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In spite of enormous theoretical and experimental progress in quantum uncertainty relations, the experimental investigation of the
most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been
implemented yet. A major problem is that previous studies of majorization uncertainty relations mainly focus on their mathematical
expressions, leaving the physical interpretation of these different forms unexplored. To address this problem, we employ a guessing
game formalism to reveal physical differences between diverse forms of majorization uncertainty relations. Furthermore, we tighter
the bounds of MURs by using flatness processes. Finally, we experimentally verify strong MURs in the photonic system to

benchmark our theoretical results.
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INTRODUCTION

In the quantum world, measurements allow us to gain information
from a system, and the action of measurements on quantum
systems is fully embraced in the areas of quantum technologies
and quantum information theories. It is therefore of great practical
interest to study the limitations and precisions of quantum
measurements. In taking the measurements on board, however, it
appears that quantum mechanics imposes strict limitation on our
ability to specify the precise outcomes from incompatible
measurements simultaneously, which is known as Heisenberg
uncertainty principle’.

In the context of the uncertainty principle, both variance? '? and
entropies'>™* are by no reason the most adequate to use. The
attempt to find all suitable uncertainty measures has triggered the
interest of the scientific community in the quest for a better
understanding and exploitation of the precisions of quantum
measurements. As previously shown in refs. %647, any eligible
candidate of uncertainty measures should be: (i) non-negative; (ii) a
function only of the probability vector associated with the
measurement outcomes; (i) invariant under permutations; (iv)
nondecreasing under a random relabeling(characterized by the
convex hull of permutation matrices). According to these restrict
conditions, a qualified uncertainty measure should be a non-
negative Schur-concave function, and the majorization uncertainty
relations (MURs) arise from the fact that all Schur-concave
functions preserve the partial order induced by majorization*®->°,
Based on the mathematical expressions, the notions of MURs are
classified into two categories; that are direct-product MUR
(DPMUR)*¢>1 and direct-sum MUR (DSMUR)**>3, In the original
work>?, the essential differences of mathematical features between
DPMUR and DSMUR (i.e. tensor and direct-sum) are compared and
analyzed. However, it is fair to say, that our understanding of the
physical essences of MURs is still very limited.

In this work, our first contribution, which also reflects the
original intention of this work, is to characterize the essential
differences of physical features between DPMUR and DSMUR
theoretically. More precisely, we show that the difference between
these MURs are more than its mathematical expressions, what
really matters is the joint uncertainty they represent. DPMUR is
identified as a type of spatially-separated joint uncertainty, and
meanwhile DSMUR is recognized as a type of temporally-
separated joint uncertainty. Despite previous developments on
MURSs, there is still a gap between their optimal bounds and the
ones constructed in refs. 44°173_Our second contribution is to fill
this gap by applying a technique, called the flatness process>*,
which is also known as a concave envelope in mathematics.

Besides theoretical advancements, the experimentally imple-
mentations of quantum uncertainty relations are also already of
great interest. Uncertainty relations based on variance and
entropies have been successfully realized in various physical
systems, including neutronic systems®>™7, optical sys-
tems?22358-64 ' nitrogen-vacancy centers®®, nuclear magnetic
resonance®, ion trap®’, and so forth. However, an experimental
demonstration of the uncertainty relations given by majorization
has never been shown. To boost the experimental study of the
uncertainty relations, we experimentally verified the tighter
majorization uncertainty relations. Thus the third contribution of
this work is that we demonstrate the MURs by measuring a qudit
state encoded with the path and polarization degrees of freedom
of the photon.

RESULTS
Direct-product majorization uncertainty relation

We employ guessing games to reveal physical differences
between diverse forms of majorization uncertainty relations. The
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Fig. 1

Schematic illustration of the majorization uncertainty relations in the framework of guessing games. The guessing game for the

construction of DPMUR is shown in (a). Bob prepares a two-copy state p ® p which is unknown to Alice and sends it to Alice. Alice measures
the state p ® p with M ® N and obtains a measurement outcome (ag, b) with a=1,...,n and b=1, ..., m. The state and measurements are
known to Bob, so Bob knows that Alice’s measurement outcome in each round is one of the mn possible outcomes. Bob's goal is to guess
Alice’s measurement outcome correctly in each round. Each round is independent and the process is the same, except that Bob is allowed to
guess the number of measurement outcomes increasing in each round. For example, in the second round(k = 2), Bob is allowed to guess two
outcomes out of all possible outcomes(as shown in blue in the table) and will win if one of them is Alice’s measurement outcome. The
guessing game for the construction of DSMUR is shown in (b). Unlike the game for DPMUR, in this game, Bob prepares a one-copy state p and
sends it to Alice. Alice measures the state p using either M or N depending on the outcome of a random number generator R, which outputs 0
with probability A and 1 with probability 1 —A. Thus Alice obtains a measurement outcome (0, a) or (1, b) in each round. Bob knows Alice’s
measurement rules and his goal is to guess Alice’s measurement outcome correctly among n + m possible outcomes. Similarly, in the k-th
round, Bob is allowed to guess k outcomes out of all possible outcomes and will win if one of them is Alice’s measurement outcome.

