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Experimental graybox quantum system identification and
control
Akram Youssry 1, Yang Yang 1, Robert J. Chapman 1,2, Ben Haylock3,4, Francesco Lenzini3,5, Mirko Lobino3,6,7 and
Alberto Peruzzo 1,8✉

Understanding and controlling engineered quantum systems is key to developing practical quantum technology. However, given
the current technological limitations, such as fabrication imperfections and environmental noise, this is not always possible. To
address these issues, a great deal of theoretical and numerical methods for quantum system identification and control have been
developed. These methods range from traditional curve fittings, which are limited by the accuracy of the model that describes the
system, to machine learning (ML) methods, which provide efficient control solutions but no control beyond the output of the
model, nor insights into the underlying physical process. Here we experimentally demonstrate a ‘graybox’ approach to construct a
physical model of a quantum system and use it to design optimal control. We report superior performance over model fitting, while
generating unitaries and Hamiltonians, which are quantities not available from the structure of standard supervised ML models. Our
approach combines physics principles with high-accuracy ML and is effective with any problem where the required controlled
quantities cannot be directly measured in experiments. This method naturally extends to time-dependent and open quantum
systems, with applications in quantum noise spectroscopy and cancellation.
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INTRODUCTION
Quantum technology promises to deliver exponentially faster
computation, provably secure communications, and high-
precision sensing1. However, during the fabrication and operation
of a quantum device, there are many factors that can significantly
impact its functionality, requiring characterization and control
techniques to achieve high-level performance. Generally, we are
interested in uncovering the unknown relation between the
control and the Hamiltonian governing the device, and then
utilizing this information to drive the device toward a desired
target. Typical targets include unitary gates, a specific Hamiltonian,
or certain output probability distributions.
Approaches that directly aim to control the quantum device

without first identifying it, includes dynamical decoupling and
dynamically corrected gates2–5, as well as direct gradient-based
optimization, such as the commonly used GRAPE algorithm6 and
its variants7–14. These techniques only work when the dependence
of the Hamiltonian on the control is known, because they are
based on optimizing the fidelity to some target with respect to
control. In situations where this dependence is unknown, the
fidelity (and, in general other cost functions) and/or its gradient,
can be computed iteratively from experimental data. The control
is optimized after each iteration and directly applied to the system
for the next iteration. The physical system becomes part of a
feedback architecture for designing the pulses without a need for
a model. Examples of this approach are in14–17, and are sometimes
referred to as ‘learning quantum control’18. Evolutionary algo-
rithms, such as Genetic Algorithm (GA) have also been
proposed19, as optimization techniques with the advantage of

being gradient-free and are more likely to find global minima.
These techniques can also be applied with a known model or
directly from experimental measurements. Reinforcement learning
methods20–23, are also model-free and have been recently
explored for the purposes of removing the reliance on assump-
tions on the physical system and have been successfully applied
to controlling quantum systems.
In many situations, it is important to reconstruct a mathematical

model of the system from experimental data, a process referred to
as ‘system identification’. An identified model can be used
to compare the behavior of a fabricated device to its design, or
to understand the underlying noise process affecting the system.
As the model can predict the behavior of the system, it can be
used for control as well.
The traditional approach to characterizing and controlling

