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Compact description of quantum phase slip junctions
Christina Koliofoti 1✉ and Roman-Pascal Riwar 1

Quantum circuit theory is a powerful tool to describe superconducting circuits. In its language, quantum phase slips (QPSs) are
considered to be the exact dual to the Josephson effect. This duality renders the integration of QPS junctions into a unified
theoretical framework challenging. As we argue, different existing formalisms may be inconsistent, and the correct inclusion of
time-dependent flux driving requires introducing a large number of auxiliary, nonphysical degrees of freedom. We resolve these
issues by describing QPS junctions as inductive rather than capacitive elements, and reducing the Hilbert space to account for a
compact superconducting phase. Our treatment provides an approach to circuit quantization exclusively in terms of node-flux-
node variables, and eliminates spurious degrees of freedom. Finally, the inductive treatment reveals the possibility of a voltage-
dependent renormalization of the QPS amplitude, by accounting for spatial variations of the electric field built up across the
junction.
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INTRODUCTION
Given the enormous potential of superconducting circuits for
realizing large scale quantum computers1,2, it is of utmost
importance to provide a concise, yet powerful tool for their
theoretical description. The paradigm of circuit quantum electro-
dynamics (cQED)3–7 seems to provide just that: circuits are
straightforwardly reduced to lumps, described by the canonically
conjugate pair of total Cooper pair number N and superconduct-
ing phase φ, whose operators satisfy ½bN; bφ� ¼ i.
Despite its widespread use, quantum circuit theory is still not

quite without occasional teething troubles. For instance, it was
very recently argued that a proper, realistic description of circuits
driven via time-varying magnetic fields – an important means for
addressing and manipulating superconducting quantum informa-
tion hardware – requires going way beyond a simple lumped-
element picture8–10. One key insight of ref. 9 will be of particular
relevance here: for devices involving Josephson junctions, the
precise form of the electromotive force is not dominated by the
junction self-capacitances (as was prior consensus), but depends
on the device geometry and distribution of the magnetic field. As
a consequence, loop constraints do not work as simply as
commonly expected. The same school of thought has subse-
quently given rise to the notion of voltage-dependent renorma-
lization of circuit parameters10,11, which provides a nontrivial
complication in the circuit quantization procedure10.
Deeply related to the above is the issue of charge quantization,

respectively the compactness of the superconducting phase.
Charge and phase being canonically conjugate, the quantization
unit of N fixes the periodicity (compactness) of φ. While phase
compactness and possible consequences of it are themes that
have been studied long time ago12–14, they have seen a revival in
recent years in various contexts15, such as to understand charge
noise sensitivity of quantum circuits16–20, quantum dissipative
phase transitions21–28, the validity of the spin-boson paradigm29,
geometric aspects of current measurements30 or flux-driving9,10,
as well as in topological phase transitions defined in the transport
degrees of freedom31–42. In particular, while symmetries and
constraints are equivalent for a closed quantum system6, the

community seems to be still divided on that subject for open
quantum systems26–28.
In this work, we take the above developments and persisting

controversies as a context to revisit a particularly important and
widely studied type of circuit element: the quantum phase slip
(QPS) junction43–53. In their influential work, Mooij and Nazarov48

put forth the idea that QPS junctions can be described as a
nonlinear capacitor � cosð2πNÞ and thus be considered as exact
duals of regular JJs, � cosðφÞ. QPS junctions are now an integral
part of the zoo of elements which may enter any quantum circuit
diagram. Their understanding as a nonlinear capacitor was used to
explain observed interference patterns with respect to applied
gate voltages, interpreted as the circuit version of the Aharonov-
Casher effect, a recurrent and important theme in superconduct-
ing circuits51,54,55. Very recently, it gave rise to the prediction, that
the Gottesman-Kitaev-Preskill (GKP) code56 may be realized using
only transport degrees of freedom57.
However, there are some important issues with this simple

description, especially when including non-linear capacitors into a
cQED framework. Its standard formulation4,5,7 is based on
distinguishing between inductive and capacitive elements, whose
respective energy contributions to the Lagrangian are treated as
potential and kinetic energy terms, respectively. However, non-
linear capacitors give generally rise to nonconvex kinetic energy
functions with non-invertible charge-voltage relationships. To cure
such problems, an alternative formulation was given in ref. 6,
based on loop charges (time-integral of loop currents). Here, the
roles of inductive and capacitive elements are reversed (the
former now being of kinetic nature). In alignment with
the terminology of ref. 6, we refer to these two approaches as
the node-flux and the loop-charge formalisms. However, in order
for Josephson junctions (nonlinear inductors) and QPS junctions
(nonlinear capacitors) to coexist, this formalism requires the
combined use of node flux and loop charge variables.
In our work, we derive a description of QPS junctions different

from existing approaches in three main points. First of all, instead
of a capacitive treatement, we show that QPS junctions can be
described as inductive elements with an intrinsic degree of
freedom. This renders the description of QPS junctions compatible
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with node flux quantization without the need of loop charges, and
as a consequence, allows for the inclusion of the aforementioned
recent insights concerning time-dependent flux drive9. In
particular, this significantly reduces the number of auxiliary
degrees of freedom needed to describe a general circuit. Second,
we derive a combined constraint on the phase and intrinsic QPS
degrees of freedom consistent with the generalized requirement
of charge quantization outlined in ref. 30. This constraint limits the
possible inductive couplings to a generic electromagnetic
environment, and renders the predictions of basic thermodynamic
quantities (such as the thermodynamic energy, entropy and heat
capacity) consistent. Third, the combination of the two above
innovations allows to take into account voltage-dependent
renormalization of the QPS parameters similar in spirit to refs. 10,11,
which significantly changes the predicted energy spectrum of
already quite simple circuits. Overall, our approach is able to
account for both the Aharonov-Bohm and Aharonov-Casher
effects in a unified picture, and provides important information
on the available computational space for quantum information
applications. Based on the latter, we refine the necessary
conditions for the proposition by ref. 57 to use QPS junctions for
a realization of the GKP code. Finally, as outlined in the outlook,
our approach is likely the starting point for an entire series of
further revisions on the subject of QPS physics.

RESULTS
Open issues in the state of the art and their solution
Circuit quantization is the leading paradigm to derive the
Hamiltonian of an in principle arbitrary quantum circuit network.
In its standard formulation4,5,7,9, referred to as node flux
quantization6, it considers the superconducting phases of the
circuit nodes and the corresponding voltages, φj and _φj , and
constructs a Lagrangian of the general form

L ¼ Tðf _φjgÞ � VðfφjgÞ ; (1)

where the energy stored in capacitive elements (whose energy
depends on the voltage _ϕj) is added to the kinetic energy, T, and
elements of inductive nature (with an energy depending on the
phase ϕj) are added to the potential energy V. To get to the
Hamiltonian, one performs a Legendre transformation H ¼P

j _φjNj � L with the canonically conjugated charge, Nj ¼ ∂ _φj
L

(which, incidentally, provides the charge-voltage relationships of
the involved capacitances) and subsequently promoting the
variables to operators, φj;Nj ! bφj ; bNj , satisfying the charge-

phase quantization condition ½bφj; bNj0 � ¼ iδjj0 . Another important
aspect is the treatment of externally applied time-varying fluxes –
an indispensable tool for controlling quantum hardware. Only
recently it was noticed8,9 that care has to be taken with respect to
gauge transformations. In the most general case, a convenient
approach consists of computing the vector potential A in the so-
called irrotational gauge, satisfying B=∇ × A and E _B ¼ �∂tA,
where E _B is the part of the electric field induced by the time-
dependent driving of the magnetic field (the electromotive force)
satisfying the Maxwell-Faraday equation∇ × E=− ∂tB (where the
device geometry fixes the boundary conditions for the fields). This
vector potential enters inside the inductive elements connecting,
e.g., nodes ϕj and ϕk as the equivalent of a Peierls phase, Vikðϕj �
ϕkÞ ! Vikðϕj � ϕk þ ϕik

extÞ with ϕik
ext ¼ 2π=Φ0

R
Ljk
dl � A, where Ljk

denotes the path Cooper pairs have to take to travel from note k
to node j and Φ0 is the flux quantum. For circuit elements with
intrinsic degrees of freedom, it has already been shown for the
example of Majorana-based junctions10,11, that the electromotive
force leads to the renormalization of the junction parameters
depending on the voltage _ϕj � _ϕk . These terms modify the

charge-voltage relationship in a nontrivial way, and give, e.g., rise
to significant changes in the quantum charge fluctuations10.
It has already been understood, that the above node flux

approach is problematic for quantum phase slip (QPS) junctions.
As argued by Mooij and Nazarov48, the physics of a QPS junction
can be regarded as the exact dual to the Josephson effect, and
captured in an energy term resembling a nonlinear capacitor,
�ES cosð2πNjÞ. One therefore would have to find a corresponding
kinetic energy as a function of the voltage _ϕj , which, after the
Legendre transformation, results in exactly this � cosð2πNjÞ term.
Such a candidate function was proposed in57, but it turns out to
be a nonconvex function, such that the Legendre transformation
is not defined, and the charge-voltage relationship cannot be
inverted (unless a parallel shunt with a linear capacitance with
sufficiently high charging energy is added57). Ulrich and Hassler
proposed an alternative circuit quantization procedure relying on
loop charges N�

j , respectively on loop currents, _N
�
j (throughout this

work, we use the notation X∘ for quantitites X that are specific to
the loop-charge quantization procedure). For a given circuit, one
identifies its loops instead of its nodes (see Fig. 1c, d), and assigns
the corresponding energy contributions from each element, to
add it to a Lagrangian L∘ which is now a function of N�

j and _N
�
j .

