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Selection rules for Cooper pairing in two-dimensional
interfaces and sheets
Mathias S. Scheurer1, Daniel F. Agterberg2 and Jörg Schmalian1,3

Thin sheets deposited on a substrate and interfaces of correlated materials offer a plethora of routes towards the realization of
exotic phases of matter. In these systems, inversion symmetry is broken which strongly affects the properties of possible instabilities
—in particular in the superconducting channel. By combining symmetry and energetic arguments, we derive general and
experimentally accessible selection rules for Cooper instabilities in noncentrosymmetric systems, which yield necessary and
sufficient conditions for spontaneous time-reversal-symmetry breaking at the superconducting transition and constrain the
orientation of the triplet vector. We discuss in detail the implications for various different materials. For instance, we conclude that
the pairing state in thin layers of Sr2RuO4 must, as opposed to its bulk superconducting state, preserve time-reversal symmetry with
its triplet vector being parallel to the plane of the system. All triplet states of this system allowed by the selection rules are predicted
to display topological Majorana modes at dislocations or at the edge of the system. Applying our results to the LaAlO3/SrTiO3

heterostructures, we find that while the condensates of the (001) and (110) oriented interfaces must be time-reversal symmetric,
spontaneous time-reversal-symmetry breaking can only occur for the less studied (111) interface. We also discuss the consequences
for thin layers of URu2Si2 and UPt3 as well as for single-layer FeSe. On a more general level, our considerations might serve as a
design principle in the search for time-reversal-symmetry-breaking superconductivity in the absence of external magnetic fields.
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INTRODUCTION
The realization and characterization of two-dimensional (2D)
superconducting phases in various different systems constitutes
a topic of great current interest.1–5 This is motivated by the
promising role played by 2D superconductors in the search for
topological Majorana modes and related applications,6 by the
tunability of the electronic properties,2,4,7–9 and by the funda-
mental interest in superconducting transitions in reduced dimen-
sions. Particularly interesting examples are given by LaAlO3/SrTiO3

heterostructures, that show very rich electronic behavior,10 and
single-layer FeSe on [001] SrTiO3 with significantly enhanced
transition temperatures compared to its bulk value.3 This also
motivates closer inspection of superconducting thin films of other
correlated materials such as Sr2RuO4

11 and UPt3
12 which, in

addition, promises to offer insights into the electronic properties
of the bulk material.
Noncentrosymmetric 2D superconductors form a particularly

important class since inversion symmetry is naturally broken in the
practical realization of 2D systems: As shown in Fig. 1a, both for an
interface as well as for a thin layer on a substrate (B is vacuum) or
in an asymmetric environment (B not vacuum, but A ≠ B), the
system is not invariant under the transformation r→−r of the
three-dimensional (3D) spatial coordinates; inversion symmetry
can only be restored in the case of a thin layer in a symmetric
environment as shown in Fig. 1b.
A pivotal property of superconducting states is their behavior

under the inversion of the time direction. Not only does it
determine the topological classification13 but also essentially

influences the electromagnetic and thermal responses of these
systems.14

In this work, constraints on possible pairing states of
noncentrosymmetric systems are derived that follow from the
combination of symmetry and energetic arguments. These
“symergetic” selection rules state that

(I) if a superconductor has an order parameter that transforms
according to a complex or multi-dimensional irreducible
representation (IR) of the point group G of the normal state,
it must break time-reversal symmetry (TRS). Note that this is
not generally true in systems with inversion symmetry (see,
e.g., refs 15 and 16).

(II) In 2D, TRS can only be broken in systems with threefold
rotation symmetry.

(III) In the presence of a twofold rotation symmetry C?
2

perpendicular to the plane of a 2D system, the component
of the triplet vector along the axis of C?

2 must vanish.

These results hold under the assumption that (i) the energetic
splitting Eso of the Fermi surfaces is larger than the super-
conducting order parameter and (ii) that the superconducting
phase does not break translation invariance. As we discuss in
detail below, statement (II) follows from the fact that the
superconducting pairing potential ~Δka ¼ hϕkajΔkT yjϕkai for singly
degenerate Fermi surface a (with associated Bloch wavefunctions
ϕka, microscopic superconducting order parameter Δk, see Eq. (2),
and the unitary part T of the antiunitary time-reversal operator Θ)
is even under k→−k with 2D momentum k—a result that was
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obtained in ref. 17 We emphasize that our notion of 2D does not
include strongly anisotropic 3D systems illustrated in Fig. 1c.
In the remainder of the paper, we will first discuss the

consequences for the time-reversal and topological properties of
possible pairing states in several different 2D materials and then
present a proof of the selection rules (I), (II), and (III).

