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Approximate symmetries and quantum error correction
Zi-Wen Liu 1,2✉ and Sisi Zhou 1,3,4✉

Quantum error correction (QEC) is a key concept in quantum computation as well as many areas of physics. There are fundamental
tensions between continuous symmetries and QEC. One vital situation is unfolded by the Eastin–Knill theorem, which forbids the
existence of QEC codes that admit transversal continuous symmetry actions (transformations). Here, we systematically study the
competition between continuous symmetries and QEC in a quantitative manner. We first define a series of meaningful measures of
approximate symmetries motivated from different perspectives, and then establish a series of trade-off bounds between them and
QEC accuracy utilizing multiple different methods. Remarkably, the results allow us to derive general quantitative limitations of
transversally implementable logical gates, an important topic in fault-tolerant quantum computation. As concrete examples, we
showcase two explicit types of quantum codes, obtained from quantum Reed–Muller codes and thermodynamic codes,
respectively, that nearly saturate our bounds. Finally, we discuss several potential applications of our results in physics.
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INTRODUCTION
Symmetry has long been a pivotal concept and tool in physics.
Continuous symmetries are those described by transformations
that vary continuously as a function of some parameterization,
mathematically modeled by Lie groups. Associated with conserva-
tion laws as dictated by the celebrated Noether’s theorem1,
continuous symmetries ubiquitously arise in physical systems and
play fundamental roles in their behaviors. A basic, prototypical
example of a continuous symmetry group is U(1), coming with a
conserved quantity that may correspond to charge, particle
number, energy, etc., depending on the physical scenario.
A phenomenon that has drawn significant interest lately is that

continuous symmetries can induce fundamental limitations on
quantum error correction (QEC)2,3, a cornerstone of quantum
technologies that was initially introduced as a technique to
protect quantum information4–7 and has since been found to play
fundamental roles in many areas in physics including quantum
gravity8,9 and condensed matter physics10–13. An early result is the
Eastin–Knill theorem3 which, in a quantum computation language,
says that if a (finite-dimensional) quantum code implements any
continuous group of gates transversally (see Fig. 1 for an
illustration), it cannot exactly correct local errors. It is worth
noting that the transversality property is not only important in
quantum computation since transversal gates are particularly
desirable for fault tolerance, but also widely so in physics as a
fundamental feature of internal symmetries in many-body
scenarios. Further, there has been a series of recent works that
consider approximate QEC by covariant codes, providing bounds
on the accuracy as well as explicit constructions14–22. Viewing the
gates as symmetry actions, these results indicate that the QEC
accuracy of a code admitting transversal continuous symmetries is
necessarily restricted to some extent. Such codes are called
covariant codes in the literature2,14,15. Besides the direct relevance
to quantum computation, covariant codes have intriguing
connections to wide-ranging disciplines in physics including
condensed matter physics12,13,16, holography14,15,23–25, and quan-
tum information2,15,22.

As certain forms of invariance under transformations, symme-
tries are by definition exact. The existing works on QEC with
symmetries2,14–22 indeed focused on the QEC performance of
exactly covariant codes. However, it is often useful or even
necessary to consider approximate forms of symmetries or
conservation laws, especially in quantum physics. For instance,
noise effects and imperfections that are common in realistic
scenarios can cause deviations from the exact symmetry condi-
tions. There are various more fundamental symmetry breaking
mechanisms including spontaneous symmetry breaking, anoma-
lies, and non-renormalizable effects26. Remarkably, the inexact-
ness of symmetries plays a significant role in our understanding of
wide-ranging aspects of fundamental physics. In particle physics,
many fundamental symmetries are known to be only approx-
imate27. In fact, it is commonly believed that global symmetries
cannot be exact in a unified theory of quantum mechanics and
gravity27–32. Notably, one modern argument justifying the belief in
more concrete terms in AdS/CFT is closely related to covariant
codes14,23,24. Despite the importance of approximate symmetries,
our understanding of them, especially on a quantitative level, is
quite limited and unsystematic, raising the need for a general
theory of symmetry violation measures. In particular, for QEC and
associated problems in physics, it is imperative that we
quantitatively understand how symmetry violation is induced by
QEC accuracy, which represents a theory of the emergence of
approximate symmetries.
In this work, we introduce a variety of approximate continuous

symmetry measures in quantum channels and codes, and
furthermore, establish a comprehensive theory of the competition
between them and QEC accuracy for the most fundamental U(1)
case. More specifically, we introduce three different meaningful
measures of the degree of symmetry violation in terms of group-
global and group-local covariance violation respectively, and
charge conservation violation, which correspondingly induce
different quantitative notions of approximately covariant codes.
We then derive a series of trade-off relations between the QEC
inaccuracy and the above approximate symmetry measures under
a general condition called Hamiltonian-in-Kraus-span (HKS)
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condition which subsumes transversality in our setup, by employ-
ing various techniques and ideas from approximate QEC33,34,
quantum metrology35–37 and quantum resource theory38–41. In
particular, our results indicate various forms of lower bounds on
the symmetry violation of QEC codes, which imply universal fine-
grained restrictions on the transversally implementable gates,
improving the Eastin–Knill theorem. To exemplify the general
theory, we present two explicit families of approximately covariant
codes that nearly saturate certain lower bounds. In the end, we
provide a blueprint for several potential applications in quantum
gravity and condensed matter physics.
The main goal of this paper is to elucidate the intuitions behind

our approaches and report the most representative results. We
refer interested readers to the Supplementary Information, which
can be read independently as an extended companion paper
gearing more toward the technical audience. All technical details,
additional results, and more extensive discussions can be found
in it.