Here, inductive and capacitive elements play inversed roles
compared to Eq. (1), i.e., the former (latter) now contributes to
the kinetic (potential) energy. Likewise, the canonical loop phase is
defined as φ�

j ¼ ∂ _N
�
j
L� (flux-current relationships), and quantiza-

tion is achieved in the same manner, ½bφ�
j ;
bN�
j0 � ¼ iδjj0 . In the loop

charge picture, there is now no more issue regarding the
nonlinear capacitor, as the energy term ES cosð2πN�

j Þ can directly
enter the potential energy of L∘ and is unaffected by the Legendre
transformation (up to a change of the minus sign). But due to the
duality between quantum phase slips and the Josephson effect,
solving the nonlinear capacitor problem comes at the expense of
difficulties to describe regular Josephson junctions and other
nonlinear inductor elements. Reference6 showed that it is possible
to include both QPS and Josephson junctions in a mixed picture
involving both loop charges and node fluxes, see Fig. 1c, d.
Note however, that in order for this mixed approach to work, the
junction self-capacitances must be nonzero – otherwise one
encounters divisions by zero on the way to the Hamiltonian (in the
form of noninvertible charge-voltage relationships).
This last point already brings us to the first issue, related to

external fluxes and their connection to loop constraints. Prior to
the work of ref. 9, it was common to assign to each junction (or
generally to each inductive element) a nonzero self-capacitance.
In particular for the problem of the dc-SQUID, this self-
capacitance, in conjunction with a pure lumped element
treatment of externally applied time-varying fluxes, led to the
prediction by You, Sauls and Koch8, that the electromotive force
term depends on the relative strength of the self-capacitances of
the two junctions in the dc-SQUID. As pointed out in ref. 9, this
statement is only true for a subset of device geometries. If the
electrostatics is dominated by the bulk (which is, e.g., commonly
the case in transmons58) then, this result breaks down. In the most
general case, there is only a physically meaningful capacitive
energy between different bulk charge islands, and the total
resulting bulk capacitance cannot be distributed among the
different inductive elements connecting to the given bulk island –
unless one introduces effective junction self-capacitances, which
can be either negative, time-dependent or even momentarily
singular9. As we show in more detail later, this has significant
impact on the concept of the mixed loop charge/node flux
formalism introduced by ref. 6. In short, within this formalism, we
might choose to stick to effective junction capacitances, which
however fails for negative effective capacitances, as they create
problematic bosonic Hamiltonians with no lower bound, and a
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generally complex eigenspectrum. This problem can be avoided
by introducing dominant bulk capacitances, which provide
regular, bounded Hamiltonians. However, due to the aforemen-
tioned division-by-zero problem, one needs to keep finite self-
capacitances for Josephson junction elements within the con-
struction of the Lagrangian, which can only be set to zero at the
very end on the Hamiltonian level. Therefore, one has to carry
around a large amount of auxiliary degrees of freedom to describe
the circuit, leading to a significant theoretical overhead (see, e.g.,
Fig. 1d).
The other main issue concerns the relationship between

discrete symmetries and compact constraints on wave functions.
In particular, if the superconducting phase φ is constrained to be
compact, it follows that the canonically conjugate charge N is
integer. Specifically for QPS junctions, the capacitive treatment
with an energy term � cosð2πNÞ can only provide nontrivial
dynamics if the charge N is allowed to assume noninteger values.
One therefore has to wonder, how charge quantization, under-
stood to be a fundamental property of non-relativistic quantum
field theory30,59–64, can be reconciled with it. This issue can
likewise be illustrated without the explicit involvement of QPS
junctions. Take the example of the well-known charge qubit
Hamiltonian65,

HC;J ¼ EC bN þ Ng

� �2
� EJ cosðbφÞ ; (2)

with ½bN; bφ� ¼ i. The capacitive energy is EC= 2e2/Ctot (Ctot= C+ Cg,
with the junction self-capacitance C and the gate capacitance Cg)
and the Josephson energy EJ= Ic/2e (where ℏ= 1), proportional to
the junction’s critical current Ic. The parameter Ng represents the
gate-induced offset charge on the island, Ng= CgVg/2e, where Vg
is the applied voltage.
The symmetry HC,J(φ+ 2π)= HC,J(φ) expresses the fact that the

junction transports Cooper-pairs in integer portions. But if this

discrete symmetry was the only relevant ingredient, we would
find (according to Bloch’s theorem) continuous energy bands with
a wave vector k as a quantum number, that is,
HC;J ψnðkÞj i ¼ EnðkÞ ψnðkÞj i. Related to that, any stationary con-
tribution to the gate-induced offset charge Ng could be gauged
away by means of a time-independent unitary transformation. In
order to correctly predict the experimentally well-established Ng-
dependence66–69, and discrete energies instead of energy bands,
one needs to impose an additional symmetry constraint on the
wave function itself, ψðφþ 2πÞj i ¼ ψðφÞj i; with this constraint we
obtain the eigenenergies En(Ng) instead of En(k)65. This can be
understood as an inverted Bloch theorem. The additional
constraint on the wave function selects out the k vector which
is consistent with having Ng as the equivalent of the vector
potential. The latter is no longer a gauge degree of freedom: when
progressing in φ-space by 2π the system returns to the same state
(because φ now lives on the circle), and thus self-interferes while
picking up the phase ei2πNg .
In the literature, there however persists a lack of consensus with

regard to symmetries versus constraints, which has not yet been
resolved in spite of it being an old and well-known problem13,14.
In ref. 6 it was argued that the discrete symmetry in the
Hamiltonian and the symmetry constraint on the wave function
can be considered equivalent. This statement is valid for closed
quantum systems in the following sense. Namely, one can fix a
given Bloch vector at some initial time t0→−∞, which must stay
the same throughout the whole time-evolution. Thus, one could in
principle identify the constant k vector as the external parameter
Ng without having to explicitly impose boundary conditions on
the wave function. Crucially, however, a realistic account of any
type of quantum hardware requires an understanding of the
system including an environment. Therefore, let us here first point
out that for open quantum systems, constraints and symmetries
are not interchangeable. We illustrate this point for the example

Fig. 1 Issues related to time-dependent flux control, exemplified with the dc-SQUID. Conventionally, the dc-SQUID is represented as in (a),
where each Josephson junction has a finite self-capacitance. However, as shown in ref. 9, the capacitively shunted Josephson junction picture
does not hold in general for time-varying magnetic fields, and external fluxes have instead to be attached to the bare junctions (b), while
there is only a single bulk capacitance Ctot. The loop-charge based quantization procedure6 can only include Josephson junctions in a mixed
node/loop picture, requiring extra capacitive shunts for each junction as well as auxiliary inductances. Depending on whether the dominant
island capacitance is distributed between the junctions C1 and C2 (c), or described as the single bulk capacitance Ctot= C1+ C2 (d), the number
of auxiliary degrees of freedom changes. The version with a lower number of degrees of freedom (c) may suffer from spurious instabilities due
to the fact that effective junctions capacitances (either C1 or C2) may be negative9.
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Hamiltonian in Eq. (2) in two different ways: first, by considering
an explicit inductive coupling to an external electromagnetic
environment, and second by means of general thermodynamic
considerations. For the inductive coupling, consider both the
extended and the compact version of the charge qubit, which can
be understood as a particle moving on an extended 1D line in a
cosine potential, or respectively, as a pendulum subject to earth’s
gravity, see Fig. 2. The presence of an external electromagnetic
field coupling to the circuit can now be visualized by means of a
generic additional force field acting on the particle. Crucially, if we
impose no constraints on the force field, then the two systems
behave diametrically different. Namely, in the extended system,
the force field can in general break the discrete symmetry of the
cosine potential, and thus break the conservation of the
aforementioned Bloch vector. In particular, a generic ac drive of
the external force can drive intraband transitions, such that the
response function of the circuit would have continuous bands. If
we insist on the 2π-periodic constraint on the other hand, the
force field cannot break 2π-periodicity, as there is simply not
enough available Hilbert space. The response to an ac drive here
reveals a discrete spectrum.
The same fact can be expressed equivalently in terms of generic

thermodynamic considerations. For this purpose, take the parti-
tion function Z ¼ tr½e�βH�, where β= 1/kBT is the inverse thermal
energy and T is the temperature. Well-known thermodynamic
quantities derived from Z are, e.g., the Helmholtz free energy
A ¼ β�1 ln Z, the entropy S=−∂TA or the heat capacity Cν= T∂TS.
The partition function is distinctly different for the compact and
the extended system, either yielding ZcðNgÞ ¼

