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Absence of a BCS-BEC crossover in the cuprate
superconductors
John Sous 1✉, Yu He 2✉ and Steven A. Kivelson 1✉

We examine key aspects of the theory of the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover,
focusing on the temperature dependence of the chemical potential, μ. We identify an accurate method of determining the change
of μ in the cuprate high temperature superconductors from angle-resolved-photoemission data (along the ‘nodal’ direction), and
show that μ varies by less than a few percent of the Fermi energy over a range of temperatures from far below to several times
above the superconducting transition temperature, Tc. This shows, unambiguously, that not only are these materials always on the
BCS side of the crossover (which is a phase transition in the d-wave case), but are nowhere near the point of the crossover (where
the chemical potential approaches the band bottom).
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INTRODUCTION
The zero temperature (T) superfluid density, ns(0), of the cuprate
high-temperature superconductors is several orders of magnitude
smaller than that of conventional superconductors1–3. Indeed (when
translated into energy units) it is comparable to the critical transition
temperature (Tc)3. This has led to the probably inescapable inference
that Tc, itself, is determined, at least to a significant degree, by the
condensation scale (i.e. the phase ordering temperature, Tθ∝ ns(0)),
rather than by the pairing scale (~Δ0/2), in contrast to the case in the
Bardeen-Cooper-Schrieffer (BCS) theory of conventional supercon-
ductors. There is also compelling evidence that some degree of
clearly identifiable superconducting fluctuations—colloquially
referred to as ‘pairing without phase coherence’—persists for a
substantial range (at least 20% or so) above Tc4–14. This has been
known for some time for the underdoped cuprates, but it has
recently become increasingly clear that the same is true for many or
all overdoped cuprates as well (Fig. 1)8,13,15. Indeed, as a function of
doping, the onset temperature (however defined) of superconduct-
ing fluctuations more closely parallels Tc than it does the
conventionally defined pseudo-gap crossover.
However, what is unclear is why this occurs, and what we

should learn from this. One proposal is that this should be taken as
evidence that the system is approaching a strong pairing situation,
referred to as the Bose–Einstein condensation (BEC) limit, in which
the electrons form non-overlapping charge 2e bosons at a scale
far above Tc16–26 (see also Supplementary Note 1). However, as we
will discuss below, there are other conceptually distinct, yet
equally well understood circumstances in which Tc is determined
by phase ordering and in which Cooper pairing persists above Tc.
The purpose of this work is to analyze the behavior that would be
expected of a system either in the BEC limit or approaching the
BCS to BEC crossover from the BCS side, and to present direct
experimental evidence that this is not the case for the cuprates.

FRAMING THE ISSUE
BCS theory is a weak coupling theory that is built on a starting
point that is the electronic structure from band theory. The BEC

limit invokes electronic bound states. In the former case, the
pairing is highly collective and the chemical potential, μ, is only
weakly affected by the advent of pairing. In the latter, the
chemical potential—by the definition of a bound state—must
approach a value that lies below the band bottom as T→ 0. These
differences do not refer to subtle low-energy phenomena but
rather to entirely different regimes of microscopic physics on
energy scales of the order of the Fermi energy, EF, or larger27.
From this perspective, the fact that the Fermi surface and

general features of the electron dispersion seen in ARPES
experiments across the superconducting dome of the cuprates
are more or less in agreement with expectations from band-
structure calculations appears to be inconsistent with any large
excursions toward the BEC limit. (This is illustrated in Fig. 2.)
Emergent features of the low energy physics, such as a normal
state pseudo-gap that competes with superconductivity (apparent
below some generally relatively ill-defined T⋆)7,28–34 and various
low energy kinks in the dispersion relations are certainly
interesting and important, but occur on energy scales small
compared to EF35–38. The fact that the application of magnetic
fields large enough to quench superconductivity produces
quantum oscillations39 is further evidence that pairing is a
collective property of the superconducting state rather than a
microscopic feature associated with bound-state formation, see
Supplementary Note 2.
One important feature of the superconducting state in the