RESULTS
Quantitatively characterizing approximate symmetries
We first introduce, from a general standpoint, three physically
motivated types of quantitative measures of the symmetry
violation of quantum systems.
Let G be a compact Lie group corresponding to the continuous

symmetry of interest. Denote by EB A a quantum channel from
system A to system B. The channel exactly respects symmetry G if
it is covariant with respect to the group actions, i.e.,

EB A � UA;g ¼ UB;g � EB A; (1)

or equivalently UyB;g � EB A � UA;g ¼ EB A , for all g ∈ G, where we
use Uð�Þ :¼ Uð�ÞUy to denote the channel action of unitary U, and
Ug is determined by the unitary representation of G under
consideration (on the appropriate system).
To characterize the deviation from the exact symmetry, it is

natural to consider the mismatch between the two sides of the
covariance condition. Then an intuitive overall measure is the
maximum mismatch overall the entire group as given by some
channel distance D, which we call group-global covariance
violation:

~δglobal :¼ max
g2G

DðEB A � UA;g;UB;g � EB AÞ: (2)

Note that we may not explicitly write down the arguments of the
measures when they are unambiguous.
Another important notion is the symmetry violation around a

certain point g0 in the group at which the covariance condition
EB A � UA;g0 ¼ UB;g0 � EB A holds. Here we are interested in the
local geometry of the mismatch around this point. Without loss of

generality, we assume g0 ¼ 1, because for an arbitrary g0, we can
always redefine the quantum channel to be UA;g0 � EB A. Let the
symmetry actions be parametrized by θ ¼ fθkg 2 RK via some
unitary representation Ug= e−iJ⋅θ where J= {Jk} are infinitesimal
generators of G. For all k= 1,…, K, we define the group-local
(point) covariance violation as

~δlocal;k :¼ 2∂2θk DðEB A � UA;e�iJk θk ;UB;e�iJk θk � EB AÞ2
� �1=2

jθk¼0; (3)

where ∂2θD
2 denotes the second-order derivative of D2 with

respect to θk. The square root and the coefficient
ffiffiffi
2
p

in the
definition are chosen to simplify calculations, as will be seen later
on. It is worth noting that this notion is closely connected to local
parameter estimation, which is a standard setup in metrology, as
will be further discussed.
Lastly, it is natural to consider the deviation from conservation

laws. Specifically, each generator Jk is associated with a charge,
and we can quantify the variation of the charge for input state ρ
by

~δcharge;kðρÞ :¼ TrJk;BEB AðρÞ � TrJk;Aρ
�� ��; (4)

where Jk,A and Jk,B are the generators on systems A and B,
respectively, so the trace gives the expectation value of the
associated charge. Then overall measures can be defined based
on e.g. maximization over ρ. Note that ~δcharge is not necessarily
zero for covariant encoding channel E, except when E is isometric,
which is the standard case in QEC scenarios42.
Since ~δlocal and ~δcharge only depend on the local geometry of the

symmetry group, we shall collectively call them local symmetry
measures. As will become evident, these three measures are
inequivalent and their behaviors should be understood indepen-
dently; notably, ~δglobal is a unitless measure with range [0, 1], in
contrast to ~δlocal and ~δcharge.

QEC setting: code accuracy and symmetry
Now we describe the QEC setup and in particular, formally define
the QEC (in)accuracy and symmetry measures associated with a
quantum code (as an application of the general measures
introduced above) that will be considered.
In this work, we mainly consider a type of distance measure

based on the purified distance, which is particularly well behaved
and of broad importance in quantum information. More
specifically, the state purified distance is given by

Pðρ; σÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðρ; σÞ2

q
(5)

where f ðρ; σÞ :¼ Trð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2σρ1=2

p
Þ is the fidelity, based on which

one can define the channel purified distance43–45 as

PðΦ1;Φ2Þ :¼ max
ρ

PððΦ1 � 1ÞðρÞ; ðΦ2 � 1ÞðρÞÞ: (6)

In principle, one may also consider other metrics. In Supplemen-
tary Notes 2 and 7, we also discuss the situations where one uses
e.g. the diamond norm distance46, which is another standard
channel distance measure. Additionally, the purified distance is
equal to the Bures distance defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� f ðρ; σÞÞp

up to the
leading order when f ≈ 1 or the distance is small, a quantity used
to study approximate QEC before34. The choice of purified
distance directly relates the local covariance violation to the
quantum Fisher information (QFI)47–50, which is a central notion in
quantum metrology as a standard quantifier of the amount of
information a parametrized quantum state ρθ carries about the
parameter θ locally. Note that the QFI we use here is
conventionally called the symmetric logarithmic derivative (SLD)
QFI, while there are other types of QFIs, e.g., the right logarithmic
derivative (RLD) QFI51–53 which we will encounter in Methods.
A quantum code is defined by an encoding channel ES L, which

is a map from a logical system L to a physical system S. The

Fig. 1 An illustration of the transversality property. The logical
gate (orange) is transversal in the sense that it is implemented by
physical gates with tensor product forms, i.e., acting on individual
physical subsystems (yellow). Transversal gates are desirable for fault
tolerance because they do not spread errors within code blocks. In
our context, the gates represent symmetry actions so transversality
signifies the product property of the symmetry representations on
the physical system.
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physical system may be subject to a noise channel N S. Ideally, if
we can find a recovery (decoding) channel RL S that achieves

RL S � N S � ES L ¼ 1L; (7)

where 1L denotes the logical identity channel, indicating that the
QEC procedure essentially removes the noise effects so that the
logical information is perfectly recovered, we say the code
achieves exact QEC or is an QEC code. For general codes, there
may not exist a recovery channel that satisfies (7), meaning that
QEC cannot be done perfectly. Naturally, we characterize the QEC
inaccuracy by

