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Identification of non-Fermi liquid fermionic self-energy from
quantum Monte Carlo data
Xiao Yan Xu 1✉, Avraham Klein2, Kai Sun 3, Andrey V. Chubukov2 and Zi Yang Meng 4,5,6✉

Quantum Monte Carlo (QMC) simulations of correlated electron systems provide unbiased information about system behavior at a
quantum critical point (QCP) and can verify or disprove the existing theories of non-Fermi liquid (NFL) behavior at a QCP. However,
simulations are carried out at a finite temperature, where quantum critical features are masked by finite-temperature effects. Here,
we present a theoretical framework within which it is possible to separate thermal and quantum effects and extract the information
about NFL physics at T = 0. We demonstrate our method for a specific example of 2D fermions near an Ising ferromagnetic QCP. We
show that one can extract from QMC data the zero-temperature form of fermionic self-energy Σ(ω) even though the leading
contribution to the self-energy comes from thermal effects. We find that the frequency dependence of Σ(ω) agrees well with the
analytic form obtained within the Eliashberg theory of dynamical quantum criticality, and obeys ω2/3 scaling at low frequencies. Our
results open up an avenue for QMC studies of quantum critical metals.
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INTRODUCTION
Understanding non-Fermi liquid (NFL) behavior near a metallic
quantum critical point (QCP) remains one of the most ambitious
goals of the studies of interacting electrons. Examples of systems
evincing metallic quantum criticality include fermions in spatial
dimensions D ≤ 3 at the verge of either spin density-wave, charge
density-wave, or nematic-order, 2D fermions at a half-filled Landau
level, quarks at the verge of an instability to color super-
conductivity, and several Sachdev–Ye–Kitaev (SYK)-type models
with either electron–electron or electron–phonon interaction1–43.
At a QCP, fluctuations of the corresponding bosonic order
parameter become soft. The fermion–fermion interaction,
mediated by these soft fluctuations, yields a fermionic self-
energy Σ(ω) ∝ ∣ω∣a with a < 1. The real and imaginary parts of this
self-energy are comparable in magnitude and both are larger than
ω at low frequencies. This implies that the damping of
quasiparticles remains comparable to their energy even infinite-
simally close to the Fermi surface, in variance with the central
paradigm of Landau’s theory of a Fermi liquid (FL). Studies of NFL
became the mainstream of research on correlated electrons after a
series of discoveries of high-temperature superconductors, which
display unconventional metallic properties in the normal
state15,24,44,45. In most of these materials, superconductivity
borders other ordered phases with either spin or charge order.
There are also multiple overlaps between the behavior of fermions
at a QCP and high-energy physics and string theory44,46.
In recent years, several analytical approaches have been

developed to study NFL behavior at a QCP. These approaches
are based on effective fermion–boson models, in which soft
fluctuations of a specific order parameter serve as the source of
NFL behavior. The long-standing goal of these studies is to find
the functional form of Σ(ω) at a QCP and extract the exponent a <
1 from its small ω behavior. One-loop calculations show that Σ(ω)
does become singular at a QCP, for example, in 2D at a transition

to nematic or Ising ferromagnetic (FM) order with momentum Q =
0, it scales at the lowest frequencies as ω2/3 (a = 2/3). Whether this
behavior extends beyond one loop is a more tricky issue. Power
counting arguments indicate that higher-order terms in the loop
expansion for the self-energy reproduce the ω2/3 scaling form7.
However, detailed calculations reveal that additional ðlogωÞn
factors appear, and that n increases with the loop
order25,27,29,31,32,35. Such logarithms imply that at low enough
frequencies, ω � ωmod, Σ(ω) gets modified from its one-loop form.
As a further complication, the same interaction that gives rise to
NFL behavior also gives rise to superconductivity at a non-zero Tc,
so normal state self-energy holds only at ω > Tc. It is difficult to
extract from analytical studies whether ωmod is larger or smaller
than Tc, that is, whether the modification of Σ(ω) from higher-
order processes is relevant for a metal, which displays super-
conductivity near a QCP, or only for a putative normal state at T =
0. This uncertainty has triggered an interest in independent
numerical studies of the behavior of fermions at a metallic QCP.
Numerical methods for itinerant fermions near a QCP have