guessing game for the construction of DPMUR is shown in Fig. 1a.
In each round of the game, Bob prepares a two-copy state p ® p
and sends it to Alice(the state is unknown to Alice). Alice measures
the state p ® p with M® N (the measurement is known to Bob),
and M, N is positive-operator-valued measures (POVMs) composed
of m POVM elements and n POVM elements, denoted as
M= {Mg},(a=1,...,n) and N = {Np}, (b=1, ..., m) respectively.
Then Alice obtains a measurement outcome labeled as (a, b),
which has mn possible results, as shown in the table in Fig. 1a,
where a denotes the outcome of M and b denotes the outcome of
N. Alice obtains a measurement outcome (a, b) in each round, and
Bob's goal is to guess Alice’s measurement outcome correctly in
each round. Each round is independent, and only the number of
measurement outcomes that Bob is allowed to guess increases in
each round.

In the first round of the game, Bob is allowed to guess only one
possible measurement outcome, and he will win if he guesses
correctly. In the k-th round of the game, Bob is allowed to guess k
possible measurement outcomes, he will win if one of his guesses
is Alice’s measurement outcome. It can be seen that this game can
play up to k=nm rounds. It is important to highlight that Bob
possesses information about the state and measurements Alice
will implement during the game. Therefore, Bob has prior
information on the possible measurement outcomes and can
directly guess the measurement outcome that occurs with the
maximum probability. Moreover, since Bob is the party sending
the states, he can maximize the probability of winning in each
round by sending the particular states. For example, in the first
round, the maximum probability for Bob to win is max,p,q,,
where the probabilities p, and p,, are written as p, := Tr(M, p) and
Gy := Tr(Np p). In the second round, according to the rules, Bob is
allowed to guess two outcomes simultaneously and will win if one
of his guesses is Alice’s measurement outcome. He chooses the
two outcomes that occur with the maximum sum of probabilities
among all possible outcomes. So the maximum probability for Bob
to win in the second round is maxmax 3,y c;,Pads: Where I
represents the set composed of seféctirf)g two outcomes from mn
possible measurement outcomes. Thus in the k-th round, the
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maximum probability for Bob to win can be expressed as

Rk == mlkaxm;lx Z Palps 1)
(a,b)elk

where I, C [n] X [m] is a subset of k distinct pair of indices. Here

[n1={1,...,n} is the set of natural numbers ranging from 1 to n,

and k € [mn]. According to Eq. (1), it is easy to obtain the following

inequalities

Z PaGy <Rk. Vk € [mn] 2
(a,b)elk

A concise approach of expressing the inequalities mentioned
above is to use the majorization (<)% A probability vector x €
R" is majorizied by yeR" ie x<y, if and only if
ZJL xjig Z}; yjl for all 1<k<n—1. Here the down-arrow
indicates that the components of the vectors are arranged in a
non-increasing order. We write the probability distributions p, and
pp of all results for M and N as probability vectors p and q,
respectively. Clearly, the joint uncertainty between p and q is
captured by the maximum probability for Bob to win the game.
Now we can abbreviate the Eq. (2) into one inequality

p®q=<r, (3)

with  r:= (R1,R2 — Ry, ... ,Rmn — Rmn—1).  Consequently, the
essence of DPMUR is captured by our framework of guessing
game, which demonstrates a spatially-separated joint uncertainty.
Note that R, can be in general difficult to calculate explicitly, as
they involve an optimization problem. The authors of ref. 4°
provide us a calculate-friendly bound t, satisfying p®@ q<r<t.
However, this is not the optimal bound. Mathematically,
majorization lattice forms a complete lattice; the optimal bounds
for MURs exist. To obtain the optimal bounds, it suffices to
perform a standard process (flatness process) F. Hence, the
implementation of the process 7 on p®q<r<t lead to a
relation

p®q=<F(r) <r=<F(t) <t (4)