ε :¼ min
RL S

PðRL S � N S � ES L;1LÞ; (8)

that quantifies the minimum deviation from perfect information
recovery.
We now consider symmetry in the QEC setting. Here the

encoding ES L is the channel of interest in the last section, and
the symmetry acts on its input and output systems, namely the
logical system L and the physical system S. From here on, we shall
base our discussion on U(1) symmetry, which is of fundamental
importance in itself and nicely reveals the key phenomena.
Specifically, consider the family of logical gates UL;θ ¼ e�iHLθ for
every θ 2 R, implemented by physical gates US;θ ¼ e�iHSθ for
every θ 2 R, which are U(1) representations on L and S generated
by non-trivial Hamiltonians (symmetry generators) HL and HS,
respectively (note that they should not be confused with the
intrinsic Hamiltonians of the systems).
Suppose the Kraus decomposition of the noise channel is given

by N Sð�Þ ¼
P

iKS;ið�ÞKyS;i where KS,i are the Kraus operators. A
sufficient condition for the non-existence of exactly covariant QEC
codes, or in other words, the incompatibility between exact
symmetry and QEC, is

HS 2 spanfKyS;iKS;j ; 8i; jg; (9)

which will be referred to as the ‘Hamiltonian-in-Kraus-span’ (HKS)
condition18. Note that although the HKS condition is defined using
Kraus operators, it is just a function of the noise channel, because
different Kraus representations of a channel will give the same
Kraus span. An important scenario obeying the HKS condition that
can be regarded a prototypical case of our theory is when HS is
1-local and N S is any single-qubit noise with a full Kraus span. This
includes erasure, depolarizing, and amplitude damping noises54.
The 1-local property means that each term in HS acts nontrivially
only on one subsystem and corresponds to the transversality of
US,θ (illustrated in Fig. 1). As motivated earlier, this transversality
property is crucial to practical quantum computing since
transversal gates are fault-tolerant. Moreover, it is broadly
important in physical contexts, where one normally considers
global internal symmetries generated by sums of disjoint local
charge observables, in particular on-site (transversal with respect
to sites) symmetries; a typical example is U(1) generated by the
Hamming-weight-type charge observable. Note that whether the
symmetries are on-site is linked to whether they can be gauged or
are anomaly-free, which plays important roles in the physics of
quantum many-body systems and field theories55. Transversality
also plays fundamental roles in AdS/CFT23,56,57. It is worth noting
that, when the HKS condition fails, examples of exactly covariant
QEC codes exist, for instance, when N S ¼ 1 (unitary dynamics),
when HS is a Pauli-X operator and N S is a dephasing noise58,59,
and when HS is 2-local and N S is a single-erasure noise60. We will
assume the HKS condition holds from now on and study the
consequent competition between QEC and covariance.
Finally, we formally define the three quantitative measures of

code symmetry (violation) that we shall consider, obtained by
applying the general ideas from the last section to our setup
where the symmetry group is U(1).

i. Group-global covariance violation: directly following the
general definition, we consider

δglobal :¼ max
θ

PðUS;θ � ES L; ES L � UL;θÞ: (10)

δglobal= 0 if and only if the code is exactly covariant.
ii. Group-local covariance violation, in the vicinity of a certain

θ0 where the code is exactly covariant (as explained, we
assume θ0= 0 without loss of generality): For our setting, by
letting D be the channel purified distance in ~δlocal we obtain

δlocal :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðUS;θ � ES L � UyL;θÞjθ¼0

q
; (11)

where F( ⋅ ) is the channel QFI given by
FðΦθÞ ¼ maxρ FððΦθ � 1ÞðρÞÞ61, in which

FðρθÞ :¼ 2
∂2Pðρθ; ρθ0 Þ2

∂θ0
2

�����
θ0¼θ

; (12)

is the conventional state QFI47–50,62. (Note that it is standard to
take the infinitesimal form of a distance function to define a
measure of local sensitivity. Different definitions of QFI will be
induced by different distance functions, e.g., the Wigner-Yanase
skew information is induced by the Hellinger distance63. However,
we will focus only on the purified distance and the above
definition of group-local covariance violation in this work.)
iii. Charge conservation violation: recall that the logical and

physical charge observables are, Hermitian operators HL and
HS respectively. As mentioned, isometric covariant channels
are always charge-conserving, i.e., satisfying HL � ν1 ¼
ðES LÞyðHSÞ (up to some constant offset ν which does not
affect the U(1) group representations) where ðES LÞy is the
dual of the encoding channel14 that maps from S to L (the
subscript L← S is omitted for simplicity of notation). Here
we directly consider

δcharge :¼ Δ HL � ðES LÞyðHSÞ
� �

; (13)

where Δ(H) denotes the difference between the maximum and
minimum eigenvalues of a Hermitian operator H, or equivalently,

ΔðHÞ ¼ 2max
ν2R

H � ν1k k: (14)

(For simplicity of notation ΔH is used interchageably with Δ(H).)
δcharge is a close variant of the general ~δcharge. It can be verified
that δcharge ¼ 2minν2R maxρ jTrðHSES LðρÞÞ � TrððHL � ν1ÞρÞj,
where we allow a constant offset on the definitions of charges.

In what follows, we will refer to ‘group-global’ and ‘group-local’
as ‘global’ and ‘local’ respectively for simplicity as is common in
e.g. estimation theory, which should be distinguished from the
geometric notions commonly used in physical contexts. The
remarks on the general measures at the end of the last section still
apply here.

Symmetry vs. QEC
We now present our main results—general joint bounds of the
QEC accuracy and approximate symmetry measures of a code—
which reveal fundamental trade-offs between them under the HKS
condition (see Fig. 2 for an illustration). Detailed proofs and further
results can be found in Supplementary Notes 3 and 4. When
expressing the results, by ‘x≳ y’ we mean x ≥ ℓ(y) for some ℓ(y)
that is equivalent to y asymptotically (i.e., limy!0þ ℓðyÞ=y ¼ 1).
We first discuss the global symmetry violation δglobal. Using

different approaches that will be explained, we prove the
following two results:
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Theorem 1. When ES L is isometric,

δglobal\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔHL � 2εJðN S;HSÞ

ΔHS

s
; (15)

where JðN S;HSÞ :¼ minh:HS¼
P

ij
hijK

y
S;iKS;j

Δh; h is an arbitrary Hermi-
tian matrix.