P
ne

�βEnðNgÞ or Z ¼R
dk

P
ne

�βEnðkÞ (where the subscript c indicates the compact
version of Z). In particular, the former depends on Ng, contrary to
the latter, which does not. The two results are per se compatible
only if we assume that Ng fluctuates slowly (such that after each
change of Ng the system has time to relax to thermal equilibrium),
and that thermodynamic quantities can only be measured over
times slower than the fluctuations of Ng. Then, if on average all
values of Ng are equally likely, we get � R

dNgZcðNgÞ ¼ Z. Note
that we have omitted the fact that if we take an average over Ng

by means of a normalized probability distribution, the time-
averaged Zc and Z are equivalent only up to a divergent prefactor.
This is however unproblematic, as for all relevant thermodynamic
quantities (Helmholtz energy, heat capacity, changes in entropy)
this prefactor cancels.
If the thermodynamic quantities are measured on shorter time-

scales than the fluctuations of Ng, then, we cannot obtain the
correct partition function with symmetries only. As a last resort,
one might try to invoke a breaking of ergodicity, observed in a
variety of different systems70–75, by which the charge qubit could
not explore the entire (noncompact) phase space (keeping the k
fix even for the open system). Such sophisticated arguments are
however not required: for the charge qubit, the island can at low
temperatures only host integer number of Cooper pairs – a result

that follows from basic field theoretic considerations without the
need of invoking ergodicity breaking30,60. The compact constraint
on the wave function is thus the simplest possible approach to
make correct, generic predictions about the circuit coupled to an
environment, without requiring detailed knowledge about the
latter.
While charge quantization in integer portions of the Cooper pair

for an island coupled via a Josephson junction is straightforward
to derive, more complicated circuit elements provide a more
sophisticated picture, and in particular, may add intrinsic degrees
of freedom, which do not live within the superconducting bulk
but at the interface between two superconductors, see, e.g.,
Majorana-based junctions10,11,76. However, even for these circuits,
there must generally exist a basis choice with compact φ as long
as there exists a condensate with an integer number of Cooper
pairs30,76. Changing between different basis choices (which may
be necessary to truncate to the low-energy degrees of freedom)
was shown to give rise to the aforementioned _φ-dependent
renormalization of circuit parameters10,10, and thus adds a
nontrivial component to the charge operator following from
canonical quantization10.
In this work, we revisit quantum phase slip junctions under

exactly this light, that is, by taking into account quantization of the
local charge operator, and including an intrinsic junction degree
of freedom counting the number of phase slips. Overall, we
accomplish the following.

(i) We establish a pure node flux treatment of a QPS junction,
viewing it as an inductor with intrinsic freedom rather than a
nonlinear capacitor.

(ii) We derive the correct constraint on the wave function, fixing
the available degrees of freedom at a microscopic level.

(iii) We identify a renormalization of the QPS amplitude due to a
nontrivial coupling with a capacitive shunt.

As already indicated above, (i) is important when including
time-dependent flux driving. In particular, our proposed node flux
picture allows minimizing the number of degrees of freedom
required to accurately describe a time-dependently driven circuit.
(ii) allows us to derive a generalized constraint for the wave
function describing circuits involving QPS junctions, paramount to
provide unambiguous predictions for the device as an open
quantum system, crucially without the need for a detailed
description of the environment. Moreover, we will show that the
constraint is also important to accurately predict the available
computational space if the device is used for quantum informa-
tion processing purposes. (iii) allows us to take into account details
on how (with what spatial resolution) a capacitance in parallel to
the QPS junction, or any other field or measurement device
couples to the transported charge across the junction. As already
stated, this effect stems from a dynamically renormalized
amplitude for quantum phase slips (an effect similar to what has
recently been predicted in Majorana-based junctions10,11). The

Fig. 2 Different perspectives on the phase space representation of the charge qubit Hamiltonian. a describes the 2π-periodic phase space,
where we consider the Hamiltonian to be analogous to a particle in a cosine potential. b considers the Hamiltonian to be the analogous to a
pendulum in a gravitational field, which corresponds to the compact phase space representation. The difference between the two
representations becomes apparent if we consider an external force field Fe. In case (a) Fe can break the 2π-periodicity, where in case (b) the
same is not possible, since the periodicity is a property of the system itself.
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treatment presented in this work is valid for a weak renormaliza-
tion. The correct quantization procedure for strong renormaliza-
tion goes beyond the scope of the current work, and will be
tackled in the future.
As a final note, while dissipative quantum phase transitions are

not the main focus of our work, our treatment nonetheless allows
to comment on certain aspects which are currently hotly debated
for Josephson junctions26, and how they might be related to QPS
junctions. In particular, in ref. 26 some tentative arguments are
presented, as to why the observed absence of the transition in
Josephson junctions could be related to whether the normal
metal bath preserves or violates phase compactness. We note that
this work was not received without controversy27,28, and has
spurred a number of follow-up works with differing results, both
on the theoretical77 and the experimental78 side. At any rate, we
expect (ii) to be important to limit the allowed forms of a generic
inductive coupling to an environment for circuits involving QPS
junctions. Future works will shed more light on possible
repercussions of this observation for predictions regarding Ohmic
dissipation.

Inductive treatment of the QPS junction
We now derive the low-energy physics of the QPS junction within
a purely inductive picture, and compare its features with other
currently accepted treatments. While QPS wires may be realized in
a number of ways, our discussion is aimed at features which are
the same, irrespective of the experimental realization.
Consider the isolated QPS junction, which is only contacted to

two superconducting lumps. We assume that one of the lumps
has phase zero (ground), and the other phase φ (Fig. 3a, b). In
principle, one might write down a full microscopic Hamiltonian
description of the wire by means of a Hamiltonian HQPS(φ), where
HQPS could, e.g., be derived from the Gor’kov Greens function79.
However, such an approach would be obviously unfeasible, which
is why a suitable low-energy approximation has to be found.
Inspired by existing treatments, we revisit this path step by step. In
this revision, we want to keep two properties which are commonly
neglected. First, the full microscopic Hamiltonian HQPS is 2π-
periodic in φ, due to fundamental charge quantization in the bulk.
Secondly, while the wire has intrinsic physics, the bulk phase φ
stays constant, unless the wire is integrated into a larger circuit.
First, in the absence of actual phase slips, it is understood that

the connecting wire has a spatially varying local phase profile,
linearly ramping the phase up from zero to φ, see Fig. 3. This linear
profile is the classical solution minimizing the internal energy of the
wire, on top of which there may be local fluctuations. For a
continuous wire, the frequency of local fluctuations can be
estimated by means of the parameters of the Nambu-Goldstone
mode79, which (in 1D) can be interpreted as a capacitive and an
inductive density c and l of the wire. For Josephson junction arrays,
this minimization works in a very similar way (see, e.g., ref. 18),
where the densities l and c can be related to the junction energies,
respectively, the capacitances in the array (mostly the capacitance
to ground for sufficiently long arrays80). Neglecting local fluctua-
tions is therefore justified when considering energies below the
superconducting plasmon frequency ωp � ffiffiffiffi

lc
p

d, where d is the
wire length. Within the same framework, we can estimate also the
energy associated to the strain due to the linear phase profile,
which provides us with an inductive energy of the wire, ~ ELφ2, with
EL= 1/(8e2dl). The following low-energy description of QPS junc-
tions is in particular justified when EL≪ωp (we remind that ℏ= 1).
As for quantum phase slips, they have been historically first

understood as a quantum analogy of the classical, thermally
activated phase-slips described by means of Ginzburg-Landau
theory, see ref. 43 (and references therein). Within Ginzburg-
Landau, the superconducting phase profile inside the wire, φ(x), is
by construction compact for each x, such that there is not one

unique solution to the minimization profile of the phase inside the
wire but many distinct (in a field-theoretic sense local) minimum
solutions, which can be parametrized as f 2 Z kinks in the phase
profile (see Fig. 3b). In order to arrive at the current state-of-the art
description of quantum phase slips6,48, the phase profile with
kinks is mapped to a new, extended phase profile, where the
phase value of φ is copied by multiple integers of 2π (see Fig. 3a).
We note that while the former picture can be obtained from the
latter via a projection (taking the phase modulo 2π), the two
pictures strictly speaking do not conserve the size of the Hilbert
space, since the local phase is either compact or not. Throughout
our work, we show that compact and extended representations of
the physics of QPS junctions can to a certain degree be mapped
into one another, but for a variety of question, care has to be
taken not to introduce spurious states into the description.
In the quantum regime the system may now coherently jump

between these different minima, to which we assign the energy
ES. In the existing literature, a lot of effort went into finding
accurate predictions for the value of ES, especially for Josephson
junction arrays81,82, including off-set charge fluctuations within
the array, which give rise to a temporally fluctuating value for ES55,
or in a very large array limit, where off-set charge disorder was
argued to lead to strong values for ES80. In the presence of offset
charges, the QPS energy becomes in general complex,
ES cosð2πNÞ ! ðESei2πN þ h:c:Þ=2 with55