where r and t are the bounds given in ref. %6, Because of the
mathematical properties of flatness process (concave envelope),
the vector F(r) is optimal. However, a major drawback of F(r) is
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Fig.2 Experimental setup. In the single-photon source module, the photon pairs generated in spontaneous parametric down-conversion are
coupled into single-mode fibers separately. One photon is detected by a single-photon detector (SPD) acting as a trigger. In the state
preparation module, a qudit is encoded by four modes of the single photon. H and V denote the horizontal polarization and vertical
polarization of the photon, respectively. The subscripts u and d represent the upper and lower spatial modes of the photon, respectively. The
half-wave plates (H;, H,) and beam displacer (BD1) are used to generate desired qudit state. In the measurement module a, b, the red HWPs
with an angle of 45° and beam displacers (BDs) comprise the interferometric network to perform the desired measurement; the yellow HWP
with an angle of 0° are inserted into the middle path to compensate the optical path difference between the upper and lower spatial modes.
To realize measurement B shown in Eq. (10), two quarter-wave plates are need to be inserted in device b. Four SPDs correspond to the four
outcomes of each measurement. Each SPD is a silicon avalanche photodiode (Si-APD), with a detection efficiency of ~ 60%.

that the calculation of F(r) is even harder than r. But with the
help of flatness process, we also obtain an effectively computable
bound F(t), which is tighter than the original t. So we obtain a
strong DPMUR p®q < F(t) <t, and we test this relation
experimentally. The construction of t and the rigorous definition
of the flatness process see Supplementary Note 1 for details.

Direct-sum majorization uncertainty relation

Demonstration of direct-sum majorization uncertainty relation
(DSMUR) through the framework of the guessing game is shown
in Fig. 1b. In each round of the game, Bob prepares a one-copy
state p and sends it to Alice(the state is unknown to Alice). Alice
measures the state p with M or N. To determine Alice’s choice of
the measurements, a binary random number generator R is
employed, which outputs the number 0 with probability A, and the
number 1 with probability 1 — A. After receiving 0 from R, Alice
performs the measurement M and obtains a measurement
outcome labeled as (0,a), where ac{1,..., n}. Otherwise, she
implements N and obtains a measurement outcome labeled as
(1, ), where b {1, ...,m} n+ m possible results {(0,a), (1, b)} are
shown in the table in Fig. 1b. Thus Alice obtains a measurement
outcome (0,a) or (1,b) in each round. Bob knows Alice’s
measurement rules and the specific form of measurements M
and N, but he does not know whether Alice performs measure-
ment M or N in each round. So he needs to guess Alice’s outcome
among all possible results.

Same as the previous game for DPMUR, again the goal of Bob is
to guess Alice’s measurement outcome correctly in each round.
Each round is independent, and the number of measurement
outcomes that Bob is allowed to guess increases in each round. In
the k-th round of the game, Bob is allowed to guess k possible
measurement outcomes, and he will win if one of his guesses is
Alice’s measurement outcome. This means that the game can be
played up to k=n+ m rounds. Bob’s strategy is similar to the
previous one. Thus the maximal probability for Bob to win in each
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round is given by

Sk = \lmi):(k max Z (Apg + (1 = A)qy)
aelcin (5)
beJcm)

where |+| denotes the cardinality of .. There exists an efficient way
of computing Sy. Let us define an operator G, as

MM,
Gc(A) := { (1— WNe»

Then the quantity Sy becomes

Y 6m),

celc[n+m]

1<ckn,
n+1<c<n+m.

(6)

Sk(A) = mgth

(7)

where A;(e) denotes the maximum eigenvalue of the argument.
Similarly, we write the relationship between the uncertainty of
measurements and Bob’s maximum probability of winning the
game as the following inequality by using majorization

@ (1-2a <s@), (8)

with s(A) := (51(A),52(A) = S1(A), ... , Smin(A) = Smin—1(A)). In the
framework of DSMUR, classical uncertainty of the random number
generator is injected into the guessing game, and as a
consequence Ap @ (1 —A)q is a hybrid type of uncertainty,
mingling both classical and quantum uncertainties. Quite
remarkably, the measurements, monitored by R, can be imple-
mented in the same position but cannot performed simulta-
neously, and hence Ap @ (1 — A)q reveals a temporally-separated
joint uncertainty. It should be stressed here that the original
DSMUR>2°3 s a special case of our notion by first taking A = 1/2,
and then timing the scalar 2, i.e. p® q < 2s(1/2).
Let us now consider the DSMUR after flatness process

ApD(1-2)q =< F(s(A) <s(A). 9)

