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Enhanced superconductivity in TiO epitaxial thin films
Chao Zhang1, Feixiang Hao1, Guanyin Gao1, Xiang Liu1, Chao Ma1, Yue Lin1, Yuewei Yin1,2 and Xiaoguang Li1,3,4

Titanium oxides have many fascinating optical and electrical properties, such as the superconductivity at 2 K in cubic titanium
monoxide (TiO) polycrystalline bulk. However, the lack of TiO single crystals or epitaxial films has prevented systematic
investigations on its superconductivity. Here, we report the basic superconductivity characterizations of cubic TiO films epitaxially
grown on (0001)-oriented α-Al2O3 substrates. The magnetic and electronic transport measurements confirmed that TiO is a type-II
superconductor and the recorded high Tc is about 7.4 K. The lower critical field (Hc1) at 1.9 K, the extrapolated upper critical field
Hc2(0), and coherence length are about 18 Oe, 13.7 T, and 4.9 nm, respectively. With increasing pressure, the value of Tc shifts to
lower temperature while the normal state resistivity increases. Our results on the superconducting TiO films confirm the strategy to
achieve higher Tc in the epitaxial films, which may be helpful for finding more superconducting materials in various related systems.
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INTRODUCTION
Transition metal oxides, such as titanium oxides, are a large family
of materials with many fascinating electrical properties and
applications.1–3 Among various stable titanium oxides, the cubic
metallic monoxide TiO is one of the very interesting materials
because of the extremely wide homogeneity range, with oxygen
content varying from about 0.80 to 1.30.4–7 The electrical, optical,
magnetic, and structural properties of bulk TiO have been widely
investigated.8–17 Especially, the superconductivity in TiO bulk
materials was discovered in the early 1965s by Hulm et al.18 They
reported that, for the bulk TiO with NaCl structure, its super-
conducting transition temperature Tc increases from 0.2 to 1.0 K
with oxygen content increases from 0.9 to 1.1, but is below 0.08 K
outside this range.19 Further investigations showed that high-
pressure annealing increases the oxygen content and lattice
constant of cubic TiO bulk, and its superconducting transition
temperature increases linearly with oxygen content to a maximum
of 2.0 K.4,7 However, the intrinsic superconducting properties of
TiO, such as the lower and upper critical fields, superconducting
coherence length and so on, are not clear yet, due to the difficulty
in obtaining single crystals or epitaxial films. Even the zero
resistance superconducting state has not been clearly reported.
Therefore, high-quality TiO epitaxial thin films or single crystals are
essential and highly desired for investigating the fundamental
superconductivity of the system. There was only one ~10 nm TiO
single crystalline film reported very recently, which was formed on
titanium dioxide (TiO2) substrate through the surface chemical
reduction method by a low-energy ion bombardment techni-
que.20 Although this method is good at creating a thin TiO film on
TiO2 substrate, no magnetic and electrical properties concerning
the superconductivity were reported. In fact, it is still a challenge
to prepare high-quality TiO epitaxial films on different substrates
through a more controllable method like magnetron sputtering or
pulsed laser deposition techniques.

On the other hand, it is well known that, for epitaxial
superconducting thin films, the superconductivity could be
enhanced or even created by proper heterostructure interfaces,
such as the enhanced Tc above 100 K in the epitaxial FeSe films
grown on SrTiO3 substrates, which was explained in terms of the
coupling between conduction electrons and the substrate
phonons,21–23 as well as the superconductivity created at the
interface between two insulators like LaAlO3/SrTiO3.

24,25 In
addition, a suitable lattice mismatch-induced strain can also
enhance the Tc as reported in La1.9Sr0.1CuO4.

26 Therefore, it will be
interesting to see whether the superconductivity in TiO films can
be improved as well.
In the present work, we successfully prepared cubic TiO thin

films on a (0001)-oriented α-Al2O3 single crystal substrate by a
pulsed laser deposition technique. The superconducting transition
temperature of 7.4 K was observed for the TiO films, confirmed by
magnetization and electrical transport measurements. The Tc is
almost four times higher than its bulk value and is suppressed
with increasing pressure (maximum pressure 1.8 GPa).

