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Complex electron interactions underlie the electronic structure of several families of quantum materials. In particular, the strong
electron Coulomb repulsion is considered the key ingredient to describing the emergence of exotic and/or ordered phases of
quantum matter, from high-temperature superconductivity to charge- and magnetic-order. However, a comprehensive
understanding of fundamental electronic properties of quantum materials is often complicated by the appearance of an enigmatic
partial suppression of low-energy electronic states, known as the pseudogap. Here we take advantage of ultrafast angle-resolved
photoemission spectroscopy to unveil the temperature evolution of the low-energy density of states in the electron-doped cuprate
Nd,_Ce,CuO,, an emblematic system where the pseudogap intertwines with magnetic degrees of freedom. Using an optical
excitation we drive the electronic system across the pseudogap onset temperature T*, and we report the direct relation between
the momentum-resolved pseudogap spectral features and the spin-correlation length with a remarkable sensitivity. This transient
approach, corroborated by mean-field model calculations, allows us to establish the pseudogap in electron-doped cuprates as a
precursor to the incipient antiferromagnetic order even when long-range antiferromagnetic correlations are not established, as in

the case of optimal doping.
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INTRODUCTION

In the presence of strong correlations, the interactions within and
among various degrees of freedom often obfuscate the micro-
scopic origin of exotic electronic phenomena.' As an example,
the interplay between intertwined orders* continues to preclude a
thorough understanding of the pseudogap (PG) phenomenon, a
mysterious state of correlated matter ubiquitous to systems as
diverse as unconventional superconductors,”” dichalcogenides,®°
and ultracold atoms.'®"'? Broadly speaking, the PG in condensed
matter is associated with a partial suppression of the electronic
spectral weight in the vicinity of the Fermi level (w=0), and
evidence for the PG has been widely reported.'® This behavior
may be anticipated in the presence of long-range (or mesoscopic)
order, e.g. spin- or charge-order, which breaks the translational
symmetry of the crystal: the loss of spectral weight in particular
momentum-energy regions would be simply a consequence of
the avoided crossings in the symmetry-reduced bandstruc-
ture. 2211 However, this argument may be unsatisfactory in the
presence of strong electronic correlations and short-range orders
with correlation length of few unit cells. Copper-oxide high-
temperature superconductors are a paradigmatic example where
the origin of the PG—which presents different phenomenology
for hole and electron doping—is still debated, and a universal
understanding has yet to emerge.'”71418

In the specific case of electron-doped cuprates, the PG is stable
above the entire antiferromagnetic (AF) and superconducting (SC)
domes, with its onset temperature indicated by T* as measured by
spectroscopic and transport probes,'® % as illustrated in Fig. 1a

(orange shadow). Scattering experiments on electron-doped
cuprates have shown that the long-range AF order disappears
when entering the narrow SC dome,**** and that the commonly
reported charge-order in cuprates does not exhibit a clear
connection to the AF order,>*® although a coupling to dynamic
magnetic correlations has been recently shown.?” In addition, 3D
collective charge modes, which may play a substantial role in
mediating high-temperature superconductivity, have been
reported.?®

The PG in electron-doped cuprates is believed to be related to
the AF order:'8222429732 i the presence of long-range AF order,
i.e. when the instantaneous spin-correlation length (&) diverges
at low temperature and a Néel temperature is defined, T* has
been proposed to be a temperature crossover for which the
quasiparticle de Broglie wavelength (Ag ~ vi/iiT, where vg is the
Fermi velocity) becomes comparable to &,,.>*** However, these
considerations seem to fail at optimal doping, where only short-
range spin-fluctuations (&, ~20-25 a, where a is the unit cell
size) are detected by inelastic neutron scattering.* Indeed, for
dopings where the long-range AF order disappears, i.e. when the
short-range &, does not diverge at low temperature, an
unambiguous identification of a temperature crossover with Ag
is prevented. In addition, the underlying SC phase has been
proposed to limit the development of &,;,.** Finally, and most
importantly, a momentum-resolved study connecting explicitly
the PG spectral features and short-range AF correlations in
electron-doped cuprates is still missing.
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Fig. 1 Experimental strategy for tracking transient filling of the pseudogap. a Phase-diagram of the electron-doped cuprate Nd, ,Ce,CuQO,