RESULTS
The selection rules stated above naturally lead to the gedanke-
nexperiment illustrated in Fig. 2a: imagine putting a 3D bulk
superconductor with a TRS-breaking order parameter on a
substrate and gradually reducing its thickness d. If the resulting,
necessarily noncentrosymmetric, point group G of the thin layer
system does not contain a threefold rotation symmetry, either
superconductivity disappears or TRS must be restored below a
critical value of d. Furthermore, if C?

2 2 G, the triplet vector must
be aligned parallel to the plane of the system.

Consequences for Sr2RuO4

A natural candidate material for this gedankenexperiment is
provided by Sr2RuO4 hosting a superconducting phase18 which is
widely believed to be a TRS-breaking chiral p-wave state with
triplet vector dk ∝ (kx + iky)ez.

19–21 Due to its small superconduct-
ing transition temperature and the near degeneracy22 of the chiral
p-wave order parameter with the triplet states transforming under
the 1D IRs of its bulk point group D4h,

23 along with the strong
spin-orbit coupling of Ru (following from the large atomic number
Z = 44), we expect the selection rules to apply. Furthermore, thin
layers of this material have been fabricated and shown to be
superconducting.11 As the point group is reduced to C4v by the
presence of the substrate, we conclude that both TRS must be
restored and the triplet vector must rotate to be aligned in the
plane of the system upon reducing the thickness d. We note that
these general predictions are confirmed by the explicit single-
band-model calculations in refs 24,25.
Since the superconducting condensate belongs to symmetry

class DIII,13 it is characterized by a Z2 topological invariant ν with

Fig. 1 From a symmetry point of view, 2D systems (yellow) can be grouped into those realized in an asymmetric (a) or symmetric
(b) environment. Layered materials consisting of weakly coupled sheets as shown in (c) are not included in our definition of 2D systems

Fig. 2 a Illustration of the gedankenexperiment explained in the main text with superconductor and substrate shown in yellow and green,
respectively. b Fermi surfaces of thin layers of Sr2RuO4 following from the model defined in the “Methods” section. c and d show the low-
energy part of the spectrum of the superconducting states transforming under A1 and B1 for open (periodic) boundary conditions along the y
(x) direction. For concreteness, we have taken pure triplet pairing with d / 0:2t1ðsin ky ;�sin kx ; 0ÞT and d / 0:08t1ðsin ky ; sin kx ; 0ÞT ,
respectively (cf. Table 1). As argued in the main text, the spectra of the B2 and A2 pairing states look qualitatively similar to (c) and (d)
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ν = −1 (ν = +1) defining the topological (trivial) phase.6 The
invariant is given by26

ν ¼
Y
a

signð~ΔkaaÞ
� �ma

; ð1Þ

where the product involves all Fermi surfaces, ka is an arbitrary
momentum on a and ma the number of time-reversal invariant
momenta (green dots in Fig. 2b) enclosed by Fermi surface a. In
order to calculate the topological properties of the pairing states
that are not excluded by our selection rules, i.e., those
transforming under the four 1D IRs of C4v (see Table 1), we take
the tight-binding model for the Ru t2g states with atomic spin-
orbit coupling that is commonly used27 for bulk Sr2RuO4 (see
“Methods” section) adding the inversion asymmetric hopping
term δðLx sinðkyÞ � Ly sinðkxÞÞ allowed by the residual C4v
symmetry. Here Lj denote angular momentum operators projected
onto the t2g manifold. The prefactor δ is nonuniversal and
unknown, however, the following discussion is independent of its
value as long as all ma are the same as in the limit δ = 0 which
holds as long as δ < 0.47t1 with t1 denoting the largest
centrosymmetric hopping parameter. The resulting Fermi surfaces
for the rather large value δ = 0.45t1 are shown in Fig. 2b.
In addition, we assume that the triplet component is larger than

the admixed singlet component since triplet is dominant in bulk
Sr2RuO4. Consequently, the sign of ~Δkaa is opposite on Fermi
surfaces split by the inversion asymmetric hopping δ ≠ 0. From

Eq. (1) and Fig. 2b it then directly follows that the (gapless) state
transforming under A1 is topological. This is confirmed by the
spectrum shown in Fig. 2c characterized by a gapless Kramers pair
of Majorana modes crossing the bulk gap in the vicinity of kx = π.
The subgap states around kx = 0 result from the β and γ bands
being topological separately. The band mixing of the super-
conducting pairing, however, introduces a mass to the associated
edge modes. Since Eq. (1) also holds for the 1D DIII Z2 invariant
(with ma = 1),26 we directly find the nontrivial invariant νx = −1 (νy
= −1) for the fictitious 1D system at kx = π (ky = π). Therefore, the
system is characterized by the weak indices (1,1) such that a
Kramers doublet of isolated Majorana modes emerges at any
dislocation with Burgers vector b = (b1, b2) satisfying b1 + b2
odd28,29 as illustrated in Fig. 3.
The orbital polarization and symmetry restrictions render the

