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Emerging topological bound states in Haldane model zigzag
nanoribbons
Simone Traverso 1✉, Maura Sassetti1,2,3 and Niccolò Traverso Ziani1,2,3

Zigzag nanoribbons hosting the Haldane Chern insulator model are considered. In this context, a reentrant topological phase,
characterized by the emergence of quasi zero dimensional in-gap states, is discussed. The bound states, which reside in the gap
opened by the hybridization of the counter-propagating edge modes of the Haldane phase, are localized at the ends of the strip
and are found to be robust against on-site disorder. These findings are supported by the behavior of the Zak phase over the
parameter space, which exhibits jumps of π in correspondence to the phase transitions between the trivial and the non-trivial
phases. The effective mass inversion leading to the jumps in the Zak phase is interpreted in a low energy framework. Setups with
non-uniform parameters also show topological bound states via the Jackiw-Rebbi mechanism. All the properties reported are
shown to be extremely sensitive to the strip width.
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INTRODUCTION
The discovery of topological insulators and topological super-
conductors completely revolutionized the usual classification of
the phases of matter, shedding light on the fact that the Ginzburg-
Landau classification was but a partial description1. Starting from
the first feasible proposal for a topological insulator2, in less than
two decades the field has undergone several major break-
throughs, like the classification of topological phases by symmetry
classes3, the discovery of higher order topology4 and, very
recently, of non-Hermitian topology5. In this context, the
dimensionality of the systems plays a crucial role for the definition
of the topological invariants. Indeed, these are typically defined
relative to systems compactified in all directions. The bulk
boundary correspondence, then, suggests that when the system
is non-trivial, and is made semi-infinite in one direction, metallic
states appear at the boundary. These metallic states persist as long
as the uncompactified dimension of the system does not become
comparable with their decay length.
The improvement in the nanostructuration of topological

phases of matter has made it possible to realize samples in which
this condition is not met6,7. In this regard, a very active branch of
research is nowadays related to the study of finite size effects on
topological phases6–18. Indeed, dimensional crossovers between
topological phases is a promising way to engineer novel
topological systems19,20. In this context, the way has been paved
by the extensive studies performed on graphene nanoribbons
(GNRs), that have revealed an extremely rich phenomenology. For
instance, it was found that these systems, depending on the
nanoribbon width and on the nature of its terminations, can host
robust topological bound states21,22 amenable to detection with
local probes23–25.
Taking a step back, even before the first theoretical proposal for

a symmetry protected topological insulator was conceived, many
topologically non-trivial systems had been object of study, first of
all the quantum Hall system26. In that context, a milestone for the
comprehension of topological phases had been conceived: the
Haldane model27. Dated back to 1988, it represented the first

theoretical proposal for a system realizing a quantum anomalous
Hall phase and is now regarded as the most famous model for a
Chern insulator. Even more importantly, the time reversal
doubling of the Haldane model results in the Kane-Mele model
which, describing spinful fermions on a honeycomb lattice with
strong spin-orbit interaction, is the prototypical model of a time
reversal protected topological phase28,29. Although the Kane-Mele
model was originally proposed to describe the electrons in
graphene, where the predicted spin Hall phase cannot be
observed since the spin-orbit coupling is too small to yield a
sizable topological gap, it has recently found a direct experimental
realization in Bismuthene30 and Germanene31, and is hence
receiving renewed attention.
In light of this, Haldane model nanoribbons represent a

