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Error statistics and scalability of quantum error mitigation
formulas
Dayue Qin 1, Yanzhu Chen 2 and Ying Li 1✉

Quantum computing promises advantages over classical computing in many problems. Nevertheless, noise in quantum devices
prevents most quantum algorithms from achieving the quantum advantage. Quantum error mitigation provides a variety of
protocols to handle such noise using minimal qubit resources. While some of those protocols have been implemented in
experiments for a few qubits, it remains unclear whether error mitigation will be effective in quantum circuits with tens to hundreds
of qubits. In this paper, we apply statistics principles to quantum error mitigation and analyse the scaling behaviour of its intrinsic
error. We find that the error increases linearly O(ϵN) with the gate number N before mitigation and sublinearly Oðϵ0NγÞ after
mitigation, where γ ≈ 0.5, ϵ is the error rate of a quantum gate, and ϵ0 is a protocol-dependent factor. The

ffiffiffiffi
N

p
scaling is a

consequence of the law of large numbers, and it indicates that error mitigation can suppress the error by a larger factor in larger
circuits. We propose the importance Clifford sampling as a key technique for error mitigation in large circuits to obtain this result.
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INTRODUCTION
With the recent progress that quantum computers can have more
than half a hundred qubits1,2, it is widely accepted that we are in
the era of noisy intermediate-scale quantum (NISQ) technologies3.
A prominent feature of NISQ technologies is the potential for
surpassing all classical computers in certain tasks, yet they cannot
realise full quantum error correction and achieve fault tolerance
due to noise and the limited number of physical qubits. Under the
assumption of realistic noise models, the qubit overhead is
thousands of physical qubits per logical qubit to reduce the
chance of a logical error to the negligible level4,5. This requirement
of quantum error correction is considerably beyond today’s
technologies.
Nevertheless, we can still perform computation tasks with NISQ

devices. Protocols proposed recently allow us to bypass quantum
error correction, which are termed quantum error mitigation6–17.
Unlike error correction preserving the logical quantum state, error
mitigation aims at recovering the error-free measurement out-
come without physically preparing the error-free state. It can
extract the correct computation result from a noisy device as long
as the physical quantum state is not excessively damaged by the
error accumulation18. For example, if the state becomes the
maximally mixed state due to noise, there is nothing we can do to
extract any useful information about the noise-free state. Recently,
quantum algorithms using shallow circuits have been developed
to minimise error accumulation. Quantum simulation algorithms
based on variational, Lanczos and Monte Carlo methods are
promising examples of such algorithms19–23. Although shallow-
circuit algorithms and error mitigation protocols have been
successful in proof-of-principle experiments12,24–30, it remains
unexplored how they will perform as we venture into the regime
of useful applications, where the computation involves more than
half a hundred qubits and the device noise permits error
mitigation but not yet error correction.
In this work, we address how the computation error after

mitigation scales with the circuit size. In many quantum

algorithms, we use quantum circuits to evaluate the expected
values of observables. For example, the Hamiltonian is evaluated
in the variational quantum eigensolver20. Because of noise, an
actual quantum computer produces a biased expected value, and
the bias usually increases with the circuit size due to the error
accumulation. Among the error mitigation protocols, probabilistic
error cancellation can completely remove the bias under ideal
conditions7,8. Under realistic conditions, however, all protocols
leave a residual bias in the computation result. This residual bias
depends on the protocol and circuit depth.
To draw a conclusion regardless of the protocol, we utilise a

general formalism of error mitigation. In this formalism, we
recover the observable in the error-free circuit using an error
mitigation formula, which is a function of observables directly
measured with noisy circuits. Many such formulas are inspired by
our knowledge of quantum physics, such as error extrapola-
tion6,7,31,32, probabilistic error cancellation7,8 and virtual distilla-
tion13,14,33–35. Throughout this work, when a concrete error
mitigation formula is needed for analysis, we take the three
aforementioned protocols as examples. An alternative way to
construct the formula is optimising a parameterised function with
data of selected training circuits36,37. We find that the optimisation
can suppress the scaling of the residual bias with respect to the
circuit size.
For optimisation-based error mitigation protocols, we propose

the importance Clifford sampling (ICS) as an efficient and scalable
method to generate training circuits. Other than being practically
useful in its own right, ICS lends us a tool to analyse the residual
bias in the computation result. With its help, we show that the
global depolarising model with circuit-dependent fluctuation is an
effective phenomenological-error model, which describes the
impact of realistic error models. Using this phenomenological
model, we analyse the scaling behaviour of the residual bias. We
find that the bias in the computation result after an optimised
error mitigation process increases in proportion to

ffiffiffiffi
N

p
, where N is

the gate number. In contrast, the bias is usually proportional to N
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without error mitigation. Because error mitigation can suppress
the error by a factor increasing with the circuit size, it is a feasible
technique for large circuits.
The Results section is organised as follows. After introducing the

general formalism of error mitigation, we discuss the error scaling in
the mitigation protocols using the global depolarising model, which
will be validated subsequently as the effective phenomenological-
error model. Then we propose the ICS protocol, followed by a
description of the important training circuits, the algorithms to
generate them and an analysis of the sampling cost. We introduce
the phenomenological-error model and show that the fluctuation of
the effective depolarising rate follows the

ffiffiffiffi
N

p
scaling, which is

numerically verified. Finally, we show the same scaling relation
between the bias and the gate number in error extrapolation,
probabilistic error cancellation and virtual distillation.

RESULTS
Error mitigation formula
First, we introduce the notations. In quantum computing, a
quantum circuit consists of quantum gates. Let Uj be the unitary
operator of the jth gate. The circuit with N gates realises the
transformation U= UN⋯ U2U1. Given the initial state of n qubits
0j i�n and observable Q, the expected value in the error-free circuit
is f C ¼ Tr½Q½U�ð 0j i 0h j�nÞ�, where [U](•)= U•U†. Here we use
C= (U1,…, UN,Q) to denote the circuit with the observable
specified. If the circuit is noisy, the transformation is inexact, and
we use the completely positive map E to denote the erroneous
transformation. The expected value becomes
yC ¼ Tr½QEð 0j i 0h j�nÞ�. Then, yC− fC is the bias without error
mitigation. Note that the error in the actual computing also
depends on the statistical error due to finite measurement shots.
The general form of error mitigation formulas reads

y0C ¼ FðyC1
; yC2

; ¼ ; λ1; λ2; ¼ Þ (1)

where y0C is the result of the circuit C after error mitigation,
C1, C2,… are circuits generated from the primitive circuit C, and λ’s
denote parameters determined via error mitigation protocols. See

Fig. 1. In quantum computing, we evaluate yCi
using the noisy

quantum computer and calculate the error-mitigated value y0C
according to the formula. The bias after error mitigation is y0C � f C .
Next, we show how some specific error mitigation protocols fit
into the general form.
Many error mitigation protocols have been proposed. See

Ref. 17 for a review. In this work, we take three protocols as
examples: error extrapolation, probabilistic error cancellation and
virtual distillation. These protocols are applicable to any quantum
algorithm evaluating expected values and can largely reduce the
error. We give a minimal description here and leave a more
detailed overview to Supplementary Note 1.
In error extrapolation using a polynomial fitting function7,31, the

error mitigation formula is

y0C ¼
X
i

qiyCi
; (2)

where Ci is the primitive circuit with noise increased by a factor of
ri, and coefficients qi are determined by noise amplification factors
(i.e. ri). For example, for the linear extrapolation with r1= 1 and
r2= 2, the formula is

y0C ¼ 2yC1
� yC2

: (3)

In probabilistic error cancellation, the completely positive map
of the error-free circuit is expressed as a linear combination of
erroneous maps, i.e.

½U� ¼
X
i

qiE i ; (4)

where qi are quasi-probabilities, and E i is the map of a noisy circuit
Ci. Here Ci is generated by, for example, replacing or adding some
gates in the primitive circuit C. We can work out the quasi-
probability decomposition with gate set tomography data8 or in a
learning manner36. Given the decomposition, the error mitigation
formula is the same as Eq. (2), but coefficients and circuits are
different from error extrapolation.
In virtual distillation, k copies of the erroneous state ρ are used

to evaluate the observable in a distilled state without physically

Fig. 1 Schematic illustration of quantum error mitigation formulas. a Ideal and noisy quantum computing for the expected value of an
observable. The distribution of the expected value is biased because of noise. b Error-mitigated quantum computing. The bias is corrected in
quantum error mitigation (QEM).
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preparing it. Given the primitive circuit C that prepares the state ρ,
the circuit C1 is to evaluate yC1

¼ TrðQρkÞ, and the circuit C2 is to
evaluate yC2

¼ TrðρkÞ. Then the error mitigation formula reads

y0C ¼ yC1

yC2

: (5)

It is similar in related protocols, e.g. verified phase estimation34

and dual-state purification35.