RESULTS AND DISCUSSION
TiO thin films with the thickness of ~80 nm were epitaxially grown
on (0001)-oriented α-Al2O3 single crystalline substrates (see
Methods). The structural characterization of the TiO thin films
was performed using high-angle annular dark-field-scanning
transmission electron microscope (HAADF-STEM) and X-ray
diffraction (XRD). It was determined that the cubic TiO thin film
grown on α-Al2O3 (0001) substrate is of the [111] direction
perpendicular to its surface. Figure 1a shows the cross-sectional
HAADF-STEM image at the TiO/α-Al2O3 interface region of an as-
grown sample viewed along the [1100] direction of sapphire, and
thus the formation of a highly epitaxial TiO film is confirmed with
a 2-3 atomic transition layer at the interface. The epitaxial
relationship between the cubic TiO layer and sapphire substrate
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is determined as TiO [112] (111)//α-Al2O3 [1120] (0001). Figure 1b
shows the HAADF-STEM image and the related electron diffraction
pattern in the TiO region viewed along the [1100] direction of
sapphire as well, which shows single crystalline quality and agrees
well with the simulation using the face-centered cubic TiO
structure (see Supplementary Information Fig. S1). Chemical and
oxidation state analyses of the TiO film were performed by the
electron energy-loss spectroscopy (EELS) in STEM, as shown in
Fig. 1c. For titanium oxides, the fine structures of the Ti-L3,2 and
O-K edges reflect the covalent bonding states resulting from
strong hybridization between Ti-3d and O-2p electronic states. For
our sample, the Ti-L3,2 and O-K edges both consist mainly of two
peaks, which represent the fingerprint feature of cubic TiO (space
group Fm3m).27 The EELS spectra recorded from different areas of
the TiO film indicate the structure homogeneity in the obtained
TiO film, as shown in Supplementary Information Fig. S2. Through
the quantitative analysis of EELS results,28 it was found that, as
shown in Fig. S2, the oxygen content in the film is not uniform and
the averaged O/Ti ratio is about 1.11–1.25, which is similar to that
reported by Pabon et al.20

Although the combination of STEM images with electron
diffraction pattern is a powerful tool in determining the crystal
structure of materials, the results provide only local structural
information of a small volume. Therefore, we carried out detailed
XRD experiments. Figure 1d shows the XRD θ/2θ specular scan of an
as-grown TiO thin film on α-Al2O3 (0001) substrate. Only the (111)
family diffractions of TiO film and the sapphire (0006) diffraction
peak were observed, indicating that the film is highly orientated in
[111] direction parallel to sapphire [0001]. The cubic lattice constant
(about 4.164 Å) of the TiO film is calculated from the peak position
of the (111) plane using Bragg’s law, which is very close to the TiO
bulk value of 4.177 Å. One of the reasons for the difference in lattice
parameters between the TiO film and the bulk may be related to
the oxygen content, because it was reported that the lattice
parameter could be reduced with increasing oxygen content.7,19,20

As shown in the inset of Fig. 1d, the full width at half maximum of
the TiO (111) plane rocking curve is about 0.3°, indicating its good
crystallinity. To obtain the in-plane epitaxial relationship between

the TiO film and sapphire substrate more clearly, XRD
ϕ-scans of the (200) plane of the TiO film and the (1014) plane of
α-Al2O3 substrate were performed, as shown in Fig. 1e. For the TiO
film, the six distinct peaks at 60° intervals to each other with nearly
the same intensity indicate a six-fold rotational symmetry along the
TiO (111) plane normal. From the XRD ϕ-scan, an epitaxial relation
as TiO [112] (111)//α-Al2O3 [1120] (0001) was obtained, consistent
with the STEM results shown in Figs. 1a, b.
The existence of the superconducting phase in the TiO film was