Unlike the case of DPMUR, the vector F(s(A)) is optimal and can
be calculate explicitly. Moreover, for DSMUR with uniform
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Fig. 3 Experimental results of DPMUR and DSMUR with two measurements. Lorenz curves in (a) and (b) show the experimental results for
DPMUR and DSMUR with states [y, 4 ), and the Lorenz curves in (c) and (d) exhibit DPMUR and DSMUR with states g /). Black curves

represent the Lorenz curves of previous bounds t (s(1/2)), and the Lorenz curves of our improved bounds F(t) (

F(s(1/2))) are highlighted in

red. The dotted lines marked with different colors indicate DPMUR and DSMUR for the state in different parameters. Since the Lorentz curve is
plotted by a series of coordinate points {(k, ZL Xi)g—o }» the coordinate axis is not marked with a title. Note that for the measurement and
state we choose in the four-dimensional Hilbert space, n = 16 for DPMUR and n = 8 for DSMUR.

distribution, i.e. A=1/2, one «can easily show that
PP q=<2F(s(1/2)) < 2s(1/2). Note that, the flatness process
cannot be applied to p®q < 2s(1/2) directly®®*!, since the
results presented in ref. >* are only designed for probabilities. To
accommodate this, a more general lemma is proved in
Supplementary Note 3.

Experimental demonstration

To verify the DPMUR and DSMUR, we experimentally prepare a
family of 4-dimensional states with parameters 6 and ¢,
[e 4) = cos Bsinp|0) + cos B cos ¢|1) + sin6]2) +0|3), and per-
form measurements in the photonic system. Measurements
include a setting with a pair of measurements

A={10),11),12),13)}

_ A0y =) =i12) +13))/2,(10) = i[1) +1[2) = [3))/2,
(10) +i[1) —i[2) — [3))/2, (|0) +i[1) +i[2) +[3))/2}
(10)
and another one with multi-measurements
G ={[0),11),12),13)}
C, = {|0> \223>7\1 +\2; \3>72I1>7\\/26>+\3>} a1
Cs = {\2 B) |7y, 10 J>§\>72|0>7\\/2€>+\3>}.

The experimental setup is shown in Fig. 2. It consists of a single-
photon source module, a state-preparation module, and a

npj Quantum Information (2023) 65

measurement module. The details of each module are presented
in the Methods section.

The probability distributions induced by performing measure-
ments (10) and (11) on state ‘w9}¢> are acquired. Since we need to
verify the majorization relation between vectors composed of
probability distributions, so we use Lorentz curve to show it more
intuitively®®. For an non-negative vector x = (x;)i_, with non-
increasing order, the corresponding Lorenz curve E( ) is defined
as the linear interpolation of the points {(k, >, x,)7_,} with the
convention (0, 0) for k= 0. Based on Lorenz curves, we have £(x)
lays everywhere below L(y) if and only if x <y. Therefore, we
convert the probability vectors p®q and p@q into Lorentz
curves L(p ® q) and L(p @ q), and then compare them with the
Lorentz curves of bounds of majorization uncertainty relations.

Experimental results for verifying the DPMUR and DSMUR with
two measurements are shown in Fig. 3. Figure 3a, b show the
Lorentz curves of probability vectors for DPMUR and DSMUR by
measuring the states \(/J,,MJ/,), respectively. Figure 3¢, d show the
Lorenz curves of probability vectors for DPMUR and DSMUR with
states |Wg 5/4), respectively. For measurements A and B, the bound
t for DPMUR, introduced in refs. 4%, is given by
(0.5625,0.1661,0.2714). The corresponding Lorenz curve L(t) is
shown as black curve in Fig. 3a, c. To further improve previous
result on DPMUR, we apply the flatness process F to the bound t,
and acquire a strong bound F(t) = (0.5625,0.21875,0.21875).
The corresponding Lorenz curve L£(F(t)) is shown as red curve in
Fig. 3a, c. According to the rules of the flatness process, the
second and third elements of t are not arranged in descending

Published in partnership with The University of New South Wales
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Fig.4 Experimental results of DPMUR and DSMUR with three measurements. a, b show the Lorenz curves of probability vectors for DPMUR
and DSMUR with states |y, ,), respectively. The Lorentz curves of the bounds F(t') and F(s'(1/3))) are shown in black curve. ¢, d show the
Shannon entropic uncertainty relations by performing measurements C,, G, C3 on the states |y, ,) and |y,,/,), respectively. The curves
marked with magenta, green, and blue stand for the Shannon entropy of probability distributions associated with measurements C;, C; and
Cs; that are H(Cy), H(C;) and H(C3), and the red curves represent their sum of uncertainties > ;H(C;). The dotted line (H(F(t')) = 0.7651) and
solid line (H(3F(s'(1/3))) = 0.7979) show the Shannon entropy of bounds for DPMUR and DSMUR.