Bias in the global depolarising model
Before considering realistic error models, we take the global
depolarising model as an example to discuss the bias in error
mitigation formulas. In this section, we show that, if the error
mitigation protocols are perfectly implemented, probabilistic
error cancellation and learning-based error mitigation can
reduce the bias to zero, while linear extrapolation and virtual
distillation with two copies can reduce the bias from O(Nϵ) to
O(N2ϵ2), where N is the gate number and ϵ is the depolarising
rate per gate. In the section of “Phenomenological-error model”
we will show that the global depolarising model successfully
captures the influence of realistic noise and can be used as a
phenomenological model.
In the global depolarising model, the j-th gate with error is

described by the map Gj ¼ ð1� ϵÞ½Uj � þ ϵD acting on the whole
input state, where ϵ is the gate depolarising rate, Dð�Þ ¼ Trð�Þρm
is the depolarising map, and ρm ¼ 1=2n is the maximally mixed
state. Without loss of generality, we assume that the observable
is a traceless operator, and we have yC= (1−ϵ)NfC= fC+ O(ϵN).
The bias increases linearly with the gate number when N is
significantly smaller than ϵ−1. In the limit of large N, the bias
approaches a finite value if the observable is bounded.
We take linear extrapolation as an example of error

extrapolation. We can construct two noisy circuits using
original gates and double-noise gates, respectively. Let G0

j ¼ð1� 2ϵÞ½Uj � þ 2ϵD be the gate with the doubled depolarising
rate, two circuits labelled by i= 1, 2 produce expected values
yCi

¼ Tr½QE ið 0j i 0h j�nÞ�, where E1 ¼ GN � � � G2G1 and
E2 ¼ G0

N � � � G0
2G0

1. Then, Eq. (3) leads to the error-mitigated
expected value

y0C ¼ 2ð1� ϵÞNf C � ð1� 2ϵÞNf C
¼ f C þ Oðϵ2N2Þ: (6)

We can find that the bias in the linear extrapolation formula
increases quadratically with the gate number because the linear
extrapolation eliminates the first-order contribution of errors.
In probabilistic error cancellation, we take the quasi-probability

decomposition of each gate as

½Uj � ¼ 1
1� ϵ

Gj � ϵ

1� ϵ
D: (7)

This decomposition means that we can correct the error by
stochastically replacing the original gate Gj with the depolarising
map D according to a quasi-probability distribution. The decom-
position formula of the entire circuit reads

½U� ¼ QN
j¼1

1
1�ϵGj � ϵ

1�ϵD
� �

¼ 1
ð1�ϵÞN E1 � ϵ

ð1�ϵÞN E2 þ � � � ;
(8)

where E1 ¼ GN � � � G2G1 corresponding to the primitive circuit,
E2 ¼ GN � � � G2D in which the first gate is replaced, and so on. Then
the error mitigation formula is

y0C ¼ 1

ð1� ϵÞN yC1
� ϵ

ð1� ϵÞN yC2
þ � � � ¼ f C: (9)

Here, we have used that yCi
¼ 0 if any gate is replaced with D.

Therefore, the residual bias is zero.

Lastly, we consider virtual distillation. The final state of N gates
with the depolarising error is

ρ ¼ ð1� ϵtÞU 0j i 0h j�nUy þ ϵtρm; (10)

where ϵt= 1− (1−ϵ)N. Take the second-order virtual distillation
(i.e. k= 2) as an example, the error-mitigated expected value is

y0C ¼ ð1�ϵtÞ2þ21�nð1�ϵtÞϵt
ð1�ϵtÞ2þ21�nð1�ϵtÞϵtþ2�nϵ2t

f C

¼ f C þ Oðϵ2N2Þ:
(11)

Therefore, the bias in the second-order virtual distillation increases
quadratically with the gate number, which is the natural
consequence of the second-order distillation formalism.
So far we have been considering ideal conditions. Under

realistic conditions, imperfections in the implementation cause an
additional contribution to the bias. For example, zero-bias
probabilistic error cancellation requires exact knowledge about
the depolarising rate. If the depolarising rate is thought to be ϵ0
instead of its actual value ϵ and we work out the error mitigation
formula with ϵ0, we have y0C ¼ ð1� ϵÞN=ð1� ϵ0ÞNf C . Then, the bias
of the error mitigation formula is O((ϵ″− ϵ)N), which is finite and
increases linearly with the gate number. It is similar for error
extrapolation, in which the bias scales linearly if the noise is not
increased exactly as designed.
Next, we analyse the bias in learning-based error mitigation. The

optimisation of an ansatz function is a flexible approach for
working out a proper error mitigation formula. Various ansatz
functions have been proposed36–38. In this work, we consider a
general framework of this approach and focus on the scaling of
the bias with respect to the gate number.
One way to compose an ansatz function is by modifying a

specific-form formula. Taking the linear error extrapolation as an
example, we parameterise the formula as

y0C ¼ λyC1
þ ð1� λÞyC2

: (12)

We determine λ by minimising the bias for a set of circuits, which
are called training circuits. To evaluate the bias, the error-free
expected value must be known. This condition limits the choice of
training circuits. We can use only one training circuit T and the
corresponding data ðyT1

; yT2
; f TÞ to determine λ for the ansatz

considered here. The bias of the training circuit is minimised at

λ� ¼ f T � yT2

yT1
� yT2

: (13)

For the global depolarising model, the optimal parameter is
λ*= [1− (1−2ϵ)N]/[(1−ϵ)N− (1−2ϵ)N]. If we take λ= λ* in the error
mitigation formula, the bias is zero for all circuits with the same
gate number N. Therefore, the linear error extrapolation becomes
bias-free after the optimisation.
It is similar for other error mitigation protocols. For probabilistic

error cancellation, we can take the depolarising rate ϵ in Eq. (9) as
the variational parameter, assuming the actual depolarising rate is
unknown. We can find the optimal value of ϵ with data of a
training circuit, and the optimal value must be the actual
depolarising rate. Then, the error mitigation formula taking the
optimal parameter is bias-free for all circuits. For virtual distillation,
we can choose the ansatz y0C ¼ λ

yC1
yC2

. According to Eq. (11), the bias
is zero when λ cancels the factor before fC.
We have seen that the learning-based approach can reduce the

bias in error mitigation. According to the global depolarising
model, the bias is zero in all examples. We get this perfect result
because the global depolarising model is free of fluctuation, i.e.
errors of all gates have the same impact on the expected value.
The impact is a factor of 1−ϵ. Without the fluctuation, there are
many simple error mitigation formulas that can simultaneously
and completely correct the bias for all circuits.
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In error models with fluctuation, the optimised error mitigation
formula has a finite bias, and the bias increases with the gate
number. Usually, errors are localised in many actual quantum
computing systems, e.g. superconducting qubits and trapped
ions. The error associated with a gate only affects qubits at the
location of the gate (rather than the entire quantum register as in
the global depolarising model). The contribution of an error to the
bias depends on its location and the circuit. For example, if the
observable is the Pauli operator X of qubit-1, errors localised on
qubit-2 do not affect the observable; A phase-flip error before the
measurement changes the sign of X but preserves the sign if we
modify the circuit by inserting a Hadamard gate before the
measurement. The fluctuation of error contributions causes a finite
bias, i.e. the error mitigation formula cannot simultaneously
compensate for all errors for all circuits. Assuming we can
successfully compensate for the average contribution of errors,
the residual bias is due to the fluctuation across different circuits.
We find that in a large class of error mitigation formulas, the
fluctuation-caused bias is proportional to

ffiffiffiffi
N

p
. Later, we will show

that the global depolarising model with fluctuation is an effective
phenomenological model to characterise the impact of errors in
realistic error models, see Fig. 2.

Importance Clifford sampling
In this section, we address the question of how to efficiently
sample large training circuits by proposing sampling algorithms
whose resource costs scale linearly with the circuit size. These
training circuits are Clifford circuits sharing the same circuit frame
as the original noisy circuit, for which the ideal measurements take
non-zero expected values.
A classical computer can efficiently simulate Clifford circuits, in

which all gates are Clifford gates. Because the error-free expected
value fC of a Clifford circuit is computable39,40, we can take them
as training circuits. However, not every Clifford circuit is suitable.
We take Eq. (13) as an example. If the training circuit T has a zero
expected value, i.e. fT= 0, erroneous expected values are all zero,
i.e. yT1

¼ yT2
¼ 0. In this case, we cannot use the equation to

determine the optimal parameter. Therefore, to find the optimal
parameter, we need a training circuit T whose expected value is
non-zero.