Theorem 2.

εþ δglobal\
ΔHLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4FðN S;HSÞ
p ; (16)

where FðN S;HSÞ :¼ 4minh:HS¼
P

ij
hijK

y
S;iKS;j

P
ijðh2ÞijKyS;iKS;j � H2

S

��� ���; h
is an arbitrary Hermitian matrix.

Theorem 1 and Theorem 2 both demonstrate the robust trade-off
between ε and δglobal; specifically, they give non-trivial lower bounds
on ε for sufficiently small δglobal and vice versa. Here, both J and F are
positive functions of the noise channel N S and the physical charge
Hamiltonian HS (different Kraus representations of a noise channel do
not induce different values of J and F.). Note that the definition of J
has a close connection to the HKS condition; F equals the regularized
channel QFI of the noisy physical gate N S � US;θ (the regularized QFI
of a channel Φθ is defined by F1ðΦθÞ ¼ limN!1 FðΦ�Nθ Þ=N36,37). The
above results can be broadly applied to different noise and charge
settings simply by analyzing J and F, which are efficiently
computable using semidefinite programming (see details Supple-
mentary Notes 3 and 4).
To be more concrete, we now discuss the specific scaling

behaviors of the above general bounds (see Table 1). Consider
quantum codes on an n-partite system with 1-local HS

corresponding to transversal symmetry action (such that
ΔHS = O(n) and ΔHL= O(1)). Consider the following important
practical noise models: i) single-erasure noise, defined by

N Sð�Þ ¼ 1
n

Pn
l¼1N ðlÞS where N ðlÞS ð�Þ ¼ ;j i ;h jSl � TrSl ð�Þ represents

the complete erasure on the l-th subsystem with other
subsystems unaffected (we use ;j i to denote the vacuum
state). In this case we have J ¼ OðnÞ and F ¼ Oðn2Þ. Then both
Theorem 1 and Theorem 2 give a Ω(1/n) lower bound on ε for
sufficiently small δglobal; but for sufficiently small ε, Theorem 1
gives a Ωð1= ffiffiffi

n
p Þ lower bound on δglobal, which is tighter than

Ω(1/n) given by Theorem 2. ii) i.i.d. erasure noise, defined by
N Sð�Þ¼

Nn
l¼1N Sl where N Sl ð�Þ ¼ ð1� peÞð�ÞSl þ pe ;j i ;h jSlTrSl ð�Þ

represents a local erasure on the l-th subsystem and pe is the
noise rate. In this case we have J ¼ OðnÞ and F ¼ OðnÞ. Then
both Theorem 1 and Theorem 2 give a Ωð1= ffiffiffi

n
p Þ lower bound on

δglobal for sufficiently small ε; but for sufficiently small δglobal,
Theorem 2 gives a Ωð1= ffiffiffi

n
p Þ lower bound on ε, which is tighter

than Ω(1/n) given by Theorem 1. To sum up, we see that our
two bounds can behave differently and complement each other
in different important settings. Note that, these lower bounds
grow inverse-polynomially with n while the system dimension is
exponentially large. That means errors in systems can easily
become intolerable in a linear or a square-root size of circuits of
n qudits, demonstrating the strong competition between QEC
and continuous symmetries. The above discussions can be
extended to general noise models, e.g., single-depolarizing
noise acts on each subsystem with different probabilities, and
the exact values of the lower bounds can be analytically
calculated (see discussions in Supplementary Note 3).
We now explain the main ideas behind the derivation of

Theorem 1 and Theorem 2. The full proofs can be found in
Supplementary Notes 3 and 4. In particular, each of the two results
builds upon a meaningful quantity we introduce associated with a
code and the symmetry, which may be of independent interest.
Theorem 1 comes from a notion that we call charge fluctuation,

defined by

χ :¼ h0LjðES LÞyðHSÞj0Li � h1LjðES LÞyðHSÞj1Li; (17)

where 0Lj i and 1Lj i are eigenstates of HL corresponding to the
largest and the smallest eigenvalues, respectively. For intuition,
consider the following extremes. For exact QEC codes, it is
straightforward to see that χ= 0: the Knill–Laflamme conditions33

indicate that ΠKyS;iKS;jΠ / Π for all i, j where Π is the projection

onto the code subspace, so 0Lh jðES LÞyðKyS;iKS;jÞ 0Lj i ¼
1Lh jðES LÞyðKyS;iKS;jÞ 1Lj i; then since HS can be written as a linear

combination of KyS;iKS;j due to the HKS condition, we have

0Lh jðES LÞyðHSÞ 0Lj i ¼ 1Lh jðES LÞyðHSÞ 1Lj i. That is, the value of χ
characterizes the degree of deviation from Knill–Laflamme
conditions. On the other hand, for exactly covariant codes, we
have χ= ΔHL because ðES LÞyðHSÞ ¼ HL � ν1 for some ν 2 R14.
More generally, for approximately QEC or covariant codes, ε (or
δglobal) can be lower bounded using the distance between χ and 0
(or ΔHL). Indeed, Theorem 1 is established by combining the

Fig. 2 Measuring approximate QEC and approximate symmetry.
We study the trade-off between QEC inaccuracy (the deviation of
the QEC procedure from the logical identity channel, as shown in
the left panel) and symmetry violation (the deviation of the
encoding map from being covariant with respect to symmetry
actions, as shown in the right panel).

Table 1. Scalings of our lower bounds on ε and δ for different noise models (see details in Supplementary Notes 3 and 4).