showing the onset temperature of the pseudogap T*.'°2 The doping measured in this study is highlighted by the yellow arrow. b Experimental
Fermi surface of optimally-doped NCCO measured with 6.2-eV probe pulse, 10 K base temperature. The integration window in energy is 20 meV
at the Fermi level. The solid blue line is a tight-binding constant energy contour at w = 0,*' the red dashed line the AF zone boundary (AFZB).
The violet dotted circle encloses the hot-spot (HS). The black dashed line represents the nodal direction, and the green and the black solid lines
the two momentum directions explored in this work, ¢ ~39° and ¢ ~ 26.5°, respectively, where ¢ is the angle between (0, m)-(mr, m) and the nodal
direction. ¢ Simulated Fermi surface using Eq. (1), Apg =n =T = 85 meV (details in Supplementary Discussion C, D, E, F). d Momentum-integrated
energy distribution curves (EDCs) at the HS for 50K (black) and 130K (red). Panel d1: EDCs simulated using Eq. (1), and I' =85 and 160 meV for
low and high temperature conditions, respectively. d2 Experimental background-subtracted EDCs in the HF regime (the background is estimated
from the integrated ARPES intensity in regions where no dispersive spectral features are detected; solid lines, smoothed data). e Simulated (e1)
and experimental (e2) symmetrized EDCs (SEDCs). For T, = 130K the shortening of &, leads to a filling-up of the PG (red curves). f Simulated
(f1) and experimental (f2) differential EDCs (dEDCs), as defined in Eq. (2), where we demonstrate that a filling of the PG manifests as an increase

of the photoemission intensity at w ~ —50 meV (blue arrows).

In order to tie together the observations of the PG and short-
range AF correlations via a unique experimental approach, we
performed a time- and angle-resolved photoemission (TR-ARPES)
study of optimally doped Nd,,Ce,CuO, (NCCO, T, ~ 24K, yellow
arrow in Fig. 1a), which is characterized by &, ~20a at low
temperatures (T~T.).>* TR-ARPES provides an alternative, more
effective and controlled experimental approach to measure a
detailed temperature-dependence than the standard equilibrium
ARPES, which is often complicated by surface degradation as well
as coarse and uncorrelated sampling. As in standard pump-probe
spectroscopy, a near-infrared pump pulse is used to perturb the
system, whose subsequent relaxation is studied by varying the
temporal delay of a UV probe pulse. Photoexcited quasiparticles in
cuprates—and in general in strongly correlated electron systems—
release the energy deposited by the pump pulse through
electron-electron and electron-boson scattering, thermalizing
and reaching a state of quasi-equilibrium on an ultrafast time
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scale of about 100fs.3*73° After this initial relaxation, an effective
electronic temperature T, is defined at each point in time, allowing
a temperature-dependent scan to be performed continuously and
with remarkable accuracy and efficiency.* Since the acquisition of
TR-ARPES data is performed by cycling continuously the pump-
probe delays, each time delay—and consequently each electronic
temperature—is acquired in the same experimental conditions
(details in the Methods section). By applying this transient
approach (which minimizes aging and sample drift) and comput-
ing differential curves (which remove any extrinsic background
contribution, see Eq. (2)), we demonstrate the direct relation
between the subtle momentum-resolved spectroscopic features of
the PG and short-range &,;n(T), as extracted from inelastic neutron
scattering.?® In particular, we identify T* as the crossover
temperature above which the spectral broadening due to the
reduction of &, exceeds the PG amplitude, establishing the PG as
a precursor of the underlying AF order.
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RESULTS