cuprates is that it has d-wave symmetry and gapless, nodal quasi-
particle excitations, see Supplementary Note 3. There can be no
nodal quasi-particles in the BEC limit. (See Ref. 40.) Thus, for this d-
wave case, the BCS to BEC crossover24,26 would constitute a
(Lifshitz) phase transition from a nodal to a nodeless state40,41. The
existence of well-defined nodes is, of itself, proof that the cuprates
are on the BCS side of the transition. This leaves only the question
of how far on the BCS side they are from the point at which a BCS
to BEC transition would have occurred, see Supplementary Note 4.
In the language of effective field theories, the question we
consider is not one concerning the correct infrared description (i.e.
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phases of matter) but rather concerns the ultra-violet (high energy
‘microscopic’) description consistent with experimental data.

EXPERIMENTAL PERSPECTIVE
We will focus our attention on the behavior of the chemical
potential, μ, as this is a fundamental thermodynamic quantity that
exhibits qualitatively different behavior in the two limits. Since by
definition, in the BEC limit the chemical potential is below the
band bottom, on approach to the BEC limit from the BCS side one
should see that the chemical potential is significantly depressed
from its band theory value toward the bottom of the band.
Moreover, it should show strong T dependencies for temperatures
of order Tc.

A number of fortuitous features of the electronic structure of
the cuprates make it possible to stringently bound the evolution
of the chemical potential from the electron dispersion measured
in ARPES along the ‘nodal direction’ in the Brillouin zone.
Specifically, it is possible to determine the value of the Fermi
momentum, kF ¼ jkF!j, as a function of temperature with a high
degree of precision. In the superconducting state, since the gap
vanishes along this direction, it is possible to measure the quasi-
particle dispersion to where it crosses the chemical potential.
Moreover, since the pseudo-gap—where it exists—also has a d-
wave structure (see Supplementary Note 3), it also vanishes along
this direction. Working further to our advantage is the fact that
this is the trajectory through the Brillouin zone along which the
spectral peaks seen in ARPES are the sharpest. Indeed, in bilayer
cuprates (such as Bi-2212), the quantum chemistry results in a
vanishing bilayer splitting at the node, so there is no need to
worry about this complication either.
While knowledge of the temperature evolution of nodal kF does

not permit an absolute measure of μ, it does allow a direct
measure of changes in the chemical potential relative to a
reference value,

δμðTÞ ¼ vFδkFðTÞ; (1)

where vF is the nodal velocity (which, conveniently, appears to be
minimally dependent on T and on doped hole concentration, x, on
the 10–100 meV energy scale36,37). It should be noted that a
cascade of nodal dispersion kinks can affect the temperature
dependent shift of the nodal kF up to 1% of the reciprocal lattice
unit35–38, which is comparable to experimentally observed values,
but at least 2 orders of magnitude smaller than what is expected
in the crossover regime.
In Fig. 3 we show kF(T) from ARPES data in Bi-2212 for several

different values of p. The measured changes in kF are sufficiently
small that, within the uncertainties of interpretation, they are
consistent with a temperature-independent chemical potential.
(Specifically, minute but difficult to quantify shifts of kF are
expected to arise from temperature dependent low-energy band
renormalizations due to electron-electron or electron-phonon