ES ¼
X
j

EðjÞS ei2πN
ðjÞ
g ; (3)

where EðjÞS is the local QPS amplitude for junction j within the array,

and NðjÞ
g is the local offset charge added to island j. We here focus

on revisiting the topology and size of the Hilbert space, while
assuming ES (for the most part) as a given value, or a fitting
parameter. Nonetheless, the above equation will reappear in our
considerations later, to provide an example of a voltage-induced
renormalization of ES, which naturally occurs in our formalism.
As we show now, there are subtle, but important differences,

depending on whether the compact or extended picture is
deployed. While our main goal is to remain in the compact picture,
let us first summarize the currently accepted state of the art
description by means of the extended picture (Fig. 3a). Here, one
obtains the capacitive interpretation of the phase slip processes:
jumps of φ by 2π are naturally expressed in terms of the jump
operator e�2π∂φ . Given that [N, φ]= i is satisfied by N= i∂φ, and
summing over quantum jumps in both directions, we get the
cosð2πNÞ energy term discussed above. The energy penalty due to
the strain in the phase profile, giving rise to the inductive energy
EL is accounted for by putting a linear inductor in series with the
ideal QPS junction48. Following the loop charge quantization
procedure6, this circuit is described by the Lagrangian

L� ¼ _N
�� �2

=ð4ELÞ þ ES cosð2πN�Þ, which, after Legendre transfor-
mation _N

�
∂ _N

�L� � L, results in the Hamiltonian

H�
QPS ¼ EL φ�ð Þ2 � ES cosð2πN�Þ ; (4)

with the canonically conjugate loop phase φ� ¼ ∂ _N
�L� ¼ N�=ð2ELÞ.

Already on this level, we can observe a peculiarity: as stated at the
outset, the superconducting phase φ is in principle an externally
fixed parameter (which, if we close the two contacts into a loop, can
be controlled by an externally applied flux), whereas in the above
loop charge Hamiltonian, it is a dynamic quantity (due to the 2π
jumps). However, just like in the charge qubit Hamiltonian, Eq. (2),
there is a discrete symmetry, H�

QPSðN� þ 1Þ ¼ H�
QPSðN�Þ, which gives

rise to a conserved Bloch vector. According to the argument
provided by ref. 6, this Bloch vector can in the closed system be
interpreted as the externally applied flux, or simply the fixed phase
bias across the QPS junction. But as we have already argued in the
previous section, this is only true for the closed system.
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Let us therefore now rederive the low-energy approximation of
the QPS Hamiltonian keeping phase compactness, according to
Fig. 3b. Here, the phase difference φ does not change as a
consequence of the intrinsic physics inside the wire, justifying the
inductive treatment of the QPS junction. In fact, an early version of
the Hamiltonian we are after was already present in ref. 48. Taking f
as the number of kinks in the phase profile and associating to
each local minimum the quantum state fj i, the low-energy
Hamiltonian description can instead be given as

HQPS ¼ � ES
2

P
f

fj i f � 1h j þ f � 1j i fh jð Þ

þ EL
P
f

φþ 2πf fj i fh jð Þ2 ; (5)

where the quantum coherent phase slips are included in the ES-
term.
For a constant value of φ, the Hamiltonian in Eq. (5) provides the

correct low-energy spectrum, and contains directly the right size
of the Hilbert space (without requiring symmetry arguments), as
there is only the discrete degree of freedom f. Crucially, however,
an important detail has so far been missing in Eq. (5), which
becomes relevant once we start varying φ (i.e., once the QPS
junction is integrated into a larger circuit). Namely, if we allow for
a Hilbert space where the discrete quantum number f coexists
with a noncompact φ (φ 2 R), shifting φ by 2π (and keeping f
constant) would actually give rise to a state distinct from the one
where we leave φ constant and instead shift f by 1. However,
given the phase profile in Fig. 3b we understand that this cannot
be. For distinct f, φ can only meaningfully assume values within a
2π-periodic interval (e.g., φ∈ [−π, π)).
To continue, we fix the Hamiltonian, such that it does not

overcount the available low-energy states. In the compactified
picture, the reduction of the Hilbert space can be readily
performed by endowing the basis fj i with a phase dependence

fj i ! fj iφ, such that

fj iφ± 2π ¼ f ± 1j iφ : (6)

As a matter of fact, this φ-dependence of the phase slip states
could have been derived also on the level of the minimization
problem of the wire phase profile. Namely, if we understand fj i as
a representation of the wave function of the phase profile inside
the wire, then it becomes clear that the wave function must be φ-
dependent in exactly the way we just stated (see also the
Supplementary Material, where we discuss this fact for a discrete
realization of the QPS junction via Josephson junction arrays). If
we now want to cast the physics related to f into the framework of
canonically conjugate charge and phase variables, we have to
explicitly keep the φ-dependence in the notation – at least initially.
As we show in a moment, there is a particular way in which
the basis dependence can be dealt with. For now, we therefore
get

Hc
QPS ¼ �ES cos bSφ� �

þ EL φþ 2πbfφ� �2
: (7)

Note that eibS ¼ P
f fj i f � 1h j and bf ¼ P

f f fj i fh j still fulfill the

ordinary commutation relations ½eibS;bf � ¼ �eibS, in spite of the φ-
dependent basis. For φ externally fixed, the Hamiltonians HQPS and
Hc
QPS, given in Eqs. (5, 7), provide the same energy spectrum as a

function of φ, see Fig. 4a–d. Without phase slips (ES= 0, see
Fig. 4a, b), the eigenenergies are simply given by the parabolas
due to the ordinary kinetic term ( ~ EL). With finite ES, the
parabolas hybridize, inducing a gapped spectrum (Fig. 4c, d). One
of the crucial differences between the two Hamiltonians is that Eq.
(5) allows for the creation of spurious extra states, by copy-pasting
the spectrum to an extended phase φ (Fig. 4a, c). In Eq. (7), only
the spectrum for a compact φ exists. The other central difference
is the φ-dependence of the basis. While of course both of these

Fig. 3 Compact versus extended descriptions of quantum phase slips along a QPS junction. The two ends are phase biased by φ (the left
contact is the ground with phase 0). The extended phase profile in (a) can be projected to a 2π-periodic profile in (b). While it seems that
picture (a) is the one motivating the standard Hamiltonian description by Mooij and Nazarov, we argue in the main text that an extended
picture for the phase may lead to too large a Hilbert space including spurious states which are represented in neither (a) nor (b). Depiction of
two possible measurements of charges transported across the QPS junction in (c), the quantized charge N and the continuous charge eN. While
the quantized charge N is effectively eliminated in the course of the low-energy approximation, its presence is nonetheless felt as a
topological constraint on the Hilbert space.
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differences are immaterial for an externally fixed φ, they matter as
soon as φ becomes dynamical, as we show now.
In particular, we now aim to provide a quantizable theory where

there is a meaningful way to integrate the QPS Hamiltonian into a
larger circuit, and provide a Hamiltonian for the full circuit with
[N, φ]= i. In this regard, the conservation of the size of the Hilbert
space, came at a cost of a considerable complication: the explicit
φ-dependence of the f-basis. Therefore, the next crucial step is to
understand how to correctly quantize with respect to φ, for a
generic circuit including QPS junctions. In order to tackle this
problem, we rely on a technique recently also deployed in other
circuit elements10,11,83, where the explicit phase-dependence of
the basis is first transformed away within a unitary transformation
UðϕÞ ¼ P

f jef i fh jφ to a new basis jef i which is constant in φ. This
has the following consequences. First of all, the full QPS
Hamiltonian receives an extra correction term due to _φ being
nonzero, HQPS ! UHQPSUy � i _φU∂φUy . The effect of this term has
to be included in the low energy approximation. For the concrete
realization with Josephson junction arrays, this can be done
explicitly. Namely, the unitary transformation here gives rise to

voltage dependent shift of the offset charges reaching into the
QPS wire (the array), i.e., Nj

g ! Nj
g þ αj _φ (for details see the the

Supplementary Material). Based on Eq. (3), it is now evident, that
we receive a dynamical renormalization of the QPS energy scale
ES ! ESð _φÞ. In fact, the prefactors αj depend on where within the
full microscopic HQPS the phase difference φ is allocated – that is,
they depend on how the electric field is distributed across the QPS
junction, when separating charges. Related effects have recently
been studied for Josephson junction arrays subject to an external,
classical flux drive, see ref. 84. Our treatment is a significant
generalization of this principle, because within the circuit
quantization paradigm the dynamics of φ is not necessarily
governed by a classical external drive, but by the quantum
dynamics of the phase due to a capacitive coupling. For a
capacitive coupling, the prefactors αj express the spatial profile
which which the capacitance measures the charge transported
across the QPS junction. Two extremal scenarios are depicted in
Fig. 3c. If the capacitor couples to the charge that has a finite
blurry support reaching linearly within the wire, there is no
renormalization (all αj= 0). Interpreting the spatial profile as a