physical devices is based on theoretical models of the underlying
processes governing the relationship between input and output
signals. Example of fitting data to a physical model include24,25.
These ‘whitebox’ (WB) models are based on parameter estimation
via curve fitting and can be computationally expensive, inaccurate,
or incomplete. For example, they do not consider unexpected
input parameters or dynamics. Moreover, the models commonly
used to describe the dynamics of an open quantum system (such
as Lindblad’s master equation), is valid only under strict
assumptions and approximations of the noise (such as Marko-
vianity) and the control (such as being ideal impulses). These
assumptions do not hold for many quantum platforms, making
the use of fixed a priori WB models inaccurate.
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To increase accuracy and remove some of the limitations of the
WB method, supervised machine learning techniques are proving
useful for modeling and controlling complex physical systems. In
particular, techniques such as neural networks are, in many cases,
superior if not the only viable approach. However, this approach,
referred to as ‘blackbox’ (BB), does not provide any information
about the underlying physics of the system. Nonetheless, it has
been used in many applications such as quantifying Non-
Markovianity of quantum systems26, characterizing qubits and
environments27–30, quantum control31–33, quantum error correc-
tion34,35, optimization of experimental quantum measure-
ments36,37, and calibration of quantum devices38. A closely
related approach to system identification is the ‘Hamiltonian
Learning’ problem39,40, where a fixed time-independent Hamilto-
nian (control is fixed) is inferred from quantum measurements.
In situations where the quantities of interest, such as

Hamiltonians, unitaries, and noise operators, cannot be directly
accessed from the model, the use of a hybrid WB-BB or ‘graybox’
(GB) approach allows for both identify and control of these
quantities beyond the measurable dataset. Following the standard
control engineering definition41, the aim of GB models is to merge
an abstract mathematical structure, such as a neural network, with
physical laws. While direct control methods, such as GRAPE, are
sometimes referred to as grayboxes, because they are data-driven
and may rely on prior knowledge, these methods do not identify a
useful mathematical description of the system. The graybox
architecture provides access to any physical quantity available
from the physical part (WB) of the model.
GB has been proposed to model electrical drift in quantum

photonic circuits42, as well as open quantum systems subject to
classical43 and quantum noise44, covering the case of a time-
dependent Hamiltonian problem. The GB model was also applied
in the context of noise detection in the presence of a spectator
qubit that acts as a sensor of the environment45, and to geometric
quantum gate synthesis46. While GB has been used experimentally
to characterize superconducting qubits47, to date, no quantum
device has been characterized using a GB model where the
identified model was then used to design optimal quantum
control.
Here, we experimentally demonstrate how to model and

control a quantum device using the GB architecture when the
Hamiltonian dependence on the control is unknown. We report
high-fidelity preparation of arbitrary unitaries and output prob-
ability distributions of a reconfigurable three-mode integrated
photonic device and uncover the Hamiltonian dependence on the
control. Our GB approach outperforms the traditional model
fitting methods and can successfully prepare unitary operations,
which are not accessible from the structure of a BB. Our results
show a promising approach to enhance quantum control by
understanding the physical processes, and open the way to
improve the engineering of quantum devices.

RESULTS
Modeling quantum devices
We consider the class of quantum devices, shown in Fig. 1a,
described by a time-independent Hamiltonian undergoing a
closed-system evolution (i.e., in the absence of quantum noise).
Photonic devices are examples of this class when the Hamiltonian
is not modulated faster than the evolution time of a propagating
photon. We focus on the case where the system is described by a
finite N-dimensional Hilbert space (i.e., a qudit). The Hamiltonian
governing the dynamics of the system can be represented in the
most general form as an N × N complex Hermitian matrix that
depends on a set of external controls. We encode the set of
controls in a M × 1-dimensional vector V ¼ ½V1; V2; � � � VM�T , where
Vk is the kth control. We assume that during the system evolution,

the control vector is fixed. An example of such controls is the
voltages applied to a reconfigurable photonic chip, schematically
shown in Fig. 1b. The system starts in an initial state ψ0j i and
evolves to the state ψTj i at time t= T. The state is then measured
on some basis to obtain a set of probability outcomes. A more
general form of time-dependent evolution in the presence of
unwanted interactions with the environment has been considered
in our previous work43.
Our aim is to obtain an ML model that describes the behavior of

the device given a set of controls V and use it for controlling the
device. The input to the ML model is the M-dimensional control
vector V, while the output is the set of measured outcomes of the
state after evolution. Generally, it is required to have
informationally-complete measurements to fully characterize a
quantum system. Here, we restrict the initial states as well as the
measurement basis to the set of computational basis states
f 0j i; 1j i; � � � Nj ig in order to be compatible with our experimental
setup. For each of these N-initial states, we have N possible
outcomes with an associated probability Pj→k corresponding to
the jth input and kth output, giving a total of N2 outputs. The
approach, however, is independent of this choice, and any set of
states can be used. In Supplementary Note 4, we discuss a more
general measurement scheme. It is important to emphasize that
the model input is the set of controls V applied to the system, and
not the initial state ψ0j i.

