.
Faster learning speeds are better for learning across tasks. The

underlying tasks for RB and II learning are the same – supervised
category learning. The tasks only differed in how stimuli mapped
onto categories. The faster learners could reach a baseline level of
performance, the more room they had to grow and continue to
learn, regardless of whether the task was RB or II. Faster learning
speeds may reflect use of explicit-system rules63,71, which were
very common here even in the II tasks. As such, our results suggest
that initial learning gains (possibly within the entirety of our single
sessions here) may be more likely to reflect explicit-system or
hypothesis testing processes. The faster that learners could find a
‘good enough’ rough rule-based strategy, the more time they
would have to refine and improve on this strategy to improve

their performance. It is possible that the overwhelming use of
explicit system strategies may also have been encouraged by the
supervised nature of the learning tasks, with participants having a
bias to find rules to separate the categories that can more easily
be tested and refined by feedback. This would be in line with
tendencies for adult learners to use rules during initial
learning14,93–95.
Higher working memory capacity relates to better learning

across tasks. Prior work has consistently demonstrated that higher
working memory ability is associated with better RB category
learning39,45,54,73, but the evidence for II learning is mixed46–49.
Here, in the same individuals, same task, and same stimulus space,
we found that learning success was positively correlated with WM
ability for both RB and II tasks. Importantly, we also note that most
participants used a rule-based kind of strategy during both kinds
of tasks (e.g., 2D-Simple, 2D-Complex, 1D). Though we have
demonstrated that WM ability does not differentiate performance
in the two tasks, moderate levels of success were possible with
rule-based strategies, proposed to rely on the WM-dependent
explicit system. Our results do not rule out the existence of
systems of category learning that rely and do not rely on WM
ability, but demonstrate that even in II tasks, participants can
leverage strategies that may rely on WM ability to a reasonable
degree of success.
Learning stability is unrelated to early learning success in either

task. Emphasizing our discussion above, it is possible that we are
not able to see meaningful differences in learning stability within
these single sessions of learning as participants did not learn well
enough to maintain long streaks of correct responses to calculate
learning stability. Learning stability does not relate to early
learning success, but it may relate to later learning success when
longer streaks are more likely. Future studies should examine
longer training tasks or training with simpler distributions to
understand how learning stability relates to performance across
RB and II tasks.
Distinct (consistent) strategies are better for RB or II learning.

Distinct across tasks, 2D-Simple or 1D-Temporal strategies were

Fig. 11 Summary of the individual behaviors and factors supporting RB and II learning. a Summary of how individual behaviors are stable
or flexible across categories. b Summary of behaviors and abilities that are common or distinct in supporting RB and II category learning.
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the best for RB learning, but 2D-Complex strategies were best for II
learning. Further, the more consistently learners applied 2D-
Simple strategies, the better it was for RB, but not II learning and
the more consistently learners applied 1D-Temporal or 2D-
Complex strategies, the better it was for II, but not RB learning.
An important distinction made in COVIS is that the RB and II

categories differ in the systems that are optimal for learning,
rather than what individuals actually do during learning. As such,
one might argue that just because there are common behaviors
supporting RB and II category learning in the current study does
not refute the existence of multiple systems of learning. Instead, it
could indicate that these common factors are present because
people primarily used the explicit system during learning,
evidenced by the overwhelming use of 2D and 1D strategies
during RB and II learning. Another possibility is that many
participants might not be encouraged to use optimal integration
strategies in the II tasks because these strategies are difficult and
effortful or take much more training and experience96,97. Instead,
participants stick with ‘good enough’ strategies that allows them
to reach a self-defined ‘acceptable’ level of performance while
retaining cognitive resources they might rather be spending on
something else. Future studies should examine learning behaviors
from initial acquisition to very high levels of accuracy to fully
understand how these behaviors might be reflective of similar or
distinct processes in RB and II learning.
Several other behavioral patterns were present in the current

study and were not anticipated by the frameworks outlined
above. First, we observed a distinct bias for participants who used
1D rules to use them along the temporal modulation dimension.
This could indicate that the underlying acoustic dimensions
defining the categories were not equally salient or available, which
likely affected learning outcomes23,66,98,99. Future work should
examine behavior in tasks with equally separable dimensions to
test the generalizability of this framework to other dimensions.
Next, while the main aims of this study were not focused on