significant model for studying the physics of these newly
discovered honeycomb-based topological materials. Even more
importantly, they configure themselves as the optimal theoretical
playground for merging the physics of nanostructured topological
insulators and the one inherited from GNRs. In this paper, we
focus on zigzag Haldane nanoribbons and assess the effects of
dimensional reduction on the topological phase of the Haldane
model. We find that, for thin enough strips, there are multiple
regions of the parameter space in which the chiral edge states gap
out and, correspondingly, degenerate pairs of quasi zero-
dimensional (0D) end-states appear whose energy lies inside the
gap. Such regions however are intercalated, through topological
quantum phase transitions, to phases without bound states. We
hence unveil a complex, width-dependent, reentrant quantum
phase diagram, which we characterize by numerically computing
a well established indicator for the classification of topological
phases in (effectively) one-dimensional systems, that is, the Zak
phase32–34. Moreover, we explain the mechanism leading to the
mass inversion via a phenomenological low energy theory,
effectively modeling the chiral edge states coupling. Finally, we
show that domain walls in the on-site staggered potential
distribution can localize quasi 0D bound states. These Jackiw-
Rebbi like states35, ubiquitous in topological phases of
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matter11,36–39, retain a fractional charge of ± e
2 (e the electron

charge) and are found to be robust against the introduction of
random on-site disorder. More generally, our results demonstrate
that the physics of coupled topological edges can be way richer
than what is expected from naive low energy theories.

RESULTS
Haldane model on zigzag nanoribbons
The Haldane model27 describes spinless fermions on a honey-
comb lattice, pierced by an orthogonal periodic magnetic field
and having the full symmetry of the lattice and zero net flux over
the unit cell. Time reversal symmetry is broken for the model, so
that the transverse Hall conductance can be non-trivially

quantized40. We denote the two sublattices of the honeycomb
lattice as A and B and we choose as primitive vectors a1= a(1, 0)
and a2 ¼ að12 ;

ffiffi
3

p
2 Þ. Moreover, we place the unit cell origin on the A

sites, so that the basis vectors are given by δa= (0, 0) and
δb ¼ að12 ; 1

2
ffiffi
3

p Þ. The Hamiltonian is thus given by

H ¼ t1
P
l;n

aylnbln þ aylnbl�1n þ aylnbln�1

 !
þ h.c.

þ t2eiϕ
P
l;n

aylnalþ1n þ aylnal�1nþ1 þ aylnaln�1

 !
þ h.c.

þ t2e�iϕ P
l;n

bylnblþ1n þ bylnbl�1nþ1 þ bylnbln�1

 !
þ h.c.

þm
P
l;n

aylnaln � bylnbln

 !
;

(1)

where aln (bln) destroys a fermion at la1+ na2+ δa(b); t1 and t2
parameterize the intensity of the nearest and next to nearest
neighbor hoppings respectively; ϕ is a phase accounting for the
staggered magnetic flux inside the unit cell and m tunes a term of
staggered on-site potential breaking inversion symmetry. In the
topological phase, that occurs for jm=t2j<3

ffiffiffi
3

p
sinϕ, the bulk

bands are gapped and the Chern number40 has a non-trivial value
(c= ± 1)27.

Correspondingly, in a strip geometry chiral modes localized on
opposite edges and with gapless dispersion relation occur, in
accordance with the bulk boundary correspondence. This can be
explicitly seen by imposing periodic boundary conditions (PBC) in
the a1 direction and going in k-space. For a strip of length L= Na,
the Fourier transformation is defined as

aln ¼ 1ffiffiffiffi
N

p
X
k

e�ikxalnanðkÞ xaln ¼ laþ n
2
a; (2)

bln ¼ 1ffiffiffiffi
N

p
X
k

e�ikxblnbnðkÞ xbln ¼ laþ nþ 1
2

a; (3)

with the Bloch momenta discretized as kj ¼ 2π
Na j; j ¼ 0; ¼ ;N � 1.

The Bloch Hamiltonian is found to be of the form (see also41)

with gð~k;ϕÞ ¼ 2t2 cosð~k þ ϕÞ and ~k ¼ ka.
In Fig. 1a is shown a schematic representation of a strip with

zigzag edges, Ny= 60 sites in the vertical direction, and PBC
along the a1 direction. In Fig. 1b are reported the corresponding
energy bands, obtained via numerical tight-binding diagonali-
zation. Inside the bulk gap are clearly visible the two modes
corresponding to the chiral edge states characterizing the
topological phase.
It can be expected that by reducing the strip width, the chiral

edge states may hybridize because of spatial overlap, giving rise
to a gap opening in the edge spectrum. The length scale at which
this phenomenon becomes relevant is defined by the decay
length of the edge states, that, for the Haldane model on zigzag
nanoribbons, has been found to be42,43

ξ loc �
ffiffiffi
3

p

2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t1

4t2

� �2
s

þ t1
4t2

8<
:

9=
;

2
4

3
5
�1

: (5)

This kind of behavior has been explicitly proven in several
contexts8,44. In spite of this, an analysis of the topological
character of the gapped phases originated by finite size effects
is still missing in the context of Chern insulators. In the next
section, the results of such a study are presented.