It is general that some training circuits are more important than
others in the learning-based approach. To optimise the error
mitigation formula, we need a measure of its overall performance
in various circuits. We take the mean squared error (MSE) as an
example, which reads

LR ¼ hðyC � f CÞ2iR; (14)

where hgðCÞiR � 1
jRj
P

C2RgðCÞ is the average of the real-valued
circuit function g(C) over the circuit set R. Importance sampling is
a crucial technique in statistics, in which the probability of a
sample is proportional to the magnitude of its value, i.e. ðyC � f CÞ2
in MSE. According to importance sampling, we prefer training
circuits with a larger bias over those with a smaller bias. The larger
bias circuits, i.e. error-sensitive circuits, can provide more
information about noise in the circuit.
The question of sampling training circuits has two parts. The first

part is how to efficiently generate an error-sensitive circuit. The
second part is how to draw samples according to a distribution. We
address the first part in the “Circuit generation” section and the
second part in the “Circuit frame” and “Sampling algorithms” sections.

Circuit generation
There are different approaches of generating an error-sensitive
circuit. For example, we can randomly select a circuit and calculate
the expected value, and we take it as a training circuit only if the
expected value is non-zero. This approach works only when the
circuit size is small because circuits with a non-zero expected
value are rare in large Clifford circuits. An approach usually used in
randomised benchmarking is reversing the transformation by
adding an additional unitary at the end of the circuit41. We will not
take this approach because the additional unitary may signifi-
cantly increase the total gate number in multi-qubit circuits. We
want to generate training circuits with a specific gate number,
such that the error mitigation formula is optimised for circuits with
the same gate number.
In the following, we focus on the case that the observable Q is a

Pauli operator. In the standard model of quantum computing,
qubits at the end of the circuit are measured in the computation
basis, i.e. the Pauli operator Z is measured. One can adjust the
measurement basis by inserting gates before the measurement.
For example, by inserting single-qubit Clifford gates before the
measurement, we can measure any Pauli operator. For a general
observable, a way to evaluate its expected value is by expressing it
as a linear combination of Pauli operators and computing the
expected value of each term.
The expected value of a Pauli operator in a Clifford circuit takes

three values 0 and ± 1. We can reexpress the error-free expected
value as f C ¼ TrðQU 0j i 0h j�nÞ, where QU= U†QU is the effective
observable. When U is Clifford, QU is a Pauli operator. Let
Pi= I, X, Y, Z be the single-qubit Pauli operator on qubit-i, QU= ±
P1⊗ P2⊗⋯⊗ Pn. Then f C ¼ ±

Qn
i¼1 0h jPi 0j i. If any single-qubit

Pauli operator Pi is X or Y, the expected value is zero. If all Pi are I or
Z, fC= ± 1, and the sign is the same as QU. For a randomly
generated Clifford circuit, it is likely that some single-qubit Pauli
operators contained in QU are X or Y, i.e. fC= 0.
We can deterministically generate an error-sensitive circuit as

follows. The setup is shown in Fig. 3. The overall unitary
transformation of the circuit is U ¼ U0U0, where U0= R1⊗ R2⊗
⋯⊗ Rn is one layer of single-qubit gates, and Ri is the gate on
qubit-i. First, given the gate number, we generate a random
Clifford circuit, which realises the unitary U0. If U0 ¼ 1, the effective
observable is QU0 ¼ ± P01 � P02 � � � � � P0n. Given Q and U0, we can
efficiently work out this expression of QU0 on a classical computer.
Second, we determine single-qubit gates in U0: we take a Clifford
Ri satisfying Ryi P

0
iRi ¼ ± Z; I. For the final circuit U ¼ U0U0, single-

qubit Pauli operators in its effective observable QU are either I or Z.
Then, the expected value is fC= ± 1.

Fig. 2 Distribution of the effective depolarising rate in the
phenomenological-error model. In the model, the impact of errors
in a noisy circuit is characterised by the global depolarising model
with the circuit-dependent depolarising rate ϵC. The histogram is
generated using six-qubit periodic-cycling circuits with 72 two-qubit
gates under the gate depolarising noise. The error rate per gate is
0.001. Single-qubit gates are randomly sampled from the set of
single-qubit unitaries with the weight f 2C . The average depolarising
rate is proportional to the gate number N, and the standard
deviation is proportional to

ffiffiffiffi
N

p
.
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Circuit frame
In the learning-based error mitigation, we aim at an optimised
error mitigation formula that works for a set of circuits, including
training circuits and circuits useful in some computation tasks.
Choosing the target circuit set is important. When the circuit set is
larger, it is harder to find a formula suitable for every circuit.
Therefore, we want to be focusing on a circuit set relevant to some
tasks to minimise bias. A way to construct a task-relevant circuit
set is by taking circuits with the same pattern of multi-qubit
Clifford gates, see Fig. 4. This pattern is called the circuit frame. In
many quantum computing systems, such as superconducting
qubits and trapped ions, the error rates of single-qubit gates are
much lower than multi-qubit gates. Errors occurring in a circuit are
mainly determined by multi-qubit gates. Therefore, all the circuits
with the same frame have approximately the same errors, and we
are able to correct them using the same error mitigation formula.
In the fixed-frame circuit set, single-qubit gates are variables. As

shown in Fig. 4, the frame includes the qubit initialisation, multi-
qubit Clifford gates and measurement. Fixing these operations, we
change single-qubit gates to generate the circuit set. We call each
variable single-qubit gate a slot. In Ref. 36, a setup with slots after
each multi-qubit gate is proposed. Here we reduce the slot
number to minimise the circuit set. We only take locations of
single-qubit non-Clifford gates in the task circuit as slots and add
two layers of slots after the initialisation and before the
measurement, respectively. The reason is that a sequence of
Clifford gates not interrupted by any non-Clifford gate can be
treated as one multi-qubit Clifford gate.
The minimised slots have sufficient degrees of freedom for

implementing Pauli twirling and probabilistic error cancellation for
general error models. A Pauli error is an unwanted Pauli
transformation stochastically occurring in the circuit. In Pauli

twirling, we convert general errors into Pauli errors by randomly
applying Pauli gates before and after each Clifford gate. We can
correct a Pauli error by applying a Pauli gate to undo the error.
Relevant discussions can be found in ref. 36.
With the frame determined, a circuit depends on the choice of

single-qubit gates. Let C= (U1,…, UN, Q) be a circuit (with two
layers of single-qubit gates after the initialisation and before the
measurement, respectively). The corresponding frame is F= (…,
Ui, •k,…, Uj, •q,…, Q), where Ui is a gate on the frame, and •k
denotes a slot on qubit-k. In other words, F is the same as C except
that gates in slots are replaced with •k. Formally, if S= {i1, i2,… }
are labels of slots and K ¼ fki1 ; ki2 ; ¼ g are corresponding qubits,
the frame is F= (F1,…, FN, Q), where Fi= Ui if i∉ S, and Fi ¼ �ki if
i∈ S. Then, we can reexpress the circuit as C= [F, R1, R2,…], where
Rl is the single-qubit gate in the l-th slot, i.e.
Uil ¼ I�ðkil�1Þ � Rl � I�ðn�kil Þ .
To generate training circuits of the fixed frame, we can

randomly draw the gate on each slot from the 24 single-qubit
Clifford gates. Because the frame is formed of Clifford gates, the
entire circuit constructed in this way is Clifford. It is likely that such
a random circuit has a zero expected value. We can work out a
circuit with a non-zero expected value by adjusting the first-layer
gates, i.e. gates after the initialisation, as described in in the
previous section. We give details of this procedure in Algorithm 1.

Algorithm 1. Generation of error-sensitive circuits.
1: function ESCIRCUITðF; RÞ
2: Compose the candidate circuit C0 ¼ ½F; I; ¼ ; I; Rnþ1; ¼ ; RNR �.
3: Calculate QU0 ¼ U0yQU0.
4: Calculate ðP01; P02; ¼ ; P0nÞ according to QU0 ¼ ± P01 � P02�� � � � P0n.
5: for i= 1 to n do
6: repeat
7: Choose a random Ri from C1.
8: until Ryi P

0
iRi ¼ ± Z; I

9: Compose the error-sensitive circuit C ¼ ½F; R1; ¼ ; Rn; Rnþ1;
¼ ; RNR �.

10: Output C.

Sampling algorithms
We give two algorithms for sampling error-sensitive Clifford
circuits in Algorithms 2 and 3. For clarity, we use the following
notations in the algorithms. F is the circuit frame, Q is the

Fig. 3 Error-sensitive circuit generation. We compose an error-
sensitive circuit with two sections U0 and U0, as shown in (a). U0 is a
Clifford operator. The observable is a Pauli operator, e.g. Q= Z⊗
I⊗⋯⊗ I. U0 and the observable is equivalent to an effective
observable QU0 ¼ X � I � � � � � Z, as shown in (b). Gates in U0 are
taken from the group of single-qubit Clifford gates. We choose the
gates such that all non-identity Pauli operators in QU0 are mapped
to ± Z, as shown in (c).