witnessed great progress in recent years, and at present one can
analyze quantum criticality via reliable large-scale numerical
simulations47,48. In particular, it has been found that designer
models of fermion–boson models offer a pathway to access
fermionic QCPs while avoiding the notorious sign problem in
large-scale quantum Monte Carlo (QMC) simulations. Such models
have been implemented in several simulations, studying
nematic49,50, ferromagnetic51, antiferromagnetic52–56, gauge
field57–62, and Yukawa-SYK-type41 QCPs. The focusing on a
particular soft boson offers an unbiased numerical test for either
a Q = 0 or a finite Q analytical theory of metallic quantum
criticality. The mutual inspiration and dialog between numerical
and theoretical communities, arising from these studies, has also
stimulated progress along the numerical front (SLMC63 and
EMUS64 are successful examples of this).
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Sign-problem-free QMC has its own limitations as well. To avoid
superconductivity and finite size effects, simulations are done at a
finite T, which is not the smallest energy scale in the system, such
that on a Matsubara axis the fermionic self-energy Σ(ωn) is a
function of a discrete Matsubara frequency ωn = (2n + 1)πT. (The
self-energy also has a momentum dependence Σ = Σ(ωn, k), but
here and henceforth we suppress this notation for clarity, except
where needed.) At non-zero T, it can generally be expressed as Σ
(ωn) = ΣT(ωn) + ΣQ(ωn), where the “thermal” part ΣT(ωn) is the
contribution from static thermal fluctuations and the “quantum”
part ΣQ(ωn) is the contribution from dynamical bosonic fluctua-
tions. At T = 0, ωn is a continuous variable, ΣT = 0, and Σ = ΣQ(ωn)
is an NFL self-energy at a QCP. However, at a finite T, the self-
energy differs from its T = 0 form, and the presence of ΣT(ωn) can
mask the behavior associated with ΣQ(ωn). Besides, at a finite T,
ΣQ(ωn) also generally differs from its T = 0 form. We note that in
the Yukawa-SYK model these finite-temperature effects have
recently been analyzed using an emergent conformal (reparame-
trization) symmetry of the low-energy theory, which automatically
incorporates thermal and quantum effects41. However, the
treatment of the present critial FS model without conformal
symmetry requires separate analyses of ΣQ and ΣT.
The main purpose of this paper is to provide the method to

disentangle ΣT and ΣQ from QMC data for the self-energy. Our
approach is based on three observations:

● First, to study QC behavior one should avoid the effect of
fluctuations from fermions with energies of order of the
bandwidth, such as would lead to, or example, Mott physics.
For this, the effective femion–boson coupling (labeled g in the
text) should be much smaller than the bandwidth W. In
systems with a large Fermi surface, W is comparable to the
Fermi energy, so the necessary condition is g � EF.

● Second, at small g, there is a wide range of frequencies ωn ≪
EF, for which ωn is much larger than Σ(ωn). In this range, the
thermal self-energy has a simple form, valid for finite
temperatures and frequencies ωn ≫ Σ, ΣT(ωn) ≈ α(T)/ωn up
to logarithmic corrections, that is, ωnΣT(ωn) = α(T) is
approximately independent of ωn.

● Third, in the same range, ΣQ(ωn) still has NFL form and is well
approximated by the one-loop, T = 0, expression, modulo that
ωn is discrete.

By considering the above points, one arrives at the following
conclusion: if a QMC study is performed at g � EF and provides
data for Σ(ωn) for a substantial number of Matsubara points in the
range ωn ≫ Σ(ωn), it is possible to extract ΣQ from the data by the
following simple procedure. First, extract (the approximately

constant) α(T) from the data by fitting ωnΣ(ωn) by a continuous
function of frequency and extrapolating to zero frequency, where
it is equal to α(T) because ωnΣQ(ωn) extrapolates to zero. Once αT is
known, subtract ΣT(ωn) = α(T)/ωn from the full Σ(ωn) and obtain
ΣQ(ωn), which, as we said, should have the same form as T = 0 self-
energy. For a more accurate separation of ΣQ from ΣT include the
slow frequency dependence of α(T) in the fitting procedure, which
is still quite straightforward to do, as we will show later.
We apply our strategy to a metal near an Ising FM-QCP. We

show the schematic phase diagram in Fig. 1a. It contains regions
of a paramagnetic metal (PM) and an ordered Ising FM, separated
by a QCP. Right above the QCP, there is a region of small T, where
the system displays truly NFL behavior, that is, Σ(ωn) is non-
analytic and larger than ωn. At higher T, Σ(ωn) becomes smaller
than ωn, yet the self-energy still has non-FL form, and, by our
reasoning, its quantum part, ΣQ(ωn) should be almost the same as
at T = 0. In Fig. 1b we show the full self-energy, obtained in QMC
simulation, and in Fig. 1c we show ΣQ(ωn), extracted using the
approximate procedure outlined above. The black line in Fig. 1c is
the analytical one-loop result for the self-energy at a QCP at T = 0.
We see that the data for all ωn nicely fall onto this curve. At small