Fig. 1 Haldane chiral modes in a wide zigzag nanoribbon. a Scheme of the lattice with PBC along the a1 direction. The dashed red lines at
the two ends of the strip mark the sites that are connected by PBC. b Bands of the Haldane model in a strip configuration with zigzag edges,
with PBC along the a1 direction and Ny= 60 sites in the y (or a2) direction. The parameters are set as t1= 1, t2= 0.3,m= 0, ϕ= π/2.
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Emerging quasi 1D topological phase diagram
We start by numerically computing the amplitude of the gap Δ as
a function of the staggered on-site potential m. We set the energy
scale to t1= 1, and we impose t2= 0.3 and ϕ= π/2, so that the
topological bulk gap of the Haldane model is maximized. We
perform our analysis for the Haldane strip with PBC for the
different widths Ny= 4, 6, 8, 10. The results are reported in Fig. 2.
By comparing the top panels (Fig. 2a–d) it appears that the

number of gap closings and reopenings grows monotonically with
the strip width. This non trivial pattern hints to the fact that a
topological phase transition may be associated with the gap
closings. Interestingly, for the strips whose number of sites in the
vertical direction is given by Ny= 4M+ 2, the edge spectrum is
gapless for m= 0: in these cases, despite the wave functions of
the chiral modes on opposite edges are brought in close
proximity, they do not hybridize with each other. This counter-
intuitive behavior is proven analytically in Supplementary Note 1.
In order to characterize the topology of the zigzag Haldane strips,

we use a well established tool for assessing the topological properties
of 1D solids: the Zak phase32, i.e., the natural open-loop extension of
the Berry phase45 when the parameter space is the Brillouin zone.
The Zak phase associated with an isolated band was originally
defined in terms of the cell-periodic Bloch functions ukj i as32:

φ ¼ i
Z 2π=a

0
dkhuk j∂k juki: (6)

However, the above definition cannot be applied in the present
case. Indeed, we are dealing with a multiband system in which the
valence bands may cross each other and whose Hamiltonian can
only be diagonalized numerically. Thus, we follow the prescription
given in46 for the multi-band case. Given a discretization of the
Brillouin zone kj ¼ 2π

a
j
N ; j 2 f0; ¼ ;N � 1g, for each momentum kj

we compute a basis of eigenstates of the Hamiltonian in Eq. (4) for
the occupied bands. The resulting Ny-dimensional vectors will be
denoted as unk0j i; ¼ ; unkN�1j i, n being the band index. Then we
enforce the periodic gauge, by defining46

unkNj iℓ ¼ e�i2πa tℓ unk0j iℓ; (7)

where unkj
�� �

ℓ
is the ℓ-th component of the eigenvector unkj

�� �
and

tℓ the x position of the ℓ-th site inside the strip unit cell47, whose

origin we place on the A site at the bottom edge. The Zak phase
for the occupied bands is thus defined as46–48

φ ¼ �= log det
YN�1

j¼0

Sðkj ; kjþ1Þ; (8)

with the overlap matrix S given by46–48

Sðkj; kjþ1Þmn ¼ humkj junkjþ1i: (9)