Fermi surface mapping and modeling

Figure 1b displays the equilibrium Fermi surface mapping of
NCCO acquired with 6.2 eV probe pulsed-light. A tight-binding
constant energy contour at w = 0*' (blue solid line), and the AF
zone boundary (AFZB, red dashed line), are superimposed over
the experimental Fermi surface. The intersection point between
the tight-binding at w =0 and AFZB is commonly referred to as
the hot-spot (HS), and coincides with the location where an AF-
driven PG is expected to be particle-hole symmetric.'® In a mean
field description, the commensurate q = (71,m) folding of the Fermi
surface is driven by a strong quasi-2D AF order in the copper-
oxygen plane.'® The Green's function can then be written

AI%G (1)

G 'kw) = w—e¢ in——m—m—
(7 ) ek +1n w_€k+q+ir7

where ¢y is the bare energy dispersion, Apg the AF-driven
pseudogap spectroscopic amplitude determined by the local
Coulomb interaction and spin susceptibility,*® n the single-particle
scattering rate, and I a broadening term that leads to a filling of
the pseudogap via the reduction of &,;,.*>*> Using Eq. (1) we can
calculate the spectral function A(k,w) = —!Im[G(k,w)]** and
compute the Fermi surface (Fig. 1c), which agrees well with our
and previous ARPES data.’**° We used Apg =n =T =85 meV for
simulation purposes, as suggested by our experimental results
(see Fig. 1d-f and Supplementary Discussion C, D, E), and in
agreement with previous optical and ARPES studies.'?21293043

Tracking the pseudogap spectral weight in an ultrafast fashion

Before moving to a detailed discussion of the temperature
evolution of the PG in NCCO, we illustrate our experimental
strategy for tracking the PG via TR-ARPES. The simulated and
experimental energy distribution curves (EDCs) integrated along
the momentum direction through HS for two (transient) electronic
temperatures are presented in Fig. 1d1-d2, respectively; however,
the PG is best visualized by the symmetrized EDCs (SEDCs, Fig.
1e1-e2). The symmetrization procedure removes the dependence
of the photoemission signal on the Fermi-Dirac distribution
function, providing direct access to underlying modifications of
the density of states (DOS) along that particular momentum cut.**
Note that this procedure is strictly valid only at the HS where
particle-hole symmetry is satisfied, as indicated by model
calculations.'®?%3%33 Experimental SEDCs highlight the filling of
the PG at high temperature and allow to extract a PG amplitude
Apg ~85meV. The filling of the PG can be well modeled by
increasing the spin-fluctuation spectral broadening term I' from
85 meV (50K, black curves) to 160 meV (130K, red curves), while
Apg=n=85meV are kept fixed (details in Supplementary
Discussion D, E, F). However, we remark that any experimental
estimate of the temperature dependence of the PG spectral
weight by fitting of SEDCs may be affected by intrinsic and
uncorrelated noise, as well as extrinsic electron background
(arising from irregular cleaves, secondary electrons, and electrons
scattered in the detection process). We overcome this limitation
by computing the difference between the photoemission intensity
for high temperature (130K) and its counterpart for low
temperature (50K), as shown in Fig. 1f1-f2. As discussed later in
more detail in Eq. (2), this quantity is proportional to the
differential momentum-integrated EDCs (dEDCs) and, by remov-
ing spurious contributions, highlights the temperature evolution
of the PG spectral features and Fermi-Dirac distribution. While the
latter would lead to a symmetrical suppression (increase) of the
photoemission intensity for all w <0 (w > 0), independently of the
explored momentum region, it is evident that a filling of the PG
may lead to an increase of the photoemission intensity at w ~
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—50 meV (blue arrows in Fig. 1f1-f2). Since thermal contributions
are negligible at w~—50 meV within the range of electronic
temperatures explored in this work (4kgT ~ 50 meV for T = 150 K),
this approach allows to track the evolution of the PG with high
sensitivity. We note that a similar approach was recently used to
track the electron-boson interaction in hole-doped cuprates via a
transient analysis/modeling of the band renormalization (kink);*
in the specific case of NCCO, only a very weak kink was reported
(see ref. ¥ and Supplementary Discussion A), which does not
affect the following analysis and conclusions.