Fig. 4 Quantum circuit and circuit frame. a The circuit for a specific
task. Single-qubit gates X, H and S are Clifford, and gates T and R are
non-Clifford. b The task-dependent circuit frame. Green boxes are
slots for variable single-qubit gates. Clifford gates in the yellow
region with dashed borders form a composite Clifford gate.
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observable, n is the qubit number, NR is the slot number, and NT is
the sample number. C1 is the single-qubit Clifford group with 24
elements. U= UN⋯ U2U1 is the unitary transformation of the
circuit C= (U1,…, UN,Q)= [F, R1, R2,…]. We use R ¼
ðRnþ1; Rnþ2; ¼ ; RNRÞ to denote an ordered set of single-qubit
Clifford gates, and R1, R2,…, Rn are gates in the first-layer slots.
w(C) is the weight of the Clifford circuit C: QU= U†QU= ± P1⊗
P2⊗⋯⊗ Pn is a tensor product of Pauli operators, then w(C) is
the number of non-identity Pauli operators in the product, i.e.

wðCÞ � n�
Xn
i¼1

δI;Pi ; (15)

where δI;Pi ¼ 1 if Pi= I, and δI;Pi ¼ 0 otherwise. In Algorithm 3, we
employ the Metropolis-Hasting algorithm to realise a uniform
distribution of error-sensitive circuits, which requires a conditional
distribution gðR0jRÞ for suggesting a candidate sample. For
example, we can take the conditional distribution as follows: we
update gates in some randomly selected slots with newly
generated random gates and keep gates in other slots unchanged.

Algorithm 2. Non-uniform importance Clifford sampling.
1: Input F.
2: for t= 1 to NT do
3: for i= n+ 1 to NR do
4: Choose a random Ri from C1.
5: Call ESCIRCUIT F; R to generate C.
6: Output Ct= C.

Algorithm 3. Uniform importance Clifford sampling.
1: Input F, a conditional distribution gðR0jRÞ and an initial slot-

gate pattern R
ð0Þ
.

2: Set t= 0.
3: Call ESCIRCUITF; R

ð0Þ
to generate C.

4: Take C0= C.
5: for t= 1 to NT do
6: Generate a random candidate of slot-gate pattern R

ðtÞ

according to gðRðtÞjRðt�1ÞÞ.
7: Call ESCIRCUITF; R

ðtÞ
to generate C.

8: Calculate the acceptance probability

A ¼ min 1;
3�wðCÞ

3�wðCt�1Þ
gðRðt�1ÞjRðtÞÞ
gðRðtÞjRðt�1ÞÞ

 !
:

9: Generate a uniform random number u ∈ [0, 1].
10: Accept and set Ct= C if u≤A.
11: Reject and set Ct= Ct−1 if u > A.
12: Output Ct.

There is a relation between Clifford sampling and unitary
sampling which allows us to estimate the bias distribution in
general unitary circuits using Clifford circuits. We use C to denote
the set of Clifford circuits and U to denote the set of all unitary
circuits with the same frame. For a frame with NR slots, the total
number of Clifford circuits is jCj ¼ 24NR , i.e. each slot takes one of
24 single-qubit Clifford gates. In U, each slot can take any single-
qubit unitary. When errors are independent of the choice of
single-qubit gates, MSEs are the same for the two circuit sets, i.e.
LU ¼ LC

42. Because the set C is large, we need to use the Monte
Carlo method to evaluate LC.
There is a similar relation between ICS and unitary sampling.

Error-sensitive circuits are a subset of all Clifford circuits, denoted
by CES . According to Algorithm 1, given slot gates
R ¼ ðRnþ1; Rnþ2; ¼ ; RNRÞ, the number of error-sensitive circuits is
8w(C)24n−w(C). If P0i ¼ I, Ryi P

0
iRi ¼ I for all 24 single-qubit Clifford

gates, which contributes a factor of 24; If P0i≠I, R
y
i P

0
iRi ¼ ± Z for 8

single-qubit Clifford gates, which contributes a factor of 8. The
number of different R’s is 24NR�n, then the total number of error-

sensitive circuits is

jCESj ¼
X24NR�n

j¼1

8wðCjÞ24n�wðCjÞ; (16)

where Cj are circuits with different R’s. In a Clifford circuit, a Pauli
error either preserves the Pauli observable or flips its sign. As a
result, non-sensitive Clifford circuits do not respond to Pauli errors,
i.e yC= fC if fC= 0. Therefore,

LU ¼ LC ¼ ηLCES ; (17)

for Pauli error models, where η � jCESj=jCj is the proportion of
error-sensitive circuits in all Clifford circuits.
The distribution of error-sensitive circuits from Algorithm 2 is

non-uniform. Because we uniformly choose slot gates in R, the
probability of an error-sensitive circuit C is

PnuðCÞ ¼ 24�ðNR�nÞ8�wðCÞ24�½n�wðCÞ�

¼ 24�NR3wðCÞ:
(18)

Therefore, the probability of C is proportional to 3w(C). If we use
Algorithm 2 to sample circuits, we can evaluate LCES according to

LCES ¼ η�1E½3�wðCÞðyC � f CÞ2�nu; (19)

where the expected value is taken over the distribution Pnu(C).
We can generate a uniform distribution of error-sensitive

circuits as shown in Algorithm 3. In the uniform distribution, the
probability of an error-sensitive circuit is PuðCÞ ¼ jCESj�1. Then,
we can evaluate LCES with LCES ¼ E½ðyC � f CÞ2�u, where the
expected value is taken over the distribution Pu(C). By changing
the formula of the acceptance probability, we can use the same
algorithm to generate other distributions of error-sensitive circuits.
We now summarise the algorithms and analyse their classical-

computing costs. Algorithm 1 is used to generate an error-
sensitive circuit. Provided with an observable Q and a frame with n
qubits and N two-qubit gates, Algorithm 1 includes operations
that conjugate Q (line 3) via O(N) Clifford gates and a conditioned
random selection for the single-qubit gates in the first layer (line 5
to 8). The time cost of the conjugating operations is O(nN)
according to the efficient simulation algorithm for Clifford gates39,
and the time cost of selecting gates in the first layer is O(n). Thus,
the cost of Algorithm 1 is O(nN). Algorithm 2 and Algorithm 3 are
used to sample error-sensitive circuits according to the non-
uniform distribution Pnu(C) and uniform distribution Pu(C),
respectively. To generate NT circuits, the costs for both algorithms
are O(NTnN), because the elementary building block of both
algorithms is nothing but the circuit generation given in Algorithm
1, which is repeated for NT times. The numerical result in
Supplementary Note 3 demonstrates that the number of error-
sensitive circuits NT required to perform learning-based error
mitigation does not increase (as far as we have observed) with
either the number of gates or the number of qubits. Overall, the
cost scales linearly with the number of qubits and the number of
gates. Noting that the sampling algorithms assume that two-qubit
gates are Clifford and errors are independent of single-qubit gates.
We give discussion in Supplementary Note 4 about the
implementation of the algorithms when the assumptions are
not satisfied.

Phenomenological-error model
In this section, we introduce the phenomenological-error model
which quantifies the bias caused by realistic errors in a circuit.
Then, we show that the phenomenological-error model can be
effectively represented by a global depolarising model with
fluctuation, and the fluctuation is Oð1= ffiffiffiffi

N
p Þ times smaller than the

depolarising rate. This result suggests that, if we are able to use
error mitigation to cancel the impact of the effective global
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depolarising error, we can reduce the bias caused by realistic
errors by a factor of Oð1= ffiffiffiffi

N
p Þ.