This formula is unaffected by any erratic behavior of the phase
randomly appended to the eigenvectors by the numerical
diagonalization routine48. It must be noted that since the
Hamiltonian in Eq. (4) is real, the Zak phase can only be 0 or π.
The values obtained for the Zak phase at different values of m are
reported in the bottom panels of Fig. 2, below the corresponding
plots of the energy gap. We find that the Zak phases jump of π at
each gap closing, confirming that some kind of topological phase
transition actually occurs.
In order to gain any insight about which phase is trivial and

which is topological we need to make some more physical
considerations. As a matter of fact, the Zak phase itself does not
have an absolute meaning33,49,50, since its value depends on the
choice of the unit cell origin in real space. However, the difference
between the values of the Zak phases in two regions of the
parameter space is uniquely defined (modulo 2π).
In the large m limit, the system at half filling is expected to be a

trivial insulator: in fact, in this scenario the electrons localize on
the sublattice which is lower in energy (depending on the sign of
m) and the hoppings between sites are suppressed. In view of this,
we expect the regions of parameter space characterized by a
value of the Zak phase differing by π (0) from that of the large m
limit to be topologically non-trivial (trivial). It is worth pointing out
that for Ny= 6 and Ny= 10 the limits m→ ±∞ correspond to
different values of the Zak phase. We prove analytically in
Supplementary Note 2 that this is a general fact for Ny= 4M+ 2. In
these cases, the comparison of the Zak phases should be made
with the m→−∞ limit for negative values of m and with the
m→∞ limit for positive ones. The phase diagram emerging from
this argument is depicted in Fig. 3, where for each of the widths
considered a star is drawn in every region of the parameter space

Fig. 2 Energy gap and Zak phase. Gap width Δ (top panels) and Zak phase φ (bottom panels) as a function of the staggered on-site potential
m, computed for strips of various widths: (a, e) Ny= 4; (b, f) Ny= 6; (c, g) Ny= 8; (d, h) Ny= 10. The model parameters are set to t1= 1, t2= 0.3
and ϕ= π/2. For Ny= 6 and Ny= 10 the system is gapless at m= 0. In correspondence of every gap closing the Zak phase jumps of π.
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which is expected to be topologically non-trivial. By virtue of bulk
boundary correspondence, quasi 0D bound states should occur
when the quasi 1D strips are considered under open boundary
conditions (OBC) along the a1 direction and the parameters fall
inside one of the topological regions depicted in Fig. 3.
To check our predictions we perform numerical diagonalization

of the model in an uncompactified geometry along the a1
direction and we inspect the low energy spectra in the different
regions of the parameter space. The OBC strips are cropped with a
rectangular geometry, with the long edges parallel to a1. In Fig. 4,

for each of the widths taken into account, the bands in PBC
geometry (Panels a–d) and the corresponding low energy spectra
in the OBC case (Panels e–h) are reported. The values of m at
which the diagonalization was performed for each strip, were
chosen close to the point of the topological regions where the gap
was maximum (cf. Fig. 2a–d). The spectra of the finite size systems
present two degenerate eigenvalues located inside the gap. In
Panels i–l we report the 1D profile of the probability density
distributions corresponding to the eigenvalue n∘10 (marked in
orange) of the spectra in Panels e–h respectively as a function of

Fig. 3 Emerging phase diagram. Phase diagram of the model as a function of the staggered on-site potential m for different widths: (a)
Ny= 4; (b) Ny= 6; (c) Ny= 8; (d) Ny= 10. The model parameters are set to t1= 1, t2= 0.3 and ϕ= π/2. The regions of the parameter space where
a star is drawn, are those expected to be topologically non trivial. The yellow and red dots in (d) mark the two phases inspected in Fig. 6.