Graybox architecture
Our starting point is our theoretical proposal42 for modeling and
controlling quantum photonic circuits using a GB architecture. The
work aimed at stabilizing the effect of electrical drift and
preparing quantum gate sequences at the same time. In order
to model such an effect, a GB was desgined to capture variations
over a ‘classical’ time scale (i.e. slower than the evolution time of a
single photon). So, a recurrent neural network was used,
particularly a Gated-Recurrent Unit (GRU) as the black part of
the model. The inputs and outputs of the model are slowly time-
varying waveforms. However, this resulted in optimal voltage
pulses that did not belong to the class of pulses in the training set,
which is not available in our experimental device, and may not, in
general, be available.
Here, we focus only on modeling the unknown Hamiltonian-

voltage dependence, and stabilize the drift in hardware using fast
pulsing, a well-known technique in integrated photonics. The
pulses have fixed frequency and duty cycle, so the only
controllable parameters are the amplitude on each electrode.
This makes it possible to restrict the controller solution to the
space of training pulses. Therefore, in what follows in this paper,
we use standard feed-forward neural networks as opposed to
recurrent neural networks, as there is no need to model a
sequence over time.
The GB structure we propose, shown in Fig. 1c, consists of a BB

(in the form of a neural network) followed by a WB part that
processes the outputs of the BB into measurable physical
quantities. The purpose of the blackbox is to map the controls V
(the model inputs) to the Hamiltonian of the system. The output of
the BB then represents the elements of the Hamiltonian matrix. A
general N × N complex matrix has 2N2 degree of freedom (N2

components with real and imaginary parts).
Thus, the output layer of the BB must consist of 2N2 neurons.

The other BB layers can be designed arbitrarily, and are custom
engineered to provide the best performance for a given dataset.
The second layer is a Hamiltonian construction layer that

arranges the outputs of the BB into an N × N matrix. A valid
Hamiltonian has to be Hermitian (i.e., H†= H) and this is ensured
by calculating the Hermitian part of the constructed matrix and
discarding the anti-Hermitian part. This can be done simply by
adding the matrix to its Hermitian conjugate. The output of this
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layer is a valid control-dependent Hamiltonian. We did not enforce
any structure or constraint on the Hamiltonian, to enable the best
fitting allowed by the rules of quantum mechanics for a given
dataset.
The Hamiltonian is then followed by subsequent layers that

transform the Hamiltonian matrix into the set of probability
outcomes–which can be measured experimentally–utilizing the
laws of quantum mechanics. Starting from a valid Hamiltonian,
there is no need to further use a BB since the dynamical equations
are known. This saves the algorithm from trying to learn the rules
of quantum mechanics from experimental data, which would
complicate the process and result in a less accurate model. We use
WB layers for the remaining steps. In particular, there is a layer that
calculates the evolution unitary by the matrix exponentiation of
the Hamiltonian U= e−iHT, which is the solution of Schrödinger’s
time-independent equation. The final part of the GB model is a
concatenation of N-layers representing the quantum measure-
ment operation for each of the N input jj i. In each layer we
calculate ψTj i ¼ U jj i, where jj i is the initial state of the system.
After evolving the state to ψTj i, the probabilities Pj→k are
calculated by taking the absolute value squared of each entry of
the state, that is, applying the Born’s rule for quantum expectation
values.
The added WB layers do not include any trainable parameter;

they only exist in the BB part. Therefore, when we train the model

on a dataset, the only updates occur in the BB, generating a set of
outputs that can be interpreted as a Hamiltonian.
An important aspect of the GB architecture is that it is

independent of the physics of the system, i.e., it provides the
most general form of a map between the control vector and the
quantum measurements while keeping the most important
physical quantities accessible via software, namely Hamiltonian,
unitary and evolved state. This is the key aspect needed to
perform quantum control as we are usually interested in
implementing a quantum gate represented by the unitary or
Hamiltonian and not by the measured evolved state. Having
access to those quantities, even though the model is trained with
quantum measurements, is the key feature of the GB architecture.