Before introducing our phenomenological-error model, we give
a brief overview of realistic error models. Consider a quantum gate
with the unitary operator Ui, the error-free output state of the gate
is [Ui]ρi, where ρi is the input state. When the gate is imperfect, we
can always express the output state with error as N i½Ui�ρi
(assuming the noisy circuit is a Markov process), where the
completely positive map N i describes the effect of noise
associated with the gate. In the global depolarising model,
N i ¼ ð1� ϵÞ½1� þ ϵD. In realistic error models, N i is usually
caused by local processes, such as dephasing, dissipation and
imperfections in the coherent evolution. If the gate acts on qubit-1
and qubit-2, the noise mainly affects these two qubits. Taking a
Pauli error model as an example, the noise map reads

N i ¼ 1� 16ϵ
15

� �
½I�n� þ 16ϵ

15
D1;2; (20)

where

D1;2 � 1
16

X
P1;P2¼I;X;Y;Z

½P1 � P2 � I�ðn�2Þ�: (21)

We call this particular Pauli error model the gate depolarising
model, in which probabilities of Pauli errors are the same. We can
rewrite this summation-form error model into the product form

N i ¼
Y

P1;P2¼I;X;Y;Z

ð1� pÞ½I�n� þ p½P1 � P2 � I�ðn�2Þ�
h i

; (22)

where p≃ ϵ/15. In the product form, the noise map is a product of
15 independent maps, and we call each of them a Pauli error
channel.
The global depolarising model with fluctuation can characterise

the impact of realistic errors in large circuits. Given a circuit C, the
error-free final state is ρ0 ¼ U 0j i 0h j�nUy. In our error model, the
erroneous final state is ρ= (1− ϵC)ρ0+ ϵCρm, where ϵC is the
circuit-dependent depolarising rate. According to this model, we
have yC= (1− ϵC)fC. If we allow ϵC to be any value (rather than
limited in the interval [0, 1]), this error model is a general
phenomenological-error model. Given any fC and yC, the
corresponding depolarising rate is ϵC= 1− yC/fC. Note that the
bias is ϵCfC, which is always finite even when fC= 0 and ϵC is
infinite.
We write the circuit-dependent depolarising rate as two terms,

the average and fluctuation, i.e. ϵC= ϵ0+ δϵC, where

ϵ0 � hϵC f 2CiU
hf 2CiU

(23)

is the average depolarising rate with the weight f 2C , and δϵC is the
circuit-dependent fluctuation. We characterise the fluctuation with
the weighted standard deviation

Δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδϵ2Cf 2CiU
hf 2CiU

s
: (24)

The key result is that Δ increases with the gate number as O(Nγ),
and γ ≈ 0.5, see Fig. 2.
In the rest part of this section, we show theoretically that the

standard deviation Δ is proportional to
ffiffiffiffi
N

p
using a Pauli error

model. In the next two sections, we introduce an error mitigation
protocol inspired by the phenomenological-error model, then we
verify the scaling behaviour in numerical simulations of the gate
depolarising model, composite error models involving Pauli,
amplitude damping and coherent errors, and a model with
single-qubit-gate-dependent errors. The

ffiffiffiffi
N

p
scaling is observed in

all the error models.
We focus on Pauli errors to analyse the fluctuation in the

phenomenological-error model. For general errors, we can use

Pauli twirling to convert them into Pauli errors. If error mitigation
is concatenated with error correction, logical errors after correc-
tion are mainly Pauli errors43. Suppose errors are independent of
single-qubit gates, we have the following relations,

hf 2CiU ¼ hf 2CiC ¼ ηhf 2CiCES ; (25)

hf CyCiU ¼ hf CyCiC ¼ ηhf CyCiCES ; (26)

hy2CiU ¼ hy2CiC ¼ ηhy2CiCES ; (27)

where U, C and CES are circuit sets with the same frame. In the
above equations, the first equal sign follows because the Clifford
group is a unitary-2 design42,44, and therefore h�iU ¼ h�iC holds if
• is a polynomial of degree two in the gate unitaries. The second
equal sign is a consequence of fC= 0 when C∉CES and
η ¼ jCESj=jCj. Using fC= ± 1 for error-sensitive circuits, we can
obtain

η ¼ hf 2CiU; (28)

ϵ0 ¼ hϵCiCES ; (29)

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδϵ2CiCES

q
: (30)

These relations allow us to study ϵ0 and Δ with error-sensitive
circuits.
For simplicity, we consider an error model where two-qubit

gates are the dominant sources of errors in actual quantum
computing devices. We assume that the initialisation, single-qubit
gates and measurement are perfect. In a two-qubit gate, we
assume that the probability of Pauli errors are the same, i.e. the
gate depolarising model. We use N0 to denote the number of two-
qubit gates.
The effect of local Pauli errors is equivalent to that of global

depolarising errors in error-sensitive circuits. The unitary
transformation of a circuit with N gates is U= UN ⋯ U1. If a
Pauli error σ occurs after the ith gate, the transformation
becomes U0 ¼ UN � � �Uiþ1σUi � � �U1 ¼ σ0CU, where σ0

C ¼
UN � � �Uiþ1σU

y
iþ1 � � �Uy

N is the Pauli error propagated to the end
of the circuit. Because gates are Clifford, σ0

C is also a Pauli
operator, i.e. any Pauli error in the circuit is equivalent to a Pauli
error at the end of the circuit. If the probability of the Pauli error
is p, i.e. the error channel is ð1� pÞ½1� þ p½σ�, the final state of
the circuit is transformed from ρ0 to ð1� pÞρ0 þ p½σ0

C �ρ0. Then
there are two cases: If σ0

C and the Pauli observable Q are
commutative, the expected value is preserved under the Pauli
error; otherwise, the expected value is changed from fC to
(1− 2p)fC, i.e. the equivalent depolarising rate is 2p.
The overall depolarising rate depends on the number of Pauli

error channels. Each two-qubit gate contributes 15 Pauli error
channels according to the product form of the Pauli error model. For
a circuit with N0 two-qubit gates, there are M ¼ 15N0 error channels.
Let ð1� pÞ½1� þ p½σk � be the k-th error channel, ð1� pÞ½1� þ p½σ0

k;C�
is the corresponding error channel at the end of the circuit. We use
the binary number tk(C) to denote whether the k-th error channel
affect the observable, i.e. tk(C)= 0 if σ0

k;C and Q are commutative,
and tk(C)= 1 otherwise. Then, the expected value is changed toQM

k¼1 ð1� 2pÞtkðCÞf C . The equivalent depolarising rate is

ϵC ¼ 1�
YM
k¼1

ð1� 2pÞtkðCÞ ¼
XM
k¼1

2tkðCÞpþ Oðp2Þ: (31)

The average depolarising rate is proportional to the gate
number, and the standard deviation is proportional to the square
root of the gate number. We can understand this phenomenon as
follows. If we choose the circuit randomly from the circuit set, each
error channel is switched on and off randomly, i.e. each tk takes a
random value. Under the assumption that tk are independent and
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identically distributed random variables, the distribution of ϵC is
binomial. Let P be the probability of tk= 1 and neglect O(p2)
terms, the average depolarising rate is ϵ0≃ 2pMP, and the
standard deviation is Δ ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMPð1� PÞp
. Note that M is

proportional to the gate number.
In large circuits, the global depolarising model with the

depolarising rate ϵ0 is an approximate phenomenological-error
model. When we sample circuits composed of noisy gates, the
circuit plays the role of a sampler, i.e. the impact of each gate error
is a random variable dependent on the circuit configuration. In a
certain regime, the total impact is the summation of individual
gate errors. When the gate number is larger, the number of
random variables in the summation is larger. According to the law
of large numbers, the relative standard deviation of the
summation decreases with the number of random variables, i.e.

Δ

ϵ0
/ 1ffiffiffiffi

M
p ; (32)

where M / N0 	 N. Therefore, ϵC is in the vicinity of ϵ0 with a high
probability in large circuits.
The analysis above has shown that local gate errors can be

represented by a fluctuating global depolarising error, and the
ratio of the fluctuation Δ to the depolarising rate ϵ0 is in
proportion to 1=

ffiffiffiffi
N

p
. This result will be verified by the numerical

simulations in the next two sections. We will show that, if the
effective global depolarising error is removed by error mitigation,
the remaining error (caused by the fluctuation) scales with the
gate number as 1=

ffiffiffiffi
N

p
. In addition, we numerically illustrate the

error propagation model used in the above analysis. We show that
the overall effect of propagated gate errors will become close to
the global depolarising error and the relative difference between
them decreases as 1=

ffiffiffiffi
N

p
. We leave the numerical result of error

propagation to Supplementary Note 2.
The analysis in this section assumes a small total error rate pM.

Under this assumption, we can neglect contributions from the
second order in Eq. (31). In the section of “Numerical results of the
scaling behaviour”, we randomly take total error rates from about
0.003 to 0.3, and we observe the

ffiffiffiffi
N

p
scaling behaviour. We remark

that a modest total error rate is a general requirement of quantum
error mitigation45,46. Unlike quantum error correction, which
actively detects and corrects errors in the circuit, most quantum
error mitigation protocols correct the result by post-processing
the noisy experimental data. When the total error rate is high, i.e.
the fidelity approaches zero, the raw data lose the information
about the correct quantum state, from which post-processing
cannot recover the information. For example, in probabilistic error
cancellation, the sampling overhead is exponential in the number
of gates given a constant error rate per gate7,8.