Direct relation of the pseudogap to the spin-correlation length
Having defined the framework for our investigation, we now track
the temperature-dependent modification of the low-energy DOS
at the HS in optimally-doped NCCO by introducing thermal
excitations via optical pumping. To estimate an effective electro-
nic temperature T,,** we fit the Fermi edge of the momentum-
integrated EDCs along the near-nodal direction (¢ ~39°, green
solid line in Fig. 1b), as shown in Fig. 2a for various pump-probe
delays; the resulting T, is then plotted versus time delay in Fig. 2b
for the two pump fluences employed in this work, here labeled as
low fluence (LF) and high fluence (HF). The transient T, can be
phenomenologically fit by a double exponential function (solid
lines in Fig. 2b), reminiscent of the two-temperature-model
framework.**74% Note that near-nodal momentum-integrated
EDCs are well described by a thermal Fermi-Dirac distribution for
time delays 7>0.3 ps, a timescale comparable to the temporal
resolution of our TR-ARPES system (~250 fs). Non-thermal features
are instead detected for T~ 0 ps, i.e. when pump and probe pulses
are overlapped in time, and data corresponding to those time
delays are highlighted in gray in Fig. 2b, c (and omitted in Fig. 2d,
see also Supplementary Discussion G).

Figure 2c displays the transient enhancement of the photo-
emission intensity at the HS in a 20 meV energy window about
w=-50meV (P°_ ., given by the momentum-integrated EDC
along ¢ ~26.5° direction indicated by the black solid line in
Fig. 1b). This particular choice of energy window was motivated by
the dEDCs at the HS shown in Fig. 1f1-f2 and Fig. 3b. We note that
the temporal response of IZG: _so IS dependent on the pump
fluence: while the enhancement of IZG: _so recovers exponentially
within 2 ps for the LF regime, in the HF regime I?°_ ., saturates
for ~2 ps and does not fully recover within the domain of pump-
probe delays studied here. This saturation of I°°. . in the HF
regime suggests a vanishing of the PG. To further investigate the
origin of the suppression of the PG spectral weight, we plot
IPe_ ., directly as a function of T in Fig. 2d (the non-thermal
points—grey circles in Fig. 2b, c—are omitted). One can see a
close resemblance between the temperature dependence of
I o and &, reported in ref. ** for optimal doping, shown as a
green line and shadow in Fig. 2c (with appropriate offset and

scaling). However, for temperatures T, > 110 K, IZG: _50(Te) is found

to saturate, departing from E;p}n; this onset of saturation is in good
agreement with T* reported by other experimental probes.'® %2
Note that the deviation of IfC_ _; (Te>T¥) from € is not
associated with a phase transition, but is rather a crossover
stemming from the filling—not the closure—of the PG.

DISCUSSION

To further clarify the origin of T*, we now present a comprehen-
sive analysis and modeling of the photoinduced thermal
modification of the PG for both LF and HF pump regimes. The
spectral features of NCCO are inherently broad and their intensity
is comparable to the underlying background level, precluding the
sort of detailed quantitative modeling of the transient spectral
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Fig. 2 Pseudogap spectral weight vs. temperature in optimally-doped NCCO. a Momentum-integrated energy distribution curves (EDCs)
along the near-nodal direction (green line in Fig. 1b) for different pump-probe delays. Fermi-Dirac distribution fits are shown as solid black
lines. The inset displays three delays (—0.5 ps LF, +0.33 ps HF, +2 ps HF) in logarithmic scale. b Transient electronic temperature extracted by
fitting the Fermi edge broadening along the near-nodal direction (a), for both LF and HF. The solid lines are phenomenological double
exponential-decay fits (decay times are: 0.6 £ 0.1 ps and 7.5 = 1.3 ps for LF, 0.45 £ 0.15 ps and 8.3 + 2 ps for HF). Grey points indicate time delays
for which a pure thermal-fitting is not accurate (see Supplementary Discussion G). Error bars represent the confidence interval in the fitting
procedure corresponding to +30 (o is the standard deviation). ¢ Temporal evolution of the photoemission intensity at the HS for w = —50 +
10 meV (see black line and violet dotted circle in Fig. 1b), for both the employed pump fluences LF and HF. The solid black line is a
phenomenological single exponential-decay fit for the LF curve while the HF curve saturates in the first 2 ps after the pump excitation. Error
bars represent +o. d Photoemission intensity at the HS, w = —50+ 10 meV, as a function of the electronic temperature (black and red circles
for LF and HF, respectively; data points are plotted vs. the electronic temperature determined from the phenomenological fits in (b)). Non-
thermal time delays, grey points in (b, ), have been omitted. The green line and transparent shadow represent the inverse of the spin-
correlation length &, from neutron scattering studies for optimal doping T, ~ 24 K,>* appropriately scaled and offset. We identify T* as the
temperature at which the PG is completely filled (in agreement with the saturation of the photoemission intensity at the HS for w = —50 +