Whitebox and blackbox architectures
We benchmark the performance of our GB model against the fully
WB and fully BB architectures. The WB approach (Fig. 1d) is
equivalent to the standard model (curve) fitting and the details of
the architecture depend on the physical system. The assumption
is that all the relations between different dynamical variables are
exactly known except for the parameters we are fitting. Generally,
a WB consists of several layers. The first layer represents the
mathematical relations between the controls and the Hamiltonian,
with a set of unknown parameters. The input of this layer is the

Fig. 1 Physical and machine learning models of the class of quantum devices considered in this paper. These are described by a time-
independent Hamiltonian in the absence of interaction with the environment. a Representation of the class of quantum devices considered in
this work. b A schematic of an integrated photonic voltage-controlled reconfigurable waveguide array chip, implementing a noiseless time-
independent Hamiltonian. Photons enter from the input port (on the left), undergo a voltage-controlled propagation along the chip, and are
then measured at the output port of the chip (on the right). c The structure of the proposed graybox model. The input to the model is the set
of M controls, while the outputs are the quantum measurements for the set of computational basis as initial states. Pa→b indicates the
transition probability from input port a to output port b. The graybox is a combination of black and white boxes. The blackbox estimates the
real and imaginary components of each matrix element of the Hamiltonian. The whitebox layers construct the Hamiltonian matrix and
perform the quantum evolution and measurements. d A fully whitebox architecture where a physical model is utilized. The first layer
generates predefined Hamiltonian parameters that follow a known analytical dependence. The remaining layers perform the quantum
evolution and measurements. e A fully blackbox model where only a generic neural network is utilized with no physical model.
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control vector, and the output is a mathematically valid
Hamiltonian. The remaining layers are identical to those of the
GB and represent quantum evolution and quantum measure-
ments. For some systems, we might need more layers (e.g., to
model the fan-in/out in photonic devices48). The WB provides the
same access to hidden quantities as the GB and even provides
more physics as we know exactly the analytical relations between
Hamiltonian and control. However, if we do not know these
relations, or they do not match the physical reality, the WB will fail
and will not be useful for further applications.
The BB architecture (Fig. 1e) is largely different from the WB

model since the relation between the control vector and the
quantum measurement is modeled by a neural network. While
any structure can be used, in this paper, we consider fully
connected neural networks with a softmax output layer of N
neurons. This enforces the outputs to form a probability
distribution (i.e., positive numbers in [0, 1] whose sum is equal
to 1). This is consistent with what the model outputs represent,
which are the probability amplitudes of the evolved quantum
state. Since we are characterizing with N-initial basis states, we
need N of such layers with the initial state chosen accordingly. This
will give a total of N2 outputs. The structure of the other hidden
layers can only be determined and optimized by examining the
performance on an actual dataset. No other physical quantities
can be accessed through this architecture, but it is very good in
fitting a dataset since it gives the maximum freedom in terms of
representation. If we are only interested in controlling the outputs,
a BB would be an efficient solution. But, if the goal is to estimate
physical quantities (like unitary gates), then a BB model is not
useful at all.