Lower bounds on ε (Theorem 1) ε (Theorem 2) δ (Theorem 1) δ (Theorem 2)

Random local noise e.g., N S ¼
Pn

l¼1
1
nN Sl Ω 1

n

� �
Ω 1

n

� �
Ω 1ffiffi

n
p
� �

Ω 1
n

� �
Independent noise e.g., N S¼

Nn
l¼1N Sl Ω 1

n

� �
Ω 1ffiffi

n
p
� �

Ω 1ffiffi
n
p
� �

Ω 1ffiffi
n
p
� �

Random local noise means noise that acts locally on randomly selected different subsystems, while independent noise means noise that acts independently
on all subsystems (which is a mixture of global noises). The lower bounds are taken from both Theorem 1 and Theorem 2. Here when we show the lower
bound on ε (or δ), we assume δ (or ε) is sufficiently small, i.e., so small that the lower bound on ε (or δ) has the worst scaling. There is a gap between the lower
bound on δ from Theorem 1 and Theorem 2 for random local noise and a gap between the lower bounds on ε from Theorem 1 and Theorem 2 for
independent noise. A potential way to close up the latter one was explored in Sec. B2 of Supplementary Note 3, where the charge fluctuation approach is used
to derive a new trade-off relation using quantum metrology.
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following two inequalities for isometric encoding channels,

ε � χj j=ð2JÞ; (18)

δglobal\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔHL � χj j=ΔHS

p
; (19)

where Eq. (18) is derived from the approximate Knill–Laflamme
conditions34, and Eq. (19) follows from the definition of δglobal.
Theorem 2 is derived from another notion that we call gate

implementation error, defined by

γ :¼ min
RL S

max
θ

PðRL S � N S � US;θ � ES L;UL;θÞ; (20)

which quantifies the error of implementing an ideal set of logical
gates UL;θ using the error-corrected noisy gates RL S � N S�
US;θ � ES L. The gate implementation error unifies QEC accuracy
and symmetry in a sense: it can be proven that

δglobal þ ε � γ; (21)

putting ε and δglobal on the same footing. A crucial observation here
is that these quantities can be understood from a quantum
metrology (channel estimation) perspective: intuitively, smaller error
goes hand in hand with higher sensitivity of parameter estimation
under noise. This allows us to make use of quantum metrology and
QFI techniques to analyze γ. Specifically, we show that

F\ðΔHLÞ2=ð4γ2Þ; (22)

which implies Theorem 2. We include in the Methods section further
explanations and details of the quantum metrology method.
Furthermore, using quantum resource theory methods, we can

derive different versions of Theorem 2 which, in particular, give
results on the average-case behavior over different input states, in
addition to the worst-case results discussed above. Again, see
Methods and Supplementary Note 4 for further explanations and
details of the quantum resource theory method.
For the local symmetry measures δlocal and δcharge, we establish

the following trade-off bounds which are also expressed in terms
of the general, efficiently computable quantities J and F that
encode the noise and charge Hamiltonian:

Theorem 3. When ES L is isometric,

ε � ΔHL � δcharge
2JðN S;HSÞ �

ΔHL � δlocal
2JðN S;HSÞ ; (23)

where JðN S;HSÞ :¼ minh:HS¼
P

ij
hijK

y
S;i KS;j

Δh; h is an arbitrary Hermi-
tian matrix.

Theorem 4.

ε\
ΔHL � δlocalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4FðN S;HSÞ

p ; (24)

where FðN S;HSÞ :¼ 4minh:HS¼
P

ij
hijK

y
S;iKS;j

P
ijðh2ÞijKyS;iKS;j � H2

S

��� ���; h
is an arbitrary Hermitian matrix.

Again, Theorem 3 and Theorem 4 indicate trade-offs between ε
and δlocal (or δcharge), and set non-trivial lower bounds on ε for
sufficiently small δlocal (or δcharge) and vice versa. The proof of
Theorem 3 uses Eq. (18) and the following inequalities for
isometric encoding channels:

χj j � ΔHL � δcharge; (25)

which follows from the definitions, and a simple relation between
δlocal and δcharge;

δlocal � δcharge: (26)

Similar to Theorem 2, Theorem 4 is derived using quantum
metrology for quantum channel techniques. See also Methods
and Supplementary Note 6 for explanations and details.

Note that δlocal and δcharge have the same units as the
Hamiltonians and may naturally be superconstant (in contrast to
δglobal which is always no larger than one). For example, consider the
trivial encoding where L= S and ES L ¼ 1. Then we have δlocal=
δcharge=Δ(HS−HL)=Θ(n) for an n-partite system with 1-local HS

such that ΔHS=O(n) and ΔHL=O(1), implying that a constant
scaling of δlocal or δcharge still requires non-trivial code structures.
Discussions on further refinements of Theorem 1 and Theorem

3 using quantum metrology techniques, as well as remarks on
non-compact groups and infinite-dimensional codes, can be
found in Supplementary Method 4 and Supplementary Note 2.
When setting δglobal= δlocal= 0, our theorems recover previous

results on exactly covariant codes14,15,17–19. The results and
methods here apply to general quantum codes beyond exactly
covariant codes. In particular, they enable us to quantitatively
understand the symmetry restrictions on exact QEC codes which
are of utmost interest. In the following section, we demonstrate a
particularly important application of our symmetry bounds for
QEC codes.

General limitations on transversal gates
As motivated earlier, transversal gates or symmetry actions are of
central importance to fault-tolerant quantum computing and also
widely important in physical contexts. Recall that our theory
indicates non-trivial bounds for symmetry under the HKS
condition, like transversal symmetry. Remarkably, by analyzing
such bounds, we are able to prove the following fundamental
restriction on the set of transversal logical gates for general QEC
codes, which refines the Eastin–Knill theorem:

Corollary 5. Suppose an n-qudit QEC code with distance at least 2
admits a transversal implementation VS¼

Nn
l¼1e

�i2πTSl =D of the
logical gate VL ¼ e�i2πTL=D where D is a positive integer and TL,S are
Hermitian operators with integer eigenvalues. Then D is at most

O max
ðPn

l¼1 ðΔTSl Þ3=2ffiffiffiffiffiffiffiffi
ΔTL
p ;ΔTL

( ) !
: (27)