directly compare RB and II learning performance, as has been

done extensively in prior literature, we observed that in terms of
maximum cumulative accuracy, II performance was higher than RB
performance. This finding is not unprecedented23, but does
conflict with typical findings of category learning in the visual
modality where RB performance is often at least initially higher
than II performance9,13,14,100. We believe this pattern can be
explained by the relative success of different strategies in the two
tasks. While optimal performance could be achieved by using a
2D-Simple strategy in the RB task (97% or 100% accuracy in
Experiments 1 and 2) or an Integration strategy in the II task (95%
or 100% accuracy in Experiments 1 and 2), participants often used
strategies that were suboptimal but could still yield better-than
chance performance (Table 1). In particular, the most common
strategy in the II task was a 2D-Complex strategy that could have
yielded a highest possible accuracy of 89% or 76% in Experiments
1 and 2, respectively. Alternative suboptimal strategies in the RB
task could have yielded a highest possible accuracy of 50% or 54%
in Experiments 1 and 2, respectively. As a result, much of the
feedback participants received about the II categories was aligned
with a 2D-Complex type of strategy. This suboptimal strategy still
did not allow them to achieve perfect performance, but
participants were still able to perform quite well. Future work
might focus on better disincentivizing participants from using
suboptimal strategies to see whether participants can shift from
moderately successful, suboptimal strategies to highly successful,
optimal strategies.
In the process of defining how behaviors are stable in an

individual or commonly related to learning across tasks, we
defined a taxonomy of behaviors during category learning. In this
way, we provide a framework that can examine the nuances of
behavior moving beyond accuracy which cannot provide informa-
tion about how participants learn101 and learning strategy which
might not itself reflect processes accurately61,62. Further, we move
beyond the examination of WM as a single individual difference
factor in learning that has now been established to support
category learning, likely across different types of cate-
gories39,45,47,49,53,54,56. We believe that future studies can benefit
from using these measures of behavior to paint a more nuanced
picture of behavior, with different predictions based on theoretical
models of learning.
In all, our results demonstrate that even with very similar

categories and identical training tasks completed over a week
apart, we see differences in how an individual solves the problem
and the factors that relate to success. These results illustrate a
need to move beyond theoretical perspectives that rely primarily
on group-level behavior and acknowledge the flexibility and
complexity with which individuals approach a learning task.

METHODS
In Experiments 1 and 2, across two sessions separated by at least
one week, participants learned nonspeech auditory rule-based
(RB) and information-integration (II) categories. The order of the
two tasks was counterbalanced across participants. As a part of a
larger project, all participants in Experiment 1 also completed a
Mandarin tonal speech category learning task at the very end of
the experiment (i.e., after the artificial category learning tasks). As
this task is unrelated to the predictions of the current study, we do
not present or discuss results from this unrelated speech task.

Participants
In both experiments, participants were recruited through Prolific
(www.prolific.co) and the experiment was administered using the
online Gorilla Experiment Builder102. To assess individual differ-
ences in learning across different tasks, we aimed to collect a large
sample and arbitrarily settled on recruitment of 100 participants in
the first session in both experiments. Our final included sample

Table 2. Category distribution information.

Category Category means
(temporal Hz,
spectral cyc/oct)

Variance (temporal
Hz, spectral cyc/oct)