ωn, the analytic one-loop self-energy behaves as ω2=3
n , and the fact

that QMC data fall onto the T = 0 curve implies that the QMC data

are consistent with ω
2=3
n scaling at the lowest ωn at a QCP. The

deviation from ω
2=3
n scaling in the analytical formula (Eq. (16) in

the text) is due to two reasons. First, for the model used for QMC
simulations, the bosonic propagator D(q, Ω) contains a regular Ω2

term along with the Landau damping term, Ω/q. When this term
becomes relevant, ΣQ(ωn) tends to saturate. Second, even when
the Landau damping term dominates, the ω2/3 form is the low-
frequency limit of a more complicated function ΣQðωnÞ /
ω
2=3
n U ωn=ωbð Þ, and ω2/3 behavior holds only when ωn ≪ ωb, that

is, UðzÞ � Uð0Þ. The crossover frequency ωb � ðgEFÞ1=2 (see
Eq. (12) below). In our simulations, this ωb is much larger than
the upper boundary of NFL behavior, ωF � g2=EF, but is still much
smaller than EF. Accordingly, most of our ωn fall into ωn > ωb,

where ΣQ(ωn) differs from ω
2=3
n . We emphasize that ΣQ(ωn) has an

NFL form regardless of the ratio ωn/ωb. Figure 2 presents a
summary of the relevant energy scales in our QMC study.
It is instructive to compare our results with recent analysis of

QMC data for similar models. Reference65 demonstrated that a
rather flat dispersion of Σ(ωn), obtained in QMC simulations, is
reasonably well reproduced by Σ(ωn) = ΣT(ωn) + ΣQ(ωn), where
both are computed analytically within a metallic QC theory. For
that study, a larger coupling g � EF was used to increase the

Fig. 1 Identification of the non-Fermi liquid. a Schematic phase diagram of an FM (2+ 1)D QCP, adapted from ref. 51. b Fermionic self-energy
at an FM (2+ 1)D QCP, calculated by QMC simulation, adapted from ref. 51. Here, we focus on the point on the Fermi surface with Fermi
wavevector along the x-direction. The QMC self-energy appears to have a leading term of the form 1/ωn. c Quantum part of fermionic self-
energy at an FM (2+ 1)D QCP. The black dashed line shows the theoretical prediction of the zero-temperature Fermi self-energy, while the red
dashed line marks the low-frequency asymptotic form. We emphasize that the theory is parameter free, and all system parameters, for
example, Fermi velocities, are determined separately from the model or QMC measurement.

X.Y. Xu et al.

2

npj Quantum Materials (2020)    65 Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;



magnitude of the self-energy. The discrepancy between the
analytic and QMC self-energies in ref. 65 was ~20%. This was small
enough to see that analytic and QMC self-energies have similar
dispersion, but still too high to reliably extract ΣQ(ωn) from the
QMC data. For the current study, g is smaller, and typical Σ(ωn)/ωn

is roughly five times smaller than in that work. In this situation, we
argue that the QC form of ΣQ(ωn) can be extracted from the data.
The structure of the paper is the following. In section “The

lattice model, phase diagram and QMC self-energy”, we describe
the lattice model for which the QMC simulations have been
performed, and present the numerical results for the self-energy.
In section “Analytic self-energy at Ising FM-QCP”, we present the
analytical results for the self-energy within the self-consistent one-
loop analysis. In section “Analysis of QMC data”, we extract ΣQ(ωn)
from QMC data and show that for all n > 0 it falls onto the analytic,
T = 0 form of ΣQ(ωn). In section “Discussion”, we summarize the
results and discuss the implication of this work to other QC cases
studied in QMC simulations. We argue that the computational
scheme that we proposed can be used as a generic method to
extract NFL self-energy at a QCP and can be further extended to
study more subtle effects, for example, the flow of the dynamical
exponent z.

RESULTS
The lattice model, phase diagram, and QMC self-energy
As shown in Fig. 3, we consider a model describing Ising FM
fluctuations coupled to a Fermi surface51. The model is
implemented on a square lattice with Hamiltonian Ĥ ¼ Ĥf þ Ĥs þ
Ĥsf and each part reads

Ĥf ¼ �t
P
hijiλσ

ĉyiλσ ĉjλσ þ h:c:
� �

� μ
P
iλσ
n̂iλσ ;

Ĥs ¼ �J
P
hiji
ŝzi ŝ

z
j � h

P
i
ŝxi ;

Ĥsf ¼ �ξ
P
i
szi ðσ̂zi1 þ σ̂z

i2Þ;

(1)

where Ĥf describes two layers (or orbitals, λ= 1, 2) of spinful (σ =
↑, ↓) fermions with nearest-neighbor hopping on a square lattice,
and the chemical potential μ tunes the size of bare Fermi surface.
The bare fermion dispersion dictated by Ĥf is ϵðkÞ ¼
�2tðcosðkxÞ þ cosðkyÞÞ � μ and the bandwidth is W = 8t. Ĥs
represents a transverse field Ising model on the same lattice,
where by tuning T and h/J an Ising FM to PM transition can be
obtained. The onsite coupling term Ĥsf between the fermions and
Ising spins mediates a fermion–fermion interaction, establishing a
metallic system with ferromagnetic fluctuations. We present the
schematic phase diagram in Fig. 1a. In the analysis that follows, we
focus on the model parameters {t = 1, μ = − 0.5t, J = 1, ξ/t = 1},
for which we find an FM-QCP at hc/J ≈ 3.270(6). The parameters
associated with the fermiology for these parameters are listed in
Table 1.
As shown in ref. 51, our model gives rise to an FM-QCP.