Fermi-surface splitting very small along the high-symmetry lines
kx = 0, π and ky = 0, π as can be seen in Fig. 2b. Although being
nodal in the limit Δ≪ Eso, the B2 pairing state is thus fully gapped
for values of the order parameter that are larger than the small
splitting at these high-symmetry lines but much smaller than the
average value of Eso such that the symergetic selection rules still
apply. For this reason, the B2 state has the same topological
signatures as the A1 order parameter.
However, the B1 and A2 states have nodes along the Γ-M

direction and, hence, the topological invariant ν of the 2D system
is ill-defined. Nonetheless, the nontrivial fictitious 1D invariant νx
implies the presence of Majorana modes around kx = π at an
interface parallel to the x axis which is confirmed by Fig. 2d. This
only holds as long as translation symmetry is preserved along x
which is not a very constraining assumption as very clean samples
are already required to stabilize the superconducting state itself.
Taken together, this discussion implies that thin films of Sr2RuO4

represent a promising setup for the realization of Majorana modes
and that the latter might be helpful in determining the pairing
state of the 2D system which could provide insights for the bulk
material as well.

Other TRS-breaking condensates
Let us discuss two further materials, URu2Si2 and UPt3, which are
believed to host a TRS-breaking superconducting bulk state.30,31

To begin with URu2Si2, we first note that it is from a symergetic
point of view very similar to Sr2RuO4: The point group D4h of its
bulk is reduced to C4v in a thin film of (001) orientation and the
combination of the strong spin–orbit coupling of U (Z = 92) and
the small transition temperature32 makes assumption (i) plausible.
It follows that, if the thin film still displays superconductivity, TRS
must be restored in the condensate and the triplet component of
the order parameter must be aligned parallel to the plane of the
system. More specifically, from a pure symmetry point of view, the
most natural33 candidate pairing state is e(1,i) transforming under
the IR E subduced from Eg of D4h, which is the IR of the bulk
pairing state Δk = iσy(kx + iky)kz.

30,34 Since this state is suppressed if
assumption (i) holds, superconductivity is likely to disappear in the
thin-layer system, which, in addition, implies that inversion-
symmetry breaking impurities are expected to be strongly pair
breaking.
As for UPt3, the selection rules are expected to be applicable for

the same reason as in the case of URu2Si2 and Sr2RuO4, but the
point symmetries are different: The bulk point group D6h is
reduced to C6v in a (001) film and, hence, contains a threefold
rotation symmetry such that TRS-breaking cannot be excluded. If
superconductivity does not disappear, C?

2 2 C6v implies that the
triplet vector, which is largely aligned along the z axis in the bulk
condensate,35 must rotate to be parallel to the xy plane. We note
in this context that superconducting (001)-oriented films of UPt3
have been reported in ref. 12 From a symmetry point of view,
there are ten possible superconducting phases—four associated

Table 1. Possible pairing states for a system with C4v point group such
as thin layers of Sr2RuO4

Gr. th. Pairing Symmetry TRS dk⋅σ

A1 s-wave 1, X2 + Y2 y Yσx−Xσy
A2 g-wave XY(X2−Y2) y Xσx + Yσy
B1 dx2�y2 X2−Y2 y Yσx + Xσy
B2 dxy XY y Xσx−Yσy
E(1,0) e(1,0) X y σzY

E(1,1) e(1,1) X + Y y σz(Y−X)

E(1,i) e(1,i) X + iY n σz(X + iY)

It is indicated whether the phase preserves (y) or breaks (n) TRS. Here X and
Y are continuous functions on the whole Brillouin zone transforming as the
in-plane momenta kx and ky. To define the triplet component of the order
parameter, we use σj to denote Pauli matrices in spin space. As shown in
the main text, the state transforming under E, with triplet vector along z, is
energetically disfavored if (i) holds. Although our analysis is more general,
we here focus, for simplicity, on pairing states that transform trivially in
orbital/subband space.

Fig. 3 If the superconducting state in thin layers of Sr2RuO4 is fully
gapped, a Kramers pair of Majorana modes (red) will be localized at
dislocations charactered by a Burgers vector b (orange) with b1 + b2
odd
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with the four 1D IRs of C6v and three with each of the two 2D IRs E1
and E2. Since they are odd under k→−k, we exclude E1 and two of
the 1D IRs. Furthermore, the two time-reversal symmetric order
parameter configurations transforming under E2 can be discarded
[see (I)] and we are left with only three candidate pairing states for
the thin layer system: The time-reversal symmetric s-wave and i-
wave states transforming under A1 and A2, respectively, as well as
the TRS-breaking state transforming as (X + iY)2.