Covariance

Experiment 1 – Rule-based

Category 1 6.18, 0.57 1.43, 0.091 0.036

Category 2 6.18, 1.77 1.43, 0.090 0.033

Category 3 11.0, 0.57 1.43, 0.090 0.031

Category 4 11.0, 1.77 1.43, 0.090 0.033

Experiment 1 – Information-integration

Category 1 4.60, 0.96 1.54, 0.087 0.037

Category 2 8.08, 1.79 1.54, 0.087 0.032

Category 3 8.08, 0.14 1.54, 0.087 0.033

Category 4 11.55, 0.96 1.54, 0.087 0.032

Experiment 2 – Rule-based

Category 1 5.41, 0.86 3.88, 0.11 0.0048

Category 2 5.33, 1.83 3.17, 0.12 0.090

Category 3 11.0, 0.73 3.54, 0.13 0.15

Category 4 11.3, 1.86 3.81, 0.11 0.050

Experiment 2 – Information-integration

Category 1 4.32, 1.34 2.51, 0.15 0.059

Category 2 8.29, 2.07 6.07, 0.076 0.036

Category 3 8.35, 0.62 4.60, 0.10 −0.093

Category 4 12.4, 1.38 2.44, 0.18 −0.0016
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size was 86 participants in Experiment 1 and 93 participants in
Experiment 2. A post-hoc power analysis was run using the pwr
package in R103 and indicated that a correlation of r= 0.34
between performance measures across tasks could be detected
with a sample of 86 participants with statistical power at a .90 level
with an alpha of .05. In Experiment 1, 100 participants ages 18-35
(45 F, M= 25.3 years, SD= 5.05 years) completed one session and
90 returned for a second session and 86 completed all tasks (36 F,
M= 25.4 years, SD= 5.04 years). In Experiment 2, 99 participants
ages 18–37 (42 F, M= 30.0 years, SD= 4.68 years) completed one
session and 93 returned for a second session and completed all
tasks (38 F, M= 30.1 years, SD= 4.66 years). The analyses included
only participants who completed both RB and II tasks. Participants
completed a language and music history questionnaire prior to
participating. Participants provided written informed consent and
received $10/hour for their participation for a total of $20 across
two sessions. The study protocol was approved by the Institutional
Review Board at the University of Pittsburgh.

Stimuli
Stimuli for the RB and II tasks were artificial nonspeech ripples
varying in temporal modulation and spectral modulation (Fig. 1).
These dimensions are thought to be fundamental properties of
complex sounds, including speech104 and have been posed as
auditory analogs to visual Gabor patches105. These dimensions
have also been used in prior investigations of auditory category
learning2,44,106,107. Using nonspeech dimensions enables creation
of complex, controlled artificial categories, as is common practice
in research on artificial visual category learning (e.g., Gabor
patches; line length and orientation). In Experiment 1, the
category distributions were created by sampling from a bivariate
normal distribution and had 300 total stimuli (75 stimuli/category;
Table 2). Each category was sampled separately and then centered
in a particular area of the two-dimensional space to form the RB
and II categories. To control for potential biases induced by the
inherent structure of the categories, in Experiment 2, the
underlying structures of the RB and II categories are identical.
The entire category space was sampled from a bivariate normal
distribution and had 300 total stimuli (75 stimuli/category).

Participants in Experiment 2 therefore encountered the same
stimuli in both tasks. The only difference between RB and II
categories was the mapping of stimulus region to category label.
In both experiments, the RB categories can be optimally learned

with a conjunctive rule that is orthogonal to the component
dimensions (Fig. 1a; e.g., high/low on spectral modulation and
high/low on temporal modulation). The II categories require rules
that are non-orthogonal to the component dimensions, are less
clearly verbalizable and include joint consideration of the two
dimensions (Fig. 1a; i.e., diagonal bounds). Stimuli were 1s in
duration and RMS amplitude matched to 70 dB.

Procedure
Participants completed two sessions, separated by approximately
one week (Experiment 1: M= 8.40 days, SD= 1.29 days, range:
7.74–13.9 days; Experiment 2: M= 8.92 days, SD= 2.26 days,
range: 7.87–22.0 days). In session 1, participants learned one type
of category (RB or II) followed by an operation span task108

(OSPAN) as a measure of WM capacity. In session 2, participants
completed the other task. In Experiment 1, participants also
completed a Mandarin tone learning task, which was always
completed last and is not discussed further as part of the current
study. At the start of both sessions, participants completed a
sound check to ensure that they could hear the sounds and that
they were wearing headphones109.

Category learning
In both tasks, participants were instructed to categorize the
sounds into four equally likely categories and use feedback to be
as accurate as possible. Participants learned the categories across
ten 50-trial blocks. Stimuli were selected randomly without
replacement and were presented dichotically for a duration of
1 sec. Participants made an untimed categorization response (1, 2,
3, or 4) and received feedback (“Correct”/“Incorrect”) for 1 sec
followed by a 1 s ITI.