order, so the first element of F(t) is still the first element of t, and
the average of the second and third elements of t is taken as the
second and third elements of F(t). Similarly, the bound 2s(1/2)
for DSMUR, introduced in ref. 2, is given by (0.5,0.2071,0.2929).
After flatness process, the improved bound F(s(1/2)) =
(0.5,0.25,0.25) is obtained. The Lorentz curve of improved
bound is shown as a red curve, and as a comparison, the Lorentz
curve of previous bound as a black curve in Fig. 3b, d. The
experimental plots depicted in Fig. 3 confirm the betterments of
our bounds by showing that all experimental datum-induced
Lorenz curves lay below our bounds F(t) (F(s(1/2))), and our
bounds are under the previous ones t (s(1/2)), which implies that
our bound is tighter.

We also verify the DPMUR and DSMUR with three measure-
ments, and the experimental results are shown in Fig. 4. Figure 4a,
b show the Lorentz curves of probability vectors for DPMUR and
DSMUR by performing measurements (11) on the states [¢, ),
respectively. For measurements C;, C; and Gz, the bound F(t') for
DPMUR is given by (0.7773,0.2227) and the bound F(s'(1/3)) for
DSMUR is given by (1,1,0.7583,0.2417) /3, and the Lorenz curves
of these bounds marked in black are shown in Fig. 4a, b. We see
that the joint uncertainties associated with different parameters ¢
of the states |(,U,,ﬁ¢> are marjorized by our bounds F(t') and
F(s'(1/3)). Furthermore, entropies are important tools in
quantum information theory, and they are closely related to the
majorization. From the properties of majorization, it follows the
entropic  uncertainty  relations > ,H(C;) >H(F(t')) and

Published in partnership with The University of New South Wales

> H(Gi) 2 H(3F(s'(1/3))) with H stands for the Shannon entropy.
All of this can be seen in Fig. 4c, d.

DISCUSSION

Our guessing game formalism of MURs enable us to classify
DPMUR and DSMUR into spatially-separated and temporally-
separated joint uncertainties accordingly, which differs from
previous developments and, more important, exhibit the essential
differences of physical features between DPMUR and DSMUR
theoretically. We also experimentally verify strong MURs in the
photonic system. In order to present the majorization relation, we
use Lorentz curve to show it more intuitively. The experimental
data are in good agreement with the theoretical prediction. The
errors in our experiment mainly come from the inaccuracy of
angles of the wave plates and the imperfect interference visibility
of the interferometer. Furthermore, it is advantageous to apply the
techniques of flatness process to tighter the bounds of MURs, and
its efficiency is confirmed by our experiment. The existence of
MURs provides tremendous flexibility in formulating uncertainty
relations, and greatly enhance our understanding of quantum
mechanics. Therefore, the guessing game formalism, and tighter
bounds, as well as the corresponding experimental investigation
presented in this work would deeper our knowledge of the
quantum world.
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METHODS
Experimental setup

The experimental setup used for verifications of DPMUR and
DSMUR is shown in Fig. 2. It consists of a single-photon source
module, a state-preparation module, and a measurement module.
We will introduce the details of each module in this section.

In the single-photon source module, a 80-mW cw laser with a
404-nm wavelength (linewidth = 5 MHz) pumps a type-Il beamlike
phase-matching beta-barium-borate (BBO, 6.0x6.0x2.0 mm?,
6 = 40.98°) crystal to produce a pair of photons with wavelength
A =808 nm. After being redirected by mirrors and passing through
the interference filters (IF, AA=3 nm, A =808 nm), the photon
pairs generated in spontaneous parametric down-conversion are
coupled into single-mode fibers separately. One photon is
detected by a single-photon detector acting as a trigger. The
coincidence counts are approximately 5 x 10% per second.

In the state preparation module, we prepare a family of
4-dimensional ~ states  with  parameters 6 and ¢,
|(/)9_4,> = cos 8sin ¢|0) + cos Bcos ¢p|1) + sin 6]2) + 0|3), which is
encoded by four modes of a single photon. States |0) and |1) are
encoded by different polarizations of the photon in the lower
mode, and |2) and |3) are encoded by polarization of the photon
in the upper mode. The beam displacer (BD) causes the vertical
polarized photons to be transmitted directly, and the horizontal
polarized photons to undergo a 4 mm lateral displacement. When
the photon passes through a half-wave plate (H;) with a certain
setting angle, it is split by BD1 into two parallel spatial modes—
upper and lower modes. Therefore the photon is prepared in the
desired state |Lp9'¢>, with parameters 8 and ¢ are controlled by the
plates H; and H,, respectively.