Protocol for training, testing, and controlling
Our protocol for training and testing models and controllers is
schematically depicted in Fig. 2. It starts with preparing a dataset
that will be used to train and test the ML BB. The dataset consists
of examples. Each example is made of the M control inputs V and
the N2 outputs of the model Pj→k. So we start by generating
random values for our control, let the system evolve, then perform
the measurements and obtain the probabilities Pj→k. We repeat
this for the N input states we consider to obtain all the outputs.
The procedure is repeated for multiple examples. The number of
examples of the dataset depends on the particular structure of the
ML model, the noise level in the experiment, and the acceptable
performance level. Generally, the larger dataset is, the better the
ML algorithm will perform. In our previous work42, only computer-
simulated datasets were considered. In this paper, we create and
test experimental datasets. This comes with many challenges
including performing the experiment itself, the limited dataset
size (to be feasible to collect), and the presence of noise not
modeled by the quantum dynamics. In particular, initially, we
found that statistical noise caused inconsistencies in the dataset,
resulting in a poor performance of the method. As a result, we
modified the dataset collection protocol, in particular the
normalization of output power measurements as discussed in
Supplementary Note 3. This extra step improved the performance
of the ML significantly.
After the dataset is collected, it is split into the training and

testing subsets, and the ML model is trained. The purpose of
training is to minimize a loss function that measures the distance
between the predictions and actual outputs from the training
dataset. In42, the loss function measured the similarity between
waveforms, because the model was modeling drift, and the

Fig. 2 Protocol schematic. The first step is to construct an experimental dataset by applying controls to the system and measuring the
corresponding outputs. The dataset is then used to train the machine learning models (1). Next, the trained models are tested (2) for
generalization by comparing their output predictions against a different experimental testing dataset. After that, the trained models can be
used to optimize controls (3) to achieve a certain target, which could be a Hamiltonian, a unitary gate, or an output probability distribution.
Finally, the obtained controls are tested (4) experimentally and the controlled system output is compared against the desired target.
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RMSprop algorithm49 was used for the training. Here, we use the
standard mean square error (MSE) as a loss function and use the
ADAM algorithm50 for training. Once the model is trained, its
parameters are fixed and do not change in any of the remaining
protocol stages. Next, the model is evaluated using the testing
dataset, and its predictions are compared to the true correspond-
ing values. The testing examples are not included in the
optimization procedure, so they provide an unbiased evaluation
of the performance of the model.
Let’s now consider the trained model for control purposes. In

this case, the model acts as a replacement for the actual
experimental setup and can be probed via software for any
purpose. In42, the controller was designed to be a GRU, and
therefore the optimal control was not restricted to any class of
pulses. Here, we use a different controller that is designed to
directly obtain the parameters of a fixed pulse shape (i.e. the
voltage amplitudes). We consider two types of applications. The
first is for obtaining the values of the control V to achieve a target
output (i.e., probability amplitudes). In this case, we use the MSE as
the control cost function, and the optimal control vector V* can be
expressed as

V� ¼ argmin
V2I

ðŷPðVÞ � ydÞT ðŷPðVÞ � ydÞ (1)

where ŷPð�Þ is the ML output predictions, yd is the desired target,
and I is the control domain, which reflects the maximum allowed
range for the controls. To get accurate results, the ML model
should be trained with dataset examples that lie in the same
control domain as well. Note that the internal ML model
parameters that define ŷPð�Þ are not allowed to change during
the optimization as they have been fixed after the training.
The other case is for achieving a target quantum gate (i.e., a

target unitary). For this application, we use the gate fidelity as the
control cost function for the controller defined as

FðU;WÞ ¼ trðUyWÞ�
�

�
�
2

N2 ; (2)

where U and W are two unitary matrices, and N is their dimension.
The gate fidelity lies in the range [0, 1], with 1 representing the
maximum overlap between the two gates. The optimal control
voltages can then be represented as

V� ¼ argmax
V2I

FðŷUðVÞ;UdÞ (3)

where ŷUð�Þ is the evolution unitary obtained from the ML model,
and Ud is the desired target gate. In this case, we can only use the
GB and WB models, since a BB does not provide access to unitaries
as discussed earlier. With this modular approach, the optimization
algorithm of the controller can be chosen arbitrarily. While we
choose a gradient-based method in this paper, other techniques
such as genetic algorithms could also be used.
Finally, the optimal controls for a set of targets are applied

experimentally, and the system is measured to construct the
‘control’ dataset. This dataset is then assessed and compared
against the desired targets. Our main goal is to control a quantum
system, and thus the assessment of any model should not just rely
on its prediction capabilities, but also on how it performs in
conjunction with a controller when tested experimentally.