Working memory. To understand how differences in WM capacity
might relate to learning outcomes, participants completed an
operation span (OSPAN) task108. The OSPAN task was chosen as a

Fig. 12 Model Versions. Versions of models fit with different category response mappings.
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measure of working memory because it can reliably measure WM
capacity and relates to other measures of relevant abilities such as
attention and complex cognitive abilities110.
Participants were shown simple arithmetic problems, reported

whether the presented solutions were correct or incorrect (e.g.,
(9+ 5) × 1= 14), and were then shown a letter on the screen (e.g.,
W). Participants saw 15 letter sequences that spanned from three
to seven letters. After a full sequence was presented, participants
recalled the letters presented in order. The OSPAN score was
calculated as the sum of the length of all the correctly recalled
spans. For instance, if a participant correctly recalled the sequence
of four letters, four points were added to their score. We did not
filter the scores based on accuracy of the arithmetic problems as it
does not change the validity of working memory span tasks111.

Learning strategies. To assess participants’ strategies during
learning, we applied several classes of decision bound computa-
tional models58,60,112 as well as a striatal pattern classifier (SPC)
model and random responder model. Decision bound models
divide the two-dimensional space into categories with decision
boundaries that are proposed to rely on implicit or explicit
learning processes112. We fit several classes of models that make
different assumptions: an implicit SPC/Integration model, explicit
two-dimensional (2D) and one-dimensional (1D) rule models, and
a random responder model. For 1D and 2D rule models, the
general procedure was that the model takes a set of a participant’s
responses to the stimuli across a set of trials (e.g., 50 trials) and
finds the boundaries in stimulus space that best account for that
participant’s pattern of responses. For the SPC model, the model
finds locations of pseudo-prototypes in the stimulus space that
best account for the participants’ pattern of responses. The input
of the models is the trial-wise response data and dimensional
information about the stimuli (i.e., x- and y-dimension coordinates,
Fig. 1).
The implicit Striatal Pattern Classifier model is a neurobiologi-

cally grounded model thought to reflect procedural learning
mechanisms112. The Integration model assumes that participants
use feedback to learn stimulus-response associations instantiated
within the striatum113 and can be thought of as complex version
of an exemplar model10. This model has nine free parameters:
eight that determine the location of hypothetical striatal units in
perceptual space and one that represents the noise associated
with the placement of the units. When a participant uses an
Integration strategy, they combine information across both
dimensions in a manner that is optimal for II categories (confirmed
by running models on the II stimulus distributions).
The second class of models represents explicit, hypothesis-

testing mechanisms and includes 2D and 1D rule models.
Simple 2D rule (2D-Simple) models place two decision
boundaries (one along each dimension) that are combined to
determine category membership. When a participant uses a 2D-
Simple rule strategy, they selectively attend to both dimen-
sions. This type of strategy is optimal for the RB categories
(confirmed by running models on the RB stimulus distributions).
The 2D-Simple rule model has three free parameters: two for
the boundaries along the x- and y-dimensions and one noise
parameter. We also fit a complex 2D (2D-Complex) rule model
that places three decision boundaries (two alone one dimen-
sion and one along the other dimension). This model is also
referred to as a ‘conjunctive-H’ model as the boundaries take
the shape of an H in the stimulus space, distinguishing from
high/low values on a primary dimension with two decision
boundaries, and intermediate values on the primary dimension
with the decision boundary along the other dimension. That is,
for 2D-Complex rule models, two categories can be identified
by one dimension alone, while the other two categories sit at
intermediate values of the primary dimension and must use the
second dimension to be differentiated. In contrast, 1D rule

models assume that the participant sets three decision
boundaries along only one of the dimensions (Temporal or
Spectral) and have four free parameters: three for boundaries
along the relevant dimension and one noise parameter. We fit
several versions of the 1D and 2D rule models that assume
different mappings of categories onto regions of the stimulus
space (Fig. 12).
Finally, the random responder model assumes that the

participant guesses on each trial.
The models were run in Python, version 3.7.4114. The model

parameters were estimated using maximum likelihood proce-
dures115 and model selection used the Bayesian Information
Criterion (BIC), which penalizes models with more free para-
meters: BIC= r*lnN - 2lnL, where r is the number of free
parameters, N is the number of trials in a given block for a given
subject, and L is the likelihood of the model given the data116.
In Experiment 1, models were fit to each of the ten 50-trial
blocks for each participant in both tasks (10 blocks × 2
tasks × 86 participants= 1720 total best-fit models) and in
Experiment 2, models were fit to each of the 12 50-trial blocks
for each participant in both tasks (12 blocks × 2 tasks × 93
participants= 2232 total best-fit models). Within each block for
each participant, the model with the lowest BIC value was
selected as the best-fitting model.