Fig. 4 Comparison between compact and noncompact node-flux descriptions of the physics of QPS junctions. The noncompact energy
spectrum, Eq. (5), is shown either for ES= 0 (a) or ES ≠ 0 (c). In (b, d) we depict the spectrum of our proposed compact description, Eq. (7), for
the same set of parameters. Locally, both Hamiltonians provide the same spectrum. Globally however, the noncompact picture yields
periodically repeated copies of the same spectrum with extended φ. When shunting the QPS junction with a linear capacitance, see Fig. 5b,
the phase becomes dynamical, leading to various possible trajectories, represented by the red arrows. For ES= 0 (a, b) the dynamics of the
compact and noncompact description are equivalent, because the system simply stays within the same parabola. Matters are different for
finite ES (c, d). Here, the compact description predicts trajectories where the system state can self-interfere (marked with a yellow star). Such
trajectories do not exist in the noncompact description. As a consequence, the offset charge Ng can no longer be removed by a gauge
transformation (see main text). For a single QPS junction with a capacitive coupling, the physical picture of the compact node-flux formalism
and the standard loop-charge formalism are the same: the latter follows from the former by means of a decompactification of the φ-space.
The compact and noncompact description are related by an inverted Bloch theorem, where for the continuous Bloch band, see (e), the Bloch
wave vector gets replaced by the external parameter Ng, see (f). For the latter, there can only be discrete excitations.
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probability distribution, ref. 30 proposes a Rényi entropy measure,
by which this charge is maximally blurry, in the sense that it
maximizes this entropy. If on the other hand, the capacitor
couples to a different spatial charge profile, then a renormalization
is present. For instance, if the capacitor couples to the charge
sharply localized at the right contact, then we find αj ~ j/J where J
is the total number of Josephson junctions comprising the QPS
junction (see the Supplementary Material). Given the generality of
the above discussion, we expect that this feature is present not
only for junction arrays, but also if the QPS junction is made of a
thin superconducting wire. However, to the best of our knowledge
there currently exists no feasible microscopic theory, by which this
renormalization could be quantitatively evaluated for bulk super-
conductors. Future research shall be dedicated to answer this
question. At any rate, the renormalization is, e.g., experimentally
observable in a voltage-biased QPS junction, as it modifies the
Landau-Zener probability at the phase slip degeneracy points
(e.g., where the states f and f ± 1 have the same inductive energy).
Later, we show how this renormalization changes the energy
spectrum of a capacitively shunted QPS junction.
The second important consequence of the unitary transforma-

tion has to do with the size of the low-energy Hilbert space.
Namely, the transformation can be understood as a local
flattening of the basis. Note however, that we are yet again at
risk of creating spurious states in the Hilbert space, because the
global 2π-periodic property, Eq. (6), would be lost in the new basis,
if we just naively continued to flatten indefinitely. Therefore, we
need to reinsert this constraint on the level of the circuit’s low-
energy wave function. We do so by defining an arbitrary interval
with length 2π for φ, e.g., φ∈ (− π, π], at the boundaries of which
states with neighbouring f are stitched together, according to Eq.
(6). The details of wave function constraint will be given explicitly
in a moment. The constraint can be understood as follows: if some
circuit element induces dynamical changes to the phase
difference across the QPS junction (e.g., a capacitive shunt),
changes of φ by multiples of 2π must necessarily come with a
winding of the wire’s phase profile, and thus changes f by an
integer.
We are thus finally at the point where we can combine all

ingredients. Given a general circuit Lagrangian in Eq. (1), a QPS
junction connecting nodes φj and φk, the low-energy QPS
Hamiltonian

HQPS ¼ �ESð _φj � _φkÞ cosðbSÞ þ ELðφj � φk þ 2πbf Þ ; (8)

is added to the potential energy V. The additional global
constraint is included as a boundary condition on the wave
function of the total circuit. Let us denote the wave function as
ψf({φj}), where the discrete index f is written as an index instead of
an argument (interpreting the number of kinks f as a kind of
pseudo-spin). For a single QPS junction connecting two nodes j
and k, it can be given as

ψf ðφj � φk þ 2πÞ ¼ ψfþ1ðφj � φkÞ ; (9)

This constraint guarantees that a progression of the phase
difference by 2π automatically results in a jump of f by+ 1, i.e.,
winding of the phase profile inside the QPS junction, without the
need of creating auxiliary states. If there are two QPS junctions in
parallel connecting one and the same pair of nodes (j and k), then
they have in general two QPS degrees of freedom f1 and f2, whose
boundary constraints are however connected, that is,

ψf 1;f 2ðφj � φk þ 2πÞ ¼ ψf 1þ1;f 2þ1ðφj � φkÞ ; (10)

and so on for a higher number of QPS junctions in parallel. This
modified constraint comes from the fact that when the phase
difference progresses by 2π, the phase profiles inside the two
parallel QPS junctions follows the phase instantaneously, such that
the winding of φ goes hand in hand with an increase of both f1

and f2 at the same time. With respect to charge-phase
quantization, the constraint Eq. (9) can be understood as follows.
Consider for simplicity a circuit with a single node φ. Moreover, let
us choose to represent φ on the interval (− π, π], such that φ= ± π
are the boundaries of the compact phase. In phase space, the
condition [N, φ]= i is equivalent to stating that N acts on the wave
function as the derivative i∂φ. While this derivative is obviously
well-defined on the extended real line, one has to explicitly define
it for a compact φ, i.e., how it acts on the wave function at the
boundaries. The above constraint is equivalent to fixing the
derivative across the boundary as

∂φψf ðφÞ
��
φ¼π

� lim
δ!0

ψfþ1ð�π þ δÞ � ψf ðπ � δÞ
2δ

; (11)

for the right end of the Brillouin zone, and

∂φψf ðφÞ
��
φ¼�π

� lim
δ!0

ψf ð�π þ δÞ � ψf�1ðπ � δÞ
2δ

; (12)

for the left end. As we show below, the problem can often be
simplified, such that the compact phase φ and intrinsic QPS
degree of freedom f can be combined into a decompactified
phase eφ, that is, a phase without 2π-periodic constraint. The
corresponding decompactified charge operator eN now takes again
the form of a regular derivative in an extended phase space. This
procedure preserves the size of the Hilbert space, and may be
useful for explicit computations, and in some cases, allows for an
explicit comparison between the Hamiltonian we receive in the
node flux picture and the one obtained from loop charge
quantization. Note however, that the details of decompactification
depend on the model at hand, and cannot be given generally. At
any rate, this concludes the formal part, and constitutes our
proposed treatment of QPS junctions within the node flux picture.
We now move on to applying this circuit to a number of device

examples to make testable predictions. Overall, we will be able to
show that an inductive treatment of QPS junctions is not only
advantageous (reducing number of degrees of freedom) but in the
most general case actually a necessity: the renormalization effect
could not possibly have been included within the loop charge
picture on a basic conceptual level, because it is a true nonlinear
capacitive effect, whereas the nonlinear capacitive treatment of the
quantum phase slips themselves arises only due to a mapping
onto an extended space with too large a Hilbert space. This
distinction can only be made within an inductive approach.

Capacitively shunted QPS junction and renormalization
effects
Let us first consider a QPS junction with a capacitive shunt, see Fig.
5. Such a device could for instance serve as a realization of a qubit,
thanks to the nonlinearity introduced by the QPS junction. Here,
the Lagrangian of the circuit is given as

L ¼ C
2

_φ

2e

� 	2

� EL φþ 2πbf� �2
þ ES _φð Þ cos bS� �

: (13)

As stated above, if the capacitor C couples to the maximally fuzzy
charge (reaching linearly into the wire, see Fig. 3c), then ES is simply
a constant, and the Legendre transformation can be performed
without any problems. We here however want to make predictions
which are valid also for the case where the capacitor couples to the
charge with a different spatial support (for instance, the charge
which is sharply defined at the island, see Fig. 3c). Here, we have to
include the aforementioned _φ-dependent renormalization of ES.
Assuming a weak _φ-dependence, we expand ES _φð Þ for low values of
_φ, that is, ES _φð Þ � ES þ λ _φ. The approximate Lagrangian is then

L � C
2

_φ
2e

� �2
� EL φþ 2πbf� �2

þ ES cos bS� �
þ λ _φ cos bS� �

;
(14)
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where Legendre transformation is again possible, since the linear
term in _φ preserves the convexity of the Lagrangian and merely
gives rise to a bS-dependent shift of the parabola � _φ2. This
approximation is valid if the correction of ES up to second order in
_φ is smaller than 1/EC, with EC ≡ 2e2/C. The resulting Hamiltonian is

HC;QPS ¼ EC N þ Ng � λ cos bS� �h i2
þ EL φþ 2πbf� �2

� ES cos bS� �
:

(15)