unambiguously confirmed by its Meissner effect and zero
resistance. Figure 2a shows the direct-current (DC) magnetizations
vs. temperature (M-T) of the TiO film. Both the field-cooled (FC)
and zero-field-cooled (ZFC) magnetizations in 20 Oe magnetic
field perpendicular to the film surface indicate the appearance of
superconductivity near 7.0 K, much higher than that of TiO
polycrystalline bulk (0.2∼ 2.0 K).4,19 The irreversible region of
magnetizations marked by the bifurcation of FC and ZFC curves
below Tc shows smaller FC signal as compared with the ZFC signal,
indicating the flux trapping by thin film defects during the FC
process. The magnetization vs. magnetic field curve M-H at 1.9 K
for a magnetic field perpendicular to the film surface (H⊥(111)) is
shown in Fig. 2b. The lower critical field Hc1, defined as the field at
which a flux first penetrates, can be estimated from the M-H curve
as a deviation from the linear M-H behavior corresponding to the
Meissner state. The evaluated value is about 18 Oe at 1.9 K for
H⊥(111) as shown in the inset of Fig. 2b.
The superconducting property of the TiO film was also

investigated through electrical transport measurements, using
the Hall bar pattern. The schematic diagram of the experimental
setup is shown in Supplementary Information Fig. S3. Figure 3
shows the temperature-dependent resistance (Rxx) in zero
magnetic field and Hall resistance (Rxy) in 2 T magnetic field. In
the Rxx-T curve, the resistance rises with decreasing temperature
first, and a kink (Tkink) appears around 130 K, below which the
resistance increases even steeper. This kink may be related to the
charge localization.29,30 When the temperature goes down further,
the resistance decreases suddenly and the superconducting
behavior occurs at ~7.4 K, as shown in the inset of Fig. 3a. The

Fig. 1 Structural and chemical characterizations. a,b HAADF-STEM images of TiO/Al2O3, at the a interface region and b TiO region. c Ti-L3,2
and O-K edges EELS spectra of the TiO film. d θ/2θ XRD pattern of the TiO/α-Al2O3(0001) heterostructure. The inset shows the rocking curve for
the TiO (111) reflection. e XRD ϕ scan performed on TiO (200) and sapphire (1014) planes
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superconducting resistive transition at zero field is relatively
broad, which may be attributed to the following two aspects: (i)
inhomogeneous oxygen or titanium stoichiometry of the films, as
shown in Fig. S2, and (ii) a consequence of a
Berezinskii–Kosterlitz–Thouless (BKT)-like transition, as described
in the following equation:31

RxyðTÞ ¼ RN exp½�bðT � TBKT
TBKT

Þ
ð�1=2Þ

�; ð1Þ

where RN is normal-state sheet resistance, and b is a non-
universal dimensionless numerical constant. The good fitting
result (blue solid line in inset of Fig. 3(a)) indicates that the
resistive transition may be a consequence of the BKT-like
transition (TBKT = 4.91 K) probably related to the TiO film-Al2O3

substrate 2D interface, which localizes and enhances the super-
conductivity through conduction electron-substrate phonon
interaction, similar to that occurred in FeSe thin films.22,23

From the Hall result, it is confirmed that the n-type electronic
charge carriers dominate the conduction mechanism, as shown in
Fig. 3b. According to the relation RH = Rxyd/H = 1/nq, where RH, d, n,
and q are the Hall coefficient, film thickness, charge carrier density,
and carrier charge, respectively, the carrier concentration was
estimated to be about 2.0 × 1022 cm−3 at 300 K. It is noted that the
Hall voltage near the superconducting transition temperature has a
sign opposite to the voltage in the normal state, as shown in the inset
of Fig. 3b, which may be related to the unusual vortex motion.32,33