However, the bare numerical fermionic self-energy data from QCP,
as shown in Fig. 1b, shows a behavior distinctively different from
the expected NFL, ΣðωnÞ / ω

2=3
n . At low frequency, the self-energy

shows an unusual upturn instead of going to zero. Such a upturn
in the imaginary part of fermionic self-energy, in the usual
numeric setting, implies a gap opening on the Fermi surface.
However, our data of the fermionic Green’s function does not

show a well-formed gap on the FS. Similar behavior of the
numerical NFL self-energies has also been observed in other cases,
including nematic and AFM-QCPs49,53. As discussed in the
“Introduction”, the rest of this paper is devoted to an analysis of
the self-energy data in Fig. 1b, and to understand how to
disentangle the thermal and quantum parts of the self-energy, as
shown in Fig. 1c.

Analytic self-energy at Ising FM-QCP
We begin with a brief review of the diagrammatic theory for
interacting fermions near the ferromagnetic QCP. As the derivations
of the electron–boson models and their relationship to itinerant
QCP and NFL physics, as well as superconductivity, are scattered
over numerous research papers and reviews encompassing
decades of work, assiduous readers are suggested to directly
consult these refs 2,3,5–7,12,14,16,17,19,21,22,24,25,27–29,33–35,43,66–72. Here,
we will keep our derivation concise and try to be self-contained.
To understand the situation described in Eq. (1) of itinerant

electrons coupled to critical bosonic fluctuations, we can encode
the dynamics of bosons and fermions in their propagators,

GðkÞ ¼ iωn þ iΣðkÞ � ϵðkÞð Þ�1; (2)

and

DðqÞ ¼ D0 M2
0 þ qj j2 þ c�2Ω2

m þ ΠðqÞ� ��1
; (3)

where k = (ωn, k), q = (Ωm, q) are three-vectors with ωn = (2n + 1)
πT and Ωm = 2mπT, the fermionic and bosonic Matsubara
frequencies, respectively, ϵ(k) is the dispersion from section “The
lattice model, phase diagram and QMC self-energy”, M2

0 represents
the bare distance to the QCP before the interaction is turned on
(in the QMC it is controlled by the transverse magnetic field, M0 =
M0(h)), and Σ, Π are, respectively, the fermionic and bosonic self-
energies. Both self-energies are represented by a diagrammatic

series in g ¼ ðξ2Þ
2
D0. The series is depicted pictorially in Fig. 4,

where solid and wiggly lines are the full propagators G(k), D(q) and
the triangles are fully dressed vertices. In general, it is not justified
to neglect the vertex corrections. However, it is customary to split
the corrections into two types: those coming from fermions away
from the Fermi surface (“high-energy” fermions on the scale of the
bandwidthW), and those coming from near the Fermi surface. The
high-energy contributions just give some static corrections to an
effective low-energy theory, which can be absorbed into an
effective renormalized coupling g. The condition for the smallness

Table 1. Parameters of the fermiology.

(kx, ky) kF υF VF EF

θ = 0 (2.42, 0) 2.42 1.32 1.83 1.60

θ ¼ π
4 (1.44, 1.44) 2.04 2.81 0.73 2.87

Here VF ¼ kF=υF denotes the density of states.

QMC data

ωF πT ,  , ωb EFΣ<< << <<

Fig. 2 Schematic representation of the energy scale relevant in our
QMC study.

i
λ=1

λ=2 fermion site

Ising site

coupling
-t

Ising spin
fermion

h

Fig. 3 Schematic representation of the Ising FM model used in
QMC simulations. Adapted from ref. 51.
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of these corrections is weak coupling,

g � EF: (4)

This condition is valid away from the QCP, that is, when
M2

0 � k2F. In the low-energy theory, at low enough temperatures
and frequencies, it is not justified to neglect vertex corrections.
However, those vertex corrections that contribute to Σ(k) can be
neglected if we are in a regime where ∣Σ(ωn)∣ ≪ ωn. As shown in
Fig. 1b, the lowest fermionic frequency in our QMC simulation is
ω0 = πT = 0.157 with T = t/20 and the corresponding fermionic
self-energy ∣Σ(kF, ω0)∣ = 0.058, so this condition is satisfied. A
longer discussion on this is presented in another work by
some of us65.
In our QMC study, we are always in the regime ∣Σ(ωn)∣ ≪ ωn, and

Eq. (4) is obeyed, so without further discussion we will assume that
vertex corrections are negligible. Then, Π, Σ are described by the
coupled self-consistent equations,