Assuming that the charge island is subject to an additional gate
voltage, we have included a corresponding offset charge in N, that
is, N→ N+ Ng.
According to the rules layed out above, this Hamiltonian is

supplemented with a boundary condition for the wave function of
the form ψf(φ+ 2π)= ψf+1(φ). To understand the effect of the
constraint consider first the case of zero phase slips, that is, ES= 0
and λ= 0 (see Fig. 4b). The boundary condition defines a Brillouin
zone in the space of φ with width 2π. The kinetic term,
proportional to EC, gives rise to a finite quantum dynamics of
the phase φ. These quantum fluctuations of the phase are best
understood if we consider again the spectra of the Hamiltonian as
a function of φ, in Fig. 4. The compact constraint ensures that if
the phase exits the interval on one end, it reenters it from the
other end, while switching the value of f to f ± 1, depending on
whether the phase exits the Brillouin zone on the right or the left
end (see the trajectory shown with the red arrow in Fig. 4b). This
statement is equivalent to the above definition of the charge
operator defined on the compact φ space, Eqs. (11, 12). Without
the constraint, we would have the extended picture, see Fig. 4a.
Here, all values of φ are allowed, such that the capacitively
induced dynamics result in the system moving along a single
parabola (red arrow in Fig. 4a). We note however, that due to
ES= 0, the two versions of the system (extended and compact)
have the exact same dynamics, and the exact same spectrum (that
of a regular LC resonator, as shown in Fig. 4e, f). This is due to the
fact that the extended system can only explore the parabola for a

single, fixed f. That is, for ES= 0 the extended system can be
considered nonergodic. Here, the difference between the
extended and the compact system is merely the question of
whether one prefers to regard the parabola on an extended line,
or to fold it back onto an interval of width 2π.
However, for nonzero ES, this is no longer true. Here, the two

systems differ, in that the extended system would explore a
much larger Hilbert space than the compact system, which
however has no physical representation within the circuit. Apart
from producing spurious states, the role of Ng is fundamentally
different. For the extended system, Ng is an irrelevant quantity
that can be gauged away. This is not so in the compact system:
with a finite ES, the system has the possibility to return to its
original state when progressing φ by 2π (red arrow in Fig. 4d),
and can thus self-interfere while picking up the phase ei2πNg . The
compact system thus resembles to some degree the pendulum
representation of the regular charge qubit (based on a simple
Josephson junction), see Fig. 2b, except that it has the additional
degree of freedom f. Consequently, we arrive at a similar
reversed Bloch wave vector argument. The system without
constraints has continuous Bloch bands (Fig. 4e) whereas the
compact system selects out the Bloch wave vector consistent
with Ng (Fig. 4f). As already stated previously, for the closed
system, the extended and compact models are equivalent,
because here, the Bloch vector can be considered a conserved
quantity. But as we pointed out already, if the system is subject
to an external drive or coupled to an external bath, one has to
keep the correct size of the Hilbert space. For instance, a generic
ac drive for the compact system provides a finite response for
discrete frequencies (indicated by the wiggly arrow in Fig. 4f),
whereas the extended system would predict a continuous
response.
Next, let us use the decompactification procedure φþ 2πf ! eφ,

where eφ is extended to the entire R. Its conjugated variable will
then be N ! eN and the cos Sð Þ will become cosð2πeNÞ. Thus we

Fig. 5 Measurable effect of the renormalization of ES on the energy spectrum. a Depending on whether the capacitance C couples to the
maximally blurry charge (left), or a more localized charge, such as the the charge localized on the charge island (right), the amplitude ES is
either constant or depends on the voltage _φ built up at the capacitor (b). The energy spectrum for the bare and the renormalized case differ
(c). In particular, the renormalization induces a distinct asymmetry in the charge dispersion.
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arrive at the Hamiltonian

HC;QPS ¼ EC eN þ Ng � λ cos 2πeN� �h i2
þ EL eφð Þ2 � ES cos 2πeN� �

:
(16)

This Hamiltonian has the advantage that we no longer require
special definitions of the charge operator at the boundaries, Eqs.
(11, 12). Moreover, we can make an explicit comparison to the
Hamiltonian predicted by the loop-charge formalism of ref. 6. This
formalism yields the Hamiltonian (for details, see ref. 6 and the
Supplementary Material),

H�
C;QPS ¼ EC bN� þ Ng

� �2
þ EL bφ�ð Þ2

� ES cosð2πbN�Þ :
(17)

We see right away that the Hamiltonians of Eqs. (16, 17) are
structurally the same (up to the renormalization effect ~ λ).
In particular, we note that for the QPS junction closed by a loop,
Eq. (4), the loop charge quantization procedure used too large a
Hilbert space. Or more precisely, it used one and the same variable
to represent the actual dynamical degree of freedom (the phase
slips inside the wire) and external parameter (the externally
applied flux). The capacitively shunted QPS junction on the other
hand has in both formalisms a Hilbert space of the same size.
There is however one crucial difference between the two

models: the dynamical renormalization of ES (the term ~ λ). As
already stated in the node flux formalism developed above, the
renormalization is a consequence of the fact that electrostatically,

the capacitive shunt C may couple in general to a different charge
(that is, a different spatial resolution of the charge) transported
across the QPS junction, see Fig. 5a, b. A nonzero λ significantly
changes the eigenenergy spectra, see Fig. 5c. In particular, it gives
rise to an energy spectrum which has a distinct saw-tooth
dependence in Ng. This concludes our discussion on the
renormalization of ES. For the remainder of this work, we assume
λ= 0, and focus on other ramifications of our approach, which do
not depend on the details of ES.

Inclusion of time-dependent flux driving
We now discuss with a concrete example how flux driving is
included into our formalism, and show how our approach resolves
issues present within the loop charge approach. For illustration
purposes, consider a circuit where a single QPS junction is shunted
by a dc-SQUID, the latter being externally controlled by an applied
flux, see Fig. 6. This model will provide an explicit example of the
complications already outlined in Fig. 1.
In our node flux formalism, we proceed just like in the previous

section, with the Lagrangian as defined in Eq. (13) and adding the
Josephson energies of the two junctions forming the SQUID. After
the Legendre transformation, we obtain the Hamiltonian

HSQUID;QPS ¼ EC bN þ Ng

� �2
þ EL bφþ 2πbf� �2

� ES cosðbSÞ
þ EJ1 cosðbφþ ϕext;1Þ þ EJ2 cosðbφþ ϕext;2Þ;

(18)

where EJ1,2 represent the respective Josephson energies of the
junctions forming the SQUID. The externally applied flux has been
included along the lines of ref. 9, that is, the vector potential A
expressing the applied magnetic field gives rise to the external
phases ϕext,1,2, see also the beginning of the “Results” section. We
here assume for simplicity that there is no external phase drop
attaching to the QPS junction. This assumption is justified if the
surface charges screening the induced electric field due to a time-
dependent flux drive are not localized at the QPS junction (in
accordance with ref. 9). The model could of course be generalized
to the case where screening surface charges reach the QPS
junction. In that case, the inductive energy term ~ EL would
receive a similar phase shift term, and depending on how the
electro-magnetic field is spatially distributed along the QPS wire
(similar in spirit to ref. 84), there could even be a renormalization of
ES due to the voltage drop induced by the electro-motive force (as
already pointed out above).
Here, we we discard these details, and instead compare the above

formalism to currently available treatments. In particular, we note
that in the above Hamiltonian the time-dependence was imple-
mented in a straightforward slender fashion, directly using the result
of ref. 9. Moreover, we needed to use only two degrees of freedom,
the compact phase φ and the integer f. In analogy to Eq. (16), these
two degrees of freedom could furthermore be combined to an
extended phase eφ. Had we resorted to loop-charge quantization
instead, the combination of QPS junctions and regular Josephson
junctions would have required us to use the mixed representation
using loop charges and auxiliary phase nodes for each Josephson
junction. Hence for the considered circuit, we would have had to use
at least four circuit degrees of freedom, see Fig. 6a. However, this
circuit representation only works if two assumptions are true. One,
that the self-capacitance of the Josephson junctions are the
dominant contributions to the total capacitance between ground
and charge island, and that both capacitances are positive and well-
defined for all times. Especially the latter assumption is not correct in
general, as pointed out in ref. 9. Namely, in order to correctly take
into account time-dependent flux driving of the SQUID while
insisting on representing the circuit by means of dominant junction
self-capacitances is in general only possible if accepting partially
negative or even time-dependent capacitances. Here, we show why
especially the first case, negative partial capacitances, leads to an ill-

Fig. 6 Different number of degrees of freedom needed to
describe the same circuit with different formalisms. When
deploying loop-charge quantization, the minimal circuit model
involves four degrees of freedom, two loops and two auxiliary nodes
for the two Josephson junctions involved (a). However, this
representation runs into issues for negative partial capacitances,
which were predicted in ref. 9. These issues are circumvented by
introducing a dominant bulk capacitance, resulting in 5 degrees of
freedom due to the additional loop (b). In contrast, with the here
proposed compact node flux procedure, we only require two
degrees of freedom, one phase node and the intrinsic QPS degree of
freedom f (c).
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defined Hamiltonian. To this end, we derive the Hamiltonian based
on loop-charge quantization for the SQUID. Since it is not necessary
to include the QPS junction explicitly, we focus on the pure SQUID
circuit within the single loop representation shown in Fig. 1c. Its
Hamiltonian is (see the Supplementary Material for the derivation)

H ¼ 2eð Þ2
2C1

N1 � N�ð Þ2 þ 2eð Þ2
2C2

N2 þ N�ð Þ2

�EJ1 cos φ1ð Þ � EJ2 cos φ2ð Þ þ EL
φ�
2e

� �2
;

(19)

where N∘ represents the loop charge, and φ1,2 are the auxiliary
phases. Note that in order to emphasize the role of the junction
capacitances C1,2, we refrain from making the replacement ECα