Delay (ps)

Delay (ps)

10 meV for HF). Error bars are defined in (b, c). Data have been replicated for three different cleaves.

function which has been achieved for hole-doped cuprates.*®
Alternately, here we focus our analysis on the temporal evolution
of dEDCs, defined as:

dEDC(w) o< DOS(w, T) - f(w,T) — DOSp(w) - fo(w), 2)

where DOSy(w) and the Fermi-Dirac electronic distribution fy(w)
are the unperturbed quantities (see refs ***” and Supplementary
Discussion B). Note that the photoemission matrix-elements, not
included in Eq. (2), represent a constant multiplicative factor and
can be neglected to the first approximation. Figure 3al displays
experimental dEDCs as a function of pump-probe delay (1) and
binding energy (w), at HS (HF regime). The TR-ARPES data reported
here can be simulated remarkably well using the simple model of
Eq. (1) (see Fig. 3a2). The experimental dEDCs are reproduced
through a substantial increase of the broadening term I alone,
which phenomenologically describes the filling of the PG due to
the reduction of the spin-correlation length.?**® Note that I'(Te) o
f;,}n(Te) in Eq. (1) is assumed for simulation purposes, in
agreement with theoretical predictions of Vilk and Tremblay.>®

In further support of our interpretation of the HS data, in Fig.
3b1, b2 we compare single experimental and simulated dEDCs
along the near-nodal direction and HS, for T=+0.6 ps. Along the
near-nodal direction we find an approximately symmetric
transient population/depletion (increase/decrease of the photo-
emission intensity for w >/<0), characteristic of a mere thermal
broadening effect (along the near-nodal region the PG is located
well above the Fermi level, thus only mildly affecting the
symmetry of the near-nodal dEDCs; see also Supplementary
Discussion B, G). In contrast, at the HS we observe the increment
of the intensity for w~—50meV and a modest (null) depletion
signal for w ~ —20meV for LF (HF), in good agreement with the
model and data of Fig. 1d-f and Fig. 2. We also emphasize that a
full closure of the gap fails to reproduce our TR-ARPES data. Figure
3c compares simulated dEDCs at the HS for a complete gap
closure (Apg — 0, black line) and gap filling (T=2.5 - Ty, red line,
where ', = 85 meV), and only the latter matches the experimental
curve shown in Fig. 3b1 (red line, HF).

Finally, we plot in Fig. 3d the simulated analog to Fig. 2d, noting
a clear correspondence between the two figures. In particular,
assuming the direct relationship between the filling of the PG and
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&pin (as predicted for 2D spin-fluctuations®®), we find that the
simulated filling of the PG saturates for temperatures T ~ T*, when
[(T*) ~2Apg ~ 170 meV. This empirical observation agrees well
with recent theoretical investigations of the vanishing of the PG in
the electron-doped cuprate Pry5.4Lag;Ce,Cu0,.*