�iΣðkÞ ¼ gT
X
n

Z
d2p

2πð Þ2 G pþ kð ÞD pð Þ; (5)

ΠðqÞ ¼ 2NfgT
X
n

Z
d2p

2πð Þ2 G pþ qð ÞG pð Þ: (6)

Here Nf is the number of fermion flavors (Nf = 2 in the model of
section “The lattice model, phase diagram and QMC self-energy”)
and the factor 2 in Π comes from spin summation.
In principle, Eqs. (5) and (6) have momentum integrals over the

entire Brillouin zone, which means that they still include
contributions to the self-energies that come from high energies.
One of these is a static contribution to Π. This contribution just
renormalizes the mass towards the QCP, that is, M2

0 in Eq. (3) is
replaced by

M2 ¼ M2
0 � ΠðΩm ¼ 0;q ¼ 0Þ: (7)

Thus, M2 can be tuned to a QCP by varying g, or alternatively by
varying M2

0 (this is what is done in the QMC simulations). An
additional static contribution renormalizes D0 and we absorb it
into g. There are also static contributions to Σ, but they do not
change the critical dynamics so we absorb them into the
fermionic dispersion. Then, there are dynamical contributions that
we will now compute.
Beyond neglecting vertex corrections, we further assume that

the fermionic dispersion can be linearized near the FS, which
means that the theory describes a low-energy effective theory
near the FS. Then, integrating over linearized fermionic dispersion
we obtain,

Πðq;ΩmÞ ¼ 2iNfgT
X
n

Z
dθ
2π

VFðθÞ Θðωn þ ΩmÞ � ΘðωnÞ
iΩm � υFðθÞq cosðθ� θqÞ ; (8)

where Θ(x) is the step function, the density of states VFðθÞ ¼
kFðθÞ=υFðθÞ and kF, υF are the Fermi vector and velocity at an
angle θ on the FS, as given in Table 1. In Eq. (8), as ∣Σ(ωn)∣ ≪ ωn, we
neglected contributions from self-energy and assumed that the kF

and υF vector are approximately parallel. For the fermionic self-
energy we get,

ΣðkF;ωnÞ � gT
X
l

Z
pdp
2π

σðωlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
l þ υ2FðθkÞp2

q 1

M2 þ p2 þ c�2ðωn � ωlÞ2 þ Πðpn̂ðθkÞ;ωn � ωlÞ
;

(9)

where σ(x) is the sign function and n̂ðθkÞ ¼ ð�υFy ;υFx Þ
υF

���
θ¼θk

is an unit

vector pointing parallel to the FS at the angle θk. In a C4 symmetric
system, we can replace n̂ by υF=υF, since the unit vector only
determines the value of υF(θ) in Eq. (8).
We first evaluate the bosonic self-energy which to leading

order is,

ΠðΩm;qÞ � g
NfVFðθqÞ

π

jΩmj
υFðθqÞq ; (10)

where the C4 symmetry of the lattice is used to replace υF(θ ± π/2)=
υF(θ) and similarly for VF. Next, we turn to the fermionic self-energy.
Plugging Eq. (10) into Eq. (9) yields,

ΣðkF;ωnÞ � gT
2π

X
l

Z1

0

σðωlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
l þ ω2

q ω2 dω

ω3 þ ðυ2FM2 þ ðυF=cÞ2ðωn � ωlÞ2Þωþ ω2
bjωn � ωlj

:

(11)

In Eq. (11) we rescaled momentum to frequency ω = υFp, and
hid the explicit angular dependence υF = υF(θk) for conciseness.
The frequency scale introduced by Π is

ωb ¼ gNfkFυF
π

� 	1=2

: (12)

From Eq. (11) we can read the relevant frequency scales for Σ
(ωn). The typical scale of the ωl sum is ωl ~ ωn due to the sign
function, that is, typical internal frequencies are constrained to be
on order of the external frequency.
We now show that at finite-temperature, but as long as ∣Σ(ωn)∣ ≪

ωn the fermionic self-energy in Eq. (5) splits into two parts: thermal
and quantum (for detailed derivations and discussions see, e.g.,
refs 16,21,34,43,65). The quantum part recovers the zero-temperature
fermionic self-energy, while the thermal part takes on a very
simple form and scales as 1/ωn. Thus, after simply deducting this
1/ωn term, the finite-temperature self-energy directly provides
the zero-temperature behavior of fermions, although the
measurement is done at finite temperature, at which thermal
fluctuations has a significant contribution. This is one of the key
conclusions of this work. We separate the summation in Eq. (11)
into two parts

ΣðωnÞ ¼ ΣTðωn; T ≠ 0Þ þ ΣQðωn; TÞ; (13)

where ΣT is the ωl = ωn piece of the sum in Eq. (11), namely

ΣTðωnÞ � gT
2πωn

S υFM
jωnj

� 	
; (14)

where

SðxÞ ¼ cos h�1ð1=xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p � log ð2=xÞ; x � 1