Further examples
Finally, let us discuss three additional 2D superconducting systems
without TRS-breaking 3D analog. We begin with the LaAlO3/SrTiO3

heterostructures that show interface conductivity36–38 for the
three different orientations (001), (110), and (111) of the interface
with respective point groups C4v, C2v, and C3v while super-
conductivity has so far only been reported for the former two
orientations.1,5 Even though the proton number of Ti is smaller
than that of the atoms relevant to the previously discussed
materials, the experimentally reported strong spin-orbit splitting
of the Fermi surfaces39,40 shows that assumption (i) is clearly
appropriate. From result (II), it follows that the condensates of the
(001) and (110) interfaces must be necessarily time-reversal
symmetric whereas the (111) heterostructure allows for exotic
TRS-breaking superconductivity. Due to the absence of a C?

2
symmetry it is also the first system we have discussed so far that
makes an out-of-plane triplet vector possible [see (III)]. Taken
together this motivates a closer experimental inspection of the
low-temperature properties of the (111) interface.
Another 2D system with threefold symmetry, that is a candidate

for TRS breaking, is MoS2 that was shown to be superconducting
via ion gating.4,8

In order to calculate the topological invariant ν in Eq. (1) of the
(001) and (110) oxide interfaces, a microscopic calculation has to
be performed since there is no 3D analog to compare with and
the symmetry properties alone do not determine ν. The analysis of
refs 41,42 shows that the topological properties are directly
related to the origin (electron–phonon/purely electronic) of the
interaction driving the superconducting instability.
Our final example is single-layer FeSe on SrTiO3. If assumption (i)

is also valid for this system, the symergetic restrictions apply and
the superconductor cannot transform under the 2D IR of C4v, thus,
preserving TRS. In combination with experiment indicating the
absence of nodes,43 there are only three possible pairing states:
The pairing field can have the same sign on all four (spin–split)
electron pockets around the M point (s++++), the signs can
be pairwise identical (s++−−) or only differ on one Fermi surface
(s+++−). Only the latter pairing state has a nontrivial DIII invariant ν
as readily follows from Eq. (1). It has recently been shown42 under
very general assumptions that an s+++− state is not possible
irrespective of whether superconductivity arises from the coupling
to collective particle-hole modes or from phonons. Therefore,
FeSe is most likely a topologically trivial, TRS-preserving
superconductor.

Spontaneous symmetry breaking
After having illustrated the consequences for several different
materials, we will next proof the selection rules (I), (II), and (III). In
order to decide which superconducting states are possible, we
consider a system with pairing Hamiltonian

HMF ¼
X
k

ψy
khkψk þ

1
2

�
ψy
kΔkðψy

�kÞ
T þ H:c:

�� �
; ð2Þ

already taking into account assumption (ii). The fermionic creation
and annihilation operators ψk

† and ψk are N-component spinors
that describe the spin and orbital degrees of freedom as well as
potentially relevant subbands that result from the confinement

along the direction perpendicular to the plane of the system.
Correspondingly, the normal state Hamiltonian hk and the pairing
function Δk in Eq. (2) are N × N matrices. Note that this approach
and the following analysis go beyond the pseudospin description
that is commonly used17,44,45 for studying pairing in systems with
spin–orbit coupling.
To begin with the constraints resulting from symmetries, let us

investigate the transformation properties of Δk under time-
reversal and the elements g of the point group G of the normal
state. Time-reversal acts on the pairing field according to

Δk !Θ TΔ�
�kT

T : ð3Þ
Under a point group operation g 2 G holds

Δk !g RψðgÞΔR�1
v ðgÞkR

T
ψðgÞ, where Rv(g) and Rψ(g) transform vectors

and spinors, respectively.
To identify the order parameter, we expand the pairing field

Δk ¼
X
n

Xdn
μ¼1

ηnμχ
n
kμ ð4Þ

with respect to the basis of N × N matrix fields χnkμ transforming
under the IR n of G. Here dn is the dimensionality of the IR n and ηnμ
are complex-valued coefficients. Note that, before analyzing
fluctuations, we first have to determine the form and, in particular,
the symmetry properties of possible order parameters which is the
central theme of the present work. Including fluctuations will
modify the behavior of physical quantities in the vicinity of the
phase transition. As will be seen below, the superconducting
transitions we investigate are always second order on the mean-
field level and, hence, a Ginzburg-Landau (GL) expansion can be
used to determine the candidate pairing states. Taking into
account the usual orthogonality relations of IRs,23 the free energy
F assumes the form