Error mitigation according to the phenomenological-error
model
According to the phenomenological-error model, the effective
depolarising rate in large circuits is ϵ0 with a small fluctuation. We
can mitigate errors by compensating the effect of ϵ0. We use the
root mean square error (RMSE) as the measure of the overall
accuracy of an error mitigation formula in a circuit set. Before error
mitigation, RMSE of unitary circuits with the same frame isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðyC�f CÞ2iU
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðϵ20þΔ2Þ

p
’ ffiffi

η
p

ϵ0, which increases linearly with the gate
number. Using the error mitigation formula y0C ¼ ð1� ϵ0Þ�1yC , we
can reduce RMSE to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy0C�f CÞ2iU

p
¼ð1�ϵ0Þ�1 ffiffiηp

Δ’ ffiffi
η

p
Δ, which increases

sublinearly with the gate number. Because ϵ0 ¼ 1� hyC f CiCES , we
can measure ϵ0 (and Δ) by uniformly sampling error-sensitive
circuits. Actually, because the fluctuation is small, we can even
take ϵ̂0 ¼ 1� yCf C for one randomly generated error-sensitive
circuit C 2 CES, and it is likely that the error mitigation formula still

works. This phenomenological-error-model inspired (PEMI) error
mitigation protocol is illustrated in Fig. 5.
Similar protocols that mitigate errors according to the global

depolarising model have been proposed in Refs. 37,47,48. In these
protocols, the effective depolarising rate is measured in different
ways. Before considering general error mitigation formulas, we
take the PEMI protocol as an example to verify the
phenomenological-error model, because the bias of this protocol
is directly related to the fluctuation.
In the PEMI protocol, we can further reduce RMSE by optimising

the error mitigation formula. If we take

y0C ¼ 1� ϵ0

ð1� ϵ0Þ2 þ Δ2
yC ; (33)

RMSE after mitigation is reduced toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy0C � f CÞ2iU

q
¼

ffiffiffi
η

p
Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� ϵ0Þ2 þ Δ2
q : (34)

Numerical results of the scaling behaviour
In this section, we numerically test the PEMI error mitigation
formula and verify the scaling behaviour of ϵ0 and Δ. Results of
other error mitigation formulas will be given in the next section.
To demonstrate the scaling behaviour, we generate three

families of circuits. In periodic-cycling circuits, two-qubit gates are
arranged according to a fixed pattern, and we increase the circuit
depth by repeating the pattern. Therefore, periodic-cycling circuits
are deterministic. In linear-network circuits, two-qubit gates only
act on the nearest neighbouring qubits on a one-dimensional
qubit array, and we randomly place two-qubit gates in the circuit.
In all-to-all-network circuits, two-qubit gates are also arranged
randomly but they can act on any pair of qubits.
We use three types of error models in our numerical

calculations: the gate depolarising model with a randomly
selected error rate, randomly generated composite error models
and a model with single-qubit-gate-dependent errors. The gate
depolarising model is used to derive the phenomenological-error
model, but the conclusion holds for other error models. The
composite error model involves gate depolarising, dephasing,
amplitude damping and coherent errors, which are the typical

Fig. 5 Distributions of the bias for six-qubit periodic-cycling
circuits with 72 two-qubit gates under the gate depolarising
noise. The error rate per gate is 0.001. Before error mitigation, the
bias distribution of unitary circuits (the blue histogram) has a shape
similar to the Gaussian distribution, and the bias distribution of
error-sensitive circuits (the orange histogram) is concentrated at two
values. When we mitigate errors according to the average
depolarising rate ϵ0, we move the two peaks to the centre, and
the residual bias is determined by the width of the two peaks.
Because of the equivalence between the importance Clifford
sampling and unitary sampling, the bias of unitary circuits is
significantly reduced after error mitigation (the red histogram).
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error sources in actual devices. We generate different composite
error models by randomly choosing the weight of each
component and observe the same scaling behaviour as the gate
depolarising model. The equivalence between Clifford sampling
and unitary sampling is also used in deriving the
phenomenological-error model, which is under the condition that
errors are single-qubit-gate independent. In the numerical result,
we find that the conclusion on the scaling behaviour holds even if
errors are single-qubit-gate dependent. See the Methods section
for details of numerical calculations.
By compensating the average depolarising rate, we can reduce

RMSE from
ffiffi
L

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðyC�f CÞ2iU

p
’ ffiffi

η
p

ϵ0 to
ffiffiffi
L0

p
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy0C�f CÞ2iU

p
’ ffiffi

η
p

Δ. According
to the discussion in the section of “Phenomenological-error
model”, ϵ0∝ N and Δ / ffiffiffiffi

N
p

. Therefore, RMSE is reduced in error
mitigation by a factor of Δ=ϵ0 / 1=

ffiffiffiffi
N

p
. We verify these scaling

behaviours by applying the error mitigation formula in Eq. (33) to
randomly generated circuits with up to ten qubits and more than
a thousand two-qubit gates. To implement the formula, ϵ0 and Δ
are measured by sampling error-sensitive circuits. RMSEs before
and after error mitigation

ffiffiffi
L

p
and

ffiffiffiffi
L0

p
are calculated and plotted

in Figs. 6 and 7. For the model with single-qubit-gate-dependent
errors, we directly calculate and plot ϵ0 and Δ in Fig. 8. We can find
that numerical results are consistent with scaling behaviours
predicted by the phenomenological-error model. In addition, we
perform experiments on IBM quantum computers49 and observe
good agreement between the numerical and experimental results.
We include the experimental results in Supplementary Note 6.
In Fig. 7, the error suppression ratio

ffiffiffiffiffiffiffiffi
L=L0

p
for all-to-all-network

circuits meets
ffiffiffiffiffiffiffiffi
L=L0

p
¼ a

ffiffiffiffi
N

p
and a is a positive number

independent of the qubit number. However, in Fig. 6, we find
that a for linear-network circuits decreases with the qubit number.
The difference between all-to-all-network and linear-network
circuits is that two-qubit gates in linear-network circuits are
short-range, thus it requires more gates for the error on one qubit
to propagate across the circuit network.
The error suppression ratio

ffiffiffiffiffiffiffiffi
L=L0

p
are obtained via averaging

random unitary circuits, which usually have near-zero expected
values. However, in common quantum applications such as
variational quantum eigensolver, the expected value is far from
zero, which is atypical for random unitary circuits. Thus, we come
to ask the question of whether the average suppression ratio of
random unitary circuits is also the error suppression ratio of these
atypical circuits. To answer this question, we numerically
investigate the dependence of the error suppression ratio on
the error-free expectation. The numerical result is illustrated in
Supplementary Note 5, and the answer is which demonstrates

that the average error suppression ratio can be applied to these
atypical circuits.
We note that the

ffiffiffiffi
N

p
scaling of error-mitigated result relies on a

modest total error rate. This condition is essential for quantum error
mitigation methods to work properly45,46 and is considered as a
general requirement of NISQ computation3. For each data point in
Figs. 6 and 7, we randomly choose the error rate per gate ϵ such that
the total error rate Nϵ is in the interval about 0.003 to 0.3.

Error scaling in optimised error mitigation formulas
In this section, we utilise the phenomenological-error model to
show that one can suppress the scaling of the residual bias in a
learning-based manner. For imperfect error extrapolation and
probabilistic error cancellation, the error scaling after the
optimisation is / ffiffiffiffi

N
p

. The imperfections are due to the imperfect
control of noise in error extrapolation and inaccurate knowledge
of the error model in probabilistic error cancellation. For virtual
distillation, the result is similar.
First, we analyse the error scaling of error extrapolation. An error

mitigation formula usually involves multiple circuits. For each of
them, we can effectively characterise the impact of noise using
our phenomenological-error model. Taking the linear error
extrapolation as an example, the two circuits C1 and C2 are the
same as the primitive circuit C, but the noise level is doubled in C2.
In the phenomenological-error model of the circuit Ci, the average
depolarising rate is ϵi, the rate fluctuation is δϵC,i, and the standard
deviation is Δi. Because C1 and C2 are the same circuit, their
fluctuations are correlated: Suppose effective depolarising rates
are approximately proportional to the noise level, we have ϵ2≃ 2ϵ1
and δϵC,2= 2δϵC,1. Therefore, the fluctuation-caused bias depends
on the covariance matrix Ki;j � η�1hδϵC;iδϵC;j f 2CiU.
For the linear extrapolation formula in Eq. (12), RMSE after

mitigation depends on average depolarising rates ϵi and the
covariance matrix K, i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðy0C � f CÞ2iU
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η½ðEyΛ� 1Þ2 þ ΛyKΛ�

q
; (35)

where E ¼ ð1� ϵ1; 1� ϵ2ÞT and Λ= (λ, 1−λ)T. Taking λ= ϵ2/
(ϵ2− ϵ1), we can remove the contribution of average depolarising
rates, and RMSE becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy0C�f CÞ2iU

p
¼
ffiffiffiffiffiffiffiffiffiffi
ηΛyKΛ

p


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðΔ2

1þΔ2
2Þ

p
kΛk/ ffiffiffi

N
p

.
Here, we have used that K is positive semi-definite, Δ2

1 and Δ2
2 are

diagonal elements of K, and kΛk ’ ffiffiffi
5

p
does not change

significantly with the gate number. Note that this upper bound
holds even if the noise is not increased as designed, and we can
further reduce RMSE by optimising the parameter λ. In Fig. 9, we
plot RMSE before and after error mitigation. In the optimised error
mitigation formula, we take λ= ϵ2/(ϵ2− ϵ1). The numerical result is

Fig. 6 Root mean square errors of linear-network circuits with the gate depolarising model. a Root mean square error
ffiffiffi
L

p
before error

mitigation. b Root mean square error
ffiffiffiffi
L0

p
after error mitigation. In the numerical simulation, we randomly generate a circuit frame with n

qubits and N two-qubit gates, and we randomly take the error rate per gate ϵ. We generate 1000 Clifford circuits according to Algorithm 2 to
estimate the phenomenological-error rate and then generate 1000 random unitary circuits to compute L and L0.
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consistent with the scaling behaviour predicted by the
phenomenological-error model.