π=ð2xÞ; x � 1



: (15)

As SðxÞ vanishes rapidly at large x, it predicts that ΣT only
contributes significantly at finite temperature and close enough to
the QCP (πT ≳ υF υFM). In that regime, as noted in the introduction,
α(T, ωn) = ωnΣT(ωn) depends at most logarithmically on frequency
at the smallest ωn, α(T, ωn) ≈ α(T).
The quantum part includes all other terms in the Matsubara

sum. This sum can be approximately replaced by an integral,
which immediately recovers the T = 0 form of the fermionic

Fig. 4 The diagrammatic representation of bosonic self-energy Π(q)
and fermionic self-energy Σ(k).
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self-energy, that is,

ΣQðωnÞ � gσðωnÞ ωn

ωb

� 	2=3

U ωn

ωb

� 	
; (16)

with

UðzÞ ¼
Z 1

0

dx dy
4π2

y

y3 þ ðυF=cÞ2x2yz4=3 þ x

σðx þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x þ 1

y

� �2
z4=3

r � σðx � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x � 1

y

� �2
z4=3

r
2
664

3
775:

(17)

The scaling function UðzÞ has the following asymptotics,

UðzÞ ¼
1

2π
ffiffi
3

p ; z � 1;
1

24z2=3 ; 1 � z � zc;
u0
z2=3 ; zc � z;

8><
>: : (18)

where z�1
c ¼ ðυF=cÞ3=2 and u0 is a constant which depends on

υF=c. For υF=c ≪ 1, u0 ≈ 1/8; while for parameters of section “The
lattice model, phase diagram and QMC self-energy” (υF=c ≈ 0.42),
u0 ≈ 0.1. Note in the case of our QMC study zc ≈ 3.7, so that the
intermediate regime cannot really be seen. Equation (17) is exactly
the formula we used to generate the black line in the Fig. 1c, and
is the quantum NFL self-energy ΣQ of an FM-QCP. It saturates in
the large frequency region as shown in the figure, as predicted by
Eq. (18) in the zc ≪ z limit. Combining Eqs. (14) and (16), we
indeed see that the self-energy has a thermal 1/ωn term plus the
zero-temperature quantum self-energy.
Let us briefly elaborate on the physics behind the scaling

function UðzÞ. In Eq. (17), the part in the square brackets
correspond to the fermionic propagator and the other part in
the integral corresponds to the bosonic propagator. Consider the
limit ω ≪ ωb corresponding to z ≪ 1. Expanding for z ≪ 1 we find
that to leading order the terms in the square brackets are a
constant, and the dx integral is limited to 0 < x < 1. Physically this
is the statement that the momentum integration (∫dy) is only on
bosonic momentum parallel to the FS. In addition, the ðυF=cÞ2x2y
term in the boson propagator is also negligible, which corre-
sponds to the fact that the bare Ω2 part of the boson dynamics is
irrelevant at low frequency. Evaluating Eq. (16) for ωn ≪ ωb we
find,X
Q

ðωnÞ ¼ ω
1=3
F ωnj j2=3σðωnÞ þ � � � ; (19)

where

ωF ¼ g2

8π233=2VFυ2FNf
; (20)

Equation (19) is the formula used to generate the red dashed line
in Fig. 1c, as an asymptotic line of the quantum part of the self-
energy predicted by Eq. (17). The analysis of Σ leading to Eqs. (19)
and (20), as well as analogous analysis for superconducting self-
energy, is conventionally termed “Eliashberg theory” (ET), due to
its similarity to ET of superconductivity from electron–phonon
interactions73.
Now consider the opposite limit, ω ≫ ωb, corresponding to z ≫

1. For simplicity let us assume υF/c ≪ 1. In that case the term in
the square brackets, corresponding to the fermionic propagator, is
not constant, and the bulk of the contribution to u0 is given by the
range 1 < x < ∞. Physically this means that scattering is not
confined to be parallel to the FS and is two dimensional, although
it is still confined to be near the FS. It is instructive to compute the
subleading term for small z. After some algebra, one finds that this
contribution is also given by 2D scattering, and gives
ð2π= ffiffiffi

3
p ÞUðzÞ � 1� 0:73z1=3. This means that for z ~ 1, Σ0 is

reduced by a factor of almost 4 from the expected value if one
considers only the leading contribution. This is the reason that the

deviation from the asymptotic red line in Fig. 1c is so large. At
even larger z, the Ω2 term in the bosonic propagator begins to
contribute, which just modifies the high-frequency behavior of the
self-energy. However, the deviations from ω2/3 scaling occur
already at z ~ 1. We term the theory which accounts for both high-
frequency modifications and the finite-temperature corrections of
Eq. (14) a modified Eliashberg theory (MET).