�
2e2=Cα (which was, e.g., used in Eq. (15)). Importantly, for the
coupling between loop and auxiliary node variables to work
without a hitch, the introduction of an extra inductive element
( ~ EL) connecting the two junctions is necessary (see also ref. 6). If
the device geometry, or the magnetic field distribution, is
asymmetric, then only the sum of the capacitances C= C1+ C2
can be guaranteed to be positive, whereas either C1 or C2
individually can be (and in general are) negative. The fact that this
leads to an instability can be seen most easily when assuming
large Josephson junctions, such that the cosines can be
approximated by a parabolic potential, cosðφαÞ � 1� φ2

α=2 (see
also the Supplementary Material). Then, the eigenspectrum of the
Hamiltonian can be obtained by means of a regular Bogoliubov
transformation for noninteracting bosons. Some of the eigen-
modes will turn out to be imaginary if either C1 or C2 are negative.
Note that this instability could be mended by taking the EL→∞
limit (neglecting the time it takes for Cooper pairs to travel
between the two junctions of the SQUID), such that only the sum
of capacitances emerges. However, the entire sequence of steps
before taking this limit, the formulation of the Lagrangian, the
Legendre transformation and subsequent quantization, are done
in a regime where they are ill-defined, thus questioning the
validity of the entire procedure.
In order to circumvent this problem, the loop charge formalism

requires adding a separate bulk capacitance, see Fig. 6b, or
relatedly, Fig. 1d. The idea here is that the bulk capacitance takes
care of the actual, electrostatic capacitance between ground and
charge island (which is by the way also the physical picture
deployed in ref. 9). Nonetheless, the formalism still requires adding
nonzero auxiliary self-capacitances for each junction (which are
not required in the node flux approach, see Fig. 6c), as otherwise,
the Legendre transformation and subsequent computation of the
Hamiltonian would result in singularities. Only in the very last step,
the self-capacitances can be put to zero. At any rate, this approach
requires at a minimum 5 degrees of freedom, and thus a
significant (and in the end redundant) mathematical overhead
compared to the node flux approach proposed in this work.

Aharonov-Casher versus Aharonov-Bohm effect
We now consider a circuit containing two QPS junctions. Such
circuits have already been studied and found to give rise to the so-
called Aharonov-Casher effect50,51, i.e., an interference of QPS
processes between the wires sensitive to the offset charge Ng. This
phenomenon is considered the dual of the Aharonov-Bohm effect
present, e.g., in a dc-SQUID, as illustrated in Fig. 7.
For the circuit shown in Fig. 8, applying our node flux formalism

yields the Hamiltonian

Hc
C;2QPS ¼ EC bN þ Ng

� �2
� ES1 cosðbS1Þ � ES2 cosðbS2Þ

þEL1 bφþ 2πbf 1� �2
þ EL2 bφþ 2πbf 2 � ϕext

� �2
:

(20)

In accordance with the principles we developed above, we have
yet again to include a periodicity constraint. As already pointed
out, for the two coupled QPS junctions, the wave function ψf 1;f 2ðφÞ

now needs to satisfy the constraint given in Eq. (10). Since we
have only one active phase node, this condition simplifies to

ψf 1;f 2ð± πÞ ¼ ψf 1 ± 1;f 2 ± 1ð ∓ πÞ : (21)

Crucially, note that without the constraint, the above Hamiltonian
would merely have a discrete symmetry: it is invariant upon shifting φ
by+ 2π while at the same time shifting f1,2 by− 1. Relatedly, Ng

would vanish as a pure gauge term, and thus, strictly speaking, the
system would actually not predict the Aharonov-Casher effect. Again,
one could invoke the argument made by ref. 6 and interpret the
resulting conserved Bloch wave vector as the externally applied Ng,
which however does not apply for a generic open system. Only with
the constraint, the Bloch bands truly disappear in favour of a discrete
energy spectrum, depending on both the gate-induced offset charge
Ng and the externally applied flux ϕext. Our formalism thus reproduces
both the Aharonov-Casher and the Aharonov-Bohm effects within
one formalism, without having to rely on symmetry arguments. To
show why this aspect matters, we compare this Hamiltonian to the
one obtained from the loop charge formalism.
But to facilitate this comparison, we first cast the above

Hamiltonian into a decompactified form, similar in spirit to
Eq. (16). To that end, take Eq. (20) and perform the transformation,

bf ¼ bf 1 þbf 2
2

bS ¼ bS1 þ bS2 (22)

δbf ¼ bf 1 �bf 2 δbS ¼ bS1 � bS2
2

: (23)

We arrive at

Hc
C;2QPS ¼ EC bN þ Ng

� �2
� ES1 cos bS=2þ δbS� �

þ EL1 bφþ 2πbf þ πδbf� �2

� ES2 cos bS=2� δbS� �
þ EL2 bφþ 2πbf � πδbf � ϕext

� �2
:

(24)

We can now safely decompactify without changing the size of
the Hilbert space. Due to the nontrivial boundary conditions, the
capacitively induced progression of φ across the boundaries of
the Brillouin zone provokes a simultaneous slip of f1 and f2
by ± 1, see Eq. (21). In terms of the new variables, this changes f
by ± 1, whereas δf stays the same. We can thus combine the
compact φ ∈ [π, π) with the f index to an extended eφ, and
replace the operator bS with 2πbN. Hence, we arrive at the
Hamiltonian

Hc
C;2QPS ¼ EC eN þ Ng

� �2
� ES1 cos πeN þ δbS� �

þ EL1 eφþ πδbf� �2

� ES2 cos πeN � δbS� �
þ EL2 eφ� πδbf � ϕext

� �2
:

(25)

Fig. 7 Aharonov-Bohm effect versus Aharonov-Casher effect in
circuit-QED. While the Aharonov-Bohm effect is present and
measurable as a sensitivity of the dc-SQUID (left) eigenspectrum
of the applied external flux Φext, the experimentally observed Ng-
dependence of a circuit connecting two QPS junctions in series
(right) is the dual Aharonov-Casher effect. In this work, we provide
an alternative picture for the latter, not requiring duality.
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This Hamiltonian is computationally easier to handle, because the
constraint of Eq. (21) is already explicitly worked in. The conjugate
pair of operators eN and eφ are here truly extended, whereas δf
remains an integer. In fact, it is exactly the integer nature of δf
which guarantees that the energy spectrum of this Hamiltonian
includes a finite dependence on ϕext. If we would allow δf to
assume any real value, ϕext could be gauged away.
With the loop-charge quantization approach on the other hand,

we arrive at the Hamiltonian (see the Supplementary Material)

H�
C;2QPS ¼ EC bN�

1 � bN�
2 þ Ng

� �2
� ES1 cosð2πbN�

1Þ
þ EL1bφ�2

1 � ES2 cosð2πbN�
2Þ þ EL2bφ�2

2 :

(26)

Up to discrete symmetries (respectively constraints) the
Hamiltonians of Eqs. (20, 26) are equivalent. To see this, perform
in Eq. (26) the coordinate transformations N� ¼ N�

1 � N�
2 and

δN� ¼ ðN�
1 þ N�

2Þ=2, and equate 2πδN to δS. With our treatment,
we directly arrive at the correct quantization of the flux, since δf
is defined as an integer right from the get-go. In the loop charge
formalism, this quantization is not present, but instead has to be
inferred from the fact that the Hamiltonian is invariant upon
shifting N�

1 ! N�
1 ± 2π and N�

2 ! N�
2 ∓ 2π – yet another discrete

symmetry. But as established in this work, we want to consider
the possibility of coupling the circuit to an external drive or
environment, where symmetries and constraints are not
equivalent. Thus, from the point of view of a generic open
quantum system, the two formalisms are not equivalent. In
particular, while the Aharonov-Casher effect is present in both
formalisms, the Aharonov-Bohm effect follows in the loop-
charge formalism only by means of a discrete symmetry, which
has to be assumed unbroken even in the presence of a generic
external force field. Thus, our formalism unifies both the
Aharonov-Casher and Aharonov-Bohm effects on a fundamental
level, by means of a microscopic derivation of constraints on the
Hilbert space. We summarise this result in Fig. 9. If we were to
take the node-flux treatment, Eq. (20), but discarding the
constraint of Eq. (21), we would arrive at a Hamiltonian that
reproduces the Aharonov-Bohm effect, but fails to predict the
Ng-dependence of the energy spectrum (instead predicting

Bloch bands due to a symmetry in phase space), see Fig. 9a. The
loop-charge approach reproduces the Aharonov-Casher effect,
but yields Bloch bands instead of the ϕext-dependent energy
levels, due to a discrete symmetry in charge space, see Fig. 9b.
Only when explicitly including the constraint of Eq. (21), we get
a discrete spectrum (without continuous bands), depending on
both Ng and ϕext, see Fig. 9c. That being said, let us note that
while it should be theoretically expected that the device
considered in Fig. 8 should exhibit both an Aharonov-Casher
and an Aharonov-Bohm effect, to the best of our knowledge,
existing measurements50,51 have so far only explicitly varied Ng,
but not ϕext. While the data in said experiments is indicative of
the presence of discrete energy spectra, an experiment varying
both parameters could unequivocally confirm the above
prediction.
Finally, let us point out that our approach provides an

alternative understanding of the Aharonov-Casher effect. Instead
of seeing it as an interference of quantum phase slips of QPS
junctions in series, we can understand the oscillations of the
energy spectrum as function of Ng on the exact same footing as
for a regular charge qubit, Eq. (2). Namely, the interference effect
comes from the very same type of trajectory of the node phase φ,
that is, the progression of the phase by 2π, returning to its original
state, while picking up the phase ei2πNg . This type of trajectory was
explicitly shown above for a single QPS junction (red arrow in
Fig. 4d), and exists analogously for the circuit with two QPS
junctions. Overall, our work demonstrates that one can use a pure
node flux procedure (which is to some degree asymmetric with
respect to the role of charge and phase variables) to reproduce
seemingly dual physical effects.