Theorem 1. Consider the general extrapolation formula in Eq. (2),
let ϵi, δϵC,i and Δi be the average depolarising rate, rate fluctuation
and standard deviation of the circuit Ci, respectively, then

min
fqig

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy0C � f CÞ2iU

q



ffiffiffiffiffiffiffiffiffiffiffiffi
ηEyKE

p
kEk2 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η
P

iΔ
2
i

q
kEk :

where E ¼ ð1� ϵ1; 1� ϵ2; ¼ ÞT, Ki;j ¼ η�1hδϵC;iδϵC;j f 2CiU and
η ¼ hf 2CiU.

The proof is straightforward. Let Λ ¼ ðq1; q2; ¼ ÞT, the expres-
sion of RMSE is the same as Eq. (35). We can prove the theorem by
taking Λ= E/∥E∥2.
Second, we investigate the error scaling of probabilistic error

cancellation. In probabilistic error cancellation, we reconstruct
the transformation of the ideal circuit as a linear combination of
transformations of noisy circuits. A practical way is decomposing
each ideal gate in the circuit as a linear combination of noisy
gates. In general, we can work out the decomposition as follows.
If Ui is the unitary operator of the ideal gate, the completely
positive map of the noisy gate is N i ½U�. We can cancel the noise

by applying an inverse noise eN�1

i ¼
P

k
qi;kE i;k after the noisy gate,

and the overall effective gate is eN�1

i N i ½U�. Here, E i;k are some noisy
gates, i.e. we insert the gate E i;k after the gate N i½U� with the

quasi-probability qi,k. If eN�1

i ¼N�1
i , the error in the gate is

completely removed; otherwise, effective noise in the gate iseN�1

i N i .
We consider a Pauli error model with gate depolarising errors

and dephasing errors as an example. For a two-qubit gate on
qubit-1 and qubit-2, the noise map is

N i ¼ 1� 16ϵd
15 � ϵz

� �½I�n�
þ 16ϵd

15 D1;2 þ ϵz
2 ð½Z1� þ ½Z2�Þ;

(36)

where Zi= [I⊗(i−1)⊗ Z⊗ I⊗(n−i)]. Suppose our knowledge about
the noise map is inaccurate and we correct the error according to

Fig. 7 Root mean square errors of all-to-all-network circuits. a, c Root mean square error
ffiffiffi
L

p
before error mitigation. b, d Root mean square

error
ffiffiffiffi
L0

p
after error mitigation. The results in (a) and (b) are obtained with the gate depolarising model, and the results in (c) and (d) are

obtained with the composite model. In the numerical simulation, we randomly generate a circuit frame with n qubits and N two-qubit gates,
and we randomly take the error rate per gate ϵ. We generate 1000 Clifford circuits according to Algorithm 2 to estimate the
phenomenological-error rate and then generate 1000 random unitary circuits to compute L and L0.

Fig. 8 Average depolarising rate ϵ0 and standard deviation Δ in
six-qubit periodic-cycling circuits. The axis on the left corresponds
to ϵ0 and the axis on the right corresponds to Δ. The error rate per
two-qubit gate is ϵ= 2 × 10−4, and the error rate of a single-qubit
gate R is 0:1π�1ϵ arccos jTrðRÞj2 . The error bar represents one standard
deviation.
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the gate depolarising model, we haveeN�1

i ¼ ð1� λÞ½I�n� þ λD1;2: (37)

When λ=− 16ϵd/(15− 16ϵd) and ϵz= 0, we can correct all errors
in the gate; otherwise, the effective gate has a finite error rate.
We can suppress the error scaling in imperfect probabilistic

error cancellation by optimisation. For an error mitigation formula
worked out according to an inaccurate error model, we can treat it
as having a virtual quantum computer, in which the error model is
given by eN�1

i N i . Then, we can describe the error in this virtual
machine using the phenomenological-error model and reduce the
bias using the PEMI protocol. We can use the formula
y00C ¼ ð1� ϵ00Þy0C , where ϵ00 and y0C are respectively the average
depolarising rate and expected value in the virtual machine. Then
the residual bias of y00C is determined by the standard deviation Δ0
of the virtual machine. Actually, it is not necessary to modify the
formula to suppress the error scaling. For example, we can take λ
in Eq. (37) as a variational parameter and optimise it in ICS. The
numerical result in Fig. 9 shows that RMSE of probabilistic error
cancellation with the optimised λ scales as / ffiffiffiffi

N
p

.
Third, we investigate the error scaling of virtual distillation. The

virtual distillation formula is nonlinear unlike error extrapolation
and cancellation. For a general error mitigation formula, suppose
the truncation on the Taylor expansion is valid, we have

y0C ’ Fða1f C1 ; a2f C2 ; � � � Þ þ
X
i

∂F
∂yC;i

δϵC;i; (38)

where ai= 1− ϵi. In Eq. (38), we have considered the general error
mitigation formula in Eq. (1) and yC;i ¼ ð1� ϵi þ δϵC;iÞf Ci . If we can
remove the zeroth-order term (contribution of average depolaris-
ing rates) by taking proper variational parameters in the formula,
the bias is determined by fluctuations. For virtual distillation,
Fða1f C1 ; a2f C2Þ ¼ a1f C1=ða2f C2Þ, therefore, we can compensate
average depolarising rates by a factor. In the numerical simulation,
we determine the factor by taking the original virtual distillation
formula y0C ¼ yC1

=yC2
as a virtual machine and concatenating it

with the PEMI protocol according to the formula y00C ¼ ð1� ϵ00Þy0C ,
where ϵ00 is the average depolarising rate of y0C . We find that RMSE
of the optimised formula scales as Nα and α < 1/2 as shown in Fig.
10.
The remaining error after virtual distillation changes from the

coherent mismatch14 to decoherence error when the gate number
increases. With the error-mitigation formula y0C ¼ TrðQρ2Þ=Trðρ2Þ,
the decoherence error is reduced from Nϵ (gate number times
error rate per gate) to (Nϵ)2, while the coherent mismatch is not

suppressed, about which we give a short introduction in
Supplementary Note 1.3. Because the remaining decoherence
error increases quadratically with the gate number, the coherent
mismatch is the dominant component in the remaining error
when the gate number is small, and the decoherence error is the
dominant component when the gate number is large. This change
in the type of error could explain the bifurcation in Fig. 10, and the
result suggests that the optimisation protocol can further reduce
the remaining decoherence error but not the coherent mismatch.
In the numerical simulations, we have taken into account

imperfect implementations in probabilistic error cancellation and
error extrapolation. Assuming the implementation is perfect,
probabilistic error cancellation can reduce RMSE to zero, and error
extrapolation can reduce RMSE to a much lower level. Note that
perfect implementation requires the exact knowledge of the error
model or exact control of the error model. In virtual distillation, we
have only taken into account errors in those gates that prepare
the state ρ and neglected errors in those gates that implement
virtual distillation, e.g. the controlled-swaps in Ref. 14.

DISCUSSION
In this work, we show that the residual bias in the computation
result after error mitigation scales with the gate number N as
Oðϵ0NγÞ if the error mitigation formula is optimised. Here, γ ≈ 0.5,
and ϵ0 is a parameter depending on the error rate of quantum
gates and the error mitigation formula. In contrast, the bias in the
computation result before error mitigation scales linearly with N.
The two scaling relations lead to a somewhat surprising result: We

Fig. 9 Root mean square errors (RMSE) in error mitigation protocols. The result is obtained using ten-qubit periodic-cycling circuits under
the error model in Eq. (36) with ϵd= 8 × 10−5 and ϵz= 2 × 10−5, and we use 1000 Clifford circuits generated via Algorithm 2 for the training
and 1000 unitary circuits to compute the RMSE. The error bar represents one standard deviation. In the raw result without error mitigation,
RMSE increases linearly with the gate number. In error extrapolation (EE), noise is increased imperfectly: ϵd= 1.8 × 10−4 and ϵz= 2 × 10−5 in
the error model with a doubled error rate, i.e. only the gate depolarising component is increased. In probabilistic error cancellation (PEC), we
take the inverse map in Eq. (37) according to an inaccurate error model with only gate depolarising errors, i.e. we take λ=− 16ϵd/(15− 16ϵd)
before the optimisation and the optimal value after the optimisation.