In the measurement module, device a is used to realize
measurements A and C;. In the presence of quarter-wave plates
with an angle of 45°, device b is used to realize measurement B,
and the setting angles of Hs—Hg are 45°, 0°, 22.5° and 22.5°. On
the other hand, in the absence of quarter-wave plates, device b is
exploited to implement measurement C,(C3) when the setting
angles of Hs—Hg are 22.5°, 0°(45°), 27.4°, and 0°.

DATA AVAILABILITY

All data not included in the paper and its Supplementary Information are available
upon reasonable request from the corresponding authors.

Received: 7 February 2023; Accepted: 21 June 2023;
Published online: 08 July 2023

REFERENCES

1. Heisenberg, W. Uber den anschaulichen inhalt der quantentheoretischen kine-
matik und mechanik. Z. Phys. 43, 172-198 (1927).

2. Kennard, E. H. Zur quantenmechanik einfacher bewegungstypen. Z. Phys. 44,

326-352 (1927).

. Weyl, H. Gruppentheorie und quantenmechanik. Z. Phys. 46, 1-46 (1927).

. Robertson, H. P. The uncertainty principle. Phys. Rev. 34, 163 (1929).

. Huang, Y. Variance-based uncertainty relations. Phys. Rev. A 86, 024101 (2012).

. Maccone, L. & Pati, A. K. Stronger uncertainty relations for all incompatible

observables. Phys. Rev. Lett. 113, 260401 (2014).

7. Xiao, Y., Jing, N., Li-Jost, X. & Fei, S.-M. Weighted uncertainty relations. Sci. Rep. 6,
23201 (2016).

8. Xiao, Y. & Jing, N. Mutually exclusive uncertainty relations. Sci. Rep. 6, 36616
(2016).

9. Xiao, Y., Jing, N., Yu, B, Fei, S-M. & Li-Jost, X. Near-optimal variance-based
uncertainty relations. Front. Phys. 10, 846330 (2022).

10. de Guise, H., Maccone, L., Sanders, B. C. & Shukla, N. State-independent uncer-
tainty relations. Phys. Rev. A 98, 042121 (2018).

11. Chen, Z-X, Wang, H, Li, J-L, Song, Q-C. & Qiao, C-F. Tight N-observable
uncertainty relations and their experimental demonstrations. Sci. Rep. 9, 5687
(2019).

oOun b~ w

npj Quantum Information (2023) 65

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

. Xiao, Y., Guo, C,, Meng, F., Jing, N. & Yung, M.-H. Incompatibility of observables as

state-independent bound of uncertainty relations. Phys. Rev. A 100, 032118
(2019).

. Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631
(1983).
. Partovi, M. H. Entropic formulation of uncertainty for quantum measurements.

Phys. Rev. Lett. 50, 1883 (1983).

. Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D 35,

3070 (1987).

. Maassen, H. & Uffink, J. B. M. Generalized entropic uncertainty relations. Phys. Rev.

Lett. 60, 1103 (1988).

. Ivanovic, I. D. An inequality for the sum of entropies of unbiased quantum

measurements. J. Phys. A Math. Gen. 25, L363 (1992).

. Sanchez, J. Entropic uncertainty and certainty relations for complementary

observables. Phys. Lett. A 173, 233-239 (1993).

. Ballester, M. A. & Wehner, S. Entropic uncertainty relations and locking: tight

bounds for mutually unbiased bases. Phys. Rev. A 75, 022319 (2007).

Wuy, S, Yu, S. & Mglmer, K. Entropic uncertainty relation for mutually unbiased
bases. Phys. Rev. A 79, 022104 (2009).

Berta, M., Christandl, M., Colbeck, R., Renes, J. M. & Renner, R. The uncertainty
principle in the presence of quantum memory. Nat. Phys. 6, 659-662 (2010).

Li, C-F,, Xu, J-S., Xu, X--Y,, Li, K. & Guo, G.-C. Experimental investigation of the
entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752-756
(2011).

Prevedel, R, Hamel, D. R., Colbeck, R., Fisher, K. & Resch, K. J. Experimental
investigation of the uncertainty principle in the presence of quantum
memory and its application to witnessing entanglement. Nat. Phys. 7,
757-761 (2011).

Huang, Y. Entropic uncertainty relations in multidimensional position and
momentum spaces. Phys. Rev. A 83, 052124 (2011).

Tomamichel, M. & Renner, R. Uncertainty relation for smooth entropies. Phys. Rev.
Lett. 106, 110506 (2011).