Fig. 1 Cuprates phase diagram. Phase diagram of two representative cuprates, (a) La2−xSrxCuO4 (LSCO) and (b) Bi2Sr2CaCu2O8+δ (Bi-2212), as
a function of doped hole concentration and temperature. Open black markers indicate Tc for bulk crystals, while the solid black line is the
same for crystalline films from Ref. 10. The other symbols indicate crossover lines below which the existence of significant superconducting
fluctuations are inferred from various different experiments that are directly sensitive to Cooper pair formation. Data, including error bars
where applicable, are reproduced from Refs. 4–10,70–72, see also Supplementary Note 8. The quantitative identification of any crossover
depends on the criterion used, and moreover distinct probes should have different sensitivity to superconducting correlations, so it is
reasonable that the various lines do not coincide.
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Fig. 2 Electronic structure of Bi-based cuprates along high
symmetry directions. a Schematic Fermi surface and momentum
cut trajectory in the tetragonal Brillouin zone of a CuO2 plane. b Low
energy electronic structure near (π,0) in Bi-2212 (p= 0.22, Tc= 66 K)
in the normal state. Data are reproduced from Ref. 8. c Electronic
structure along Γ− X direction in LSCO (x= 0.23, Tc= 24 K) and Bi-
2212. Light green lines are density functional theory (DFT)
calculated band structure. For Bi-2212 only the antibonding band
is shown. Deviations from the first principles dispersion apparent at
low energies represent mass renormalization due to additional
interaction effects, see Supplementary Note 9. Data are adapted
from Refs. 8,73–75.
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interactions, even in the absence of any T dependence of μ.) This
is our primary finding. Indeed below, and in Fig. 4, we show that
the very small changes in the chemical potential expected on the
basis of BCS theory are order-of-magnitude consistent with these
findings, assuming reasonable values of the T= 0 gap, Δ0 ≈ 40
meV. By contrast, even on the BCS side of the transition, in the
regime proximate to a BEC limit a large shift in the chemical
potential toward the band bottom would be expected.
There are a few aspects of the result that merit closer

inspection. As can be seen in Fig. 2c, EF (defined to be the
position of the band-bottom at the Γ point relative to the chemical
potential) is between 1 and 2 eV, which is large enough compared
to Δ0 that it would seem obvious that the system is deep in the
BCS limit. However, the band is relatively shallow near the van-
Hove point. The energy at the M point, (0, π), is no more than 0.1
eV below μ (Fig. 2b)42,43. This is only a few times Δ0, so that if we
focused exclusively on this near ‘antinodal’ region of the Brillouin
zone, we might have anticipated more in the way of a shift in the
chemical potential. The idea that the anti-nodal ‘heavy electrons’
can be viewed as somehow distinct from the near-nodal ‘light
electrons’, however, runs up against the experimental fact that the
chemical potential does not show any of the T dependence across
Tc or T* that should be a corollary of such a two-patch theory (see
next section). Indeed, the bound we have obtained on the
chemical potential shifts are so stringent so that ∣δμ∣ < Δ0. In
addition, near the BCS-BEC crossover, the backbending momenta

of the Bogoliubov quasiparticle dispersion in the superconducting
state should shift towards zero, which is not observed in the
cuprates at any hole doping8,44,45.

THEORY OF THE BCS TO BEC CROSSOVER
As in the experimental discussion, we focus our theoretical
analysis on the thermal evolution of the chemical potential μ.
Specifically, we illustrate the fact that variations of μ are small in
the BCS limit, increase upon approach to the BCS to BEC crossover,
and are large whenever the BEC perspective is relevant, see
Supplementary Note 5.

The BCS analysis
Given that the existence of nodal quasi-particles places the
cuprates on the BCS side of the transition, it is reasonable to
consider signatures of the approach to the BEC limit in the context
of BCS theory. It is an often neglected feature of BCS theory that,
in addition to the familiar gap equation, there is a second self-
consistency equation that determines the chemical potential as
the implicit solution to

n ¼ 2
Z

d~k

ð2πÞd ju~k j2ð1� f~kÞ þ jv~k j2f~k
h i

(2)

where n is the electron density, f~k ¼ ½eβEð~kÞ þ 1��1
is the Fermi

function, Eð~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ϵð~kÞ � μ�2 þ jΔð~kÞj2