Experimental results
We tailor the design of the models described above around the
device used for the experimental verification for our proposal, a
voltage-controlled quantum photonic circuit of continuously
coupled waveguides based on lithium niobate technology, and
schematically shown in Fig. 1b. The details about the chip’s
fabrication and its physical model are given in Supplementary
Notes 1 and 2. The chip has 3 waveguides, corresponding to a
qutrit system, and is controlled by 4 electrodes and their

respective voltages. In principle, there is no or negligible cross-
talk in our device. This is guaranteed by the confinement of the
electric field within the material due to the shielding effect from
neighboring electrodes, as opposed to other technologies such as
thermo-optic switching51. Thus, the electrodes can be activated
simultaneously, which is how we perform the experiments in this
paper. We implemented the ML models using the TensorFlow
Python package52,53, applied the protocol for training the three
models, and then verified the performance of the controllers. The
details of the implementations are also given in Supplementary
Note 3. Moreover, we provide independent results of applying our
method to a simulated synthetic dataset in Supplementary Note 4
including a showcase for a 32-mode chip with 33 electrodes.
The results of the models training and testing as well as the

control performance, are reported in Table 1. The MSE
evaluated at each iteration for training and testing sets are shown
in Fig. 3a, b.

DISCUSSION
The plot of the learning curve in Fig. 3a shows the superior
performance of the GB in terms of accuracy compared to the WB.
This is due to the constraints imposed by the physical model that
is used to construct the Hamiltonian in the case of the WB. As
detailed in Supplementary Note 2, the commonly used device
Hamiltonian is assumed to be tri-diagonal, real-valued, and linearly
dependent on voltages. Our results show that these assumptions
do not hold for a real device, and thus the degradation of the WB
performance. On the other hand, the GB learns a general
mathematically valid Hamiltonian and thus is able to better fit
the experimental data. Initially, we designed the GB to enforce the
Hamiltonian to be real-valued but otherwise arbitrary, and the
fitting was not good. When we relaxed this assumption to allow a
complex-valued Hamiltonian, the results were improved. Here we
note that the Hamiltonian remains Hermitian to allow a unitary
evolution, and thus it does not model losses. The normalization
procedure (detailed in Supplementary Note 3) that we perform on
the power measurements makes it unnecessary to model losses.
The BB had a similar performance to GB, with the main drawback
of losing the physical picture. In terms of the testing performance,
Fig. 3b shows that the three models do not overfit, as the final
MSE of the testing set is close to the final MSE of the training set.
This means that the models do not memorize the examples of the
training set. In other words, the model generalizes–there’s no

Table 1. Comparison of the performance of each model on the
training, testing, and control experimental datasets, as well as the
experimental fidelities (average and instances greater than 99%) for
1000 randomly prepared output distributions and unitary gates.

GB WB BB

Model

Average training MSE 8.3 × 10−5 1.5 × 10−2 9.4 × 10−5

Average testing MSE 9.1 × 10−5 1.5 × 10−2 1.1 × 10−4

Output controller

Average MSE 2.6 × 10−3 1.7 × 10−2 2.9 × 10−3

Fidelity

Average 99.53% 97.47% 99.48%

With >99% 87.3% 34% 86.2%

Unitary controller

Average MSE 3.1 × 10−3 1.9 × 10−2 –

Fidelity

Average 99.48% 97.4% –

with >99% 71.3% 12% –
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significant loss in prediction accuracy–confirming that the dataset,
the model structure, and the training algorithm are well designed.
Furthermore, the GB and BB clearly perform better than the WB.
The performance of the models is limited by the size of the