Coles, P. J,, Colbeck, R, Yu, L. & Zwolak, M. Uncertainty relations from simple
entropic properties. Phys. Rev. Lett. 108, 210405 (2012).

Coles, P. J. & Piani, M. Improved entropic uncertainty relations and information
exclusion relations. Phys. Rev. A 89, 022112 (2014).

Kaniewski, J., Tomamichel, M. & Wehner, S. Entropic uncertainty from effective
anticommutators. Phys. Rev. A 90, 012332 (2014).

Furrer, F., Berta, M., Tomamichel, M., Scholz, V. B. & Christandl, M. Position-
momentum uncertainty relations in the presence of quantum memory. J. Math.
Phys. 55, 122205 (2014).

Li, J-L. & Qiao, C.-F. Reformulating the quantum uncertainty relation. Sci. Rep. 5,
12708 (2015).

Berta, M., Wehner, S. & Wilde, M. M. Entropic uncertainty and measurement
reversibility. New J. Phys. 18, 073004 (2016).

Xiao, Y. et al. Strong entropic uncertainty relations for multiple measurements.
Phys. Rev. A 93, 042125 (2016).

Xiao, Y., Jing, N., Fei, S-M. & Li-Jost, X. Improved uncertainty relation in the
presence of quantum memory. J. Phys. A Math. Theor. 49, 49LT01 (2016).

Xiao, Y., Jing, N. & Li-Jost, X. Uncertainty under quantum measures and quantum
memory. Quantum Inf. Process. 16, 104 (2017).

Coles, P. J,, Berta, M., Tomamichel, M. & Wehner, S. Entropic uncertainty relations
and their applications. Rev. Mod. Phys. 89, 015002 (2017).

Huang, J-L, Gan, W-C, Xiao, Y., Shu, F-W. & Yung, M.-H. Holevo bound of
entropic uncertainty in Schwarzschild spacetime. Eur. Phys. J. C 78, 545 (2018).
Xiao, Y., Xiang, Y., He, Q. & Sanders, B. C. Quasi-fine-grained uncertainty relations.
New J. Phys. 22, 073063 (2022).

Chen, Z, Ma, Z, Xiao, Y. & Fei, S.-M. Improved quantum entropic uncertainty
relations. Phys. Rev. A 98, 042305 (2018).

Coles, P. J., Katariya, V., Lloyd, S., Marvian, |. & Wilde, M. M. Entropic energy-time
uncertainty relation. Phys. Rev. Lett. 122, 100401 (2019).

Li, J-L. & Qiao, C-F. Quantum uncertainty relation: the optimal uncertainty rela-
tion. Ann. Phys. 531, 1970036 (2019).

Wang, H,, Li, J-L, Wang, S., Song, Q.-C. & Qiao, C.-F. Experimental investigation of
the uncertainty relations with coherent light. Quantum Inf. Process. 19, 38 (2019).
Xiao, Y., Fang, K. & Gour, G. The complementary information principle of quantum
mechanics. Preprint at https://doi.org/10.48550/arXiv.1908.07694 (2019).

Qian, C, Wy, Y.-D,, Ji, J-W.,, Xiao, Y. & Sanders, B. C. Multiple uncertainty relation
for accelerated quantum information. Phys. Rev. D 102, 096009 (2020).

Xiao, Y. Sengupta, K, Yang, S. & Gour, G. Uncertainty principle of quantum
processes. Phys. Rev. Res. 3, 023077 (2021).

Xiao, Y. A Framework for Uncertainty Relations. PhD thesis, Universitat Leipzig
(2017).

Friedland, S., Gheorghiu, V. & Gour, G. Universal uncertainty relations. Phys. Rev.
Lett. 111, 230401 (2013).

Published in partnership with The University of New South Wales


https://doi.org/10.48550/arXiv.1908.07694

47. Narasimhachar, V., Poostindouz, A. & Gour, G. Uncertainty, joint uncertainty, and
the quantum uncertainty principle. New J. Phys. 18, 033019 (2016).

48. Hardy, G. H,, Littlewood, J. E. & Pdlya, G. Some simple inequalities satisfied by
convex functions. Messenger Math. 58, 145-152 (1929).

49. Partovi, M. H. Majorization formulation of uncertainty in quantum mechanics.
Phys. Rev. A 84, 052117 (2011).

50. Marshall, A. W., Olkin, I. & Arnold, B. C. in Inequalities: Theory of Majorization and Its
Applications 2nd edn 18-19 (Springer, 2011).

51. Puchata, Z, Rudnicki, £. & Zyczkowski, K. Majorization entropic uncertainty rela-
tions. J. Phys. A Math. Theor. 46, 272002 (2013).