Figures 4a, b show the temperature-dependent resistances with
different magnetic fields parallel (H//(111)) and perpendicular
(H⊥(111)) to the TiO film surface. The parallel resistance broad-
enings in different fields are clearly observed, and the super-
conducting transition shifts to lower temperatures with increasing
magnetic field. Figure 4c shows the upper critical field Hc2(T) and
irreversibility field Hirr(T) of the TiO film in the in-plane and out-of-

plane configurations, determined using the criterions of 90% and
0.1% normal-state resistance (see Supplementary Fig. S4 for the
detailed information).34,35 The upper critical field vs. temperature
curves can be well fitted by:36

Hc2ðTÞ ¼ Hc2ð0Þ½1� ð T
T c
Þ
2

�; ð2Þ

where Hc2(0) is the upper critical field at absolute zero
temperature. The extrapolated values of Hc2 are about 13.6 and
13.7 T for magnetic fields perpendicular (H⊥(111)) and parallel (H//
(111)) to the TiO film surface, respectively. Correspondingly, the
Landau–Ginzburg superconducting coherence lengths, ξ = [(h/2e)/
(2πHc2)]

1/2, at absolute zero temperature are estimated to be about
4.92 and 4.91 nm for H⊥(111) and H//(111), respectively. According
to the anisotropic effective mass Ginzburg-Landau theory,37 the
anisotropy ratio ε ~ 1.01 was obtained from the scaling law
ε ¼ ðm?=m==Þ0:5 ¼ H==

c2=H
?
c2. Here H

?
c2 and H==

c2 are the upper critical
fields for H⊥(111) and H//(111), and m? and m== are the effective
masses of electrons along these directions, respectively. As for the
temperature dependence of Hirr, it can be well fitted by:36

HirrðTÞ ¼ Hirrð0ÞðT c � T
T c

Þ
n

ð3Þ

with n=0.85. To investigate the anisotropic superconducting
properties in more detail, we studied the magnetic field
orientation dependence of the superconducting transition.
Figure 4d shows the field dependences of the resistances at
different angles β at 4.0 K, where β denotes the tilt angle between
the normal of film plane and the field direction, as depicted in the
inset of Fig. 4d. One can see that Hc2 changes a little, while Hirr

increases gradually with increasing β from H⊥(111) to H//(111).
Figure 5 shows the pressure effect on the superconducting

transition of the TiO film. With increasing pressure, the zero-
resistance transition temperature shifts to lower temperatures and
the normal-state resistivity increases obviously. It may be due to
the pressure-enhanced charge localization, and the effective
attraction of the Cooper pairs is thus suppressed as a result.
From the above results and discussions, it is clear that a

significant Tc enhancement was observed in the TiO epitaxial thin
film. Although the underlying physics mechanism is not well

Fig. 3 Electrical transport measurements. a Temperature depen-
dence of the resistance Rxx from 1.9 to 300 K. b Temperature
dependence of Hall resistance Rxy at a magnetic field of 2 T. The
insets are the corresponding magnified figures around Tc and the
blue solid line is the fitting result by BKT-like transition

Fig. 2 Magnetization characterizations. a Temperature dependence
of the DC magnetization of TiO film in ZFC and FC modes at 20 Oe
for H⊥(111). The Tc is identified as 7.0 K. b Magnetization vs.
magnetic field (M-H) at 1.9 K for H⊥(111). Inset: Hc1 at 1.9 K was
estimated to be about 18 Oe
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understood, our results suggest several clues for the occurrence of
superconductivity. First, inhomogeneous oxygen or titanium
stoichiometry was detected from the detailed STEM analysis, which
may significantly affect the local electronic structure as well as the
superconductivity in the cubic TiO film. Second, the BKT-like
transition in the TiO thin films, similar to the FeSe thin films,23 may
be probably related to the TiO-Al2O3 interface through the
conduction electron-substrate phonon interaction.22 Third, the
high-pressure experiments demonstrate the importance of strain
effect on the superconductivity. The strain status in the TiO film can
be influenced by not only the substrate strain but also the oxygen
stoichiometry. Further experimental and theoretical investigations
on the micro-stoichiometry, structure, and electronic properties
both in the non-uniform films and at the TiO-Al2O3 interface are
required to finalize the mechanism of the enhanced Tc.