Fig. 4 Topological quasi 0D bound states. Results from numerical diagonalization in topologically non-trivial regions for different widths:
(a, e, i) Ny= 4; (b, f, j) Ny= 6; (c, g, k) Ny= 8; (d, h, l) Ny= 10. For different values of m for each of the widths considered (respectively
0, 0.5, 0.8, 0.92), the top row reports the bands of the strips with PBC along x (a1) and the mid row reports the low energy spectra of the
corresponding OBC counterparts, obtained for strips of length 20a (e), 40a (f), 80a (g), 160a (h). The values of m chosen for each strip belong
to the regions marked with a star in Fig. 3. A doublet of degenerate modes (marked in blue and orange) is visible inside each gap of the OBC
spectra: these correspond to bound states localized at the ends of the strips. The 1D probability density profiles of the states associated to the
eigenvalue n∘10 (marked in orange) of each of the spectra (e–h) are reported in the bottom row (i–l) as a function of the position for the left
half of the various strips (x < 0). For each of these plots, the insets show the unprojected probability densities. The model parameters are set to
t1= 1, t2= 0.3 and ϕ= π/2.
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the position, together with insets representing the corresponding
unprojected probability densities directly on the strips. From the
localization pattern of these states, we conclude that the in-gap
doublets characterizing the topological phases depicted in Fig. 3
correspond to quasi zero-dimensional bound states exponentially
localized at the two ends of the strips. We numerically checked the
robustness of these 0D bound states against the introduction of
random on-site disorder finding that, though their energy is
inevitably slightly shifted, they survive as long as the disorder
strength does not become comparable with the gap width (see
Supplementary Note 3).
The results just discussed prove that the dimensional reduction

of the Haldane model, when operated on a strip with zigzag
edges, gives rise to a reentrant topological phase diagram,
characterized by the emergence of degenerate doublets of in-gap
0D end states. Quite curiously, such phenomenology has no
counterpart in the case of armchair nanoribbons, at least in the
parameter range we numerically inspected. A qualitative motiva-
tion of this peculiar asymmetry is given by the end of the next
subsection, where we interpret our results through an effective
model.

Low energy theory
In order to understand our findings, we frame them into an
effective low energy theory. The minimal low energy model
describing the coupling between the two counter-propagating
edge states in a zigzag Haldane nanoribbon would be

Hedge ¼ vZZF ðk � πÞ þ ~m
	 


τz þMτx ; (10)

where42

vZZF � 6t2t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ 16t22

p ; ~m � mt1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ 16t22

p :

Unfortunately, here M is an effective coupling induced by the
spatial proximity between the two zigzag edges in the thin strip
limit. As such, in principle it depends in a non trivial way on all of
the model parameters, as well as on the Bloch momentum k. This
severely hinders the derivation of a reliable low energy theory for
the present model. Nevertheless, we can still achieve some
qualitative predictions– at least for m= 0 –by the following hand
waving argument. To effectively describe the coupling of the
chiral edge states, we consider two 1D chains, representing the
two edges of the zigzag nanoribbon. We assume that the sites of
the two chains are connected via a coupling which decreases
exponentially with the distance, as it is usually done when
modeling proximity effects. However, we add a crucial physical
input: We introduce a sharp cutoff in the hopping range,
effectively coupling only sites that in the actual nanoribbon are
connected by the minimum amount of first neighbor hoppings.
The motivation behind this choice, is that the coupling between
any other pair of edge sites would represent a higher order
(negligible) correction.
Omitting the details of the derivation, for which we refer the

interested reader to Supplementary Note 4, we find for the two
classes considered (Ny= 4M or Ny= 4M+ 2) and assuming m= 0

Ny ¼ 4M : MteoðkÞ ¼ ~Δ 1þ
XM
j¼1

2 cosðkjÞe�
ffiffiffiffiffiffiffiffiffi
w2þj2

p
�w

� �
=ξ

" #
; (11)

Ny ¼ 4Mþ 2 : MteoðkÞ ¼ ~Δ
XM
j¼0

2 cosðkðj þ 1=2ÞÞe�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þðjþ1=2Þ2

p
�w

� �
=ξ ;

(12)

where w ¼
ffiffi
3

p
2

Ny

2 � 1ffiffi
3

p is the strip width and ξ is of the order of the
chiral edge states localization length (Eq. (5)).
To benchmark our results, we extract the low energy bands

directly from the exact numerical diagonalization. Let us denote

by ENy ðm; kÞ the lowest (positive) energy band for a strip of width
Ny (all the other parameters of the model fixed). We can assume
that, close to the Dirac point, ENy ðm; kÞ is well described by the
spectrum of the low energy model in Eq. (10), with a certain
unknown function M. Thus, noting that the hybridization
between the chiral modes is exponentially suppressed with the
strip width– i.e.,M�!Ny!10 –we can recover (the modulus of) M
for a given Ny as

jMðm; kÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENy ðm; kÞ2 � E1ðm; kÞ2

q
: (13)