q
and ϵð~kÞ are the quasi-

particle energies in the superconducting and normal state respec-
tively, Δð~kÞ is the gap function, with the coherence factors ju~k j2 ¼
½Eð~kÞ � ϵð~kÞ þ μ�=2Eð~kÞ and jv~k j2 ¼ ½Eð~kÞ þ ϵð~kÞ � μ�=2Eð~kÞ, and
β= 1/T. If there are multiple bands, then this expression needs to be
generalized to include a sum over bands. Naturally, Δ depends
implicitly on T and on the nature of the interactions through the
usual self-consistency relation.
To illustrate why this equation is safely neglected in most cases,

consider the illustrative example of free electrons ðϵð~kÞ ¼
_2k2=2mÞ in two dimensions (d= 2) with a ~k independent (s-
wave) gap function. Because the density of states is constant, the
integrals above can be performed readily, with the result that
μ(T, Δ) is obtained as the implicit solution to

EF ¼ 1
2

Eμ þ μ
� �þ T ln 1þ e�βEμ

� �
where the Fermi energy EF= πℏ2n/m such that μ(T, Δ= 0)→ EF as
T→ 0 and Eμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
. The second term in this equation is

typically exponentially small, � e�βEF , and hence

μðT ;ΔÞ ¼ EF 1� jΔðTÞ=2EF j2
h i

þOðTe�βEF Þ: (3)

If we define the BCS to BEC crossover as the point at which
μ(0, Δ)= 0, this occurs when Δ0≡ Δ(0)= 2EF—the shift of the
chemical potential relative to its normal state, [μ(T > Tc)− μ(0)]/
μ(T > Tc) ≈ [EF− μ(0)]/EF, thus is directly a measure of how closely
we have approached this crossover.
In more general circumstances, band-structure effects result in

an energy dependent density of states. In the small Δ0 (BCS) limit,
this leads to a (logarithmically) larger shift in the chemical
potential δμ= μ(0, Δ0)− μ(0, 0) of the form

δμ � � 1
2
ρ0ðμð0; 0ÞÞ
ρðμð0; 0ÞÞ jΔ0j2 ln 2W

Δ0

� �
; (4)

where ρ0ðμÞ is the derivative of ρ with respect to μ and W is the
electronic bandwidth. On the other hand, if we continue to follow
the evolution of μ according to the BCS equations for a single
band to the large Δ0 limit (where, of course, BCS theory is not in
any way justified) the result is asymptotically independent of the
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are reproduced from Refs. 73,76,77. (Note that if these materials were
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band-dispersion:

μ ¼ ðn� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2� nÞp

" #
jΔ0j 1þO W

jΔ0j
� �� �

: (5)

For a cuprate-like band-structure, these two asymptotic forms
typically give rise to a non-monotonic dependence of μ on Δ0. The
presence of a van-Hove point below the Fermi energy implies that
ρ0ðμÞ is negative, meaning that for small Δ0, the superconductivity
induced changes in the chemical potential are expected to be
positive. On the other hand, for a hole-doped cuprate (with
(n− 1) < 0), the chemical potential must drop toward the band
bottom for large enough Δ0.
To make closer contact with experimental reality, we have

numerically carried through the BCS analysis for a two-dimensional
(2D) model that incorporates significant features of the electronic
structure of the cuprates. Here, we take ϵð~kÞ ¼ 4ðt þ t0Þ �
2tðcosðkxÞ þ cosðkyÞÞ � 4t0 cosðkxÞ cosðkyÞ (the zero of energy has
been chosen to coincide with the band bottom, i.e. such that ϵð~0Þ ¼
0 and we have set the lattice constant a= 1) with t0 ¼ �0:3t
(obtained from a fit to low binding energy ARPES data8,45, see

Supplementary Note 6) and Δð k!Þ ¼ ΔðTÞ½cosðkxÞ � cosðkyÞ�=2,
where we further assume that ΔðTÞ ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðT=TcÞ2

q
for all

T< Tc. We perform the calculation for hole concentration x= 0.2
(n= 1− x= 0.8) and we use Tc= 0.025t. The results are shown in
Fig. 4 for two values of Δ0: 1) Δ0= 0.1t, which is a reasonable value
for the cuprates; 2) Δ0= t, which is far larger than is plausible,
included for illustrative purposes. Not only is the thermal evolution of
μ(T) very weak relative to EF, but also it appears that it is very small
relative to Δ(T). Note that this analysis is not meant to quantitatively
explain the experimental results, but rather to provide an estimate of
the expected magnitude shift in μ and kF across Tc in the BCS limit.