Reduced computational space and dual frustration
While the above discussion focused on the effect that constraints
have on the energy spectrum, in this final section, we want to
show that determining the correct Hilbert space size is also crucial
to correctly assess the computational space, and how to
manipulate and measure it, when examining the utility of circuits
for potential qubit realizations. In particular, we pick up on an

Fig. 8 Node flux and loop charge approaches to a circuit with two QPS junctions. The loop-charge formalism (right) predicts an Aharonov-
Casher effect, but the Aharonov-Bohm effect can only be inferred through constants of motion. The here proposed node-flux treatment (left)
directly reproduces both effects.
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interesting recent proposal57 to use QPS junctions for the
realization of the Gottesman-Kitaev-Preskill (GKP) code56. The
proposed device is equivalent to the one shown in Fig. 6, except
that it requires only one Josephson junction instead of two. The
authors of ref. 57 derive the following Hamiltonian for this device

HC;QPS;J ¼ �ES cos 2πbNS

� �
þ EL bφS � bφð Þ2

þ EL bN þ Ng

� �2
� EJ cos bφ� φeð Þ :

(27)

Note that this is one of the few cases, where the non-linear
capacitor treatment within a node-flux approach works (see above

mentioned issues about non-convexity of the kinetic energy term),
and the authors find a Hamiltonian equivalent to our node-flux
approach, again up to constraints. At any rate, the picture
deployed by the authors of ref. 57 thus closely follows the picture
advocated by Mooij and Nazarov48, whereby the QPS junction can
be described by an auxiliary node variable φS, i.e., in our case the
discrete variable f, see also Fig. 5. Indeed, Eq. (27) corresponds to
the Hamiltonian we provide in Eq. (18), which can be seen by
setting one of the Josephson junctions to zero (e.g., EJ2= 0), and
replacing the operators 2πbNS ! bS and bφS ! 2πbf . There are
however several crucial differences and additions within our
formalism (some of which have already been discussed above for
other examples). We here explain their relevance for the idea of
using QPS-based circuits for the GKP code.
Let us begin by the most fundamental ingredient. Namely, our

formalism brought forth the symmetry constraint in (φ, f)-space on
the wave function for one QPS junction, given in Eq. (9). In the
previous sections, this constraint merely fixed the Bloch vector,
and thus replaced Bloch bands by discrete energy spectra. Here,
the compactification of φ has another profound consequence.
Namely, the goal of ref. 57 is to arrive at a regime where the effects
of the parasitic capacitance ( ~ EC) and inductance ( ~ EL) are
negligible, arriving at a pure double-cosine Hamiltonian. Especially
with respect to the inductive term, disregarding the constraint
would suggest that the regime of interest would be for small
inductances, such that EL→∞. A naive application of this limit
would suggest that the phases φS and φ are perfectly coupled (the
inductive energy term would act as a Lagrange multiplier), such
that the auxiliary charge and phase, NS, φS, could be promoted to
the physical charge and phase N, φ. Crucially, our proposed
constraint forbids taking such a problematic limit, since there is
simply not enough available Hilbert space to reach this limit. The
effect can be thought of as a dual frustration: in reality f is integer,
and φ is restricted to an interval of size 2π. Hence, the two cannot
be coupled by rendering EL large, because they are fundamentally
incompatible. Instead, for EL≫ ES, QPS are simply suppressed, and
the circuit begins to work like a regular fluxonium16.
Consequently, if one strives to realize a double-cosine

Hamiltonian one has to search in the opposite regime, where EL
is small compared to ES. We expect that this first of all a significant
experimental hurdle, as ES cannot always be tuned to large values
for all physical implementations of QPS wires. Note furthermore,
that for EL, EC→ 0, strictly speaking, the operators inside the two
cosines are not even the actual canonically conjugate pair of
operators. The operator bS knows about the phase slip state inside
the wire, and φ represents the phase inside the island. This
problem in and of itself can, at least in principle, be solved by the
above introduced decompactification procedure, see Fig. 3. We
thus eliminate again the S, f degrees of freedom and end up with a
single pair of N, φ where φ is now no longer compact. This seems
to salvages the idea of realising a GKP code.
But at this stage, the other insights of our above developed

microscopic picture become important. In particular, note how the
new (non-compact) phase and charge variables are defined: they
extend linearly into the wire, see Fig. 3c. Let us stress, that the
central idea behind the GKP code as a quantum error correction
code is to track random external shifts (here in Ng and ϕext) by
appropriate nonlocal measurements in the respective spaces of
the conjugate observables, without destroying the quantum
information. That is, merely looking at the Hamiltonian lures one
into the false impression that the analysis of the qubit state can be
performed by measurements of charge and phase on the island.
The physical picture we develop demonstrates to the contrary,
that we instead need to measure the state inside the QPS wire.
Measuring the local charge on the island on the other hand, would
propel the system out of the low-energy computational space,
since (as stated above) the local, quantized charge has been
eliminated from the low-energy description of the QPS junction.

Fig. 9 Different predictions depending on whether symmetries or
constraints are used. We here show different possible energy
spectra of the circuit with a central island, coupled to two QPS
junctions and a central gate, see Fig. 8, subject to a gate-induced
offset charge Ng and an externally applied flux ϕext. The non-
compact approach predicts a spectrum with continuous bands,
depending explicitly on ϕext but not on Ng. The reverse is true for
the loop-charge formalism. Our compact node-flux approach
removes the bands and predicts discrete energy levels, due to the
topological constraint in the Hilbert space, relying on charge
quantization. The spectrum depends on both Ng and ϕext, and thus
unifies the Aharonov-Bohm and Aharonov-Casher effects.
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The above represent important caveats, significantly complicating
the idea of an experimental implementation of quantum error
correction strategies by using QPS junctions.
The above illustrates the importance of the inductive treatment

of QPS junctions and the resulting constraints on the Hilbert
space, not only to predict the correct energy spectrum, but to
accurately assess the correct size of the available computational
space of a given device, and how a more sophisticated picture can
shed light on important details regarding state control and
measurement, which are of importance for quantum information
applications.

DISCUSSION
We demonstrate that it is possible to regard QPS junctions as
purely inductive elements, thus rendering them compatible with
regular node-flux quantization. We derive an important constraint
on the wave function, based on charge quantization, which
explicitly reduces the Hilbert space, and eliminates spurious
degrees of freedom. As we show, this has profound consequences
on how the circuit can interact with externally applied electric and
magnetic fields, and allows us to unify the Aharonov-Bohm and
Aharonov-Casher effects within one formalism. Furthermore, the
reduction of the Hilbert space is an important principle when
examining the utility and feasibility of possible qubit architectures
involving QPS junctions.
We note that the constraint can be regarded as a minute, but

decisive breaking of the exact duality between the Josephson
effect and quantum phase slips. This is due to the fundamental
difference with respect to how charge and phase degree of
freedoms enter the Hamiltonian (in particular, the latter enters
always in the exponent, eiϕ). To predict the correct physics, it
appears crucial that the theory retains a possibility for the phase to
be represented on a compact manifold, even when charge
quantization is not explicitly present (or removed within the low-
energy sector of the state space).
Our treatment of QPS physics furthermore uncovered new QPS-

related physics, such as a renormalization of the phase slip energy
ES. We have examined this phenomenon for weak renormalization,
where it gave rise to an asymmetry of the energy spectrum as a
function of the offset charge. Strong renormalization effects are
expected to massively increase the complexity of the overall
circuit dynamics. This effect will be explored in more detail in the
future. Moreover, it will be interesting to bring topological
superconductors into the mix, where the presence of Majorana
bound states could potentially change the width of the Brillouin
zone, i.e., φ may live on an interval of size 4π instead of 2π. A
dedicated work tackling that particular question is underway,
where we expect to see competing effects of 2π- versus 4π-
periodicity. Moreover, the physics of 1D superconducting struc-
tures (such as Josephson junction arrays) are often mapped onto
the sine-Gordon model80,82, where disorder may lead to interest-
ing renormalization effects80,85. However, the sine-Gordon equa-
tion has extended quantum fields. We are so far unaware of
theoretical studies examining the possibility of a modified sine-
Gordon model with compact quantum fields – which we believe
to be of relevance to model superconducting structures, and
(since charge quantization is a fundamental property) possibly
even beyond.
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