In conclusion, we have reported the direct relation between
the partial suppression of the electronic spectral weight, a.k.a
pseudogap, and short-range magnetic correlations in electron-
doped cuprates. In particular, by performing a detailed
ultrafast ARPES study at the hot-spot of the optimally-doped
NCCO electron-doped cuprate, we have demonstrated that the
temperature dependence of the low-energy DOS is closely
related to the spin-correlation length &,;,. We identified two
different temperature regimes for the PG, moving from low to
high temperature: (i) T<T* in which the PG begins to fill
alongside with the reduction of &,;,; (i) T>T*, where & ~
10-15 a and the PG is completely filled-up. Our results show
that the PG phenomenology in optimally-doped NCCO
originates from short-range AF correlations, parametrized by
&pin(T), and T* is a crossover temperature above which the
spectral broadening driven by the reduction of &, over-
comes the PG amplitude Apg. This suggests that the frequently
reported onset temperature T* does not represent a thermo-
dynamic phase transition, i.e. a sharp quenching of a well-
defined order parameter; rather, T* is associated with the
weakening of the short-range AF correlations and incipient (m,
m-folding.>¥*% In addition, the observation of the filling—not
closure—of the PG suggests that the energy scale associated
with the PG survives to temperatures well above T*, possibly
reminiscent of scattering results?*?* which show that the
spectral weight associated with magnetic excitations remains
finite up to much higher temperatures than the spin-
correlation length itself. This phenomenology may bear a
relation to the underlying Mott physics,®® or to the recent
proposal of a crossover of the SU(2) gauge theory for
fluctuating spin-density-waves near optimal-doping.*® Finally,
we note that our transient momentum-resolved study demon-
strates that even underlying orders with correlation lengths of
about ten unit cells may play a significant role in shaping the

Published in partnership with Nanjing University
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Fig. 3 Comparison of experimental and simulated TR-ARPES data. a Momentum-integrated differential energy distribution curves (dEDCs),
experimental (a1) and simulated (a2), at HS (HF regime). Simulated traces in a2 have been generated using the fit of the experimental
transient T, shown in Fig. 2b, and assuming I(Te) = C- €. (Te) as in ref. > (C~ 1.9 a eV, where a is the unit cell size, details in Supplementary
Discussion E, F). b Experimental (b1) and simulated (b2) dEDCs along the near-nodal direction (green line, LF), and at HS (black and red lines
for LF and HF, respectively), at T= +0.6 ps. ¢ Simulated dEDCs at HS assuming as initial values before the arrival of the pump Apgc=n=T(y=
85 meV and T = 50K, and as final values after the arrival of the pump T = 130K, Apg — 0 (gap closure, black line), or I' = 2.5 - T’y (gap filling, red
line), respectively (with the other parameters left unchanged, in each of these two cases). d Simulated photoemission intensity at the HS, w =
—50+10meV, as a function of the electronic temperature (black dashed line). The green line is the inverse of &, obtained from ref. 2% as

discussed in Fig. 2d.

Fermi surface topology and associated transport properties of transition temperature T, of 23.5K with transition widths of 1K.*** The

complex materials.'8721:29-32:43,51,52 very high crystal quality of Nd,_.Ce,CuQ,. s is manifest particularly well in
magnetic quantum oscillations observed on several samples at different
doping levels.”

METHODS

Experimental design DATA AVAILABILITY
Our TR-ARPES setup exploits the classic pump-probe scheme. A 6.2 eV

probe beam is generated by fourth-harmonic generation of the funda-
mental wavelength (800 nm, 1.55eV) of a Ti:sapphire laser (Vitesse Duo
and RegA 9000 by Coherent, 250 kHz repetition rate). The 1.55 eV pump
beam is split from the source before harmonic generation. The pump and Received: 17 August 2019; Accepted: 7 January 2020;
probe beam diameters on the sample are 300um and 150 pum, Published online: 27 January 2020

respectively. The angle of incidence on the sample is approximately

normal for both beams. The two pump incident fluences were 28 + 5 pJ/

cm? for LF and 50 #+ 10 p/cm? for HF. The pump and probe beams were s-

polarized. The sample was cleaved and measured at <5x 10" torr base REFERENCES

Data shown in the main text are available at the Harvard Dataverse.”® Additional data
may be requested from the authors.

Pressure and 10 K tempgrature. Overall thermal effects have been taken 1. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined
into a?count a”‘?' we eSt'mates teg\rl)eratufre of apprczjxmately 49 K.and orders in high temperature superconductors. Rev. Mod. Phys. 87, 457-482 (2015).
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