Intuitively, D characterizes the precision or density of the gates. A
key insight behind Corollary 5 is that in the D→∞ limit, the code
becomes arbitrarily close to an exactly covariant code, which is in
conflict with the incompatibility between QEC and continuous
symmetries. Further, we obtain the upper bound on D by
transforming the lower bound on δglobal obtained by applying
Theorem 1 to exact QEC codes (setting ε= 0) with HS ¼

Pn
l¼1 TSl

and HL= TL (see Supplementary Note 5).
As a standard example, consider the Pauli-Z rotation corresponding

to TL ¼ ZL; TSl ¼ �Zl ; that is, D characterizes the precision of the
Pauli-Z rotation. Our Corollary 5 gives the upper bound D=O(n3/2).
On the achievability side, there exists a set of [[n= 2t− 1, 1, 3]] (t≥ 3)
quantum Reed–Muller codes64 (which will be further discussed later)
such that the logical Pauli-Z rotation VL ¼ e�iπZL=2t�1 is implemented
by transversal physical gate VS¼

Nn
l¼1e

iπZl=2t�1 , i.e., achieves D= 2t=
Ω(n), which is polynomially close to our upper bound O(n3/2).
For stabilizer codes, Corollary 5 implies that ~VS¼

Nn
l¼1e

�i2πalZl=D
where al is an integer and D is a power of two (which is the most
general form of transversal logical gates up to local Clifford
equivalences65,66) can only implement logical gates up to the
Oðlog nÞ-th level of the Clifford hierarchy when al= O(poly(n)) (see
Supplementary Note 5), which can be attained by the aforemen-
tioned quantum Reed–Muller codes. Note that several similar
bounds65–69 were known for stabilizer codes. A key point of our
results is that such restrictions fundamentally stem from symmetry
principles and hold generally for arbitrary codes, meaning that the
stabilizer structure is not essential here. We remark that there are
ways to circumvent the Eastin–Knill theorem and the above
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limitations that involves more complex QEC procedures such as
code switching70 and magic state injection71,72.

Concrete code examples
We now discuss two specific families of quantum codes that
exhibit important approximate covariance features and also
provide evidence of the tightness of our bounds (more details
in Supplementary Note 7).
The first example we give is a family of exact QEC codes that are

approximately covariant. Specifically, let us consider the [[n= 2t−
1, 1, 3]] (t ≥ 3) quantum Reed–Muller code64. The codewords are

c0j i ¼ 1ffiffiffiffi
2t
p 0j i þ

X
x2Rð1;tÞnf0g

xj i
0
@

1
A; (28)

c1j i ¼ 1ffiffiffiffi
2t
p 1j i þ

X
x2Rð1;tÞnf0g

1þ xj i
0
@

1
A; (29)

where we use x to denote n-bit strings (0 and 1 are all zero and all
one strings, respectively) and Rð1; tÞ is the classical shortened
Reed–Muller code73. Note that all strings in Rð1; tÞnf0g have
weight 2t−1. Consider the single-erasure noise which is exactly
correctable, namely, ε= 0. As mentioned above, the code admits a

transversal implementation �l eiπZl=2t�1
� �

of the logical operator

e�iπZL=2t�1 (here the symmetry is defined by HL ¼ 1
2 ZL;HS ¼

� 1
2

Pn
l¼1 Zl). Intuitively, the larger t or n (associated with the

precision of transversal gates) is, the closer the code is to being
covariant. Indeed, calculations indicate that δglobal ’

ffiffiffiffiffiffiffiffi
4=n

p
for

large n (‘≃ ’ indicates equivalence at the leading order), saturating
our lower bound δglobal\

ffiffiffiffiffiffiffiffi
1=n

p
up to a constant factor. We see

that δglobal nicely captures the relation between global gate
precision and the closeness to covariance, leading to results like
Corollary 5. As for the local symmetry measures, we find that here
δlocal ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

for all θ ¼ 4kπ
nþ1 (8k 2 Z) at which the code is

exactly covariant, having a gap with its constant lower bound
δlocal≳ 1, and δcharge= 1, exactly matching the lower bound
δcharge≥1.
In the second example, we construct a parametrized family of

codes that exhibits a smooth transition from exact covariance to
exact QEC, which we call modified thermodynamic code, based on
the previously studied thermodynamic code12,14. Our modified
thermodynamic code is an n-qubit 2-dimensional quantum code
defined on a spin chain with Hamiltonian HS ¼ � 1

2

Pn
l¼1 Zl given

by codewords

cq0
�� 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
nþ qm

r
mnj i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm

nþ qm

r
ð�nÞn
�� 	

; (30)

cq1j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
nþ qm

r
ð�mÞn
�� 	þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qm
nþ qm

r
nnj i; (31)

where q is a tunable parameter in [0, 1] and it is assumed that
m+ n is an even number with 2 ≤m≪ n, and lnj i are Dicke states,
i.e., symmetric eigenstates of HS, satisfying HS lnj i ¼ l

2 lnj i. To
understand the code, let us now consider different values of q.
When q= 0, the code reduces to the thermodynamic code12,14,
which is exactly covariant with respect to HL ¼ m

2 ZL, due to the
fact that the codewords are eigenstates of HS with eigenvalues
± m

2 . When q= 1, the code satisfies the Knill–Laflamme conditions
and is exactly error-correcting under the single-erasure noise.
When q is taken in between 0 and 1, the code interpolates
between the above two extreme cases. Here, we find that δglobal ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qm=n

p
and ε≃ (1− q)m/2n, saturating the scaling of their lower

bounds δglobal\
ffiffiffiffiffiffiffiffiffiffiffiffi
qm=n

p
and ε≳ (1− 4q)m/2n, respectively. As for

the local symmetry measures, we find that δlocal ’ ffiffiffiffiffiffiffiffiffi
qmn
p

for all
θ ¼ 4kπ

nþm (8k 2 Z) at which the code is exactly covariant, having a
gap with its lower bound δlocal≳ qm, and δcharge= qm, exactly
matching the lower bound δcharge≳ qm. In conclusion, both
examples achieve the optimal scalings of δglobal and δcharge.