The BEC limit
To develop intuition concerning the thermal evolution of μ in the
BEC limit, we can carry out the same analysis for the case of a 2D
non-interacting Bose gas. While this problem has no actual phase
transition, in the presence of weak repulsive interactions, the
superfluid transition occurs at a number of order 1 (which
depends on the log-log of the interaction strength46) times the
characteristic energy T0≡ 2πℏ2nB/mB. (If we identify the areal
density of the bosons, nB with 1/2 the density of Fermions, n, and
their massmB as twice the electron effective mass,m, then T0= EF/
2, where EF is what would have been the Fermi energy in the
absence of pair-binding.) Again, the fact that the density of states
is a constant permits us to derive an analytic expression

μ ¼ T ln½1� e�T0=T �: (6)

This result is shown in Fig. 5. From Eq. (6), it is easy to see that
the chemical potential shifts by approximately a factor of 4 as the
temperature changes from T= T0 (roughly Tc) to T= 2T0; a result
that is qualitatively unchanged by weak interactions.

Mixture of heavy bosons and light fermions
Motivated by the proposal of heavy antinodal electron pairs
mixing with light nodal quasiparticles in cuprates, it is interesting
to consider a two component system in which a 2D Bose gas is in
equilibrium with a BCS superconductor16. One could imagine this
arising in a two-band system, in which one band is in a BCS and
the other in a BEC limit. Now the chemical potential must
simultaneously satisfy Eqs. (3) and (6)—which in turn means that
the fraction of particles that are bosonic must be determined self-
consistently according to

ntot ¼ nþ 2nB ¼ ð1=π_2Þ mEF þmBT0½ � (7)

where ntot is the total electron density, and the factor 2 encodes the
assumptions that two electrons can combine to form one boson.
The result is a generally complicated thermal evolution of μ.
However, in the limit thatmB≫m (i.e. where the bosonic density of
states is large compared to the fermionic density of states), the
result simplifies; here, the density of fermions does not change
significantly over the relevant range of μ, so the T dependence of μ
reduces to the same expression as for the pure bosonic problem,
Eq. (6), with an approximately constant value of nB.

QUANTIFYING COOPER PAIR OVERLAP
One line of analysis that is sometimes invoked in support of
proximity to a BEC limit is based on an estimate of the number of
Cooper pairs in a Cooper pair area26,47. This is estimated as
N≡ nπ∣ξ0∣2, where n is the density of conduction electrons per unit
area and π∣ξ0∣2 represents the area associated with a given pair (ξ0
is the correlation length). It is then proposed that N is a reasonable
metric, such that N≫ 1 in the BCS limit and N≲ 1 in the BEC limit.
However, neither n nor ξ0 is well defined. For instance, in the