In Fig. 5a–d are shown the plots ofMteoðkÞ as a function of k for
the different widths considered, with ξ set to twice the localization
length of the edge states (ξloc) for t2= 0.3 (assuming t1= 1). In
Panels e–h instead, are reported the corresponding plots of
jMð0; kÞj, obtained numerically as described in Eq. (13). Note that
the points in k space where M stops oscillating and steeply goes
up correspond to the points where the edge states of the
reference strip (Ny→∞) merge with the bulk states. Beyond this
limit, the low energy Hamiltonian in Eq. (10) is no longer valid,
since it does not account for the bulk degrees of freedom.
By comparison between the two rows of plots, one can see that

the effective mass term in Eqs. (11) and (12) correctly reproduce
some qualitative features of the one obtained numerically for
m= 0. More specifically, setting the parameter t2 in the range
[0.1–0.3], we correctly recover the number of nodes of Mð0; kÞ for
the different widths, the fact that the mass term spreads in k-
space as t2 is increased and, crucially, the fact thatMð0; πÞ ¼ 0 for
Ny= 4M+ 2. Further support to these statements can be found in
Supplementary Figs. 4, 5 and 6, where, for each of the widths
considered, we report the plots of jMj as a function of k for
different values of m and t2. It is worth mentioning that the shape
of Mð0; kÞ more closely resembles that of a sinusoidal-like
function for smaller values of t2 (t2 ~ 0.1−0.2). The deviations from
the sinusoidal pattern predicted by the effective low energy
theory observed in Fig. 5e–n (t2= 0.3), are probably due to the
fact that the first has been derived taking into account first
neighbor hoppings only. That being the case, it is expected to be
more reliable for smaller values of t2.
Furthermore, the numerical results for M show that, at least at

a qualitative level, for m > 0 the mass term is shifted to the right in
the Brillouin zone (see Fig. 5i–l and Supplementary Figs. 4, 5 and
6). On the other hand, we know that for m > 0 the Dirac point
moves to the left (dashed vertical lines in Fig. 5i–l). Therefore, there
must be a (set of) value(s) of m for which the nodes of Mðm; kÞ
coincide with the shifted Dirac point. This mechanism qualitatively
explains the mass inversion in our model and, consequently, the
reentrant topological phase diagram retrieved numerically.
Finally, we briefly address the reason why armchair nanoribbons

do not share this kind of phenomenology. In the Haldane model
on armchair nanoribbons the Dirac point is at k= 0, and is
insensitive to variation of the staggered mass. This can be
understood by noticing that, in contrast with the zigzag case, each
armchair edge has the same number of A and B sites. Thus,
varying m does not shift the energy of the edge states. This hints
to the fact that in the case of armchair geometry, the properties of
the edge states are less likely to be tuned by varying the
staggered mass m. Moreover, the edge states in zigzag Haldane
nanoribbons present a peculiar property: as shown by Eq. (5), ξloc
grows with t2 in the zigzag case. On the other hand, the Haldane
edge states on armchair nanoribbons have their localization
length inversely proportional to t243. Thus, in the zigzag case,
bigger values of t2 lead both to a wider topological bulk gap in the
2D limit, and to a larger localization length of the edge states. This
feature, which is not shared by armchair nanoribbons, elects thin
zigzag nanoribbons as the optimal playground to inspect the
finite size effects on the Haldane edge states.
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Jackiw-Rebbi like bound states
Interestingly, if we consider a setup of our model in which the
staggered mass termm interpolates between two values in adjacent
regions of the phase diagram with different Zak phases, we observe
the occurrence of a bound state, localized at the transition point and
with energy lying inside the gap. Thus, leaning on the results from
Jackiw and Rebbi35, we can conclude that such bound state retains a
fractional charge of ± e