Assessing model accuracy. We assessed the ability of the best-fit
models to account for participant response patterns by comparing
the best-fit model’s predicted response to the participant’s actual
response. This enabled an assessment of model accuracy. Overall,
the models captured participants’ response patterns better than
chance (95% cumulative probability with P success= 0.25 and
n= 50, chance-level performance= 25 ± 9%; Experiment 1: RB M
accuracy: 52%; II M: 55%; Experiment 2: RB M accuracy: 50%; II M:
52%). Note that we expect these models to be below 100%
accuracy because of lapses in attention or inconsistency of a
participant to apply the same strategy in the same way over the
entire course of 50 trials. The above-chance performance here
indicates that the best-fit models can reliably detect patterns in
participants’ responses that reflect these underlying strategies.

Model recovery simulations. We also assessed the ability of our
models to capture relevant patterns in the data by simulating
response data (so we can identify the true strategy) and applying
the models in the same way as the human response data. For each
of the possible response strategies (1D-Temporal, 1D-Spectral, 2D-
Simple, 2D-Complex [2 versions], Integration, Random), we
simulated response data 10 times (total of 140 simulated datasets,
70 for each task). For all trials, we applied a deterministic response
strategy based on the model being simulated with parameters
sampled randomly in reasonable ranges based on category
distributions. For example, for the 1D-Temporal strategy, we
simulated a strategy where stimuli with temporal modulation
values less than or equal to 5 Hz, the response category was 1,
≤8.2 Hz, the response category was 2, ≤12 Hz, the response
category was 3, and >12 Hz, the response category was 4.
Using this simulation approach, we analyzed the data in several

ways to ensure model recovery. First, we determined the best-fit
model compared to the simulated model. If the modeling
approach as a whole is able to accurately determine a participants’
response strategy, then we should see high alignment between
the ground truth strategy (determined by simulations) and the
best-fit strategy (determined by models). Indeed, we found that
93% of Experiment 1 II, 97% of Experiment 1 RB, 94% of
Experiment 2 II, and 97% Experiment 2 RB simulated datasets were
best-fit by the ground truth strategy.
Next, we assessed the model’s prediction accuracy in similar ways

to the human responses (predicted category response was compared
to actual category response). The models accurately captured the
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simulated responses with an average accuracy of 97% for the
Experiment 1 II, 99% for the Experiment 1 RB, 95% for the Experiment
2 II, and 98% for the Experiment 2 RB simulated datasets.
Finally, we assessed whether the best-fit model fit parameters

aligned with the simulated parameters (i.e., for 1D/2D rule models:
boundaries; for SPC/integration model: placement of the striatal
units; for Random model: probability of responses for each category
choice). As evidence of good fit, the models accurately estimated the
ground truth parameters of the estimated data for both Experiment
1 (r= 0.96) and Experiment 2 (r= 0.98). In Experiment 1, there were
two outliers for the II task and Integration strategy (same simulated
subject) where the fit values for one of the hypothetical striatal units
(unit 1) was far from the true values. This seemed to be due to this
model responding “category 1” only once out of the 300 total stimuli
based on the randomly sampled parameters, which is uncommon for
human participants.
The data were analyzed using R, version 4.2.1117, with the R

packages tidyverse, version 1.3.2118 and rstatix, version 0.7.0119.
Computational models were run using custom scripts in python. Data
visualizations were created using the R packages ggplot2, version
3.3.5120, ggalluvial, version 0.12.3121, and ggthemes, version 4.2.0122.

Inclusion and ethics
We have complied with all relevant ethical regulations. The study
protocols were approved by the Institutional Review Board at the
University of Pittsburgh. We obtained informed consent from all
participants. All participants who completed the experimental
tasks were included in analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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