52. Rudnicki, t., Puchata, Z. & Zyczkowski, K. Strong majorization entropic uncertainty
relations. Phys. Rev. A 89, 052115 (2014).

53. Puchata, Z, Rudnicki, t., Krawiec, A. & Zyczkowski, K. Majorization uncertainty
relations for mixed quantum states. J. Phys. A Math. Theor. 51, 175306 (2018).

54. Cicalese, F. & Vaccaro, U. Supermodularity and subadditivity properties of the
entropy on the majorization lattice. IEEE Trans. Inf. Theory 48, 933-938 (2002).

55. Erhart, J. et al. Experimental demonstration of a universally valid error-
disturbance uncertainty relation in spin measurements. Nat. Phys. 8, 185-189
(2012).

56. Sulyok, G. et al. Violation of Heisenberg’s error-disturbance uncertainty relation in
neutron-spin measurements. Phys. Rev. A 88, 022110 (2013).

57. Sulyok, G. et al. Experimental test of entropic noise-disturbance uncertainty
relations for spin-1/2 measurements. Phys. Rev. Lett. 115, 030401 (2015).

58. Rozema, L. A. et al. Violation of Heisenberg’'s measurement-disturbance rela-
tionship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012).

59. Ringbauer, M. et al. Experimental joint quantum measurements with minimum
uncertainty. Phys. Rev. Lett. 112, 020401 (2014).

60. Kaneda, F., Baek, S.-Y., Ozawa, M. & Edamatsu, K. Experimental test of error-
disturbance uncertainty relations by weak measurement. Phys. Rev. Lett. 112,
020402 (2014).

61. Wang, K. et al. Experimental investigation of the stronger uncertainty relations for
all incompatible observables. Phys. Rev. A 93, 052108 (2016).

62. Zhao, Y.-Y., Kurzynski, P., Xiang, G.-Y., Li, C-F. & Guo, G.-C. Heisenberg’s error-
disturbance relations: a joint measurement-based experimental test. Phys. Rev. A
95, 040101(R) (2017).

63. Liu, Y. et al. Experimental test of error-tradeoff uncertainty relation using a
continuous-variable entangled state. npj Quantum Inf. 5, 68 (2019).

64. Liu, Y., Kang, H., Han, D., Su, X. & Peng, K. Experimental test of error-disturbance
uncertainty relation with continuous variables. Photon. Res. 7, A56-A60 (2019).

65. Ma, W. et al. Experimental demonstration of uncertainty relations for the triple
components of angular momentum. Phys. Rev. Lett. 118, 180402 (2017).

66. Ma, W. et al. Experimental test of Heisenberg’s measurement uncertainty relation
based on statistical distances. Phys. Rev. Lett. 116, 160405 (2016).

67. Zhou, F. et al. Verifying Heisenbergs error-disturbance relation using a single
trapped ion. Sci. Adv. 2, e1600578 (2016).

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (Grants
Nos. 12004113, 62222512, 12104439, 12134014, 61905234, 11974335) and Natural
Science Foundation of Shanghai (22ZR1418100). Y.X. is supported by A*STAR's

Published in partnership with The University of New South Wales

Y. Yuan et al.

npj

Central Research Fund (CRF UIBR). G.G. acknowledges support from the Natural
Sciences and Engineering Research Council of Canada (NSERC). S.-M.F. acknowledges
financial support from the National Natural Science Foundation of China (Grant Nos.
12075159 and 12171044), Beijing Natural Science Foundation (Grant No. Z190005),
and Academician Innovation Platform of Hainan Province.

AUTHOR CONTRIBUTIONS

Y.X. and G.G. developed the theoretical framework and analyzed results with S.-M.F.;
G.-Y.X. supervised the project; Y.Y., Z.H., and G.-Y.X. designed the experiment and the
measurement apparatus; Y.Y. built the instruments, performed the experiment, and
collected the data with assistance from ZH. and G.-Y.X; Y., HZ, and G-YX.
performed numerical simulations and analyzed the experimental data with assistance
from CF.L. and G.-CG, V.Y, YX. and G.-Y.X. prepared and wrote the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-023-00736-2.

Correspondence and requests for materials should be addressed to Yunlong Xiao or
Guo-Yong Xiang.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

npj Quantum Information (2023) 65


https://doi.org/10.1038/s41534-023-00736-2
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Strong majorization uncertainty relations and experimental verifications
	Introduction
	Results
	Direct-product majorization uncertainty relation
	Direct-sum majorization uncertainty relation
	Experimental demonstration

	Discussion
	Methods
	Experimental setup

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