F½ηnμ� ¼ F½0� þ
X
n

Xdn
μ¼1

anðTÞjηnμj2 þ F�4½ηnμ� ð5Þ

with higher order terms F�4 2 Oðjηj4Þ. The coefficient an0ðTÞ that
first changes sign determines the IR n = n0 of the order parameter.
If the representation n0 is real, the TRS of the normal state implies
that the matrix fields χn0kμT

y can be chosen to be Hermitian (see
Supplementary Information S1) and from Eq. (3) follows

ηn0μ !Θ ± ðηn0μ Þ� for Θ2 ¼ �1. As the global phase of the order
parameter can always be absorbed by a U(1) transformation of the
fields, we need at least a 2D ðdn0>1Þ order parameter vector with a
nontrivial relative phase to break TRS. For instance, in the case of
C4v

23summarized in Table 1, only the pairing state e(1,i) transform-
ing under the 2D IR E breaks TRS. Note that this is different in the
case of complex representations, where time-reversed partners
transform according to different IRs. Consequently, we have to
identify pairing states either in complex or in multi-dimensional
IRs to obtain a TRS-breaking superconductor.

Weak-pairing limit
To deduce the consequences resulting from the energetic
assumption (i), it is convenient to diagonalize the free Hamiltonian
hk by the unitary transformation ψki = ∑a(ϕka)i fka that is made of
its eigenfunctions ϕka satisfying hkϕka = εkaϕka. Since hk is time-
reversal symmetric, i.e. ΘhkΘ

−1 = h−k, we know that Θϕka is an
eigenstate of h−k with the same energy. The broken inversion
symmetry at the interface along with spin-orbit coupling further
imply that the Fermi surfaces are non-degenerate in the generic
case. This implies for the wave functions that46

ϕka ¼ eiφ
a
kΘϕ�ka; ð6Þ

where the phase factors must satisfy the condition eiφ
a
k ¼ �eiφ

a
�k as

a consequence of Θ2 ¼ �1. The Hamiltonian can now be cast in
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the quadratic form H¼ 1=2
P

kΨ
y
kh

BdG
k Ψk using the Nambu spinor

Ψka ¼ ðf ka; f y�kae
�iφa

k ÞT . The off-diagonal elements of the asso-
ciated Bogoliubov-de Gennes (BdG) Hamiltonian, characterizing
the superconducting state, are given by Dkab = 〈ϕka|ΔkT

†|ϕkb〉.
We now consider the weak-pairing limit (see Fig. 4) that implies

that partners of a Cooper pair always originate within a given
Fermi sheet and not between states of different sheets. If this is
the case, it holds

Dkab ¼ ~Δkaδab: ð7Þ
Note, this assumption does not exclude frequently discussed

pairing states that are due to interband interactions. It merely
requires that anomalous averages are made of the same quantum
numbers as the normal state. In this weak-pairing limit, we
immediately obtain the eigenvalues of the BdG Hamiltonian hk

BdG

as Eka ¼ ± ðε2ka þ j~Δkaj2Þ1=2, i.e. j~Δkaj is the superconducting gap
on the Fermi surface.
The behavior of ~Δka under point group operations follows

from inserting Eq. (4) and using that the wave functions of
non-degenerate Fermi surfaces must transform as ϕka ¼
eiρ

a
kRyψðgÞϕRvðgÞka with phase factors eiρ

a
k . We obtain that the basis

functions φμn
ka :¼ hϕkajχnkμT yjϕkai transform under the same,

a-independent, IRs as the matrix fields χnkμ. Thus, once we have
found the IR n0 under which the pairing field Δk transforms, along
with the associated order parameter vector ηn0 ¼ ðηn0

1 ; � � � ;ηn0
dn0

Þ;
we also know the symmetry properties of the gap function

~Δka ¼
Xdn0
μ¼1

ηn0
μ φμn0

ka ; ð8Þ

as it transforms exactly the same way.

Proof of statement (I)
Let us first focus on a single IR n0 with the associated interaction
(g > 0)

Hint ¼ �g
X
μ;k;k′

ψy
kχ

n0
kμ ψy

�k

� �T
� �

ψT
�k′ χn0

k′μ

� �y
ψk′

� �
ð9Þ

in the Cooper channel. As we discuss below, making the energetic
assumption (i) allows using the weak-pairing description (7). In this
limit, we write down the GL expansion to all orders in the order
parameter ~Δka formally expressed in terms of Fermi surface
averages hj~Δkaj2lia: As discussed in more detail in the Supple-
mentary Information S2, resummation up to infinite order shows
that F�4 ½ηnμ� � 0 and, hence, the superconducting transition must
be second order on the mean-field level as long as the normal
phase is time-reversal symmetric. This justifies focusing on the first
few orders of the GL expansion to deduce constraints on possible
pairing states. To fourth order, it holds F�4 ¼ Ijηn0 j4βðzn0Þ þ ¼ ,
where zn0 :¼ ηn0=jηn0 j, I > 0 is a (temperature-dependent)