In conclusion, the superconducting cubic TiO thin films were
epitaxially grown on the (0001)-oriented α-Al2O3 single crystalline
substrates, and the superconducting properties of the films were
systematically characterized. It was found that the superconduct-
ing transition temperature is enhanced to about 7.4 K, and the
upper critical field at zero field Hc2(0) is about 13.7 T (H//(111)) in
the TiO thin films. The high-pressure experimental results
indicated that increasing pressure weakens the superconductivity.
Our work will facilitate prospects for understanding the super-
conducting mechanism in the titanium-based oxide superconduc-
tors as well as achieving higher temperature superconductivity.

METHODS
Sample preparation
The TiO thin films with the thickness of about 80 nm were epitaxially
grown on commercial (0001)-oriented α-Al2O3 single crystalline substrates
by a pulsed laser deposition technique. Prior to the film deposition, the
substrates were annealed in flowing oxygen at 1100 °C for 120min. A KrF
excimer laser (λ = 248 nm) was employed to ablate the Ti2O3 target. The
chamber was evacuated to a base pressure of ~1 × 10−7 Torr and purged
three times with high-purity nitrogen gas. Then, the films were deposited
at 900 °C and cooled down to room temperature naturally in high vacuum.
The laser energy density, repetition rate, and target-substrate distance
used for the deposition were 3.5−4.0 J cm−2, 5 Hz, and 4.5 cm, respectively.

Structural characterizations
High-resolution XRD measurements were performed with a commercial
Panalytical X’pert X-ray diffractometer with the Cu Kα1 radiation at a
wavelength of 1.5406 Å. For the structural and chemical characterization of
the TiO/Al2O3 samples, a JEOL JEM-ARM200F operating at 200 kV, equipped
with a spherical aberration corrector on the condenser lens system, was
used to obtain the HAADF STEM images and core-level EELS spectra. The
thickness and surface roughness of the TiO films were measured by STEM

Fig. 4 Upper critical field and irreversibility field. a,b Temperature-dependent resistances in different magnetic fields a parallel (H//(111)) and b
perpendicular (H⊥(111)) to the TiO film surface. c Temperature-dependent Hc2 and Hirr in different magnetic field directions H⊥(111) and H//
(111). The hollow triangles and solid dots are experimental results deduced from (a) and (b), and the lines are the fitting results. d Magnetic
field dependencies of the resistances at 4.0 K with different angles β (defined as the inset). The inset shows magnetic field angle dependences
of Hirr and Hc2

Fig. 5 Pressure dependence of zero-resistance transition tempera-
ture. Inset: Rxx-T curves at different pressures
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and atomic force microscope scanning probe microscope (AFM MultiMode
V), as shown in Supplementary Information Fig. S5.

Hall bar fabrication
Ohmic contact electrodes of gold/titanium films with a Hall bar geometry
were fabricated by an ultraviolet light-engraving machine JKG-2A and ion
beam-sputtering coating system DPS-LIM, which enabled measurements
of the four-terminal resistance and Hall coefficient of the channel. A
schematic illustration is shown in Supplementary Information Fig. S3. The
dimensions of the channel were 500 μm in width and 3mm in length. The
resistance and the Hall coefficient were measured in a Physical Property
Measurement System (PPMS-14, Quantum Design).

Electrical and magnetic measurements
Magnetization measurements were carried out using a Squid Vibrating
Sample Magnetometer (Quantum Design). The angle-resolved in-plane four-
probe resistance measurements were performed for the TiO films rotated
from out-of-plane to in-plane of the film in magnetic fields up to 14 T in a
PPMS-14 (Quantum Design). The angle β= 0° is defined as the applied
magnetic field that was perpendicular to the surface of the TiO film (H⊥(111)).

High-pressure experiments
The pressure dependences of resistances of the TiO film were measured in a
pressure cell of PPMS-9 (Quantum Design). The value of the pressure was
demarcated by the Tc of Sn metal (Tc = 3.72 K at atmospheric pressure for Sn).
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