Potential applications to physics
Here we point out a few important areas in physics where our
theory is potentially useful.
First, we expect our study to lead to new quantitative insights

into the crucial symmetry problem in quantum gravity (see e.g.,
refs. 23,28–32,74), through the following lenses:

(i) Holography and AdS/CFT correspondence: AdS/CFT is
known to have fundamental connections with QEC8,9 and
indeed, the no-global-symmetry arguments of Harlow and
Ooguri23,24 is underpinned by insights from QEC. In
particular, for the continuous symmetry case, the situation
becomes largely equivalent to Eastin–Knill (due to the
transversality deduced from inherent properties of AdS/
CFT8,14,23,24,56), indicating that our theory can potentially be
used to establish quantitative statements about the break-
ing of global symmetries in AdS/CFT.

(ii) Black hole evaporation: A standard no-global-symmetry
argument is based on certain inconsistencies between the
evaporation and charge conservation of charged black
holes32 (note that the weak gravity conjectures31,75 are
closely relevant). Our results may be applied to symmetric
versions of Hayden–Preskill model of black hole evaporation
as the model can be formulated in terms of QEC (see also
refs. 21,76–78), through which new insights on charged black
hole evaporation may be obtained.

In these scenarios, our theory can potentially be used to derive
interesting quantitative bounds on the magnitude of symmetry-
violating effects (operators, terms, modes, etc.). Note that there
are some recent field or string theory calculations on approximate
symmetries in quantum gravity79–81 and it could be intriguing to
draw comparisons with our quantum information results.
Furthermore, QEC and symmetries naturally arise together in

various key areas in many-body physics like topological phases of
matter10,11,82–88 and information scrambling21,22,76,89–95, where the
interplay between them is expected to find interesting applications.
To be more specific, note first that the notions of many-body
entanglement, topological and quantum order, and QEC are
intimately connected10,11,82,84,88; besides, as mentioned above, the
violation of symmetry conditions is important in realistic systems and
in particular, goes hand in hand with anomalies, which play
fundamental roles in the physics of quantum systems in various
ways. Our study potentially provides a powerful framework for
establishing rigorous connections among these important concepts.

DISCUSSION
In this work, we developed a systematic quantitative theory of the
interplay between continuous symmetries and QEC by introducing
several notions of approximate symmetry measures based on
both global and local symmetry violation and analyzing QEC
accuracy together with them in quantum codes. A key message is
that the degree of symmetry (in multiple senses) and optimal QEC
accuracy of a code are concurrently limited by trade-off relations
between them, which has interesting implications in quantum
computation and physics.
We point out a few directions that are worth further study. First, it

would be interesting to further understand whether the two trade-off
relations between global symmetry and QEC, which exhibit different
behaviors under different noise models, can be unified. Another
natural future task is to extend our study to more general continuous
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symmetry groups including non-Abelian ones with multiple non-
commuting charges, in particular, SU(d) symmetry, which will
complete the understanding of the limitations on the ability to
perform universal quantum computation using transversal gates.
More involved representation theory machinery is expected to be
useful14,22 in the SU(d) extension. Discrete symmetries are also
important and worth further exploring—although they are not as
fundamentally incompatible with QEC as continuous symmetries2,
there exist important scenarios where the incompatibility arises from
simple additional constraints (e.g., AdS/CFT codes14,23,24)—it would
be interesting to have a more systematic understanding of the
discrete symmetry case (note that this paper readily implies some
results). Finally, in the last section we pointed to a few potentially
relevant physical problems. It would be worthwhile to further
consolidate these connections in physics languages, which would
enrich the interaction between quantum information and physics
and open new doors for both.

METHODS
We employed methods and techniques native to the fields of
quantum metrology and quantum resource theory in our
derivation, which we overview here (further details can be found
in Supplementary Notes 3 and 4).

Quantum metrology method
First, we describe the quantum metrology method used in the
proofs of Theorem 2 and Theorem 4.
As introduced in the main text, we consider the regularized

channel QFI36,37 of the noisy physical gate N S;θ :¼ N S � US;θ
which is a function of N S and HS only. We have

FðN S;HSÞ ¼ F1ðN S;θÞ ¼ lim
N!1

FðN�NS;θ Þ
N

; (32)

where F(⋅) is the channel QFI given by
FðΦθÞ ¼ maxρ FððΦθ � 1ÞðρÞÞ61. The goal is to relate it with the
error quantities.
The regularized channel QFI possesses the following useful

properties: i) Monotonicity: for arbitrary Φθ and Φ1,2 independent
of θ, it holds that

F1ðΦ1 � ðΦθ � 1Þ � Φ2Þ � F1ðΦθÞ: (33)

It indicates that any type of parameter-independent super-
channel, including quantum error correction, cannot increase the
value of the regularized channel QFI; ii) F1ðN S;θÞ � 0, and
F1ðN S;θÞ ¼ þ1 if and only if the HKS condition is violated. As
a result, when the HKS condition is satisfied as we assume, there
do not exist encoding and decoding channels ES L andRL S such
that

RL S � N S;θ � ES L ¼ UL;θ; (34)

because F1ðUL;θÞ ¼ þ1 while F1ðN S;θÞ<þ1, so Eq. (34) is
forbidden by the monotonicity property.
In order to derive the results, consider an error-corrected noise

channel

N C;θ ¼ RC SA � ðN S;θ � 1AÞ � ESA C : (35)

Here, we introduce an ancillary qubit system A and a logical qubit
system C, and consider specifically the encoding and decoding
channels

RC SA ¼ Rrep
C LA � ðRL S � 1AÞ; (36)