prefactor, and

βðzn0Þ ¼
X
a

Xdn0
μ¼1

zn0μ φμn0
ka

�����
�����
4* +

a

ð10Þ

has been introduced. Let us assume that the minimum occurs at
zn0 2 Rdn0 and define zn0ξ :¼ zn0 jzn0μ0!z

n0
μ0
eiξ for some μ0 with zn0μ0≠0. It

follows from Eq. (10) that

βðzn0ξ Þ � βðzn0Þ � Cðzn0Þξ2 ð11Þ
as ξ→0. For n0 being a real and multidimensional IR, symmetry
properties can be used to show that Cðzn0Þ>0 (see “Methods”
section) except for zn0 ¼ eμ0 , with eμ denoting the unit vector
along the μ direction, where C = 0 following from gauge
invariance. In the latter case, one has to take instead zn0ξ /
ðeμ0 þ iξeμ1Þ with μ1 ≠ μ0 again yielding βðzn0ξ Þ<βðzn0Þ for small,
but finite ξ. This means that introducing relative complexity
between the components lowers the free energy and, hence, the
order parameter must break TRS. This means that the two pairing
states e(1,0) and e(1,1) in Table 1 are allowed by symmetry but
suppressed energetically in the weak-pairing limit. The analogous
discussion for complex IRs, which are best thought of as real
reducible representations of dimension 2dn0 , can be found in the
Supplementary Information S3. It yields that the superconducting
state automatically breaks TRS when n0 is complex (also for
dn0¼ 1). These observations show that having only singly
degenerate bands allows for much stronger statements as
compared to centrosymmetric systems (see, e.g., the discussion
of triplet states in ref. 47).
Two remarks are in order. First, we emphasize that, although the

main focus of this paper is on 2D systems, this result also holds for
the 3D case. Second, statement (I) shows that, in the case of singly
degenerate Fermi surfaces, the representation of the order
parameter being complex or multidimensional is not only a
necessary but also a sufficient condition for TRS breaking.
Consequently, symmetry-breaking fields (see, e.g., ref. 48) are
particularly efficient tools for probing TRS properties in the case of
noncentrosymmetric systems.

Symmetry classification of 2D systems
Shifting k→−k in the weak-pairing limit and using the behavior of
the phase factors in Eq. (6) under this shift, we obtain the
important property

~Δka ¼ ± ~Δ�ka if Θ2 ¼ �1: ð12Þ
Naturally, the upper sign is most relevant for fermionic pairing,

yet we include the more general behavior for two reasons: Firstly,
it illustrates the importance of normal state TRS for the fact that
the gap function ~Δka has a well-defined parity. Secondly, there are
situations49 where fermionic TRS is broken, however, the effective
low-energy theory of the system has an emergent TRS that
satisfies Θ2 = 1.
Let us first focus on the upper signs in Eq. (12). Suppose that the

point group contains a twofold rotation C?
2 with Rv = −1, i.e.,

perpendicular to the plane of the system. This is only allowed in
even space dimensions, since det Rv¼ 1, which is why we will be
focusing on 2D systems in the following. As dictated by Eq. (12),
~Δka has to be an even function of k and, hence, no solutions with
finite gap can occur that are odd under this rotation, which has
recently been very clearly explained in ref. 17.

Proof of statements (II) and (III)
Before discussing below under which conditions we can use the
weak-pairing limit (7) to describe superconductivity, let first
proceed by proving statement (II) and (III) still assuming that (7)
applies.

Fig. 4 Due to assumption (i), the inter-Fermi surface matrix
elements (gray arrow) can be neglected as they couple states
separated by energies of order Eso
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To approach (II), we start by considering again the point group
C4v as an example. The order parameter cannot transform under
the 2D IR E that is required for TRS-breaking since E is odd under
C?
2 . Thus, we can exclude a finite order parameter that transforms

as kx + iky or any other superpositions of kx and ky for that matter.
In the case of 2D systems, the matrix elements of the pairing field
on a non-degenerate Fermi surface are too restrictive to allow for
any of these pairing states.
It is straightforward to generalize this analysis to all possible

point groups of noncentrosymmetric 2D electron systems: For
analogous reasons to C4v, TRS-breaking superconductivity is not
possible for the interface point group C4. The same holds for the
isomorphic groups D4, D2d and S4 that describe possible
symmetries of 2D electronic sheets. For all other symmetry groups
without any rotation symmetry (such as for C1, i.e. in the absence
of any symmetries) or containing only a twofold rotation normal
to the plane, all IRs are real and one-dimensional such that TRS-
breaking superconductivity is forbidden as well. For the remaining
possible noncentrosymmetric point groups of 2D electron
systems, all of which contain a threefold rotation, one cannot
exclude TRS-breaking superconductivity without further assump-
tions. This proves statement (II) and shows that it results from the
observation that a crystalline point group has a multidimensional
(or complex) irreducible representation which is not forced to be
odd under C?