Fig. 10 Root mean square errors (RMSE) in virtual distillation (VD)
protocols. The error bar represents one standard deviation. Other
details such as the circuit configuration and error model are the
same as Fig. 9.
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can suppress the computation error by a larger factor in larger
circuits.
In the analysis, we introduce a phenomenological-error model

characterising errors as the global depolarisation with fluctuation,
which captures the impact of realistic noise on the computation
result. For the optimisation of an error mitigation formula, we
propose ICS as an efficient method of generating training circuits,
where only those Clifford circuits sensitive to Pauli errors are
selected. The optimised formula removes the average contribu-
tion of noise and leaves the fluctuation proportional to

ffiffiffiffi
N

p
. We

verify this result with the numerical simulation of various circuits,
error models and error mitigation formulas, from which we
observe that the scaling behaviour is universal.
Despite the encouraging scaling of bias in error mitigation, we

point out that the circuit size is still limited by the quality of
quantum devices. On a quantum device with a finite error rate per
gate, the bias increases with the circuit size. Although the bias
scaling after error mitigation is advantageous in comparison with
the linear error accumulation before mitigation, at certain circuit
sizes the computation result becomes sufficiently random that
error mitigation cannot faithfully recover the information. There-
fore, the efficacy of error mitigation is conditional on the quality of
the quantum device. In general, the minimum requirement for
error mitigation to take effect is a non-zero fidelity between the
error-free and erroneous circuits, and the performance is better
with higher fidelity. Beyond this, the impact of the unmitigated
error rate on the accuracy of the mitigated result depends on the
mitigation method. In probabilistic error cancellation, for example,
the variance in calculating the expectation value of the result
increases with the error rate. Another example is that, after the
virtual distillation using two copies, the bias in the expectation
value scales quadratically with the error rate. Once the device can
implement the circuit with sufficiently high fidelity (which is not
necessarily close to one but we take a fidelity of 0.9 as an
example), error mitigation can improve the computation result to
a much higher accuracy (equivalent to quantum computing with
fidelity of 0.99 if the error is reduced by a factor of ten).
In scalable quantum computers, we can adopt quantum error

correction to increase the fidelity of logical qubits. Protocols
concatenating error correction with error mitigation have been
proposed recently50–52. Fault-tolerant devices will enable the
implementation of much deeper circuits than NISQ hardware. Our
result of the scaling behaviours suggests that error mitigation can
perform even better in the fault-tolerant regime than in the NISQ
regime.

METHODS
Circuits
We use three families of circuits: periodic-cycling circuits, linear-
network circuits and all-to-all-network circuits.
Periodic-cycling circuits. The qubit array has n qubits, and n is

even. All qubits are initialised in the state 0j i. After initialisation, a
layer of single-qubit gates is placed, see Supplementary Figure
1(a). The circuit pattern is periodic, and each period has two layers
of two-qubit gates. In the first layer, a controlled-Z gate is applied
on qubit-(2i− 1) and qubit-(2i), where i= 1, 2,…, n/2. In the
second layer, a controlled-Z gate is applied on qubit-(2i− 1) and
qubit-(2i− 2), and qubit-0 and qubit-n are the same qubits. After
each two-qubit gate, a single-qubit gate is applied to each of the
two qubits. The observable O is Z of the first qubit. All single-qubit
gates are taken as slots in the corresponding circuit frame.
Linear-network circuits. Except for the pattern of two-qubit

gates and observable, the setup is the same as periodic-cycling
circuits. All two-qubit gates are controlled-Z gates. For each of
them, we randomly generate an integer i∈ [1, n] and apply the
two-qubit gate on qubit-(i− 1) and qubit-i, see Supplementary

Figure 1(b). The observable is O= P1⊗ P2⊗⋯⊗ Pn, where P= I, Z
is taken randomly.
All-to-all-network circuits. It is similar to linear-network circuits.

For each of the two-qubit gates, we randomly generate two
different integers i, j∈ [1, n] and apply the two-qubit gate on
qubit-i and qubit-j, see Supplementary Figure 1(c).

Error models
Several error models are used in the numerical simulations.
Gate depolarising model. The model is given in Eq. (20), and

only two-qubit gates have errors. This model is used to generated
data shown in Figs. 2, 5 and 6. In Figs. 2 and 5, we take ϵ= 0.001.
In Figs. 6, for each data point, we randomly generate a circuit (and
the corresponding circuit frame) and an error rate. For a circuit
with N two-qubit gates, we generate a random real number
η∈ [− 2.5,− 0.5], and we take ϵ= 10η/N as the error rate per gate.
Notice that 10η is the total error rate.
Composite error model. Only two-qubit gates have errors. For a

two-qubit gate U, the gate with errors is

A2A1½R2;ZR2;YR2;X �½R1;ZR1;YR1;X �Z2Z1N½U�;
where N is the gate depolarising error in Eq. (20) with the error
rate ϵd, Z i ¼ ð1� ϵi;zÞ½I� þ ϵi;z ½Z� is the dephasing error on qubit-i,

Ri;P¼e�i
θi;P
2 P is a single-qubit rotation on qubit-i, and

Ai ¼ 1þZ
2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ϵi;a
p 1�Z

2

� �
þ ffiffiffiffiffiffi

ϵi;a
p XþiY

2

� � (39)

is the amplitude damping on qubit-i. This model is used to
generate data shown in Fig. 7 (c) and (d). For each data point, we
randomly generate the error model parameters as follows. For a
circuit with N two-qubit gates, we generate a random real number
η∈ [− 2.5,− 0.5], and we take ϵ= 10η/N as the error rate per gate.
Then, we take ϵd= (1+ 0.2κd)ϵ/9, ϵi,z= (1+ 0.2κi,z)ϵ/9, θi,P= κi,Pϵ/9
and ϵi,a= (1+ 0.2κi,a)ϵ/6. Each κ is taken randomly in the interval
[− 1, 1].
Gate-dependent error model. In this model, both single-qubit

and two-qubit gates have errors. The error model is the gate
depolarising model. For two-qubit gates, the noise map is given
by Eq. (20). For a single-qubit gate R, the gate with error is S½R�,
where

S ¼ 1� 4ϵs
3

� �
½I� þ ϵs

3

X
P¼I;X;Y;Z

½P�; (40)

and ϵs ¼ 0:1π�1ϵ arccos jTrðRÞj
2 . This model is used to generate data

shown in Fig. 8, and we estimate ϵ0 and Δ using 10000 unitary
circuits in U.
Gate depolarising and dephasing model. The model is given in

Eq. (36), and only two-qubit gates have errors. This model is used
to generate data shown in Figs. 9 and 10. In the numerical
simulation, we approximate the error model with Z2Z1N for
simplicity in coding, which only causes a small difference and will
not change the conclusion.
The above error models take into consideration kinds of

physical noise processes and are able to simulate noises in
realistic quantum devices. The depolarising error N and dephas-
ing error Z simulates the relaxation process and the dephasing
process53,54, which are the main contributions to noise in realistic
quantum devices. Amplitude damping A refers to the infidelity
caused by energy dissipation. Random rotations R refer to
coherent errors caused by imperfect controls. This composite
model takes into consideration all the above realistic imperfec-
tions and it was demonstrated in Ref. 42 that the composite model
can produce error distributions resembling that in experiments on
a superconducting quantum processor. The single-qubit-gate-
dependent error model S is the single-qubit depolarising error
with an error rate depending on the gate parameters. This error
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model takes into consideration the realistic situation that gate
errors increase with the gate time. Additionally, we will make a
direct comparison between the experimental results and simula-
tion results in Supplementary Note 6 and show that experimental
results are consistent with simulation results.

Error mitigation protocols
We verified the scaling behaviour by simulating various error
mitigation protocols. The formula in Eq. (33) is used to generate
data shown in Figs. 5, 6 and 7. The PEMI protocol in Fig. 9 is
y0C ¼ ð1� ϵ0Þ�1yC . In optimised error extrapolation, we take
λ= ϵ2/(ϵ2− ϵ1). In optimised probabilistic error cancellation, we
take λ=− 16ϵd/(15− 16ϵd)− 2ϵz: We have searched for the
optimal λ using ICS data and found that the numerical optimal
value is close to it. In optimised virtual distillation in Fig. 10, the
formula is y00C ¼ ð1� ϵ00Þ�1y0C . To implement optimised error
mitigation formulas, we estimate ϵ0, Δ, ϵ1, ϵ2 or ϵ00 using 1000
error-sensitive circuits, according to Algorithm 2. Then, we
generate 1000 unitary circuits with the same frame to
estimate RMSE.
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