dataset. Because the experimental data always suffer from some
level of noise, the minimum MSE obtainable without overfitting is
limited as well. Usually, the acceptable level of MSE depends on
the specific application. In this paper, our application is to control
the chip to obtain target power distributions as well as target

unitary operations. The ML models then act as a replacement/
simulator of the actual setup. The experimental assessment of the
optimal control will determine whether the model performance is
accepted or needs improvement. In general, the way to improve
models is by constructing very large datasets, which is the
standard approach in most typical ML applications. For engineer-
ing applications, where we characterize and control a physical
device, we are limited by how many measurements we can obtain.
Thus, it becomes a tradeoff between the amount of time and

Fig. 3 Experimental performance of the machine learning models. The whitebox model consists of fan-in, reconfigurable, and fan-out
sections, each modeled as a real-valued tri-diagonal Hamiltonian in addition to a linear dependence on voltage for the reconfigurable section.
a Results of training the different models on the experimental dataset. The MSE is plotted versus iteration number. b The results of evaluating
the different models on the testing set.

Fig. 4 Experimental quantum control performance. The distribution of the fidelity between the experimentally measured output power
distribution and the desired target distribution for the three models. The whitebox model utilizes a real-valued tri-diagonal Hamiltonian with
linear dependence on voltages, in addition to fan-in and fan-out sections. The results are for a the output controller, and b the unitary
controller. The reported values are the average over the three distributions corresponding to each possible initial state. c Violin plot showing
the statistics of the MSE obtained for the training, testing, and control datasets. The error bars depicted as the horizontal lines represent from
bottom to top, the minimum, median, and maximum, respectively. The plot also shows an estimated kernel density for the data.
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resources needed to construct the dataset experimentally and the
accuracy of the trained models, which will also affect the
performance of the controller.
The histogram of the controller fidelities between the desired

target and the experimental measurements for 1000 randomly
prepared output power distributions and 1000 randomly prepared
unitary gates are shown in Fig. 4a, b, respectively. The plots show
that the WB is particularly skewed towards lower fidelities
(minimum is 80.53% compared to a minimum of approximately
91% for GB and BB for the output controller). Similarly, for the gate
controller, the minimum fidelity is 86.6% and 94.95% for WB and
GB. In Fig. 4c, we summarize the statistics of the MSE between the
ML model predictions and actual outputs for the training and
testing datasets, in comparison with the MSE between the
experimentally controlled measurements and the targets for each
of the two controllers.
The results of the controller for obtaining a target power

distribution show once again the superior performance of the GB
and BB over the WB in terms of both MSE and average fidelity. The
same controller/optimization algorithm and cost function are used
for the three models. Thus, the lower performance comes from the
lower accuracy of the WB model itself. When considering the
controller for target unitary, it is only possible to use a WB or a GB
as they are the only models that can give access to the overall
unitary evolution matrix. A BB cannot be utilized in this case since
it only encodes the dynamics in an abstract machine-suitable
format, and does not provide any physical picture.
The performance assessment of ML-based algorithms on real

rather than synthetic datasets is critical. Different noise sources
could affect the data in unpredicted ways, which may also be
difficult to simulate. This can affect the performance of the ML
algorithm. We see that the final MSE of training and testing for the
experimental dataset is two orders of magnitude less than that of
the synthetic dataset (shown in Supplementary Note 4). However,
the control performance on the experimental dataset is accepted
and thus, we also accept the model prediction performance. In
other situations, this might not be the case, and the ML design has
to be modified to achieve higher performance. Therefore, using a
design based on simulations such as ref. 42 and applying it directly
to an experimental dataset would not result in adequate
performance, and so the whole workflow needs to be re-executed.
Determining the required dataset size, as well as NN

architecture and complexity for higher-dimensional systems, is
generally difficult and has to be studied case by case. In
Supplementary Note 4, we show promising results for a simulated
32-mode chip. And while the dataset and neural network sizes

had to be increased, the overall protocol was still feasible to
execute.
Finally, the GB provides sufficient physical insights for most