ESA C ¼ ðES L � 1AÞ � ErepLA C ; (37)

where ES L is the quantum code under study, ErepLA C is the
repetition code ErepLA Cð iCj iÞ ¼ iC iAj i for i= 0, 1, and Rrep

LA C is the

decoding channel that perfectly corrects bit-flip errors on L. We
show that for anyRL S; N C;θ is a rotated dephasing channel on C
satisfying

N C;θð iCj i jCh jÞ ¼ δij iCj i jCh j þ ð1� δijÞξθ iCj i jCh j; (38)

for all i, j= 0, 1 and some complex number ξθ (the angle of ξθ
indicates the angle of Pauli-Z rotation and the magnitude of ξθ
indicates the dephasing rate). The regularized channel QFI of the
rotated dephasing channel is given by

F1ðN C;θÞ ¼ ∂θξθj j2
1� ξθj j2

; (39)

where ∂θξθj j characterizes the strength of the signal andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξθj j2

q
characterizes the strength of the dephasing noise;

that is, F1ðN C;θÞ can be handwavily understood as the square of
the signal-to-noise ratio. By some calculations based on Eq. (38),
we obtain (for δlocal < ΔHL)

F1ðN C;θÞ\ ðΔHLÞ2
4γ2

for some θ; (40)

F1ðN C;θÞ\ ðΔHL � δlocalÞ2
4ε2

for some θ: (41)

Now note that by the monotonicity of the regularized channel
QFI, we have

F1ðN C;θÞ � F1ðN S;θÞ ¼ FðN S;HSÞ; 8θ: (42)

By combining Eqs. (42) and (40), we obtain Eq. (22), namely
F\ðΔHLÞ2=ð4γ2Þ, which implies Theorem 2; and by combining
Eqs. (42) and (41), we obtain Eq. (24) (Theorem 4), namely
ε\ðΔHL � δlocalÞ=

ffiffiffiffiffiffi
4F
p

.

Quantum resource theory method
Here we introduce a different line of thought, which draws ideas
and methods from another active field, namely quantum resource
theory. More specifically, inspired by the no-purification the-
ories39–41, we can bound the QEC inaccuracy and the global
covariance violation jointly using the monotonicity of suitable
asymmetry measures.
In particular, while the theorems introduced in the main text are

worst-case (with respect to all input states) results, the resource
theory method allows us to obtain average-case results. Specifi-
cally, we show that

εþ δglobal\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
dL
Tr H2

L

� �� 1
d2L
TrðHLÞ2

FRðN S;θÞ

vuut
; (43)

assuming that N S commutes with US;θ . Here ε and δglobal are,
respectively, what we call the Choi QEC inaccuracy and Choi
global covariance violation defined by

ε :¼ min
RL S

PðRL S � N S � ES L;1LÞ; (44)

δglobal :¼ maxθ PðUS;θ � ES L; ES L � UL;θÞ; (45)

where PðΦ1;Φ2Þ :¼ PððΦ1 � 1ÞðΨÞ; ðΦ2 � 1ÞðΨÞÞ with the maxi-
mally entangled state Ψj i ¼ 1ffiffi

d
p
Pd

i¼1 ij i ij i (d is the input dimension
of Φ1,2) as the input state, is the Choi purified distance. The Choi
measures capture the average-case behaviors in the sense that
they are closely related to the uniform averages over all pure input
states given by integration over the Haar measure43,96,97.
Furthermore, FRðN S;θÞ is the right logarithmic derivative (RLD)
channel QFI52 defined by

FRðΦθÞ ¼ maxρ F
RððΦθ � 1ÞðρÞÞ; (46)
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where the RLD state QFI51FRðρθÞ is equal to Trðð∂θρθÞ2ρ�1θ Þ when
supp(∂θρθ)⊆ supp(ρθ), and+∞ otherwise.
In order to prove (43), we use a resource theory of asymmetry39

where the free (incoherent) states are quantum states that
commute with the Hamiltonian and the free (covariant) operations
CL S are quantum operations that commutes with the symmetry
actions, namely satisfying

CL S � US;θ ¼ UL;θ � CL S; 8θ: (47)

Here the RLD QFI induces a resource monotone:

FRðρ;HÞ :¼ FRðe�iHθρeiHθÞ: (48)

It can be easily seen that it is infinite for pure coherent states.
The intuition goes as follows. First, we prove that there always

exists a covariant recovery channel Rcov
L S that can achieve QEC

inaccuracy

εcov ¼ min
Rcov

L S

PðRcov
L S � N S � ES L;1LÞ � εþ δglobal; (49)

assuming N S commutes with US;θ . This is done by construction:
we show that a variant of an optimal recovery channel achieving ε,
obtained by a suitable twirling action over the symmetry group
(which implies that the channel is covariant), satisfies Eq. (47). The
monotonicity of the resource monotone indicates that

FRðN S � ES LðΨLRÞ;HS � 1RÞ � FRðRcov
L S � N S � ES LðΨLRÞ;HL � 1RÞ;

(50)

where ΨLRj i ¼ 1ffiffiffiffi
dL
p
PdL

i¼1 iLj i iRj i is a maximally entanglement state
between the logical system L and a reference system R. The left-
hand side is no larger than the RLD channel QFI FRðN S;θÞ due to
the definition of the channel QFI. Notice that the right-hand side
tends to infinity when Rcov

L S � N S � ES L tends to the identity
channel due to the property that FRðρ;HÞ is infinite for pure
coherent states. By a more detailed analysis, we can show that

FRðRcov
L S � N S � ES LðΨLRÞ;HL � 1RÞ �

1
dL
TrðH2

LÞ � 1
d2L
TrðHLÞ2

ε2cov
;

(51)

which links εcov with the resource measures. Combining Eqs. (49),
(50), and (51), we obtain Eq. (43).
Following an analogous argument, a trade-off relation between

the worst-case ε and δglobal (which turns out to be weaker than
Theorem 2; see Supplementary Note 4 for details) can also be
derived using the quantum resource theory method.
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