2 if and only if it contains a threefold rotation
symmetry.
Finally, the general proof of statement (III) requires investigating

all double group representations of crystalline point groups (see
Supplementary Information S4). For simplicity, we only note that
statement (III) is most easily seen to be true in the special case of
just a single relevant orbital and when orbital mixing due to
spin–orbit coupling can be neglected: In this case, the triplet
vector d transforms as a vector under rotation forcing its
component along the axis of C?

2 to vanish in any pairing state
that is even under C?

2 .

Spinless fermions
Similar reasoning can be applied to the case of spinless fermions,
i.e., for the lower signs in Eq. (12). For instance, one can show that,
as opposed to (II), the spin-0 TRS must be necessarily broken at the
superconducting transition if the point group contains a proper or
improper fourfold rotation symmetry. Note that this statement
also holds for centrosymmetric point groups as long as the weak-
pairing description is valid.

Applicability of selection rules
Let us next discuss under which general conditions the weak-
pairing description and, hence, the selection rules can be applied.
To this end, we derive a general inequality for the zero-
temperature condensation energy of a (translation-invariant)
superconducting phase with vanishing intra-Fermi-surface matrix
elements (Dkaa = 0). As described in more detail in the “Methods”
section, we can show that such a state is always energetically
disfavored unless the order parameter is larger than (half of) the
energetic splitting Eso of the singly degenerate Fermi surfaces. This
shows the relation between the validity of the weak-pairing
description and assumption (i).
The physical reason is that the superconducting order

parameter only couples states at energies differing by Eso as
illustrated in Fig. 4 which “cuts off” the conventional Cooper
logarithm and, hence, superconductivity can only occur above a
threshold coupling strength.
We note that this general result is consistent with the analysis of

ref. 45, where a specific, spin-independent electron–electron
interaction was considered.

DISCUSSION
The applications of the symergetic selection rules (I), (II), and (III) to
various materials discussed above show that these can both be
used to pinpoint the order parameter of 2D superconductors as
well as serve as design principles in the search for super-
conducting phases with exotic properties such as broken TRS or
nontrivial topologies. In this context, it is particularly important
that our results are only based on the general assumptions (i) and
(ii) and, hence, go beyond specific model studies in noncentro-
symmetric systems.24,25,45 This has shown which aspects of refs 24,
25 and 45 are general, i.e., do not depend on microscopic details
such as number and character of relevant orbitals or the form of
the interaction driving the superconducting instability.
Since inversion symmetry is locally broken at the surface of a

material, one might wonder whether the symergetic selection
rules are also relevant for the behavior of the superconducting
phase at the boundary of the system. In the case of a material
such as Sr2RuO4 which consists of weakly coupled layers as
illustrated in Fig. 1c, the condensate near a surface perpendicular
to the z axis can be thought of as a set quasi-2D systems with Eso
increasing as the distance to the surface is reduced and, hence,
bears strong similarities to the superconductor in our gedanke-
nexperiment. In combination with the near degeneracy22 with the
triplet states transforming under the 1D IRs, we expect the triplet
vector to rotate to be parallel to the surface and TRS to be
restored locally. While this is the predicted generic behavior of a
system with strong spin–orbit coupling and no threefold rotation
symmetry, further details of the texture near a surface depend on
the microscopic model considered.25 It is an interesting open
question whether this could account for the absence of magnetic
signals in Sr2RuO4

49 that are expected from the chiral p-wave
nature of the bulk order parameter.

METHODS
Fourth order of the GL expansion
Let us provide more details on the proof by contradiction based on the
fourth order GL expansion first focusing on real IRs. Expanding Eq. (10) with
zn0 ! zn0ξ ¼ zn0 jzn0μ0!z

n0
μ0
eiξ to leading nontrivial order in ξ, one finds Eq. (11)

with

Cðzn0 Þ ¼ 4
X
μ≠μ0

ðzn0μ0 zn0μ Þ2
X
a

φ
μ0n0
ka φμn0

ka

� �2D E
a
: ð13Þ

To derive Eq. (13), it has been taken into account that φμn0 2 R and that
the symmetries require the free energy to be invariant under