Analysis of QMC data
Now we turn to the QMC data analysis. We study the fermionic
self-energy from the FM-QCP model described in section “The
lattice model, phase diagram and QMC self-energy” and compare
the QMC data with the MET in section “Analytic self-energy at Ising
FM-QCP”.
Let us begin by going through the relevant physical parameters

in the QMC data. We normalize all quantities by the hopping
energy t = 1, see section “The lattice model, phase diagram and
QMC self-energy” for details. By tuning the transverse field h,
ref. 51 was able to extract QMC data for different T above the QCP,
and also deep in the disordered phase, where the self-energy
should have an FL form Σ(ωn) ∝ ωn at low frequencies. We
concentrate on the data at the QCP. The parameters from section
“The lattice model, phase diagram and QMC self-energy” imply a
bare g ¼ 1=4, which is much smaller than EF ≈ 1.6, implying the
QMC is in the weak coupling regime (we remind that all energies
are quoted in units of the hopping). The bosonic propagator in
QMC was found to agree well (as shown in ref. 51, it turns out the
bosonic propagator is dominated by the bosonic self-energy part,
with a small finite anomalous dimension in q2 and Ω2 terms, it will
not change the main results of this paper) with Eqs. (3), (7), and
(10), that is,

DðqÞ ¼ D0ðM2ðTÞ þ q2 þ c�2Ω2
m þ ΠðqÞÞ�1

; (21)

with D0 = 1, M2(T) = 0.13T1.48, c = 3.16, that is, the measured D0

agrees with the bare one, all obtained from the bosonic
propagator data in ref. 51. In addition, it was found that Σ(ωn) ≪
ωn for all temperatures and Matsubara frequencies that were
obtained. Thus, we may expect that corrections to the bare g are
small, and the renormalized g, which is an input to MET is at the
order of the bare one. Under this condition, the relevant scales for
Σ are

ωb ¼ 0:71; ωF ¼ 2:38 ´ 10�5: (22)

The temperatures we analyze are T = 0.05,…, 0.1, which implies
the first Matsubara frequency is πT = 0.16, …, 0.31, see the
schematics of energy scale in Fig. 2. Thus, ωF is completely
irrelevant as is verified by the fact that the self-energy is always
small. As we discussed in section “Introduction”, the QMC self-
energy appears to have a leading term of the form

Σ / 1
ωn

þ � � � (23)

as shown in Fig. 1b. This is consistent with the prediction of MET,
see Eqs. (14) and (15).
We analyze the data in two ways. First, we extract the quantum

self-energy and compare it to the T = 0 prediction. To do this, we
need to remove the thermal part. This is most conveniently done
simply by studying the product ωnΣ(ωn). As discussed in the
“Introduction” and the previous section, according to Eqs. (13) and
(16) we have,

ωnΣðωnÞ ¼ αðTÞ þ gωnσðωnÞ ωn

ωb

� 	2=3

U ωn

ωb

� 	
; (24)

providing we treat α(T) as constant, neglecting its slow frequency
dependence, see Eq. (15). In Eq. (24), α(T) includes both the
contribution from ΣT(ωn, T), and corrections from finite size effect
(such as a possible small gap due to the mismatch of finite size hc
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and the thermodynamic hc). The second part, that is, ωnΣQ(ωn),
comes from the MET prediction for ΣQ(ωn), Eq. (16), which recovers
ET prediction Eq. (19) in the low-frequency limit (ωn ≪ ωb).
We fit Eq. (24) to the data for all T simultaneously. Importantly,

in Eq. (24), the fitting parameters are only the constants α(T) and g.
This is because ΣQ is a function only of g and system parameters,
see Eq. (17). Figure 1c from the beginning of our paper depicts the
result of our fit. We obtain a fitting of g ¼ 0:245 ± 0:023 for 95%
confidence intervals, in excellent agreement with the theory.
Regarding α(T), we find that α(T) ≈ 8 × 10−3 is almost a constant, in
disagreement with the expected ∝ T behavior of ωnΣT(ωn, T).
Clearly, part of this discrepancy is due to our neglecting the
frequency dependence of α. We therefore repeat the analysis
using the following fitting procedure,

ωnΣðωnÞ ¼ α0ðTÞ þ gT
2π

S
υFM
jωnj

� 	
þ gωnσðωnÞ ωn

ωb

� 	2=3

U ωn

ωb

� 	
;