cuprate context, there is an order of magnitude uncertainty
concerning what value of n is appropriate—whether it is
proportional to x, the density of ‘doped holes’ relative to the
undoped insulator, or (1+ x), the area enclosed by the Fermi
surface, see Supplementary Note 7. ∣ξ0∣2 is even more uncertain,
given that this is a nodal superconductor. The Fermi surface
average of ∣ξ0∣2 is infinite due to its divergence in the nodal
direction. Taking this at face value it suggests (not without reason)
that a nodal SC can never approach the BEC limit. On the other
hand, it is the Fermi surface average of ξ−2 that enters the mean-
field estimate of Hc2, and this is dominated by the portions of the
Fermi surface where the gap is maximal and/or the Fermi velocity
is minimal. If one makes an estimate of N taking the shortest
possible estimate of ∣ξ0∣2 (obtained from the largest experimen-
tally inferred values of the mean-field Hc2) and the smallest
possible value for n ~ x, the result suggests N ~ 1−10 for optimally
doped cuprates—small enough that it might justify conjectures of
a nearby BCS to BEC crossover. However, because of the
uncertainties that lead to this estimate, we consider this analysis
far less reliable than the analysis based on measurements of μ.
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Fig. 5 Thermal evolution of the chemical potential in the BEC
limit. Thermal evolution of δμ(T)= μ(T)− μ(0) in the BEC limit (black
thick line) contrasted with its behavior in the BCS limit for Δ0= 0.1t
(light gray thin line) and Δ0= t (dark gray thin line). As in Fig. 4, in
the BCS calculation we have taken Tc= 0.025t and a density of
doped holes x= 0.2 (n= 0.8), which yields EF= 1.7t. In comparing
the BEC and BCS results we identified energy scales according to
Tc≡ T0, EF≡ 2T0, and scaled up the BCS results by a factor of 50 in
order to make the T dependence visible.
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FURTHER ISSUES
To complete our analysis of the physics of pairing in the cuprates,
it is important to ask whether there are any alternatives to the BEC
perspective that can account for the experimental observations of
an intimate relation between Tc and Tθ and a corresponding
persistence of pairing without phase coherence in an usually large
range of temperatures above Tc. Three theoretically understood
examples of systems that exhibit these properties are:

● A granular superconductor or Josephson junction array where
Tθ (and hence Tc) is determined by the magnitude of the
Josephson coupling between superconducting grains, while
the pairing within a grain can be well described in the context
of BCS theory48,49.

● A quasi-1D superconductor, where the pairing (gap formation)
can occur in a BCS-like manner on a single superconducting
wire, while Tc is small in proportion to a positive power of the
coupling between wires50.

● A lightly doped spin-liquid of an appropriate variety, where
the pairing scale is inherited from the spin correlations of the
undoped insulator, while the superfluid density grows linear
with doping, x51,52.

Which, if any of these possibilities is essential in the cuprates is
still open to debate. There is surely considerable evidence of
significant inhomogeneity in the electronic structure revealed by
local probes53–57, so much so that there are suggestions that the
cuprates should be viewed as electronic glasses15,58–63. In this
light, it certainly is worth considering whether the materials might
in some ways behave like granular superconductors. While there is
no direct evidence of either quasi-1D electronic structure, or of
any spin-liquid phases—doped or otherwise, it is not obvious (in
the sense of adiabatic continuity) that these examples are totally
irrelevant. At the very least, the existence in the cuprate phase
diagram of a variety of ‘intertwined orders’ (see Supplementary
Note 3), especially charge-density-wave order, likely plays a role in
reducing the fraction of the electrons that contribute to ns.
In concluding, we address two points of perspective concerning

the present results that could easily be misinterpreted:

● The fact that the lack of substantial chemical potential shift
with temperature is consistent with BCS theory does not prove
that BCS theory is adequate to treat the emergent low energy
properties of the cuprates. It resolves the high energy
microscopic issue of what are the constituent degrees of
freedom one should include in a theoretical treatment—they
are roughly the quasi-particles of a Fermi liquid and not
preformed Cooper pairs. However, the unusually large degree
of superconducting fluctuations and the many other strange
low energy behaviors of these materials certainly require more
elaborate theoretical approaches than the simple BCS mean-
field theory that works so well in conventional superconduc-
tors.

● The idea that a BCS to BEC crossover may be at play has been
mooted64–69 in the context of a variety of other unusual
superconductors, including the Fe-based superconductors
and more recently twisted bilayer graphene. Obviously, the
evidence that this crosser is not relevant in the cuprates does
not prove that it is not significant in other materials.
Conversely, we propose that clear evidence can be obtained
one way or the other from careful measurements of the
evolution of μ as a function of T and other properties that
affect the superconducting state.

DATA AVAILABILITY
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