2
36,51. Strikingly, the bound state is present

even when the mass m interpolates between two regions that,
despite having different Zak phases, do not host bound states
against the vacuum (more details in Supplementary Note 5).
In Fig. 6 we report an explicit example for a strip with Ny= 10

and L= 200a, in which the on-site staggered potential is set
to ± 0.3 for the A and B sites respectively on the left part and
to ± 0.3 on the right part (with m= 0 at the interface to smoothen
out the jump). These two regions of the phase diagram are
marked with a yellow and red dot respectively in Fig. 3d. All the
other parameters of the model are left unchanged. In Panel a is
reported a density plot of the on-site potential close to the
transition point, where the sign of m switches for the two
sublattices. By performing real space numerical diagonalization we
obtain the low energy spectrum and the corresponding eigen-
vectors. The first is shown in Panel b, where an isolated eigenvalue
is clearly visible inside the gap: this corresponds to a bound state
localized at the point where m switches its sign, as demonstrated
by the plot of its probability density in Panel c. From Fig. 2d, we
see that from m=− 0.3 to m=+ 0.3 the Zak phase jumps of π, so
that the occurrence of a bound state at the domain wall is actually
expected according to our analysis.

DISCUSSION
In this paper we have studied the role of finite size effects on
the Haldane model. We have shown that, in the case of zigzag

strip geometry, the chiral edge modes can, as expected,
hybridize and develop a gap. Surprisingly, however, such gap
can be both trivial or topological in the sense that, in the
uncompactified geometry, bound states can be present or
absent depending on the value of the trivial mass, even in the
topological phase of the Haldane model. In other words, we
unveiled a phase diagram which presents a width-dependent
reentrant behavior with respect to the tuning of the on-site
staggered potential. Moreover, we have reinterpreted such
reentrant structure within an effective minimal model describ-
ing the coupling between the chiral edge states of the Haldane
model in zigzag nanoribbons.
We have then proven that, when present, the bound states are

robust against on-site random disorder. Besides, we have shown
that they also occur in correspondence of domain walls in the on-
site staggered potential and, consequently, that they bear a
fractional charge of ± e

2. The topological nature of the bound
states is witnessed by the behavior of the Zak phase. Indeed, we
can hence conclude that the mass associated to the tunneling
between the edges competes in a definitely non-trivial fashion
with the other masses of the model, generating a rich
phenomenology.
The implications of our results are diverse. In the context of two-

dimensional topological insulators and Chern insulators they
imply, for instance, that the transport properties of setups where
constrictions are present might be affected by the presence of
zero modes, and hence show resonances. Moreover, given that a
similar gap structure also characterizes the 2D Kitaev model19,52

for topological superconductivity, the impact of our results bears
also consequences on the field of Majorana zero modes53–55 and
parafermions56–58, paving the way to new possibilities for
implementing such non-abelian excitations.

Fig. 5 Effective toy model validation. Comparison between the effective mass term derived analytically in Eqs. (11) and (12) (a–d) and the
ones obtained numerically according to Eq. (13), for m= 0 (e–h) and m= 0.5 (i–l) with the other parameters set to t1 ¼ 1; t2 ¼ 0:3; ϕ ¼ π

2. The
dashed vertical line in the plots (e–l) indicates the position of the Dirac point, which varies with m according to kD ¼ π � m

6t2
(cf. Eq. (10)). The y-

axis in (a–d) are in arbitrary units.
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METHODS
Numerical diagonalization tools
The finite size model construction and the numerical diagonaliza-
tion have been performed using the package Pybinding59.

Numerical computation of the Zak phase
The computation of the gaps and of the Zak phase as a function of
the staggered on-site potential have been performed with an
original code and the results for the Zak phase have been
benchmarked with existing packages.

DATA AVAILABILITY
All data relevant to the paper are reported in the main text and in the Supplementary
Information. All the numerically generated points reported in the plots of this paper
and in the accompanying supplementary are obtained as described in section
Methods. The actual codes used to produce the results reported in this paper and in
the accompanying supplementary are available from the corresponding author upon
request.
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