purposes, for example, in Fig. 5a, b, where the tunability of the
Hamiltonian as a function of a single electrode voltage is explored.
The figure shows the GB prediction of the different Hamiltonian
elements as a function of the voltage applied to a single electrode.
We can use these predictions more generally when more than one
electrode is tuned (although it would be more difficult to plot in
this situation) for unitary control. We can use the GB to predict the
unitary given the set of voltages even though the dataset
originally did not include this information but rather the power
distribution. Another advantage of using the GB, compared to WB,
is the incorporation of unmodelled effects such as cross-talk. While
the effect is negligible in our technology, in other situations, it can
be difficult to have an exact/accurate WB model.
It is also important to realize that this predicted Hamiltonian,

besides not being unique mathematically, represents physically an
effective quantity, and so it will differ in structure (such as the
existence of an imaginary part) from the ideal Hamiltonian that
one may expect for a system. Depending on the purpose of the
use of the GB we can control how much we make it ‘blacker’ or
‘whiter’. For control applications, the best architecture is to have
this effective Hamiltonian. In another application, such as
modeling a device for the purpose of completely understanding
the physics, the architecture of the GB might need to be modified
to allow Hamiltonians that are closer to some expected structure.
In Supplementary Note 5, we explore this idea in more detail. In
particular, we explore the relaxation of the WB assumptions
gradually until we reach the structure of the GB. The results show
that the best architecture that fits the experimental data is a
complex non-tri-diagonal Hamiltonian with non-linear depen-
dence on the control voltage. This suggests that the reconfigur-
able section of the chip has variations along the propagation
direction, which could be the result of fabrication imperfections. In
other words, the estimated Hamiltonian effectively represents a
time-dependent system. Finally, it is worth mentioning that
reaching this conclusion was based on interpreting the mathe-
matical structure obtained from the GB. Thus, the GB approach
helped us understand better the behavior of our system.
In summary, we have shown how a GB model can be designed

for a general quantum device, trained on experimental data, and
verified by generating target unitary operations and output
distributions with high fidelity. The performance was bench-
marked against WB and BB models, showing the superior
performance of our approach. Our approach is general and can

Fig. 5 Dependence of the Hamiltonian elements on a subset of input voltages, as predicted by the graybox model. a Real and b imaginary
parts of the Hamiltonian matrix elements as a function of voltage when all electrodes are grounded except the first electrode. It should be
noted that the imaginary parts of H11, H22, and H33 are by definition equal to zero. The non-linear dependence, the second off-diagonal
elements, and the imaginary components indicate an effective Hamiltonian being estimated for a time-dependent system, attributed to the
non-homogeneity of the chip along the propagation direction.
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be applied to any quantum system, it can be extended to time-
dependent and open quantum systems with the need to modify
the ML structure and dedicated dataset-taking process for specific
hardware or quantum systems43–45. There are many possible
extensions to this work as well. One possibility is to design a GB
for other physical models, such as a Lindblad master equation for
Markovian open quantum systems. One could also consider a
hybrid approach between Hamiltonian learning using Genetic
Algorithms (such as ref. 54,55) and our numerical GB for the
purpose of obtaining more detailed physical models. In terms of
the ML aspects of this application, a study about the scaling
requirements for the NN structures of the GB in relation to the
dimensionality of the system would be interesting. However, it will
be challenging because asymptotic analysis of ML algorithms is
difficult or might be impossible. On the other hand, relying on
numerical analysis might not be sufficient since the analysis will
be restricted to a particular range of the scaling parameter and
cannot be generalized outside that range. Another aspect related
to any ML algorithm is the requirements of the training dataset
size. For complex devices, it can be challenging to collect a large-
sized dataset. However, some emerging techniques can facilitate
this process, including incremental learning56, transfer learning57,
and adaptive online learning58. While these techniques are
constantly developing in classical ML literature, there is still a
gap in porting such methods to physics-based applications,
especially quantum applications.
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