(25)

which takes the full frequency behavior of ΣT into account. Guided
by the previous fit, we set g ¼ 0:25 to be the bare one to reduce
the number of fitting parameters. We show the result of this fit in
Fig. 5 and the extracted α0ðTÞ in Fig. 6. The agreement is very
good, and we checked that the data collapse can be made even
better by allowing g to vary somewhat (equivalent to about 13%
change in the bare vertex ξ). The extracted α0ðTÞ indicates the
formation of a small gap forming at around T = 0.1, which is
expected to yield a self-energy contribution of the form α'(T)/ωn =
Δ2(T)/ωn. The gap size Δ corresponding to α0ðTÞ is much less than
the numerical inverse reciprocal lattice spacing, so the appearance
of this gap is actually an expected effect, which however is
beyond the resolution of the standard methods for verifying the
appearance of long-range order. Thus, our analysis of the self-

energy yields a method for more accurately finding the QCP in our
system.
Here we add a word of caution. Previous work has shown33,38,74

that the first Matsubara frequency does not obey the quantum
critical scaling ΣQ(πT) ∝ (πT)2/3, and therefore should not be
included in the fitting procedure. We verified that dropping the
first Matsubara point does not change our results. Also, note that
within the error range in Fig. 5, it is possible that ΣQ(πT) < 0. In fact,
it can be verified that ΣQ(πT) is always negative

21,65.
To avoid this issue, we also numerically computed ΣT(ωn) and

ΣQ(ωn) by performing the Matsubara sum in Eq. (9), using
g ¼ 0:25. This procedure takes into account the full frequency
dependence of ΣT(ωn) as well as finite mass effects and the first
Matsubara frequency issues. Figure 7 depicts a comparison of the
QMC self-energy with the numerical summation. There is an
excellent agreement between the two, except for a T-dependent
constant offset between the MET and QMC results. The result is
consistent with the first analysis we performed above. For
completeness, we also performed a comparison between the
MET and QMC data for the data in the disordered phase (the FL
regime). Figure 8 shows this comparison, again with very good
agreement.
We therefore conclude that we have extracted the quantum

self-energy from the QMC data, and that it shows excellent
agreement with the expected QC behavior.

DISCUSSION
NFLs play a crucial role in a wide range of quantum many-body
phenomena, such as quantum criticality, high-temperature super-
conductivity in correlated materials, unconventional transport in strange
metals, and have been a key focus in the study of modern condensed
matter physics1–3,5–7,12,14–19,22,24,25,27–29,33,35,36,44,45,47,48,53,66–72,75. Despite
of the intensive research efforts, key questions remained open and

Fig. 5 Extraction of the quantum self-energy. The solid dots
correspond to the QMC ωnΣ(ωn) for different T, while for each T
dataset, the thermal part and a constant α'(T) has been deducted
(see Fig. 6). The dashed line corresponds to ωnΣQ(ωn), computed at
T = 0, for the bare g from the parameters of section “The lattice
model, phase diagram and QMC self-energy”. The gray shaded area
is the 95% confidence interval.

Fig. 6 The extracted gap contribution to ωnΣ(ωn, T). See Eq. (25)
for details.

Fig. 7 Comparison of the full self-energy between MET and QMC
at the QCP. The solid dots correspond to the QMC data, and the
hollow dots correspond to a numerical summation of the Matsubara
sums in Eq. (11).

Fig. 8 Comparison of the full self-energy between MET and QMC
in the FL region (h/J = 3.6 > hc/J). The solid dots correspond to the
QMC data, and the hollow dots correspond to a numerical
summation of the Matsubara sums in Eq. (11).
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the problem of NFLs is still one of the most challenging topics in
many-body physics, even with the most sophisticated field
theoretical treatments16,25,27,29,35, powerful numerical many-body
algorithms and high-performance supercomputers47,48,63,64.
Our work provides a pathway to address a key challenge in the

study of NFLs, that is, the fact that the smoking-gun signature of NFLs
(the predicted unconventional low-temperature fermion self-energy),
has never been directly observed or verified in large-scale unbiased
numerical methods. Through combined numerical and theoretical
efforts, we proved that this key signature of NFLs can be accessed
through QMC simulations, by simply deducting a ∝ 1/ωn thermal-
fluctuation background. This technique enabled us to directly
compare numerical results with theoretical predictions, providing a
bridge between theoretical, numerical, and experimental studies.
Although this paper mainly focuses on the itinerant ferromag-

netism QCP as an example to demonstrate the physics, the
technique is universal and can be easily generalized to other
itinerant QCPs, such as nematic and AFM-QCPs49,52,53,56. Further-
more, this technique can also be used to explore the predicted
non-trivial effects from higher-order corrections16,25,27,29,35,76, and
thus open up a pathway towards a full understanding about this
challenging subject of NFLs.

METHODS
Numerical calculations
The numerical results for fermionic and bosonic self-energies have been
obtained using state-of-art determinantal QMC simulations as reported in
ref. 51.

Analytical calculations
Analytical calculations have been carried out diagrammatically within ET
and MET, by solving the set of self-consistent equations for fermionic and
bosonic self-energies.

DATA AVAILABILITY
The data that support the findings of this study are available from the first author
upon reasonable request.
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