ηn0μ !
(
�ηn0μ ; μ ¼ μ0

ηn0μ ; μ≠μ0
; 8μ0 2 f1; 2; ¼ ; dn0g; ð14Þ

for any real IR n0 of 2D and 3D point groups. From Eq. (13), we directly see
that Cðzn0 Þ>0 for all zn0≠eμ0 unless φ

μn0¼ 0. In the latter case, however, the
superconducting state is fully ungapped in the weak-pairing limit and,
hence, disfavored energetically as discussed in the main text.
If zn0 ¼ eμ0 , we will use zξ ¼ ðeμ0 þ iξeμ1 Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
again yielding

Eq. (11), but with modified

Cðzn0 Þ ¼ 2
X
a

φ
μ0n0
ka

� �4D E
a
� φ

μ0n0
ka φ

μ1n0
ka

� �2D E
a

h i
; ð15Þ

which is readily shown to be positive (as long as φμn0 are not identically
zero). This completes the proof for the case of real IRs of point groups.
Due to TRS, complex IRs are always degenerate with their conjugate IR

and, hence, can be seen as reducible representations of doubled
dimension. Being reducible, symmetries are less restrictive in this case
and, in particular, Eq. (14) is not guaranteed any more which necessitates a
generalized form of the proof presented above. The latter can be found in
the Supplementary Information S3.

Inequality for the condensation energy
To derive a necessary condition for the emergence of a superconducting
state with Dkaa = 0, we consider the most favorable scenario for such a
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pairing state where, at low energies, the effective electron-electron
interaction is dominated by the Cooper channel in Eq. (9) with n0 being
odd under the twofold rotation C?

2 2 G. All other competing channels are
assumed to be negligible. From the discussion in the main text, we know
that the associated matrix elements Dkab vanish for a = b. We analyze
whether its zero-temperature condensation energy

ΔEðΔ0Þ ¼ 1
2

XN
a¼1

X
k

ðjEkaðΔ0Þj � jϵkajÞ � Δ2
0

2g
ð16Þ

is positive for some finite Δ0 ¼ gjηn0 j. Here ϵka and Eka denote the different
bands of the normal state and of the superconducting mean-field
Hamiltonian, respectively.
To focus on the essential part of the physics, let us consider only N = 2

singly degenerate bands. Replacing |Dk12| by its maximum value Δ0m
yields an upper bound ΔEmax(Δ0) on the condensation energy. Physically, it
corresponds to the situation of “optimal basis functions” with |Dk12| being
constant except for negligibly small regions where it has to vanish as
dictated by symmetry. Evaluating the sum in Eq. (16) as an integral (cut off
energetically at Λ, constant density of states ρF) shows that the
condensation energy can only be positive when the spin–orbit splitting
Eso on the Fermi surface satisfies

Eso<
2Λ

sinh ð1=λÞ ; ð17Þ

where λ = 2ρFm
2g denotes the associated dimensionless coupling con-

stant. This means that, in the weak-coupling limit, λ≪ 1, superconductivity
can only emerge when the spin–orbit coupling is exponentially small. We
have furthermore found that the value of the order parameter maximizing
the energetic gain ΔE is larger than Eso/2 as stated in the main text.

Model for Sr2RuO4

To be self contained, we define the model used in the main text to
calculate the spectrum of Sr2RuO4. The centrosymmetric part

hSk ¼
ϵxyðkÞ � μ� δϵxy 0 0

0 ϵxzðkÞ � μ tη sinðkxÞ sinðkyÞ
0 tη sinðkxÞ sinðkyÞ ϵyzðkÞ � μ

0
B@

1
CA

þ λ

2

X
j¼x;y;z

Lj � σj

ð18Þ

is taken to be of the form usually applied (see, e.g., ref. 27) to describe
the bulk of the material. In Eq. (18), the orbital basis {4dxy, 4dxz, 4dyz} of
Ru orbitals is used and σj are Pauli matrices representing spin.
Furthermore, ϵxyðkÞ ¼ �2t3ðcosðkxÞ þ cosðkyÞÞ � 4t4 cosðkxÞ cosðkyÞ,
ϵxzðkÞ¼ �2t1 cosðkxÞ�2t2 cosðkyÞ, and ϵyzðkÞ¼�2t2 cosðkxÞ � 2t1 cosðkyÞ.
Adding the inversion antisymmetric hopping term hAk ¼ δðLx sinðkyÞ �
Ly sinðkxÞÞ already introduced in the main text defines the normal state
Hamiltonian hk ¼ hSk þ hAk in Eq. (2). To obtain Fig. 2b–d, we have taken
t2 = 0.1t1, t3 = 0.8t1, t4 = 0.3t1, tη = −0.04t1, λ = 0.2t1, μ = t1 and δϵxy = 0.1t1 as
deduced in ref. 27.
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